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ABSTRACT

Load identification is a hotly studied topic due to the widespread recognition of its
importance in structural design and health monitoring. This paper explores an effective
identification method for the distributed dynamic load (DDL) varying in both time progress
and space dimensions using limited acceleration responses. As for the reconstruction of
spatial distribution, the radial basis function (RBF) interpolation strategy, whose hyper-
parameters are determined by a hierarchical clustering algorithm, is applied to approximate
the DDL and then transform the continuous function into finite dimensions. In the time
domain, based on the inverse Newmark iteration, the RBF coefficients at each discrete instant
are obtained by the least square solution of the modal forces. Considering the multi-source
uncertainties lacking exact probability distributions, a multi-dimensional interval model is
developed to quantify convex parameters and fuzzy parameters uniformly. Further, a
Chebyshev-interval surrogate model with different orders is constructed to obtain the fuzzy-
interval boundaries of DDLs. Eventually, three examples are discussed to demonstrate the
feasibility of the developed DDL identification approach considering hybrid uncertainties.
The results suggest its promising applications in different structures and loading conditions.
Keywords: distributed dynamic load identification; inverse Newmark iteration; RBF
interpolation; hierarchical clustering; convex-fuzzy hybrid uncertainties; Chebyshev-interval
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1 Introduction

Mechanical systems are often subject to distributed dynamic loads (DDLS), such as the
aerodynamic load on the aircraft skin and the wind load on the bridge structure [1-3]. Load
environment precognition has inspired the development of health monitoring and structural
design. There is no denying that the DDL is more complicated than the well-explored one-
point/ multi-point concentrated dynamic loads (CDLs), due to the continuity in the time-
space dimension. In addition, only limited acceleration responses can be obtained from the
perspective of sensor installation, which intensifies the difficulty of DDL identification.

In general, DDL identification is developed on the basis of CDL identification, and the
review of CDL identification can reference our previous work [4, 5] and will not be repeated
herein. On the one hand, the spatial distribution of DDLs can be approximated by linearly
independent basis functions, and then the DDL identification is transformed into coefficients
determination of basis functions [6, 7]. Liu et al. [8] provided tailored basis functions to
decompose the spatial function of DDLs and the resulting responses, then identified the
common weighting coefficients by a Tikhonov regularization scheme. For the flight loads
with spatial distribution, Coates et al. [9] selected the most appropriate Fourier coefficient
among the pre-developed database by minimizing the error of measured and calculated
strains. Based on the orthogonal decomposition, Granger et al. [10], Dessi et al. [11] also
developed a series of works on DDL identification. On the other hand, the continuous DDL
can be equivalent to several concentrated loads acting on appropriate locations that may
induce identical dynamic responses. In view of this, Liu et al. [12] identified concentrated
loads sparsely by the combination with blind source separation and orthogonal matching
pursuit, however, the results are non-uniqueness.

This work focuses on the first method of DDL identification and aims to establish a
universal set of basis functions. Especially, the radial basis function (RBF) has been
intensively investigated in the field of data processing and interpolation [13, 14], which can
describe the multivariate nonlinear function via one-variable functions (distance function).
Any expressions with radial symmetry can be regarded as the kernel function of RBF and the
Gaussian function is the most common one [15]. To further improve the approximating
accuracy, considerable researches are devoted to parameter selection for kernel functions. In
parallel to the RBF neural network with some training samples, some strategies, such as self-

organizing learning [16], supervised learning [17] and orthogonal least-squares [18], are
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developed concerning the central parameters of hidden layer neurons.

Most previous works on DDL identification were carried out with deterministic
assumptions, however, uncertain factors originating from e the static fluctuation (e.g.,
modeling error and material dispersion) and time-varying factors (e.g., measurement error
and signal noises) are often inevitable [19]. These uncertainties can be essentially manifested
by their properties of randomness, fuzziness and convexness. For complex systems, different
kinds of uncertain information are often encountered simultaneously. Reasonable
quantification and propagation treatments of hybrid uncertainties is a precondition for non-
deterministic DDL identification. Jiang et al. [20] reviewed the probability-interval hybrid
uncertainties from the perspective of uncertainty modeling, uncertainty propagation,
structural reliability analysis and reliability-based design optimization. Prasad et al. [21]
conducted a Chebyshev-polynomial chaos metamodel for uncertainty analysis for mixed
epistemic-aleatory problems caused by imprecise knowledge and random variability in the
transmission of line networks. Yin et al. [22] established a hybrid Finite Element/Statistical
Energy Analysis model considering fuzzy and interval uncertainties based on first-order
perturbation, second-order perturbation and Chebyshev approximation. More excellent
researches are illustrated in Ref. [23-25]. However, a unified framework integrating
heterogeneous uncertainties was not taken into account in previous studies. Additionanlly, the
interval model is usually used to declare the convex uncertainties ignoring the correlation
between uncertain parameters.

The problem is solved as follows. In Section 2, the basic formulas of the structural
dynamics evolution and RBF interpolation approximation are reviewed. In Section 3, the
hierarchical clustering approach is adopted to determine RBF parameters systematically, and
the RBF coefficients of DDLs at each instant are subsequently solved based on limited
acceleration signals. In Section 4, the quantification and propagation analysis in the context
of convex-fuzzy hybrid uncertainties is expounded by the combination of interval modeling
and the Chebyshev-interval method. The verification of the proposed methodology is
eventually demonstrated by three numerical examples in Section 6. Some conclusions are

drawn at the end of the article.

2 Statements of the problem

DDL identification can reconstruct the load tendency in time domain as well as the load

distribution in space domain. On the one hand, the dynamic load is discretized into a time
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series in time history; on the other hand, its spatial distribution with infinite dimension is
transformed into a finite dimension at each time step. In this section, the preparatory works
are introduced in consideration of multi-source uncertainties, including the dynamical

evolution process and the finite-dimensional approximation.

2.1 Forward analyses of structural dynamics

With regard to a continuous linear system, the rule of uncertain motion can be
characterized by the following partial differential equation [26]
o°w(b, L,t)

ot?
where b signifies multi-source uncertain parameters vector; t is the time variable and L e Q

M (b,L) +§C(b, L)A[w(b,L,t)]+K(b,L)¥[w(b,L,t)]=F(b,L,t) (1)
is the space variable; M (b,L), C(b,L) and K(b,L) reveal the structural mass, damping and

stiffness properties; w(b,L,t) represents the structural displacement function; F(b,L,t)
denotes the external DDL function; and Af[w(b,L,t)], ¥[w(b,L,t)] are assigned as
differential operators of displacement w(b, L,t) concerning the space variable L . The spatial

coordinate system Q — R* may describe one-dimensional beams (x=1), two-dimensional
plates (« =2) and three-dimensional solid structures (x = 3).
In general, Eq. (1) can be discretized into n degrees of freedom (DOFs) through the
finite element method (FEM), namely
{M(b)ij(b,t) +C(b)u(b,t) + K(b)u(b,t) =f(b,t) )
u(b,0)=u, , u(b,0)=u,
in which M(b) e R™, C(b) e R™ and K(b) € R™ means global characteristic matrices of
mass, damping and stiffness; t(b,t) e R™, u(b,t)e R™ and u(b,t) e R™ stand for the
transient response vectors of acceleration, velocity and displacement; f(b,t) € R™ is the load

vector discretized by the DDL; u, and u, read corresponding initial conditions, which are

always set as 0. Based on the mode superposition theory for classically-damped linear
systems, Eg. (2) can be decoupled into a series of differential equations of single-DOF

systems. The decoupled r-th (r =1,2,---,n) modal equation can be depicted as

Mg (b)d" (b, t) + C; (b)g" (b,t) + K (b)q" (b,t) = P" (b,1)
4" (b,00=0, g"(b,0)=0

©)

where  M; (b)=¢; (D)M(b)e, (b) , C;(b)=¢; (b)C(b),(b) and K (b)=g; (b)K(b)e,(b)
represent the r -th modal mass, damping and stiffness respectively; q'(b,t) is the modal
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displacement response, and P'(b,t)=¢ (b)f(b,t) is the relevant modal force. The modal
T

matrix satisfies u(b,t)=®(b)q(b,t)=[, (b),¢,(b), - ¢, ()] a'(b,t),q*(b,1),-,q" (b,t) |

To alleviate the computational burden, the first k -order modes are involved herein. Then, we

have u(b,t)=®, (b)q (b, )=[@,(b), @,(b). .0, (0)][a*(b.1).a*(b.1).-.q*(b.t) | .

In terms of transient-dynamics analysis, the classical Newmark difference scheme is
usually employed. Then, the recursive formula for the r-th (r=21,2,---,k ) modal responses
can be detailed by

g (b,t+At) =q"(b,t) + Atg" (b,t) + 1/ 2— B)(At)*G" (b,t) + A(AL)*G" (b, t + At) @
q'(b,t+At)=q"(b,t)+ (1 y)Atg" (b,t) + yAtq" (b, t + At)

where At=T /S istime increment. T and S are loading duration and total steps. y and g is

set as control parameters of the Newmark scheme [2]. Substituting the differential equations
attime t and t+At into Eq. (4), it yields

K™ (b)g" (b,t+At) =P"(b,t + At) + F"" (b, 1) (5)
where
PR cya o ‘
K" (b)= B0 Mg (b) + Pt C;(b)+K; (b)
*r —nAtr 1 r 1 . r 1 _ .or
F (b,t)—Mq(b)[ﬂ(At)zq (b’t)+ﬁq (b,t)+(ﬁ 1jq (b,t)} (6)

r Y r V4 .y V4 .o p
Cq(b){ﬁq (b,t)+[z—qu (b’t)J{ﬁ_qu (b,t)}

Under such circumstances, the modal displacement response q' (b,t+ At) can be considered
as a superposition of two components, i.e., q'(b,t+At)=q;(b,t+At)+q;(b,t+At) .
g, (b,t+At) is caused by the modal load P"(b,t+At) at instant t+At and q;(b,t+At) by

the combination of modal responses F* (b,t) at instant t.

2.2 RBF interpolation techniques for DDL approximation

The transformation of discrete measurements into continuously distributed loads can be
achieved by data interpolation or fitting. Due to the unknown features of DDLs, there is an
urgent need to find an efficient method for both smooth and strongly nonlinear functions. In
particular, the RBF interpolation [13] incorporates linear and non-linear basis functions, then
the non-linear correlations in low-dimensional spaces may be converted into linear when
projected onto higher-dimensional spaces by the RBF. Thus, the RBF interpolation is applied

to match the spatial distribution of the DDL herein. Given a set X:{xl,xz,---,xq} cR" in
6
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space Q, the function F(b,L,t) can be written as
9 K
Fo,L,t)=)"a;(b,)g(|L—x,[) + >, (0,t) p, (L) (7)
j=1 h=0

where X is called the center set; ¢ is a nonlinear basis function; [L-x;| (j=12,,q)

denotes the Euclidean distance between L and x;; p,(L) (h=0,---,x) is a component of
linear polynomial basis to ensure the non-singularity of the subsequent coefficient solution;

a;(b,t) and 7, (b,t) are the corresponding undetermined coefficients. It is noted that as long

as the elements within X are different from each other, the function {¢(HL—XJH)} will be

linearly independent. In addition, the RBF coefficients and polynomial basis should obey the
orthogonality conditions, i.e.,

q
> a;(bt)p,(x;)=0 , h=01-,x (8)
j=1

There are many specific functional forms available in the literature for the nonlinear basis

function. In this work, without loss of generality, the Gaussian function is used as the

nonlinear basis function, which can be expressed as

ZO'J

where of is the variance of the Gaussian function, which controls its width. The value of

R = 0

#(|L—x;|) increases as the distance L —x; | decreases. To better control its action scope,

the spatial coordinate L is recommended to be regularized to a standard interval as follows
|:i _ 2LI _(Anax + Anin)
A‘nax - Anin

where L' and L' are the original coordinate and the regularized coordinate in the i -th

izl k0 (10)

dimension. [A,;,, A is the standard interval. Then Eq. (7) will be transformed as

- g - K -
F(b,L,t) > F(b,L,)=>«, (b,t)¢(HL—x J.H) +> 1, (0,t) p, (L) (11)
j=1 h=0
To gain more insight, the Euclidean distance, linear polynomial basis and orthogonality

conditions of the three-dimensional solid structure can be defined as

HI:_XJH:\/(X_XJ)Z +(y-y) +(2-7)°
p(b, L,t)=1,(0b,t)+7, (b, 1) X+1,(b,t) y+1,(b,1)2 (12)

iaj(b,t) =iaj(b,t)xj =Zq:aj(b,t)yj :Zq:aj(b,t)zj -0

7



A Distributed Dynamic Load Identification Method Based on the Hierarchical-Clustering-Oriented Radial Basis Function Framework Using
Acceleration Signals under Convex-Fuzzy Hybrid Uncertainties

where x;, y; and z; are coordinates of the center x;. Fig. 1 shows the RBF interpolation

scheme for one-dimensional and two-dimensional situations, in which any curves or surfaces
can be approximated once the RBF center is determined. In addition, the RBF interpolation is
not the unique choice; other models such as polynomial interpolation, spline function
interpolation, Kriging interpolation can be used for DDL spatial discretization.

x, =(-3,2) x,=(14) x,=(0,0)

f(i) ¢ RBF center

=
~ f(X)=¢+2¢,+¢,+ x,=(2,-3) x,=(-41)
T ) _ * RBF center

3 I 2,44 +1-0.1% - 1

7)) f(L)=24,+6,424,+4,24,
Xt 1.5-0.1%+0.25

X

(a) One-dimensional approximation (b) Two-dimensional approximation

Fig. 1 The distributed function approximation by RBF

3 DDL identification via hierarchical clustering and acceleration signals
It is generally accepted that the computational complexity and approximating precision

depend on the dispersion of the center set X and its number q. In addition, the shape of
#(|C—x;[) is determined by the parameter o;. How to determine the hyper-parameters of

the RBF approximation and then inverse the coefficients «; (b,t), (j=1,2---,q) and p,(L)

(h=0,1,---,x) through accessible acceleration signals are discussed in this section.

3.1 RBF determinations by hierarchical clustering

Given that the DDLs on FEM nodes are related to spatial locations, the normalized

coordinates L _{r_l,[2,-~,|~_m}CRK(K‘=1,2,3) with m samples may be introduced to

surface —

determine the overall arrangement of RBF approximation. As mentioned in the introduction
section, several approaches have been developed for the determination of the RBF centers. In
general, the center is chosen at random and the width is determined by experience, which is
more demanding in terms of node coordinates and is only applicable if the selected centers
are representative. Subsequently, self-organizing learning methods based on K-means

clustering [27] were developed with the given initial cluster center. However, the number q

should be specified in advance and clustering results maybe not be assigned as unique. In
8
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order to overcome the difficulties of large randomness, slow convergence and strong initial
dependence, the hierarchical clustering algorithm [28] is incorporated herein and the specific

process is as follows.

S L L B -
/\
1] S — i
i
50 F X, |
................... ; I Xy—
45t ' ; : ‘ ] . 3T \
) P O i O R p— N S P P e i T 60 i ’
E40F E ! ' Cluster 4 _ Cluster 4 i
P ! ! : ; g - : Cluster 3 )
235 ¢ Cluster2 | Cluster3 . & - k 7
< H ' : > ¥ i & -7
7] Cluster 1 ¢ | N, :
Z30f oLt I : g 0 N <
25+ r ‘ { X| . Y o X
‘ . ‘D/ | v
i : l Cluster 1 | 5
" uster I Cluster2
15F [ 1 '
[1 0 . . n
1 243 51219 922242021 618 72311 810131525161726142728 0 30 60 90 120
Node number X (mm)
(@) The dendrogram (b) Hierarchical clustering results

Fig. 2 Schematic diagram of hierarchical clustering

Compared with the RBF neural network, the normalized coordinates L are

surface
equivalent to the training samples of the input layer, and the center set X is equivalent to the

neuron center of the hidden layer. By virtue of the hierarchical clustering algorithm, every

sample of L, is regarded as an initial cluster to produce m clusters firstly. Then the two

clusters with the nearest distance may be merged continually until the m samples are

integrated into one cluster. The key of this algorithm is to calculate the between-cluster

distance. Let &, represent the distance between the sample L, and L, , which can be
calculated by the Euclidean distance, namely
SoF - NO(E C W
§VW:‘LV_LWH_ Z(LV_LW) (13)

i=1
Let £, is the distance between cluster E and cluster E,. Considering the information of all

samples in a cluster, the average-linkage between-cluster distance [29] can be given by

1
po_m z ~Z ng (14)

0 I~_V ek, L, <E,

where A and A, are sample sizes. When the cluster E and cluster E, are merged into a

new cluster E,, the distance between cluster E, and another cluster E, can be given by

_ 1 s LA
ae_AaA yz yz ng - Aa é,pe—i_A oe (15)

e L,eE, L,€<E, a

The number of generated clusters in the hierarchical clustering process is settled as the
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centers’ number . The maximum between-cluster distance, namely, the merging distance
¢™* at the last step, is employed to determine the value of q. Suppose that the merging
distance in the ¢ -th iteration is ¢ . It indicates the distance is large enough and the

similarity is small enough between any two clusters if £ > 7™ (7 is the proportional
coefficient). Accordingly, the normalized coordinates of FEM nodes are divided into

q=m-e¢ clusters ({E,,E,,---,E,_,}). An irregular hexagon with 18 nodes is taken as an

example to illustrate the entire clustering procedure, whose dendrogram is plotted in Fig. 2
(). Segmenting the clustering results with the double dots line, 4 clusters are created as

shown in Fig. 2 (b). Once q is determined, the j-th center x; can be obtained by the

ultimate cluster EJ. as follows
1 . .
Xj_A_~z L* y J:].,Z,"'m—g (16)
j L*eEj

Eventually, the variance o of the nonlinear basis function ¢(|L—x;[) can be given by
;=43 , I;=min(|x; -x) (17)

where 3, is the minimum distance between the j-th center x; and another center X,

(i=1,2,---,qg but i=]j). A is the overlap coefficient, which reflects the smoothness of the
function ¢(HI~_—XJ.H) . Moreover, the larger the A is, the smoother the ¢(HI~_—XJ.H) is.

To conclude, the hyper-parameters of RBF approximation can be handled by merging
clusters reasonably based on the hierarchical-clustering-oriented framework. The RBF
centers can be uniquely determined, independent of engineering experiences and initial
designs. And a widely applicable RBF space may be constructed eventually by adjusting the

proportional coefficient = and the overlap coefficient 4.

3.2 Coefficient calculations via acceleration signals

As mentioned in section 2.1, the dynamic responses can be deduced iteratively via Eg. (3)
-(6) for the forward FEM analyses. In contrast, the external load can also be solved step by
step for the inverse problem. However, the accelerometers are often restricted that cannot
cover all DOFs. When the time sequence of acceleration signals of G measuring points is

provided, the first k -order modal acceleration responses can be calculated by

gb] [elb) o¥bd) - o) ][ u®
TOOT_er®) e ®) el uzs(t) = G(b,t) =[@, (b)] U(t) (18)
GO, ] oMb o) - o) |y
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where [>x<]+ means the Moore-Penrose pseudo inverse operation of *; N, (i=12,---,G)
denotes the DOF of the i -th measuring point; and ¢''(b) (i=1,2,--,G, j=1,2,---,k )
represents the value of the j-th natural mode on the i-th DOF. Furthermore, the modal

displacement/velocity sequence can be calculated through the Newmark iteration as Eq. (4),

and the modal displacement component q;(b,t+At) can be calculated through Eq. (6).
Another displacement component can be given by q; (b,t+At)=q" (b,t+ At)—q;(b,t + At) .

Then, the r -th modal force P"(b,t+ At) can be analyzed by

P"(b,t+At) = K™ (b)q; (b,t + At) (19)
With the aid of RBF approximation, the DDF on the v -th FEM node may be written as
'(b,t)=F(b,L,,t)=E(L,)x(b,t) (20)

where L, is the normalized spatial coordinates of the v-th node; Z(L,) is the basis vector;

and y(b,t) is the undetermined coefficient vector. They can be detailed as

2(L)=[#(C, %) - (T, ~x) poC) - pAL)] on
x0.)=[a 1) - b BB - pbH]
Further, the modal force can be expressed as
PO (o) o® -~ e®] [=(C)
P (.b1t) _ (Pl'(b) ¢2Fb) (Pk.(b) Tf E(I'—z) x(b,t)

P‘b,t) | [o/(d) i) - og(b) Z(L,)
= P(b,t)=®; (b) T, ¥(L)x(b,1)
where (Tf )n . corresponds to the force action matrix composed of 1 and 0. Considering the

orthogonality condition of RBF interpolation, Eq. (8) can be rewritten as
Po(X)) -+ Pp(xy) O -+ 0 0
: : : bty =1 | = T(X)y(b,t)=[0] (23)
pM(Xl) pM(Xq) o - 0 0
Combining Eq. (22)-(23), the coefficient vector including «;(b,t) (j=12,---,q) and
n,(b,t) (h=0,1.--,x) at each discrete time can be determined through the least square
method, namely

00— ﬂ@l (b)T»P(L)} {ml(b)m(b}} {q)l (b)Tf‘I'(IZ)} {P(b,t)

} (24)
T'(X) r'(X) r'(X) 0

11
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4 Uncertainty treatments for the prediction of DDL boundary

The identified DDL may be indeterminate considering the transmissibility of multi-
source uncertainties through the convolution relationship between the external DDL and input
variables. How to quantitatively describe and effectively propagate uncertain parameters is at
the heart of the uncertainty-oriented DDL identification scheme. Frankly speaking, there are
three methods to quantify the uncertainties in practical engineering, namely probabilistic
model, fuzzy model and convex model. Although the probabilistic approach is most widely
used based on classical probability theory and statistical techniques, it is often challenging to
obtain exact probability distributions of uncertain variables through limited samples [30]. On
the contrary, the membership function for the fuzzy model, and the boundary rules and linear
correlation feature for the convex model are relatively easy to be confirmed via engineering
experience [31]. That’s to say, as an effective complement to the probabilistic model, convex
and fuzzy models are more advantageous in dealing with practical problems in information-
poor and data-poor situations. Hence, hybrid uncertainties are characterized and further

analyzed based on the convex set and fuzzy set in this section.

4.1 Interval modeling of multi-dimensional convex-fuzzy hybrid uncertainties

Once the scatter of uncertainty data of convex uncertainties is obtainable, all possible
values b, ={b,,b.,, --bc,} are assumed to be bounded in the multidimensional ellipsoid
model E,_, which can be expressed as

E, ={bc|(bc—bg)TQ(bC—b°c)£w2,bce]RP} (25)
where b, is the center of the ellipsoid model; P is the dimension of convex parameters; Q
is the characteristic matrix which is symmetric and positive; and @ is a specific parameter.
The shape and direction of the ellipsoid are determined by ., and its size is influenced by
both © and @ . To characterize the ellipsoid model more conveniently, some basic variables

are defined firstly. Initially, the center, radius and variance of the convex parameters can be

defined by the interval be,=[be,.be, | (0=1,2,+,P)

c bo 6o r EO_DO r
g, =2 2 pf, =2 2 | D(bg,)= (b, ) (26)

And the covariance matrix W can be calculated by

Cov(be,,be;) Cov(bg,,be,) -+ Cov(be,be)

COV(bcz,bcz) Cov(bczibcp)

W = 27)

Sym Cov(bep,bep )
12
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where Cov(Dg, bey) = Doy b )y/D (B, ) Db ) i the covariance and p(be,.be,) s

their correlation coefficient. In fact, the pseudo-inverse matrix of W is the characteristic
matrix . It may be ill-posed sometimes due to the different magnitude between convex

parameters. Thus, convex parameters should be transformed to a dimensionless space by

A bCo — bCCo
bo,=—% —C | =12, P (28)
bl’
Co
b, , 'he original ellipsoid model The equivalent ellipsoid model The unit sphere model
b, $ b, 1 b,
1
Normalization Spectral
operation decomposition
e —> —>
~ h(“_b: [)Cl 1 [)
b= b b :LH”‘T[)(
0=12 ’
b,

o l_)m bz-, B('l b(‘l 2] & % SR 5 2
oy X " R*! E, =ib¢|b.b. <1b.eR*{
B, =1{b, |(b.—bi) Q(b.—b{)<a’,b, eR?/

Fig. 3 The convex parameters under different spaces
Then an equivalent ellipsoid model Ebc can be yielded, i.e.,
= - IR TOR 2 K P
E,, ={bc |b, @b, <&’,b; e R”} (29)

where Q=diag(b¢, )Qdiag(b¢, ) is the characteristic matrix and diag(b,) is a diagonal

matrix. Taking the spectral decomposition Q=T"HT , a normalized vector can be defined as

be=— HoTb, (30)
(2}

in which T is an orthogonal matrix and satisfies T'T=1. H denotes the diagonal matrix
composed of eigenvalues. The convex parameters can be further transformed to a normalized

space from the dimensionless space, and a unit hypersphere model can be obtained as
E, ={b |b."b; <1b, eR"} (31)
where BC is the normalized vector regarding the convex parameter b. . As shown in Fig. 3,

the two-dimensional convex parameters are finally encompassed by a circle through twice

transformation. Utilizing spherical coordinates (R,8,,6,,--+,6,,), R€[0,1], 6., €[0,27],

6, €[0,7](a=12,--,P—2) to signify the unit hypersphere model, we have
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Rcos 6,
Rsin g, cosé,
Rsin @, sin 6, cos 6,

o
(@]
1

(32)

Rsing;siné,...sin6, ,cosb, ,
T 1-05R c

b. =T H b, +b;

Since the spherical coordinates are all interval variables, the convex parameters b. can be

modeled by the interval model eventually.

4

0 b by, b, b, b,

Fig. 4 The description of fuzzy parameters

When it comes to the fuzzy theory in uncertainty analysis, the level-cut strategy is
applicable to deal with fuzzy information. The fuzzy parameters b, ={b,,b.,,--b,} can
be generally described by the membership function ¢(b.,) (e=1,2,---,Q). As debated in Ref.

[32], it contains Gaussian type, trapezoid type, triangle type, etc. The membership function

((bg,) is commonly depicted as

E(bFe): (33)

0 others

where g; (bg,) and g; (bg,) embody the monotonically increasing and monotonically
decreasing functions related to the fuzzy parameter b_,, respectively. Given the membership
value 6 (o€ [0,1]), the o -cut fuzzy parameter b, can be expressed as

b, ={bel¢(bs )20, b, R} (34)
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As shown in Fig. 4, it can be regarded as a truncated interval b?, e[ b?,,b, |, whose

upper and lower bounds can be given by

btlie =min {bFew(bFe) >0, bFe < R} = (gtl),:e )71(5) (35)
by, =max {bel¢(be )23 b, eR}=(gZ ) (5)

where (g, )_1(*) and (g7 )_l(*) are respectively the inverse function of g;_(b,) and

gthe(bFe). For this reason, the fuzzy parameters b_. can be investigated by the interval

model similarly under any truncated level.

4.2 Uncertain propagation analyses based on Chebyshev-Interval method
If convex uncertainties are only involved, the identified force f'(b,t) on the v-th FEM

node will be an interval term. Then, it will possess fuzzy characters if fuzzy uncertainties are
further considered. As described in section 3.1, the interval model is used to characterize the

hybrid uncertainties (normalized convex parameters and truncated fuzzy parameters), namely
beb'={R,6,0,.6,,,bl,,07, - bly} = b={b,b, by} (36)
The identified lower/upper boundary can be given by

£ (b,t) = min {f(6,1) M(b)i(b, ) + C(bYa(b, 1)+ K (B)u(b, 1) = (b, )}

(b, 1) = max {f (b,1) M(b)U(b, 1) + C(b)(b, 1) + K (B)u(b,t) = (b, 1)} (37)

The Monte Carlo simulation (MCS) and the global optimization algorithm are the most
straightforward approaches to calculate the DDL interval with fuzzy bound. However, they
are time-consuming and labor-consuming to get global characteristic matrices by repetitive
FEM analysis. Besides, some easy but crude methods such as the vertex combination or the
Taylor series expansion are developed but they are inaccurate for nonlinear and large
uncertainty problems. Herein, an effective uncertainty propagation method based on the
Chebyshev orthogonal polynomial (COP) approximation [33] in the multidimensional

interval (Chebyshev-Interval) is carried out.

For the sake of simplicity and generality, a one-dimensional interval b € b' :[Q,EJ IS
applied to illustrate the details. The COPs are simply defined as

{ho(ﬁ):l , h,(b)=b 5_2b—(b+b)

h,.(b)=2bh, (b)-h, () b b e[-11] (38)

where b is the equivalent mapping of interval parameter b in the standard interval [—1,1]. A
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set of linearly independent basis H:Span{ho,hl,--~,hm} may be generated. In addition,

there exists a polynomial )&*(B,t)eH that converges to the continuous function of the

uncertain f'(b,t) included in the interval [Q,B] namely

[} p®)[ .- (5, )} db= min p(b)[f (b,0)- (b, t)Tdb (39)

A(b t)el17b

where p(b) =

is the weight function, X"(b,t)=sh,(0)+ 4Ry (0) + -+ 35y (D)

1
N/

=" 1'h,(b) is the best square approximation polynomial. The coefficients {1, 1+, 443 }

i=0

2

_ B A B 2
can be got by minimizing the function N(yo,yl,---,ym)z_[bb p(b){f“(b,t)—z/zihi(b)} db
- i=0

whose necessary condition can be given as
a& ~ .
zj p(b){f (b,t)— Z,u,h,(b)}[—hj(b)]db =0, j=01--2 (40)

Based on the orthogonallty condition and Gaussian-Chebyshev integration formula, it arrives

_ b%b ~ 230 ) (6°) (41)
b 1 2 e:l

where b*,b?,---,b™ are the Gaussian interpolation points (GIPs), which can be determined by
the zero-points of a 9t -order COP. The homologous points b*,b?,---,b™ in the original
interval can be given by

, e=12,-.-9Mm (42)

BG:COS(ze—lﬂj e _(b+D)+b° (B -b)
29 2
In general, 2t > A+1 should be fulfilled to minimize the integration error [34].

Below, apply the one-dimensional uncertainty beb' to the multi-dimensional cases
beb'. Obviously, the nonlinear degree for the angle interval ¢, , €[0,27] and 6, €[0, 7] of
convex parameters is higher than that for the o -cut interval of fuzzy parameters. Thus, to
reduce unnecessary calculation but ensure precision, the multidimensional COP with different
orders is used to surrogate the function f'(b,t) . The multi-dimensional best square
approximation polynomial over the convex-fuzzy hybrid interval can be written as

X (B,t) = 22 ZU s (BB ) 43)

=0 i,= ip,g=0

where S is the total number of zero(s) occurring in the subscript ii,---ip,o; 24,24, 4

are the orders of each-dimensional COP; ‘u;:iz'”imo is the undetermined COP coefficient;

(b,,b,,-++,b,,,) is the P+Q-dimensional COP. The multidimensional COP can be

iz lpig
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defined as the tensor product of each one-dimensional COP, namely

P+Q

P (D) =Ry i (By,0,,+,Dp ) = Hh ®) , =012

5 _2b,—(b,+b)
’ b,-b

1 —1

(44)
e[-11] , 1=12,-,P+Q

As stated by Eq. (41) for a one-dimensional issue, the coefficient ”':iz-im is detailed as

PO, (0) e B

* bp.q
Hij, i ( j I I '[bPQ\/l—bl \/1_b22"'\/1_6P+Q2 1¥2 P+Q
P+Q M, M, Mp,q e P+Q
T |23 X e oTT 1,6

=le,=l  epo=l

(45)

where ﬁﬁl,i)ﬁz,m,imw denote the each-dimensional number of GIPs. b%,b%,---,b™ and

b%,b%,---,b™ are GIPs and corresponding original parameters in the ¢-th dimension, i.e.,
6 = oS uﬂ_ , bflz(b’—i—bl)—'_bll(bl_b’) ’ etzl’zl‘”,ml (46)
29 2
Additionally, the configuration schemes of GIPs are plotted in Fig. 5 for two low-dimensional

1

issues. Similarly, 9t > A +1 should be guaranteed to minimize the integration error.

Once the series of COP coefficients are determined, the properties of force f'(b,t) in the

convex-fuzzy uncertain domain can be expressed by an explicit multivariate function. Then,

Eqg. (37) can be replaced by finding the maximum and minimum of the COP function

X" (b,t), which is easy to implement without calling too much FEM calculation. That is

£¥(b,t) = min {x* (B,t)} , b, = max{)i* (B,t)} (47)
- beb' beb'
(Tm) . O ) : \ . #\ ol X ]
0s| 3 Cos| 3 ) cos| 3 | Cos| 3 ‘ N cos| 5) L 10 Lm‘ “T, \
B v oy P e e ey e e e e e e o e e e sas
H i . ! ms[ l()}
= S - T S A S — 4 .................. &1 cos z\l
0.5 10)
b, :
S () fe@rerererseaesansene L S —— .’ .................. ¢ cos ‘_’TJ
2 10
§ospl TP A o 77)
H H ' 7110 )
- @ rrerenraninarains R S .6 .................. ] COS(?—/—[}
-1 0.5 0, 0.5 [
(a) Two-dimensional issue (b) Three-dimensional issue

Fig. 5 The configuration scheme of GIPs

17



A Distributed Dynamic Load Identification Method Based on the Hierarchical-Clustering-Oriented Radial Basis Function Framework Using
Acceleration Signals under Convex-Fuzzy Hybrid Uncertainties

5 Implementation of the load identification procedure

To clearly manifest the overall process of the given uncertain temporal and spatial load
identification strategy, the operation logic is displayed in Fig. 6, mainly including dynamic
inverse, RBF approximation and uncertainty treatment. Moreover, the pseudo-code of DDL
identification with the deterministic parameter b’ and hybrid uncertainty analysis with the
Chebyshev-Interval method at s -cut fuzzy parameters are provided in Algorithm 1 and
Algorithm 2. Specific procedures are successively summarized as below.

Step 1. Preset the conditions, including the global characteristic matrices (M(b), C(b)
and K(b)) of the FEM model, the sequence of acceleration signals, control parameters

and y, the time increment At, the coordinates L of FEM nodes, the coefficients 7 and A in

hierarchical clustering, the ellipsoid model of convex parameters b. and the membership

function of fuzzy parameters b .

£ Acceleration signals
The FEM model and ‘ a’ (b, +A0), K" (b) and F (b, 1) The modal force
3 Start e — " )
‘2 modal transformation | by the Newmark scheme P (b,1+At)
5 ?
& Time discretization |
|
T
- s |
£ Regularization of Between-cluster distance calculation RBF representation for :
= E—
£ node coordinates and clusters mergence P(b,?) in space domain I
| —
= Proportional coefficient z The hyper-parameters determination Coefficient vector solving and
=) e o—
& and overlap coefficient 4 of ¢, X and o ) for the RBF RBF approximation of /(b,L,?) |
|
f
|
|
g Description of Coefficient solving for the Interval boundary :
=] B —
= convex parameters - Chebyshev-Interval method search of DDL |
& Interval modeling of |
z - hybrid uncertainties T {
; Pestription of Deterministic DDL identification @ }
g e of FEM nodes at each GIP I
= A |
| o

Fig. 6 The procedure of temporal and spatial load identification under hybrid uncertainties
Step 2. Transform the ellipsoid model E, to the unit hypersphere model Ebc , obtain the

& -cut interval b? of fuzzy parameters, and perform the interval modeling for hybrid
uncertainties b e b'. Determine the GIPs b%,b%,---,b™ (1=12,---,P+Q).
Step 3. Calculate modal responses q' (b,t), q"(b,t), ¢'(b,t) and g"(b,t+ At) based on

the Newmark iteration and modal transformation strategies. Inverse the modal load
P"(b,t+ At) via Egs. (5), (6) and (19).
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Step 4. Based on the hierarchical-clustering method, determine the number q of RBF

centers, the center set X and the variance o; for the RBF interpolation.

Step 5. Calculate the RBF coefficients through Egs. (22)-(24) and express the DDL on

each FEM node. Judge whether the DDLs of all GIPs have been identified. If not, continue to

perform Step 3 and Step 4; otherwise, proceed to the next step.

Step 6. Calculate the COP coefficients through Egs. (45)-(46) and construct the

Chebyshev-Interval method based on the best square approximation. Finding its maximum

and minimum as the upper and lower bound.

Algorithm 1 DDL identification with the deterministic parameter b’

Input: The characteristic matrices M(b"), C(b") and K(b"), the control parameters g and y, the time

increment At, the acceleration signals, the FEM coordinates, and the coefficients z and 4

Output: The DDL of each FEM node in the time history

[EY

~

© o

o g A W N

:Regard L' (i=1---,«) as the initial clusters and calculate the Euclidean distance: &,, <

: Calculate the modal acceleration: §(b',t) « [®, (b")]" t(t)

: While 0<t<T-At, Do

Inverse the modal force P (b',t + At) <« K™ (b")q" (b’,t + At)—F"" (b',1)

t=t+At

: End While
: Regularize the coordinate of the FEM node: L' =[2L' (A, + Au) [/ (A= Aun) » 1=1-x

-

: While the number of clusters is more than 1, Do

Merge the two clusters with the nearest distance, then calculate between-cluster distances
1

AA»Z»Z(:"W

p~=o L,€E; L,€E,

é,po <«

10: End While

11. Determine the hyper-parameters of RBF based on hierarchical clustering:

qgem-¢ ({922™), x eiZ L., 0y« 43 (5 ‘_mi”("Xj_Xi"))

j LkEEJ

12: Generate the RBF space, then calculate the RBF coefficient:

x(b,t):{‘l’l(b')““’(”} {ml(b')n\r(t)}} P;(b'm\y(g)} {P(b',t)}

r'(X) r'(X) r'(X) 0

13: Approximate the DDL of the v-th FEM node: f*(b,t) < Z(L,)x(b,t)

6 Validation of the proposed method with examples

In order to clarify the feasibility of the developed methodology, 3 numerical examples
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will be investigated in this section. Moreover, the MATLAB codes, model datasets,
acceleration signals and identified results are provided on the webpage (https://bhpan.buaa.
edu.cn:443/link/D9810C398CA9CA8B0D9963770F8E9B10) to shed light on the procedure
and validation. In the first example, a cantilever beam structure imposed by one-dimensional
DDLs is discussed to mainly illustrate the superiority of the proposed uncertain propagation
method. Then, an equivalent rudder structure subjected to two-dimensional DDLs is involved
to clarify the feasibility of the hierarchical-clustering-based RBF approximation. Eventually,
a more complicated three-dimensional wing structure is further analyzed to explore the

effects of sensor deployment and RBF parameters.

Algorithm 2 Hybrid uncertainty analysis with the Chebyshev-Interval method at & -cut fuzzy parameters

Input: The ellipsoid model of convex parameters b. and the membership function of fuzzy parameters b,

Output: The load interval of each FEM node at time t

1:

2:

3:

4.

Transform the ellipsoid model E, to an equivalent model Ebc , then to a unit hypersphere model ébc

Represent the convex parameters by spherical coordinates (R,8,,6,,+,65_,)

Fe?

Obtain the interval b?, e[ by,,bf, | atthe & -cut level of the fuzzy variable b,

Construct the interval model of hybrid uncertainties: b <—{R,Hl,92,"-,0P71,b,il,b‘;2, . b‘,io}
- Determine the order 2,,%,,---2,,, and GIPs for each-dimensional COP:

bé «cos[(2e, -1z /20, ] , e, « 12, 9M, , 1«12,---,P+Q

Il

: Identify the DDL f"(b,b%,---,b7¢,t) on each GIP based on Algorithm 1

P+Q’

o P+Q M M,  Mpyg P+Q
: Calculate the COP coefficient: s ; <—H[ ]le Zl{f (b2, b%,-- ,L%,t)l_[h (6%) }
=1 t e=1¢; €p.q =
: Build the multi-dimensional best square approximation polynomial:

(b t)ezlzz PZQ( j |1I2 Aipsg |1|2--iP+Q(611621"'16p+Q)

y=0i,=0  ip,o=0

: Find the extreme as the load boundary: f"(b,t) « mip{x* (B,t)} L FY(b,t) « malx{x* (B,I)}
beb beb

Three evaluation indexes for each FEM node are additionally defined to quantitatively

evaluate the identified results, including the peak relative error (PRE), the normalized mean

squared error (NMSE) and the relative deviation of peak interval (RDPI) in the following

S

ST G )~ Fea Ly t) ]

PRE'= f (b ’tmax)_ FreaI(Lv’tmax)|X100%

Foa(L, th)  NMSEEE S
real \"—v 1 "max ZFreal(Lv’ti)2 (48)
i=1
RDOPI* = |- (Outha) £ (0.t1)] 100y
real(L max)
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where t'_ is the time step with maximum load amplitude for the v -th FEM node; b*

max

benchmark the nominal parameter composed by the center of convex variables (bg ) and the
center value of 1-cut fuzzy variables (b;); F.,(L,.t,) and f'(b",t;_ ) denote the real

/identified loads at time t'_: F

max ? real

(L,.t) and f'(b,t.) represent corresponding loads at the

i -th sampling instant; and " (b,t’_ ) and f(b,t’. ) are the upper/lower bounds at time t"_ .

6.1 A cantilever beam structure

As illustrated in Fig. 7, a one-dimensional cantilever beam structure with a length of 1m
will host the basis of this example. Through the FEM, it is discretized into 10 elements with
11 nodes. Considering the multi-source uncertainties, the elastic modulus and the density are
deemed as fuzzy parameters, whose membership functions are plotted in Fig. 8. The cross-
section and the moment of inertia are regarded as convex parameters with the correlation

coefficient of 0.5, whose characteristics are listed in Table 1. A lateral DDL
f (x,t)=200(1+x)(1.5—x)sin(4xt) is applied in the DOF2 direction, and the time settings
are taken as T =2s and At=0.001s. The lateral acceleration signals of node 4, node 7 and

node 10 simulated by FEM analysis at the nominal parameter are utilized for the uncertainty-

oriented DDL identification.

flxe)

DOF 1

DOF 3

1 2 3

_px

4 5 6 7 8 9 10 11
[ Accelerometer

Fig. 7 The one-dimensional cantilever beam structure
. . . . 1 .

DOF 2

p(8)=390Js
0.8 F7410

6.2046 +213.004 :
=2 0.6 \

E(5)x107
6.20406 +200.596

E(5)x107 =

%

5(8)=-390/5

+ 8190

4

0.6

The membership level

0.4 0.4 |
0.2 0.2
12.068x10" Pa
0 : —E- . . . 0 . O
2 202 204 206 208 2.1 2.12 2.14 7400 7600 7800 8000 8200
Elasticity modulus (Pa) %« 10" Density (ku/m")
(a) Elasticity modulus (b) Density

Fig. 8 The description of fuzzy parameters
As revealed in Ref. [5], the COPs with 2 orders can completely reflect the changing

trend of uncertain loads on the fuzzy uncertain domain at any truncated level. Besides, 2-
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order COP can also ensure the uncertainty propagation accuracy for the variable R because
the solution of Eq. (37) will appear at the boundary of the ellipsoid domain based on convex
optimization theory. To get the suitable order of variable & in Eq. (43), the COPs with 2, 3, 4,
5 orders are employed respectively to calculate the load intervals at 0-cut fuzzy parameters.

The each-dimensional number of GIPs is assigned by 9t =% +1. In addition, the MCS is

introduced as the reference solution of uncertainty propagation.

Table 1 The center and radius of convex parameters

Convex parameters Center Radius
The cross-section (mm?) 100 5
The moment of inertia (mm?#) 833.333 25
400 -
0.126s = 0
_30 . 300( A ) /\ / /\
g &
cadt VTV N
O Y * + - - - o - -
2 =
_;; _g 0 + + - - + + +
2 g
9240 ~=~~C[229 5 -100
e ool -CI2-2-2-3 g . : a2
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=200f —CI2:2:25 s \\“// \\\"// \J \“/
CI 5-5-5-5 -300 ¢ LY v 1Y &
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: ‘ : -400 :
0.2 0.4 0.6 0.8 1 0 0.5 1 1.5 2
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(@) In space domain (b) In time domain
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== Actual
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=
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7386g 254892 286322 .
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1 1 1 |
MC C12-2-2-2 CI12-2-2-3 CI2-2-2-4 CI2-2-2-5 CI5-5-5-5
Different method

(c) Node 4 at 0.126s
Fig. 9 The DDL intervals at 0-cut fuzzy parameters
The DDL intervals in space domain at 0.126s (maximum load in the time history) and

the DDL intervals in time domain of node 4 (maximum load of all FEM nodes) are shown in
Fig. 9 (a) and (b), and the specific information of node 4 at 0.126s is observed in Fig. 9 (c), in
which ‘Cl a-b-c-d” means that the orders of COP regarding elastic modulus, density, R and
0 are a, b, ¢ and d, respectively in the Chebyshev-Interval method. It indicates that with the
order of the variable @ increasing from 2 to 5, the load interval becomes closer to the MSC

result. The relative error between Cl 2-2-2-5 and MCS is only 0.049% and 0.075% for the
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upper and lower bounds without overestimation and underestimation of interval calculation.
When the same high-order COPs in each dimension as proposed in Ref. (Cl 5-5-5-5) are
involved, the load interval is identical compared with CI 2-2-2-5, but the FEM analysis times
increase sharply to identify the DDLs at more GIPS. It can be concluded that the accuracy
and efficiency of uncertainty propagation can be guaranteed together by the developed
Chebyshev-Interval method.

Actual load
® Lower load

Actual load

— ® Identified load .f.f Ol s ®  Upper load
£ omail £
?g g 200 - !‘r pR
: AN
3 3 g
3 2
= - =) 200
A | & |
2 "R _— 2
s (& 0 0 .. . 0 0 ..
Time (s) Position (m) Time (s) Position (m)

(@) The DDL with nominal parameters  (b) The interval at 0-cut fuzzy parameters
Fig. 10 The identified DDL (every 10 steps) for the cantilever beam structure

Table 2 The evaluation results for the cantilever beam structure

Node 2 3 4 5 6
PRE (%) 0.170 0.400 0.019 0.516 0.692
NMSE (10°) 1.534 2.610 0.041 2.927 5.817
RDPI (%) 15.888 15.861 15.937 16.025 16.061

Node 7 8 9 10 1
PRE (%) 0.375 0.338 1.044 0.992 1.052
NMSE (10°) 2.341 0.700 8.957 8.252 12.582
RDPI (%) 16.016 15.907 15.815 15.838 16.177

The identified DDLs at the nominal parameter are plotted in Fig. 10 (a), and the load
boundaries considering hybrid uncertainties at 0-cut fuzzy parameters are provided in Fig. 10
(b). The evaluation indexes (PRE, NMSE and RDPI) of each FEM node are listed in Table 2.
Under different truncated levels (6 =0,.0.2, 0.4, 0.6, 0.8 and 1), the fuzzy interval bounds in

space domain at 0.126s and those in time domain of node 4 are demonstrated in Fig. 11. As

we can see, the maximum PRE is 1.053% and the maximum NMSE is 1.177x107. Thus, the
proposed deterministic DDL identification combining RBF approximation and inverse
Newmark iteration can work perfectly for the beam structure. With 0-cut fuzzy parameters,
the RDPI of each node is around 16%, and the load boundaries can envelop the actual load

either in time distribution or spatial distribution.
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Fig. 11 The fuzzy interval bounds of DDLs under different membership levels

6.2 An equivalent rudder structure

D 34 120 121 122 123 124 125 126 127 128 129 130 67

Accelerometer

AAA AT ot :

P awavayarararararmas: I //[/’i('_/.éfz/.f(;’f‘
/77777 777 777 X e
(@) The schematic diagram (b) The FEM model and sensor placement

Fig. 12 The two-dimensional equivalent rudder structure
To affirm the feasibility of the presented methodology for two-dimensional cases, an

equivalent rudder structure is further investigated as displayed in Fig. 12. In order to reduce
the complexity of FEM analysis, the rudder structure is simplified as an anisotropic plate
structure with a thickness of 5mm. The equivalent process has been expounded by our
previous works in Ref. [35]. The coordinates are regularized to a standard interval
X, ¥ €[-11]. The equivalent material properties without uncertainties are listed in Table 3. It
is discretized by 9x12 four-node shell elements with 130 nodes and is supported on the root.
And it is subjected to a transverse DDL with a duration of 1s and a frequency of 1000 Hz.
The layout of accelerometers is plotted in Fig. 12 (b).

Table 3 The material properties for equivalent plate structure

Properties E, (Pa) E,, (Pa) E,;, (Pa) Vip Vo
Values 1.9065x 101 1.9123x 101 4.893x 1010 0.19 0.25

Properties Va G, (Pa) G,, (Pa) G,, (Pa) p (kg/m?3)
Values 0.069 4.694 x 100 1.779x 10%° 1.46x 10% 2380
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Table 4 The different expressions of DDLs under 4 cases

Condition DDL expression
Case 1 F =[~15(%+5)° + 60X +750% +150(§ +5)*° + 240§ + 3450 |sin(127t)e "
Case 2 F =[ 300%*+400§” — 250% + 480§ + 975 |[sin(8t) + sin(127t)]
Case 3 F =[1000%—500 + 2500]sin[ 1077(1—t)*° 107 |
Case 4 F =[100§” +100|%| + 200§ +150 ||2sin(16t) - 3sin(127t)|

Table 5 The deterministic identified DDL for the rudder structure using different strategies

Case In space domain In time domain
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Fig. 13 The PRE and NMSE of deterministic identified DDL with different strategies
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Fig. 14 The description of fuzzy parameters
Particularly, 4 DDLs with different space-time distribution, as listed in Table 4, are

involved to verify the generalization of the developed method. Moreover, the previous
identification strategy with COPs [35] is also used to reconstruct the spatial distribution of
DDLs. The reconstructed spatial load with the maximum amplitude in the time history
(0.042s, 0.549s, 0.604s and 0.215s for cases 1 to 4), and the identified time histories of node
67 are summarized in Table 5. The average and maximum values of deterministic evaluation
indexes (PRE and NMSE) for all FEM nodes are respectively presented in Fig. 13. What is
surprising is that the identified loads by RBF approximation (load by RBF) can basically
match the actual loads for 4 cases. The average PREs are less than 2.5% and the average
NMSEs are not more than 1x107°. By contrast, the identified results by COP approximation

are too worse to accept for case 2 and case 4, but they are better than the identified DDLs by
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RBF approximation for case 3 with complete linearization in space domain (average PRES is
0.496% and average NMSE is 3.42x10°). As pointed out in Ref. [35], the hierarchical-
clustering-oriented RBF approximation method possesses better generalization ability. In
addition, the identified loads by RBF are consistent with their actual tendency in time domain
for 4 cases, suggesting the effectiveness of the inverse Newmark iteration.

Further, the elastic modulus E,,, E,, is supposed to be fuzzy parameters as plotted in Fig.
14. The shear modulus G, , G, is assumed as convex parameters with a correlation

coefficient of 0.8. The radii are set as G, =7.116x10° Pa and G =5.84x10° Pa.

Performing the uncertain DDL identification at 0-cut fuzzy parameters for case 1, identified
intervals in space domain at 0.042s and in time domain of node 67 are exhibited in Fig. 15 (a)
and (b) respectively. The load intervals can surround the actual forces perfectly, which shows
the necessity of uncertainty propagation. And the fuzzy membership of the DDL at node 67 at

0.042s is plotted in Fig. 15 (c). Similar to the membership functions of elastic modulus E,
and E,, , the fuzzy membership functions of the concerned load are nearly linear when

6 > 0.4, while nonlinear when 6 <0.4.
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Fig. 15 The identified DDL intervals for case 1
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6.3 A wing structure

The equivalent mechanical properties

Properties E, (Pa) E, (Pa) E; (Pa)
@ ;.i._.i.i.i. Values 1.9065x 10" 1.9123x 10! 4.893x 100
. . l Properties Vi Vi vy
Airfoil profile _—__ s/ Ms ol Values 0.19 025 0.069
Properties G, (Pa) G,; (Pa) G;, (Pa)

Braided composite
Values  4.694x 1010 1.779x 1010 1.46x 1010

Properties p (kg/m®)
Values 2380

e S 4 Filler

The wing structure

The mechanical properties

Properties E (Pa) M p (kg/m?)

g2 Vi 04 108 37 30
Polymethacrylimide foam et 1odxl 2

(a) The geometric model

85 86 89 92 93 95 97 98 99

99 176797470 71169 665
\ Lower

surface

Upper

surface \

(b) The FEM model
Fig. 16 The three-dimensional wing structure

To better demonstrate the capability of the developed approach when dealing with
complex engineering problems, a three-dimensional wing structure is further investigated.
The wing structure is covered by the fiber fabric with a thickness of 0.2mm, and equivalent
material parameters of the braided composite are obtained by parameter identification in both
micro and macro scales. The interior is filled with isotropic polymethacrylimide foam. Fig.
16 (a) shows the geometric model and mechanical properties. By FEM discretization as
shown in Fig. 16 (b), 224 nodes, 176 shell elements and 565 solid elements are generated.
The coordinates are all regularized to a standard interval X,¥,Ze[-11] . A DDL
(F =[50%°+60§”+307 +1120 +20In(Z + 5t +8) + 20(10 — X + § + 2t)* |[sin(16t) - sin(14xt)])
is applied to the upper surface and lower surface, and the boundary condition is preset at the
root of the wing structure.

Six different schemes of sensor placement (SP), as listed in Table 6, are provided in this
example. Parametric studies of the proportional coefficient = and overlap coefficient A are
explored in sequence to arrive at optimal RBF space based on the control variable method.

The findings are listed in Table 7 and Table 8, followed by some conclusions as below.
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Table 6 Different schemes of sensor placement

Sensor placement Node number
1 40,44,87,103,149,158
2 3,63,75,121,124,164
3 5,28,58,59,88,107,119,130,147,158
4 3,30,35,67,84,107,124,130,149,160
5 3,28,31,36,66,69,94,106,121,127,138,145,157,158
6 5,31,17,47,49,67,85,101,115,136,137,150,152,173
Table 7 Parameter selection of proportional coefficient z with 1 =3
Sensor placement 1 2 3 4 5 6
7=0.1 2.832 2.615 2.721 2.898 2.598 2.676
7=0.2 1.739 1.651 1.282 1.709 1411 1.290
Average 7=0.3 1.884 2.049 1.479 1.848 1.757 1.596
I:;:)E =04 2.035 1.917 1.792 1.991 1.785 1.708
7=0.5 1.780 2.323 1.305 1.745 1.872 1.606
7=0.6 38.842 12.548 15.774 34.841 2.293 3.167
7=0.1 18.481 18.717 17.959 18.919 17.984 17.771
7=0.2 7.212 5.464 4.473 7.270 4,222 3.897
Average 7=0.3 8.301 7.726 4.909 8.539 5.337 4.634
l\(ll\él)ii 7=0.4 8.977 6.622 6.129 9.414 5.458 5.157
7=0.5 7.295 9.958 3.945 7.405 6.009 4.641

7=0.6 2529.235 270.915 420.348 2041.501 9.093 17.572

Table 8 Parameter selection of proportional coefficient 4 with optimal =

Sensor placement 1 2 3 4 5 6

A=1 1.824 2.371 2.317 2.481 2.288 2.283

A=2 1.805 1.908 1.655 1.875 1.719 1.628

Average A=3 1.739 1.651 1.282 1.709 1411 1.290
PRE A=4 1.918 1.813 1.443 1.809 1.568 1.481
(%) A=5 1.922 1.955 1.563 1.865 1.722 1.607
A=6 1.892 2.027 1.611 1.895 1.791 1.661

A=10 1.736 2.152 1.567 1.869 1.855 1.685

A=1 6.776 13.459 11.385 11.753 12.281 11.502

A=2 7.656 9.346 7.465 8.656 8.076 7.341

Average A=3 7.212 5.464 4473 7.270 4.222 3.897
NMSE A=4 8.527 6.024 4.637 7.851 4.446 4,113
(104 A=5 8.449 6.996 5.081 8.322 5.133 4.656
A=6 8.065 7.567 5.286 8.561 5.508 4.923

A=10 6.862 8.574 5.058 8.285 5.901 5.027

29



A Distributed Dynamic Load Identification Method Based on the Hierarchical-Clustering-Oriented Radial Basis Function Framework Using
Acceleration Signals under Convex-Fuzzy Hybrid Uncertainties

(1) When the proportional coefficient 7 is taken as 0.1, 0.2, 0.3, 0.4 0.5 and 0.6, the
number of clusters is 121, 48, 22, 11, 7 and 3, respectively. Under the premise of 4 =3 (other
values can be also selected), the average evaluation indexes (PRE and NMSE) of all FEM
nodes are summarized in Table 7. Surprisingly, their minimums (which are bold) can be
obtained for all schemes of SP when 7=0.2. And the centers’ number is so small that the
approximation ability of RBF is poor for the SP 1, 2, 3 and 4 when 7=0.6. A possible
explanation is that the generated RBF space is relatively smooth, which is difficult to reflect
the complicated mapping relationship between load distributions and node coordinates.

(2) The overlap coefficient 4 controlling the width of RBF is investigated on the basis of
7=0.2. The results of average PRE and average NMSE under different schemes are listed in
Table 8. We conclude that A4 has little effect on the approximation ability of RBF. The
evaluation indexes reach the bold minimum when A =3 for all schemes of SP.

(3) In summary, the hyper-parameters of RBF are uniquely determined for a given FEM
model no matter how the sensor system is arranged. With the best parameters of r =0.2 and
A =3, the average PRE is less than 2%, and the average NMSE is less than 8x10%. The
identified results are relatively superior for SP 3 and SP 6, which will be detailed below.

For the FEM nodes on the upper and lower surface, the cloud atlas of actual loads,
identified loads and PREs in space domain at 0.534s (maximum load in the time history) are
demonstrated in Fig. 17. Most PREs are within 4% under the two SP schemes. The PREs are
relatively large in the root position nearby the front edge due to the influence of the boundary
effects. And the maximum PRE (node 2) is 8.83% for SP3 and 7.98% for SP 6, which are
acceptable for a complex wing structure. Besides, we can further increase the number of
accelerometers or optimize the schemes of SP to improve the precision of DDL identification.

Taking the uncertainties into account, the elastic modulus E of polymethacrylimide
foam is regarded as the fuzzy parameter, whose interval is assumed as [0.988,1.092]>< 108 at
its O-cut level. The elastic modulus E;, and E,, in the main direction of the braided
composite are considered as convex parameters with a correlation coefficient of 0.5. The radii
are E/ =9.5325x10° Pa and Ej, =9.5615x10° Pa. The cloud atlas of upper loads, lower
loads and the RDPIs in time domain at 0.534s are plotted in Fig. 18. It can be seen that the
distribution trend of the upper/lower bound is different from the actual load for both the
upper and lower surface. The average RDPI of FEM nodes is 15.454%, and the RDPIs are
relatively large at the root part of the wing structure. Eventually, the identified DDL at the
nominal parameter and the load intervals in time domain of node 85 (maximum load of all

FEM nodes) are shown in Fig. 19. Identical conclusions can be drawn as examples 1 and 2.
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Fig. 17 The deterministic identified results in space domain
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Fig. 19 The identified results in time domain of node 85

7 Conclusions

As revealed by the above issues, a novel spatio-temporal DDL identification method
using limited acceleration measurements considering convex-fuzzy hybrid uncertainties is
developed for proportionally damped systems, which combines the dynamic inverse, RBF
approximation and uncertainty treatment. Major novelty contributions lie in that: (1) The
DDLs are decomposed by the hierarchical-clustering-oriented RBF approximation and time
discreteness, which converts the DDL identification to the calculation of RBF coefficients at
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every sampling instant. (2) The hybrid convex-fuzzy uncertainties are uniformly
characterized by a multi-dimensional interval model through space transformation and
membership truncation. (3) The Chebyshev-interval collocation method is proposed to
effectively achieve the fuzzy interval bounds of the DDLs through uncertain dynamics
evolution. Numerical examples demonstrate the effectiveness of the presented methodology
(including uncertain propagation and DDL approximation), and they also show that the

sensor deployments and RBF parameters both have great influences on the identified results.
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