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ABSTRACT 

Load identification is a hotly studied topic due to the widespread recognition of its 

importance in structural design and health monitoring. This paper explores an effective 

identification method for the distributed dynamic load (DDL) varying in both time progress 

and space dimensions using limited acceleration responses. As for the reconstruction of 

spatial distribution, the radial basis function (RBF) interpolation strategy, whose hyper-

parameters are determined by a hierarchical clustering algorithm, is applied to approximate 

the DDL and then transform the continuous function into finite dimensions. In the time 

domain, based on the inverse Newmark iteration, the RBF coefficients at each discrete instant 

are obtained by the least square solution of the modal forces. Considering the multi-source 

uncertainties lacking exact probability distributions, a multi-dimensional interval model is 

developed to quantify convex parameters and fuzzy parameters uniformly. Further, a 

Chebyshev-interval surrogate model with different orders is constructed to obtain the fuzzy-

interval boundaries of DDLs. Eventually, three examples are discussed to demonstrate the 

feasibility of the developed DDL identification approach considering hybrid uncertainties. 

The results suggest its promising applications in different structures and loading conditions. 

Keywords: distributed dynamic load identification; inverse Newmark iteration; RBF 

interpolation; hierarchical clustering; convex-fuzzy hybrid uncertainties; Chebyshev-interval 

method 
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1 Introduction 

Mechanical systems are often subject to distributed dynamic loads (DDLs), such as the 

aerodynamic load on the aircraft skin and the wind load on the bridge structure [1-3]. Load 

environment precognition has inspired the development of health monitoring and structural 

design. There is no denying that the DDL is more complicated than the well-explored one-

point/ multi-point concentrated dynamic loads (CDLs), due to the continuity in the time-

space dimension. In addition, only limited acceleration responses can be obtained from the 

perspective of sensor installation, which intensifies the difficulty of DDL identification. 

In general, DDL identification is developed on the basis of CDL identification, and the 

review of CDL identification can reference our previous work [4, 5] and will not be repeated 

herein. On the one hand, the spatial distribution of DDLs can be approximated by linearly 

independent basis functions, and then the DDL identification is transformed into coefficients 

determination of basis functions [6, 7]. Liu et al. [8] provided tailored basis functions to 

decompose the spatial function of DDLs and the resulting responses, then identified the 

common weighting coefficients by a Tikhonov regularization scheme. For the flight loads 

with spatial distribution, Coates et al. [9] selected the most appropriate Fourier coefficient 

among the pre-developed database by minimizing the error of measured and calculated 

strains. Based on the orthogonal decomposition, Granger et al. [10], Dessi et al. [11] also 

developed a series of works on DDL identification. On the other hand, the continuous DDL 

can be equivalent to several concentrated loads acting on appropriate locations that may 

induce identical dynamic responses. In view of this, Liu et al. [12] identified concentrated 

loads sparsely by the combination with blind source separation and orthogonal matching 

pursuit, however, the results  are non-uniqueness. 

This work focuses on the first method of DDL identification and aims to establish a 

universal set of basis functions. Especially, the radial basis function (RBF) has been 

intensively investigated in the field of data processing and interpolation [13, 14], which can 

describe the multivariate nonlinear function via one-variable functions (distance function). 

Any expressions with radial symmetry can be regarded as the kernel function of RBF and the 

Gaussian function is the most common one [15]. To further improve the approximating 

accuracy, considerable researches are devoted to parameter selection for kernel functions. In 

parallel to the RBF neural network with some training samples, some strategies, such as self-

organizing learning [16], supervised learning [17] and orthogonal least-squares [18], are 
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developed concerning the central parameters of hidden layer neurons. 

Most previous works on DDL identification were carried out with deterministic 

assumptions, however, uncertain factors originating from e the static fluctuation (e.g., 

modeling error and material dispersion) and time-varying factors (e.g., measurement error 

and signal noises) are often inevitable [19]. These uncertainties can be essentially manifested 

by their properties of randomness, fuzziness and convexness. For complex systems, different 

kinds of uncertain information are often encountered simultaneously. Reasonable 

quantification and propagation treatments of hybrid uncertainties is a precondition for non-

deterministic DDL identification. Jiang et al. [20] reviewed the probability-interval hybrid 

uncertainties from the perspective of uncertainty modeling, uncertainty propagation, 

structural reliability analysis and reliability-based design optimization. Prasad et al. [21] 

conducted a Chebyshev-polynomial chaos metamodel for uncertainty analysis for mixed 

epistemic-aleatory problems caused by imprecise knowledge and random variability in the 

transmission of line networks. Yin et al. [22] established a hybrid Finite Element/Statistical 

Energy Analysis model considering fuzzy and interval uncertainties based on first-order 

perturbation, second-order perturbation and Chebyshev approximation. More excellent 

researches are illustrated in Ref. [23-25]. However, a unified framework integrating 

heterogeneous uncertainties was not taken into account in previous studies. Additionanlly, the 

interval model is usually used to declare the convex uncertainties ignoring the correlation 

between uncertain parameters. 

The problem is solved as follows. In Section 2, the basic formulas of the structural 

dynamics evolution and RBF interpolation approximation are reviewed. In Section 3, the 

hierarchical clustering approach is adopted to determine RBF parameters systematically, and 

the RBF coefficients of DDLs at each instant are subsequently solved based on limited 

acceleration signals. In Section 4, the quantification and propagation analysis in the context 

of convex-fuzzy hybrid uncertainties is expounded by the combination of interval modeling 

and the Chebyshev-interval method. The verification of the proposed methodology is 

eventually demonstrated by three numerical examples in Section 6. Some conclusions are 

drawn at the end of the article. 

2 Statements of the problem 

DDL identification can reconstruct the load tendency in time domain as well as the load 

distribution in space domain. On the one hand, the dynamic load is discretized into a time 
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series in time history; on the other hand, its spatial distribution with infinite dimension is 

transformed into a finite dimension at each time step. In this section, the preparatory works 

are introduced in consideration of multi-source uncertainties, including the dynamical 

evolution process and the finite-dimensional approximation. 

2.1 Forward analyses of structural dynamics 

With regard to a continuous linear system, the rule of uncertain motion can be 

characterized by the following partial differential equation [26] 

    
2

2

( , , )
( , ) ( , ) ( , , ) ( , ) ( , , ) ( , , )

w t
M C w t K w t F t

t t

 
+  +  =

 

b L
b L b L b L b L b L b L  (1) 

where b  signifies multi-source uncertain parameters vector; t  is the time variable and L  

is the space variable; ( , )M b L , ( , )C b L  and ( , )K b L  reveal the structural mass, damping and 

stiffness properties; ( , , )w tb L  represents the structural displacement function; ( , , )F tb L  

denotes the external DDL function; and  ( , , )w t b L ,  ( , , )w t b L  are assigned as 

differential operators of displacement ( , , )w tb L  concerning the space variable L . The spatial 

coordinate system   may describe one-dimensional beams ( 1 = ), two-dimensional 

plates ( 2 = ) and three-dimensional solid structures ( 3 = ). 

In general, Eq. (1) can be discretized into n  degrees of freedom (DOFs) through the 

finite element method (FEM), namely 

 
0 0

, , , ,

,

( ) ( ) ( ) ( ) ( ) ( ) ( )

( 0) , ( 0),

t t t t+ + =


= =

M u C ub b b b b b b

b

K u f

ubu u u
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in which ( ) n nM b , ( ) n nC b  and ( ) n nK b  means global characteristic matrices of 

mass, damping and stiffness; 1,( ) nt bu , 1( ), nt bu  and 1( ), nt bu  stand for the 

transient response vectors of acceleration, velocity and displacement; 1( ), nt bf  is the load 

vector discretized by the DDL; 0u  and 0u  read corresponding initial conditions, which are 

always set as 0. Based on the mode superposition theory for classically-damped linear 

systems, Eq. (2) can be decoupled into a series of differential equations of single-DOF 

systems. The decoupled r -th ( 1,2, ,r n= ) modal equation can be depicted as 

 
(, , ,( ) ( ) (
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where ( )= ( ) ( ) ( )r T

q r rb b bφ M φ bM , ( )= ( ) ( ) ( )r T

q r rb b bφ C φ bC  and ( )= ( ) ( ) ( )r T

q r rb b bφ Κ φ bΚ  

represent the r -th modal mass, damping and stiffness respectively; ,( )r tq b  is the modal 
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displacement response, and ( )= ( ) (, , )r T

rt tφ fb b bP  is the relevant modal force. The modal 

matrix satisfies   1 2

1 2(,( )= ( ) ( )= ), ( ), , ( ) ( ), ( ), , , ,, , ( )
T

n

nt t t t t  b b bu Φ q φ φ qb b qb b b bφ q . 

To alleviate the computational burden, the first k -order modes are involved herein. Then, we 

have   1 2

1 2( , )= ( ) ( , )= ( ), ( ), , ( ) ( , ), ( , ), , ( , )
T

k

k k kt t t t t  u b Φ q b φ φ φ bb b b b q b q q b . 

In terms of transient-dynamics analysis, the classical Newmark difference scheme is 

usually employed. Then, the recursive formula for the r -th ( 1,2, ,r k= ) modal responses 

can be detailed by 

 

2 2( ) ( ) ( ) (1/ 2 )( ) ( ) ( ) ( ),

( ,) ( ) (1 ) ( ) ( )

, , , ,
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 
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 (4) 

where = /t T S  is time increment. T  and S  are loading duration and total steps.   and   is 

set as control parameters of the Newmark scheme [2]. Substituting the differential equations 

at time t  and t t+   into Eq. (4), it yields 

 ( Δ ) Δ ( )( ) , ( , ) ,r rr rt t tt t + = + +K b Fq b P b b  (5) 

where 
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 (6) 

Under such circumstances, the modal displacement response ( , Δ )r t t+bq  can be considered 

as a superposition of two components, i.e., 
1 2( , Δ )= ( , Δ )+ ( , Δ )r r rt t t t t t+ + +qb b bq q . 

1 ( , Δ )r t t+bq  is caused by the modal load ( , )Δr t t+P b  at instant Δt t+  and 
2 ( , Δ )r t t+bq  by 

the combination of modal responses ( , )r tF b  at instant t . 

2.2 RBF interpolation techniques for DDL approximation 

The transformation of discrete measurements into continuously distributed loads can be 

achieved by data interpolation or fitting. Due to the unknown features of DDLs, there is an 

urgent need to find an efficient method for both smooth and strongly nonlinear functions. In 

particular, the RBF interpolation [13] incorporates linear and non-linear basis functions, then 

the non-linear correlations in low-dimensional spaces may be converted into linear when 

projected onto higher-dimensional spaces by the RBF. Thus, the RBF interpolation is applied 

to match the spatial distribution of the DDL herein. Given a set  1 2= , , , q

X x x x  in 
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space  , the function ( , , )F tb L  can be written as 

 
1 0

( , , )= ( , ) ( ) ( , ) ( )
q

j h hj

j h

F t t t p

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= =

− + b L b L Lx b  (7) 

where X  is called the center set;   is a nonlinear basis function; 
j−L x  ( 1,2, ,j q= ) 

denotes the Euclidean distance between L  and 
jx ; ( )hp L  ( 0, ,h = ) is a component of 

linear polynomial basis to ensure the non-singularity of the subsequent coefficient solution; 

( , )j t b  and ( , )h t b  are the corresponding undetermined coefficients. It is noted that as long 

as the elements within X  are different from each other, the function  ( )j −L x  will be 

linearly independent. In addition, the RBF coefficients and polynomial basis should obey the 

orthogonality conditions, i.e., 

 
1

0 , 0 1( , ) , , ,( )
q

jj

j

h ht p 
=

= = xb  (8) 

There are many specific functional forms available in the literature for the nonlinear basis 

function. In this work, without loss of generality, the Gaussian function is used as the 

nonlinear basis function, which can be expressed as 

 
2

2

1
( )= exp

2
j

j

j


 
− − −  

 

L xLx  (9) 

where 
j  is the variance of the Gaussian function, which controls its width. The value of 

( )j −L x  increases as the distance j−L x  decreases. To better control its action scope, 

the spatial coordinate L  is recommended to be regularized to a standard interval as follows 

 
( )max min

max min

2
1, ,

i

i
A

A
i

A

A


+

−
=

−
=

L
L ，  (10) 

where i
L  and i

L  are the original coordinate and the regularized coordinate in the i -th 

dimension.  min max,A A  is the standard interval. Then Eq. (7) will be transformed as 

 
1 0

( , , ) ( , , )= ( , ) ( ) ( , ) ( )
q

j h

j h

j hF t F t t t p

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= =
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To gain more insight, the Euclidean distance, linear polynomial basis and orthogonality 

conditions of the three-dimensional solid structure can be defined as 

 

2 2 2
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where 
jx , 

jy  and 
jz  are coordinates of the center 

jx . Fig. 1 shows the RBF interpolation 

scheme for one-dimensional and two-dimensional situations, in which any curves or surfaces 

can be approximated once the RBF center is determined. In addition, the RBF interpolation is 

not the unique choice; other models such as polynomial interpolation, spline function 

interpolation, Kriging interpolation can be used for DDL spatial discretization. 

   
(a) One-dimensional approximation        (b) Two-dimensional approximation 

Fig. 1 The distributed function approximation by RBF 

3 DDL identification via hierarchical clustering and acceleration signals 

It is generally accepted that the computational complexity and approximating precision 

depend on the dispersion of the center set X  and its number q . In addition, the shape of 

( )j −L x  is determined by the parameter 
j . How to determine the hyper-parameters of 

the RBF approximation and then inverse the coefficients ( , )j t b , ( 1,2 ,j q= ) and ( )hp L  

( 0,1, ,h = ) through accessible acceleration signals are discussed in this section. 

3.1 RBF determinations by hierarchical clustering 

Given that the DDLs on FEM nodes are related to spatial locations, the normalized 

coordinates  1 2 )= , , ( 1,2,3,surface m

  =L L L L  with m  samples may be introduced to 

determine the overall arrangement of RBF approximation. As mentioned in the introduction 

section, several approaches have been developed for the determination of the RBF centers. In 

general, the center is chosen at random and the width is determined by experience, which is 

more demanding in terms of node coordinates and is only applicable if the selected centers 

are representative. Subsequently, self-organizing learning methods based on K-means 

clustering [27] were developed with the given initial cluster center. However, the number q  

should be specified in advance and clustering results maybe not be assigned as unique. In 
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order to overcome the difficulties of large randomness, slow convergence and strong initial 

dependence, the hierarchical clustering algorithm [28] is incorporated herein and the specific 

process is as follows. 

 

           (a) The dendrogram              (b) Hierarchical clustering results 

Fig. 2 Schematic diagram of hierarchical clustering 

Compared with the RBF neural network, the normalized coordinates surfaceL  are 

equivalent to the training samples of the input layer, and the center set X  is equivalent to the 

neuron center of the hidden layer. By virtue of the hierarchical clustering algorithm, every 

sample of surfaceL  is regarded as an initial cluster to produce m  clusters firstly. Then the two 

clusters with the nearest distance may be merged continually until the m  samples are 

integrated into one cluster. The key of this algorithm is to calculate the between-cluster 

distance. Let vw  represent the distance between the sample 
vL  and 

wL , which can be 

calculated by the Euclidean distance, namely 

 ( )
2

1

= = i

vw

i

i i i

v w v w




=

− −L L L L  (13) 

Let 
po  is the distance between cluster 

p  and cluster o . Considering the information of all 

samples in a cluster, the average-linkage between-cluster distance [29] can be given by 

 
1

=
v p w o

po vw

p o

 
  
 

L L

 (14) 

where p  and o  are sample sizes. When the cluster p  and cluster o  are merged into a 

new cluster a , the distance between cluster a  and another cluster e  can be given by 

 
1

=
v a w e

p o
ae vw pe oe

a e a a

   
 

 
= +

   
 

L L

 (15) 

The number of generated clusters in the hierarchical clustering process is settled as the 
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centers’ number q . The maximum between-cluster distance, namely, the merging distance 

1m −  at the last step, is employed to determine the value of q . Suppose that the merging 

distance in the  -th iteration is ( ) . It indicates the distance is large enough and the 

similarity is small enough between any two clusters if ( ) 1m  −  (  is the proportional 

coefficient). Accordingly, the normalized coordinates of FEM nodes are divided into 

q m = −  clusters ( 1 2, , , m −   ). An irregular hexagon with 18 nodes is taken as an 

example to illustrate the entire clustering procedure, whose dendrogram is plotted in Fig. 2 

(a). Segmenting the clustering results with the double dots line, 4 clusters are created as 

shown in Fig. 2 (b). Once q  is determined, the j -th center 
jx  can be obtained by the 

ultimate cluster j  as follows 

 
1

= , 1,2,
j

j

j

j m 






= −



L

x L  (16) 

Eventually, the variance 
j  of the nonlinear basis function ( )j −L x  can be given by 

 ( )= , = minj j j j i   −x x  (17) 

where 
j  is the minimum distance between the j -th center 

jx  and another center ix  

( 1,2, ,i q=  but i j ).   is the overlap coefficient, which reflects the smoothness of the 

function ( )j −L x . Moreover, the larger the   is, the smoother the ( )j −L x  is. 

To conclude, the hyper-parameters of RBF approximation can be handled by merging 

clusters reasonably based on the hierarchical-clustering-oriented framework. The RBF 

centers can be uniquely determined, independent of engineering experiences and initial 

designs. And a widely applicable RBF space may be constructed eventually by adjusting the 

proportional coefficient   and the overlap coefficient  . 

3.2 Coefficient calculations via acceleration signals 

As mentioned in section 2.1, the dynamic responses can be deduced iteratively via Eq. (3)

-(6) for the forward FEM analyses. In contrast, the external load can also be solved step by 

step for the inverse problem. However, the accelerometers are often restricted that cannot 

cover all DOFs. When the time sequence of acceleration signals of G  measuring points is 

provided, the first k -order modal acceleration responses can be calculated by 

  

1 1 1

2 2 2

1

1 2

2
+1 22

1

1 2

( )( ) ( ) ( )( , )

( )( ) ( ) ( )( , )
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k
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k
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k
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 =
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 (18) 
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where  
+

  means the Moore-Penrose pseudo inverse operation of  ; iN  ( 1,2, ,i G= ) 

denotes the DOF of the i -th measuring point; and ( )iN

jφ b  ( 1,2, ,i G= , =1,2 ,j k， ) 

represents the value of the j -th natural mode on the i -th DOF. Furthermore, the modal 

displacement/velocity sequence can be calculated through the Newmark iteration as Eq. (4), 

and the modal displacement component 
2 ( , Δ )r t t+bq  can be calculated through Eq. (6). 

Another displacement component can be given by 
1 2( , Δ )= ( , Δ ) ( , Δ )r r rt t t t t t+ + − +q qb b q b . 

Then, the r -th modal force ( , )Δr t t+P b  can be analyzed by 

 
1 )( , ) ( ,Δ ( Δ)r rrt t t t+ = +P bbb K q  (19) 

With the aid of RBF approximation, the DDF on the v -th FEM node may be written as 

 , ( , , )= ( )( )= ) ( ,v v

v F tt tf b b L Ξ L χ b  (20) 

where 
vL  is the normalized spatial coordinates of the v -th node; ( )vΞ L  is the basis vector; 

and ( , )tχ b  is the undetermined coefficient vector. They can be detailed as 

 
01

1 0
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( , )= ( , ) ( , ) ( , ) ( , )

v v v v v

T

q

q p p
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

 
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 = − −
 

  
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χ b b

x

b b b

x
 (21) 

Further, the modal force can be expressed as 
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b
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P

P
T
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Φ T

b
χ b

b b b Ξ Lb

b b L χΨ

 (22) 

where ( )f n m
T  corresponds to the force action matrix composed of 1 and 0. Considering the 

orthogonality condition of RBF interpolation, Eq. (8) can be rewritten as 

  
010

1

( ) ( ) 0 0 0

( , ) ( ) ( , )=

( ) ( ) 0 0 0

q

M qM

p p

t t

p p

   
   

=    
     

χ b Γ χ b 0

x x

X

x x

 (23) 

Combining Eq. (22)-(23), the coefficient vector including ( , )j t b  ( 1,2, ,j q= ) and 

( , )h t b  ( 0,1, ,h = ) at each discrete time can be determined through the least square 

method, namely 
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T T

T T T

k f k f k f
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=         

        

bb L b
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PΦ T Ψ Φ T Ψ Φ T ΨL b L
b

0Γ X Γ ΓX X
 (24) 
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4 Uncertainty treatments for the prediction of DDL boundary 

The identified DDL may be indeterminate considering the transmissibility of multi-

source uncertainties through the convolution relationship between the external DDL and input 

variables. How to quantitatively describe and effectively propagate uncertain parameters is at 

the heart of the uncertainty-oriented DDL identification scheme. Frankly speaking, there are 

three methods to quantify the uncertainties in practical engineering, namely probabilistic 

model, fuzzy model and convex model. Although the probabilistic approach is most widely 

used based on classical probability theory and statistical techniques, it is often challenging to 

obtain exact probability distributions of uncertain variables through limited samples [30]. On 

the contrary, the membership function for the fuzzy model, and the boundary rules and linear 

correlation feature for the convex model are relatively easy to be confirmed via engineering 

experience [31]. That’s to say, as an effective complement to the probabilistic model, convex 

and fuzzy models are more advantageous in dealing with practical problems in information-

poor and data-poor situations. Hence, hybrid uncertainties are characterized and further 

analyzed based on the convex set and fuzzy set in this section. 

4.1 Interval modeling of multi-dimensional convex-fuzzy hybrid uncertainties 

Once the scatter of uncertainty data of convex uncertainties is obtainable, all possible 

values  1 2= , ,C C C CPb b b b  are assumed to be bounded in the multidimensional ellipsoid 

model 
C

Eb
, which can be expressed as 

 ( ) ( ) 2| ,
C

T
c c P

C C C C C CE = − −  b b b b Ω b b b  (25) 

where c

Cb  is the center of the ellipsoid model; P  is the dimension of convex parameters; Ω  

is the characteristic matrix which is symmetric and positive; and   is a specific parameter. 

The shape and direction of the ellipsoid are determined by Ω , and its size is influenced by 

both Ω  and  . To characterize the ellipsoid model more conveniently, some basic variables 

are defined firstly. Initially, the center, radius and variance of the convex parameters can be 

defined by the interval = ,I

Co Co Co
  b b b  ( =1,2 ,o P， ) 

 ( ) ( )
2

= , ,
2 2

c r rCo Co Co Co
Co Co Co CoD

+
=

−
=

b b b b
b b b b  (26) 

And the covariance matrix W  can be calculated by 

 

( ) ( ) ( )

( ) ( )
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1 1 1 2 1

2 2 2

, , ,

, ,

,
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Cov Cov Cov

Cov Cov

Sym Cov

 
 
 =
 
 
  

b b b b b b

W
b b b b

b b

 (27) 
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where ( ) ( ) ( ) ( ), ,=Co Cl Co Cl Co ClCov D Db b b b b b  is the covariance and ( ),Co Cl b b  is 

their correlation coefficient. In fact, the pseudo-inverse matrix of W  is the characteristic 

matrix Ω . It may be ill-posed sometimes due to the different magnitude between convex 

parameters. Thus, convex parameters should be transformed to a dimensionless space by 

 =1,2 ,=
c

Co Co
Co r

Co

o P
−b b

b
b

，，  (28) 

 

Fig. 3 The convex parameters under different spaces 

Then an equivalent ellipsoid model 
C

Eb  can be yielded, i.e., 

  2| ,
C

P

C C C C

TE =  
b

b b Ωb b  (29) 

where ( ) ( )=diag diagc c

Co CoΩ b Ω b  is the characteristic matrix and ( )diag c

Cob  is a diagonal 

matrix. Taking the spectral decomposition = TΩ T HT , a normalized vector can be defined as  

 0.5ˆ 1
=C C


b H Tb  (30) 

in which T  is an orthogonal matrix and satisfies T =T T I . H  denotes the diagonal matrix 

composed of eigenvalues. The convex parameters can be further transformed to a normalized 

space from the dimensionless space, and a unit hypersphere model can be obtained as 

  ˆ ˆ ˆ ˆ| 1,ˆ
C

PT

C C C CE =  
b

b b b b  (31) 

where ˆ
Cb  is the normalized vector regarding the convex parameter Cb . As shown in Fig. 3, 

the two-dimensional convex parameters are finally encompassed by a circle through twice 

transformation. Utilizing spherical coordinates ( )1 2 1, , , , PR    − ,  0,1R ,  1 0,2P −  , 

 0,a  ( 1,2, , 2a P= − ) to signify the unit hypersphere model, we have 
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b

b T H b b

 (32) 

Since the spherical coordinates are all interval variables, the convex parameters Cb  can be 

modeled by the interval model eventually. 

 

Fig. 4 The description of fuzzy parameters 

When it comes to the fuzzy theory in uncertainty analysis, the level-cut strategy is 

applicable to deal with fuzzy information. The fuzzy parameters  1 2= , ,F F F FQb b b b  can 

be generally described by the membership function ( )Feb  ( =1,2 ,e Q， ). As debated in Ref. 

[32], it contains Gaussian type, trapezoid type, triangle type, etc. The membership function 

( )Feb  is commonly depicted as 

 ( )
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1 1
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Fe Fe Fe
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= 
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
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b b b

b b

b b b

b b

b
b

b b
 (33) 

where ( )1

Fe Fegb b  and ( )2

Fe Fegb b  embody the monotonically increasing and monotonically 

decreasing functions related to the fuzzy parameter Feb , respectively. Given the membership 

value   (  0,1  ), the  -cut fuzzy parameter Feb  can be expressed as 

 ( ) |=Fe Fe Fe Fe R  b b b b，  (34) 
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As shown in Fig. 4, it can be regarded as a truncated interval ,Fe Fe Fe

    b b b , whose 

upper and lower bounds can be given by 

 
( )  ( ) ( )

( )  ( ) ( )2

1

1

1=min |

= max |

Fe

Fe

Fe Fe Fe Fe

Fe Fe Fe Fe

R g

gR



 

 



−

−



=

=



 b

b

b b b b

b b b b

，

，
 (35) 

where ( ) ( )1
1

Fe
g

−

b
 and ( ) ( )2

1

Fe
g

−

b
 are respectively the inverse function of ( )1

Fe Fegb b  and 

( )2

Fe Fegb b . For this reason, the fuzzy parameters Fb  can be investigated by the interval 

model similarly under any truncated level. 

4.2 Uncertain propagation analyses based on Chebyshev-Interval method 

If convex uncertainties are only involved, the identified force ,( )v tf b  on the v -th FEM 

node will be an interval term. Then, it will possess fuzzy characters if fuzzy uncertainties are 

further considered. As described in section 3.1, the interval model is used to characterize the 

hybrid uncertainties (normalized convex parameters and truncated fuzzy parameters), namely 

    1 2 1 1 2 1 2= , , , , , , , , = , , ,I

P F F FQ P QR      − + b b b b b b b b b  (36) 

The identified lower/upper boundary can be given by 
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, , , ,( ) min ( ) | ( ) ( ) ,( ) ( ) ( ) ( ) ( )

( ) max ( ) | ) ( ) ( ) ( ) )
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, , , , , ,( ) ( ) (
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



= + + =

= + + =

b b

b b

f

f

b b b b b bf M u C u K u f

f M u C u K

b b b

b b b b b b fb bu b
 (37) 

The Monte Carlo simulation (MCS) and the global optimization algorithm are the most 

straightforward approaches to calculate the DDL interval with fuzzy bound. However, they 

are time-consuming and labor-consuming to get global characteristic matrices by repetitive 

FEM analysis. Besides, some easy but crude methods such as the vertex combination or the 

Taylor series expansion are developed but they are inaccurate for nonlinear and large 

uncertainty problems. Herein, an effective uncertainty propagation method based on the 

Chebyshev orthogonal polynomial (COP) approximation [33] in the multidimensional 

interval (Chebyshev-Interval) is carried out. 

For the sake of simplicity and generality, a one-dimensional interval ,Ib b b b  =    is 

applied to illustrate the details. The COPs are simply defined as 

  
1

0 1

1

( ) 1 , ( ) 2 ( )
, 1,1

( ) 2 ( ) ( )e e e

b b b b b b
b

b bb b b b+ −

 = = − +
=  −

−= −
 (38) 

where b  is the equivalent mapping of interval parameter b  in the standard interval  1,1− . A 
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set of linearly independent basis  0 1=Span , , , A  may be generated. In addition, 

there exists a polynomial ( ),b t   that converges to the continuous function of the 

uncertain ),(v b tf  included in the interval ,b b   , namely 
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where 
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1
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1
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−
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i

i b
=

=
A

 is the best square approximation polynomial. The coefficients  0 1, , ,    

A  

can be got by minimizing the function ( )
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A

A , 

whose necessary condition can be given as 

 
( )

0

, (2 ( ) ( ) , 0,) ( ) 0 1, ,
b

i

v

i i j
b

j

t d j
b

b b b b b
 =

  
 − − =    =


=

 
 f
A

A  (40) 

Based on the orthogonality condition and Gaussian-Chebyshev integration formula, it arrives  
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where 1 2, , ,b b bM  are the Gaussian interpolation points (GIPs), which can be determined by 

the zero-points of a M -order COP. The homologous points 
1 2, , ,b b bM  in the original 

interval can be given by 

 
2 1 ( ) ( )

= cos , , 1,2, ,
2 2

e
e ee b b b b b

b b e
− + + − 

= = 
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M
M

 (42) 

In general, +1M A  should be fulfilled to minimize the integration error [34]. 

Below, apply the one-dimensional uncertainty Ib b  to the multi-dimensional cases 

Ib b . Obviously, the nonlinear degree for the angle interval  1 0,2P −   and  0,a   of 

convex parameters is higher than that for the  -cut interval of fuzzy parameters. Thus, to 

reduce unnecessary calculation but ensure precision, the multidimensional COP with different 

orders is used to surrogate the function ,( )v tf b . The multi-dimensional best square 

approximation polynomial over the convex-fuzzy hybrid interval can be written as 
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1 2 1
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, ( , , , )
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 (43) 

where  is the total number of zero(s) occurring in the subscript 1 2 P Qi i i + ; 1 2, , P Q+A A A  

are the orders of each-dimensional COP; 
1 2 P Qi i i

+

  is the undetermined COP coefficient; 

1 2 1 2( , , , )
P Qi i Pi Q+ +b b b  is the P Q+ -dimensional COP. The multidimensional COP can be 
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defined as the tensor product of each one-dimensional COP, namely 
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As stated by Eq. (41) for a one-dimensional issue, the coefficient 
1 2 P Qi i i

+


 is detailed as 
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 (45) 

where 1 2, , , P Q+M M M  denote the each-dimensional number of GIPs. 1 2, , ,e e 

  b b b
M  and 

1 2, , ,e e 

  b b b
M  are GIPs and corresponding original parameters in the  -th dimension, i.e., 
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= cos , , 1,2, ,
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e
e ee
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= = 
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b b M

M
 (46) 

Additionally, the configuration schemes of GIPs are plotted in Fig. 5 for two low-dimensional 

issues. Similarly, +1 M A  should be guaranteed to minimize the integration error. 

Once the series of COP coefficients are determined, the properties of force ,( )v tf b  in the 

convex-fuzzy uncertain domain can be expressed by an explicit multivariate function. Then, 

Eq. (37) can be replaced by finding the maximum and minimum of the COP function 

( ), t
b , which is easy to implement without calling too much FEM calculation. That is 

 ( )  ( ) ( ) min , ( ) ma, x, , ,
I I

v vt tt t 

 
= =

b b b b

f b fb b b  (47) 

   

(a) Two-dimensional issue             (b) Three-dimensional issue 

Fig. 5 The configuration scheme of GIPs 
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5 Implementation of the load identification procedure 

To clearly manifest the overall process of the given uncertain temporal and spatial load 

identification strategy, the operation logic is displayed in Fig. 6, mainly including dynamic 

inverse, RBF approximation and uncertainty treatment. Moreover, the pseudo-code of DDL 

identification with the deterministic parameter b  and hybrid uncertainty analysis with the 

Chebyshev-Interval method at  -cut fuzzy parameters are provided in Algorithm 1 and 

Algorithm 2. Specific procedures are successively summarized as below. 

Step 1. Preset the conditions, including the global characteristic matrices ( ( )M b , ( )C b  

and ( )K b ) of the FEM model, the sequence of acceleration signals, control parameters   

and  , the time increment t , the coordinates L  of FEM nodes, the coefficients   and   in 

hierarchical clustering, the ellipsoid model of convex parameters Cb  and the membership 

function of fuzzy parameters Fb . 

 

Fig. 6 The procedure of temporal and spatial load identification under hybrid uncertainties 

Step 2. Transform the ellipsoid model 
C

Eb
 to the unit hypersphere model ˆ

C
Eb

, obtain the 

 -cut interval 
Fe

b  of fuzzy parameters, and perform the interval modeling for hybrid 

uncertainties Ib b . Determine the GIPs 1 2, , ,e e 

  b b b
M

 ( 1,2, , +P Q = ). 

Step 3. Calculate modal responses ( , )r tq b , ( , )r tq b , ( , )r tq b  and ( , Δ )r t t+bq  based on 

the Newmark iteration and modal transformation strategies. Inverse the modal load 

( , )Δr t t+P b  via Eqs. (5), (6) and (19). 
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Step 4. Based on the hierarchical-clustering method, determine the number q  of RBF 

centers, the center set X  and the variance 
j  for the RBF interpolation. 

Step 5. Calculate the RBF coefficients through Eqs. (22)-(24) and express the DDL on 

each FEM node. Judge whether the DDLs of all GIPs have been identified. If not, continue to 

perform Step 3 and Step 4; otherwise, proceed to the next step. 

Step 6. Calculate the COP coefficients through Eqs. (45)-(46) and construct the 

Chebyshev-Interval method based on the best square approximation. Finding its maximum 

and minimum as the upper and lower bound. 

Algorithm 1 DDL identification with the deterministic parameter b   

Input: The characteristic matrices ( )M b , ( )C b  and ( )K b , the control parameters   and  , the time  

      increment t , the acceleration signals, the FEM coordinates, and the coefficients   and   

Output: The DDL of each FEM node in the time history 

1: Calculate the modal acceleration:  
+

( , ) ( ) ( )kt t q b bΦ u  

2: While 0 t T t  −  , Do 

3:    Inverse the modal force (Δ ( Δ )( , ) ) , ,) (r rr rt t t tt     + + −P K b F bqb b  

4:    = Δt t t+  

5: End While 

6: Regularize the coordinate of the FEM node: ( ) ( )max min max min ,/2 1 ,i i A A A A i  − + − ==  L L ，  

7: Regard i
L  ( 1, ,i = ) as the initial clusters and calculate the Euclidean distance: i i

v wvw − L L  

8: While the number of clusters is more than 1, Do 

9:     Merge the two clusters with the nearest distance, then calculate between-cluster distances 

1

v p w o

po vw

p o

 
 


 

 
L L

 

10: End While 

11. Determine the hyper-parameters of RBF based on hierarchical clustering:  

q m  −  ( ( ) 1m  − ), 
1

j

j

j 









L

Lx , j j    ( ( )minj j i  −x x ) 

12: Generate the RBF space, then calculate the RBF coefficient: 
1

( )( ) ( ) ( ) ,( ) ( ) ( )
( , )

( ) ( ) ( )

T T
T T T

k f k f k f
t

t

−

            
=         

        

L L L
χ

b
b

0Γ Γ

P bΦ b T Ψ Φ T Ψ Φ b T Ψ

X XΓ X
 

13: Approximate the DDL of the v -th FEM node: , ( ) ( , )( ) v

v t tf b Ξ L χ b  

6 Validation of the proposed method with examples 

In order to clarify the feasibility of the developed methodology, 3 numerical examples 
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will be investigated in this section. Moreover, the MATLAB codes, model datasets, 

acceleration signals and identified results are provided on the webpage (https://bhpan.buaa. 

edu.cn:443/link/D9810C398CA9CA8B0D9963770F8E9B10) to shed light on the procedure 

and validation. In the first example, a cantilever beam structure imposed by one-dimensional 

DDLs is discussed to mainly illustrate the superiority of the proposed uncertain propagation 

method. Then, an equivalent rudder structure subjected to two-dimensional DDLs is involved 

to clarify the feasibility of the hierarchical-clustering-based RBF approximation. Eventually, 

a more complicated three-dimensional wing structure is further analyzed to explore the 

effects of sensor deployment and RBF parameters. 

Algorithm 2 Hybrid uncertainty analysis with the Chebyshev-Interval method at  -cut fuzzy parameters 

Input: The ellipsoid model of convex parameters 
Cb  and the membership function of fuzzy parameters 

Fb  

Output: The load interval of each FEM node at time t  

1: Transform the ellipsoid model 
C

E
b

 to an equivalent model 
C

E
b , then to a unit hypersphere model ˆ

C
E

b
 

2: Represent the convex parameters by spherical coordinates ( )1 2 1, , , , PR    −
 

3: Obtain the interval ,Fe Fe Fe

     b b b  at the  -cut level of the fuzzy variable 
Feb  

4: Construct the interval model of hybrid uncertainties:  1 2 1 1 2, , , , , , , ,P F F FQR      −b b b b  

5: Determine the order 1 2, , P Q+A A A  and GIPs for each-dimensional COP: 

 cos (2 1) / 2 , 1,2, , , 1,2, , +
e

e e P Q

      −  b M M  

6: Identify the DDL 1 2

1 2( ), , , ,P Qee ev

P Q t+

+f b b b  on each GIP based on Algorithm 1 

7: Calculate the COP coefficient: 
1 2

1 2

1 2

1 2

1 2
11 1 1 1

, , , , ( )
2
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P Q

P Q

P Q
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8: Build the multi-dimensional best square approximation polynomial: 

( )
1 2

1 2 1

2

2

1

1 2

0 0 0

, ( , , , )
1

2

P Q

P Q P Q
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i i i i i i P Q
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9: Find the extreme as the load boundary: ( )  ( ) ( ) min , ( ) ma, x, , ,
I I

v vt tt t 

 

 
b b b b

f b fb b b  

Three evaluation indexes for each FEM node are additionally defined to quantitatively 

evaluate the identified results, including the peak relative error (PRE), the normalized mean 

squared error (NMSE) and the relative deviation of peak interval (RDPI) in the following 
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https://bhpan.buaa/
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where 
max

vt  is the time step with maximum load amplitude for the v -th FEM node; 
b  

benchmark the nominal parameter composed by the center of convex variables ( c

Cb ) and the 

center value of 1-cut fuzzy variables ( 1

Fb ); 
max( , )real v

vtF L  and 
max( ),v vtbf  denote the real 

/identified loads at time 
max

vt ; ( , )real v iF tL  and ),(v

it


bf  represent corresponding loads at the 

i -th sampling instant; and 
max,( )v vtbf  and 

max,( )v vtbf  are the upper/lower bounds at time 
max

vt . 

6.1 A cantilever beam structure 

As illustrated in Fig. 7, a one-dimensional cantilever beam structure with a length of 1m 

will host the basis of this example. Through the FEM, it is discretized into 10 elements with 

11 nodes. Considering the multi-source uncertainties, the elastic modulus and the density are 

deemed as fuzzy parameters, whose membership functions are plotted in Fig. 8. The cross-

section and the moment of inertia are regarded as convex parameters with the correlation 

coefficient of 0.5, whose characteristics are listed in Table 1. A lateral DDL 

( ) ( )( ) ( ), 200 1 1.5 sin 4f x t x x t= + −  is applied in the DOF2 direction, and the time settings 

are taken as T =2s and t =0.001s. The lateral acceleration signals of node 4, node 7 and 

node 10 simulated by FEM analysis at the nominal parameter are utilized for the uncertainty-

oriented DDL identification. 

 
Fig. 7 The one-dimensional cantilever beam structure 

 
(a) Elasticity modulus                                     (b) Density 

Fig. 8 The description of fuzzy parameters 

As revealed in Ref. [5], the COPs with 2 orders can completely reflect the changing 

trend of uncertain loads on the fuzzy uncertain domain at any truncated level. Besides, 2-
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order COP can also ensure the uncertainty propagation accuracy for the variable R  because 

the solution of Eq. (37) will appear at the boundary of the ellipsoid domain based on convex 

optimization theory. To get the suitable order of variable   in Eq. (43), the COPs with 2, 3, 4, 

5 orders are employed respectively to calculate the load intervals at 0-cut fuzzy parameters. 

The each-dimensional number of GIPs is assigned by +1 =M A . In addition, the MCS is 

introduced as the reference solution of uncertainty propagation. 

Table 1 The center and radius of convex parameters 

Convex parameters Center Radius 

The cross-section (mm2) 100 5 

The moment of inertia (mm4) 833.333 25 

 
(a) In space domain                      (b) In time domain 

 
(c) Node 4 at 0.126s 

Fig. 9 The DDL intervals at 0-cut fuzzy parameters 

The DDL intervals in space domain at 0.126s (maximum load in the time history) and 

the DDL intervals in time domain of node 4 (maximum load of all FEM nodes) are shown in 

Fig. 9 (a) and (b), and the specific information of node 4 at 0.126s is observed in Fig. 9 (c), in 

which ‘CI a-b-c-d’ means that the orders of COP regarding elastic modulus, density, R  and 

  are a, b, c and d, respectively in the Chebyshev-Interval method. It indicates that with the 

order of the variable   increasing from 2 to 5, the load interval becomes closer to the MSC 

result. The relative error between CI 2-2-2-5 and MCS is only 0.049% and 0.075% for the 
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upper and lower bounds without overestimation and underestimation of interval calculation. 

When the same high-order COPs in each dimension as proposed in Ref.  (CI 5-5-5-5) are 

involved, the load interval is identical compared with CI 2-2-2-5, but the FEM analysis times 

increase sharply to identify the DDLs at more GIPS. It can be concluded that the accuracy 

and efficiency of uncertainty propagation can be guaranteed together by the developed 

Chebyshev-Interval method. 

 

(a) The DDL with nominal parameters      (b) The interval at 0-cut fuzzy parameters 

Fig. 10 The identified DDL (every 10 steps) for the cantilever beam structure 

Table 2 The evaluation results for the cantilever beam structure 

Node 2 3 4 5 6 

PRE (%) 0.170  0.400  0.019  0.516  0.692  

NMSE (10-5) 1.534  2.610  0.041  2.927  5.817  

RDPI (%) 15.888  15.861  15.937  16.025  16.061  

Node 7 8 9 10 11 

PRE (%) 0.375  0.338  1.044  0.992  1.052  

NMSE (10-5) 2.341  0.700  8.957  8.252  12.582  

RDPI (%) 16.016  15.907  15.815  15.838  16.177  

The identified DDLs at the nominal parameter are plotted in Fig. 10 (a), and the load 

boundaries considering hybrid uncertainties at 0-cut fuzzy parameters are provided in Fig. 10 

(b). The evaluation indexes (PRE, NMSE and RDPI) of each FEM node are listed in Table 2. 

Under different truncated levels ( =0,.0.2, 0.4, 0.6, 0.8 and 1), the fuzzy interval bounds in 

space domain at 0.126s and those in time domain of node 4 are demonstrated in Fig. 11. As 

we can see, the maximum PRE is 1.053% and the maximum NMSE is 31.177 10− . Thus, the 

proposed deterministic DDL identification combining RBF approximation and inverse 

Newmark iteration can work perfectly for the beam structure. With 0-cut fuzzy parameters, 

the RDPI of each node is around 16%, and the load boundaries can envelop the actual load 

either in time distribution or spatial distribution. 
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(a) In space domain                (b) In time domain (every 100 step) 

Fig. 11 The fuzzy interval bounds of DDLs under different membership levels 

6.2 An equivalent rudder structure 

 
(a) The schematic diagram          (b) The FEM model and sensor placement 

Fig. 12 The two-dimensional equivalent rudder structure 

To affirm the feasibility of the presented methodology for two-dimensional cases, an 

equivalent rudder structure is further investigated as displayed in Fig. 12. In order to reduce 

the complexity of FEM analysis, the rudder structure is simplified as an anisotropic plate 

structure with a thickness of 5mm. The equivalent process has been expounded by our 

previous works in Ref. [35]. The coordinates are regularized to a standard interval 

, [ 1,1]x y − . The equivalent material properties without uncertainties are listed in Table 3. It 

is discretized by 9 12  four-node shell elements with 130 nodes and is supported on the root. 

And it is subjected to a transverse DDL with a duration of 1s and a frequency of 1000 Hz. 

The layout of accelerometers is plotted in Fig. 12 (b). 

Table 3 The material properties for equivalent plate structure 

Properties 
11E  (Pa) 

22E  (Pa) 
33E  (Pa) 

12   
23  

Values 1.9065 1011 1.9123 1011 4.893 1010 0.19 0.25 

Properties 31  
12G  (Pa) 

23G  (Pa) 
31G  (Pa)   (kg/m3) 

Values 0.069 4.694 1010 1.779 1010 1.46 1010 2380 
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Table 4 The different expressions of DDLs under 4 cases 

Condition DDL expression 

Case 1 3 2 1.515( 5) 60 +750 150( 5) 240 3450 sin(12 ) tF x x x y y t e − = − + + + + + +   

Case 2  2 2300 +400 250 480 975 sin(8 ) sin(12 )F x y x y t t  = − + + +   

Case 3   1.51000 500 2500 sin 10 (1 ) 10F x y t  = − + − −   

Case 4 2100 +100 200 150 2sin(16 ) 3sin(12 )F y x y t t  = + + −   

Table 5 The deterministic identified DDL for the rudder structure using different strategies 

Case In space domain In time domain 

Case 1 

  

Case 2 

  

Case 3 

  

Case 4 
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Fig. 13 The PRE and NMSE of deterministic identified DDL with different strategies 

 

(a) Elasticity modulus 11E                (b) Elasticity modulus 22E  

Fig. 14 The description of fuzzy parameters 

Particularly, 4 DDLs with different space-time distribution, as listed in Table 4, are 

involved to verify the generalization of the developed method. Moreover, the previous 

identification strategy with COPs [35] is also used to reconstruct the spatial distribution of 

DDLs. The reconstructed spatial load with the maximum amplitude in the time history 

(0.042s, 0.549s, 0.604s and 0.215s for cases 1 to 4), and the identified time histories of node 

67 are summarized in Table 5. The average and maximum values of deterministic evaluation 

indexes (PRE and NMSE) for all FEM nodes are respectively presented in Fig. 13. What is 

surprising is that the identified loads by RBF approximation (load by RBF) can basically 

match the actual loads for 4 cases. The average PREs are less than 2.5% and the average 

NMSEs are not more than 31 10− . By contrast, the identified results by COP approximation 

are too worse to accept for case 2 and case 4, but they are better than the identified DDLs by 
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RBF approximation for case 3 with complete linearization in space domain (average PREs is 

0.496% and average NMSE is 3.4210-5). As pointed out in Ref. [35], the hierarchical-

clustering-oriented RBF approximation method possesses better generalization ability. In 

addition, the identified loads by RBF are consistent with their actual tendency in time domain 

for 4 cases, suggesting the effectiveness of the inverse Newmark iteration. 

Further, the elastic modulus 11E , 22E  is supposed to be fuzzy parameters as plotted in Fig. 

14. The shear modulus 23G , 31G  is assumed as convex parameters with a correlation 

coefficient of 0.8. The radii are set as 8

23 7.116 10rG =   Pa and 8

31 5.84 10rG =   Pa. 

Performing the uncertain DDL identification at 0-cut fuzzy parameters for case 1, identified 

intervals in space domain at 0.042s and in time domain of node 67 are exhibited in Fig. 15 (a) 

and (b) respectively. The load intervals can surround the actual forces perfectly, which shows 

the necessity of uncertainty propagation. And the fuzzy membership of the DDL at node 67 at 

0.042s is plotted in Fig. 15 (c). Similar to the membership functions of elastic modulus 11E  

and 22E , the fuzzy membership functions of the concerned load are nearly linear when 

0.4  , while nonlinear when 0.4  . 

 
(a) In space domain                   (b) In time domain 

 
(c) Node 67 at 0.042s 

Fig. 15 The identified DDL intervals for case 1 
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6.3 A wing structure 

 
(a) The geometric model 

 
(b) The FEM model 

Fig. 16 The three-dimensional wing structure 

To better demonstrate the capability of the developed approach when dealing with 

complex engineering problems, a three-dimensional wing structure is further investigated. 

The wing structure is covered by the fiber fabric with a thickness of 0.2mm, and equivalent 

material parameters of the braided composite are obtained by parameter identification in both 

micro and macro scales. The interior is filled with isotropic polymethacrylimide foam. Fig. 

16 (a) shows the geometric model and mechanical properties. By FEM discretization as 

shown in Fig. 16 (b), 224 nodes, 176 shell elements and 565 solid elements are generated. 

The coordinates are all regularized to a standard interval , , [ 1,1]x y z − . A DDL 

(  2 2 250 +60 +30 1120 20ln( 5 8) 20(10 2 ) sin(16 ) sin(14 )F x y z z t x y t t t  = + + + + + − + + −  ) 

is applied to the upper surface and lower surface, and the boundary condition is preset at the 

root of the wing structure. 

Six different schemes of sensor placement (SP), as listed in Table 6, are provided in this 

example. Parametric studies of the proportional coefficient   and overlap coefficient   are 

explored in sequence to arrive at optimal RBF space based on the control variable method. 

The findings are listed in Table 7 and Table 8, followed by some conclusions as below. 
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Table 6 Different schemes of sensor placement 

Sensor placement Node number 

1 40,44,87,103,149,158 

2 3,63,75,121,124,164 

3 5,28,58,59,88,107,119,130,147,158 

4 3,30,35,67,84,107,124,130,149,160 

5 3,28,31,36,66,69,94,106,121,127,138,145,157,158 

6 5,31,17,47,49,67,85,101,115,136,137,150,152,173 

Table 7 Parameter selection of proportional coefficient   with 3 =  

Sensor placement 1 2 3 4 5 6 

Average 

PRE 

(%) 

=0.1  2.832  2.615  2.721  2.898  2.598  2.676  

=0.2  1.739  1.651  1.282  1.709  1.411  1.290  

=0.3  1.884  2.049  1.479  1.848  1.757  1.596  

=0.4  2.035  1.917  1.792  1.991  1.785  1.708  

=0.5  1.780  2.323  1.305  1.745  1.872  1.606  

=0.6  38.842  12.548  15.774  34.841  2.293  3.167  

Average 

NMSE 

(10-4) 

=0.1  18.481  18.717  17.959  18.919  17.984  17.771  

=0.2  7.212  5.464  4.473  7.270  4.222  3.897  

=0.3  8.301  7.726  4.909  8.539  5.337  4.634  

=0.4  8.977  6.622  6.129  9.414  5.458  5.157  

=0.5  7.295  9.958  3.945  7.405  6.009  4.641  

=0.6  2529.235  270.915  420.348  2041.501  9.093  17.572  

Table 8 Parameter selection of proportional coefficient   with optimal   

Sensor placement 1 2 3 4 5 6 

Average 

PRE 

(%) 

1 =  1.824  2.371  2.317  2.481  2.288  2.283  

2 =  1.805  1.908  1.655  1.875  1.719  1.628  

3 =  1.739  1.651  1.282  1.709  1.411  1.290  

4 =  1.918  1.813  1.443  1.809  1.568  1.481  

5 =  1.922  1.955  1.563  1.865  1.722  1.607  

6 =  1.892  2.027  1.611  1.895  1.791  1.661  

10 =  1.736  2.152  1.567  1.869  1.855  1.685  

Average 

NMSE 

(10-4) 

1 =  6.776  13.459  11.385  11.753  12.281  11.502  

2 =  7.656  9.346  7.465  8.656  8.076  7.341  

3 =  7.212  5.464  4.473  7.270  4.222  3.897  

4 =  8.527  6.024  4.637  7.851  4.446  4.113  

5 =  8.449  6.996  5.081  8.322  5.133  4.656  

6 =  8.065  7.567  5.286  8.561  5.508  4.923  

10 =  6.862  8.574  5.058  8.285  5.901  5.027  
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(1) When the proportional coefficient   is taken as 0.1, 0.2, 0.3, 0.4 0.5 and 0.6, the 

number of clusters is 121, 48, 22, 11, 7 and 3, respectively. Under the premise of 3 =  (other 

values can be also selected), the average evaluation indexes (PRE and NMSE) of all FEM 

nodes are summarized in Table 7. Surprisingly, their minimums (which are bold) can be 

obtained for all schemes of SP when =0.2 . And the centers’ number is so small that the 

approximation ability of RBF is poor for the SP 1, 2, 3 and 4 when =0.6 . A possible 

explanation is that the generated RBF space is relatively smooth, which is difficult to reflect 

the complicated mapping relationship between load distributions and node coordinates. 

(2) The overlap coefficient   controlling the width of RBF is investigated on the basis of 

0.2 = . The results of average PRE and average NMSE under different schemes are listed in 

Table 8. We conclude that   has little effect on the approximation ability of RBF. The 

evaluation indexes reach the bold minimum when 3 =  for all schemes of SP. 

(3) In summary, the hyper-parameters of RBF are uniquely determined for a given FEM 

model no matter how the sensor system is arranged. With the best parameters of 0.2 =  and 

3 = , the average PRE is less than 2%, and the average NMSE is less than 810-4. The 

identified results are relatively superior for SP 3 and SP 6, which will be detailed below. 

For the FEM nodes on the upper and lower surface, the cloud atlas of actual loads, 

identified loads and PREs in space domain at 0.534s (maximum load in the time history) are 

demonstrated in Fig. 17. Most PREs are within 4% under the two SP schemes. The PREs are 

relatively large in the root position nearby the front edge due to the influence of the boundary 

effects. And the maximum PRE (node 2) is 8.83% for SP3 and 7.98% for SP 6, which are 

acceptable for a complex wing structure. Besides, we can further increase the number of 

accelerometers or optimize the schemes of SP to improve the precision of DDL identification. 

Taking the uncertainties into account, the elastic modulus E  of polymethacrylimide 

foam is regarded as the fuzzy parameter, whose interval is assumed as  0.988,1.092  108 at 

its 0-cut level. The elastic modulus 11E  and 22E  in the main direction of the braided 

composite are considered as convex parameters with a correlation coefficient of 0.5. The radii 

are 9

11 9.5325 10rE =  Pa and 9

22 9.5615 10rE =  Pa. The cloud atlas of upper loads, lower 

loads and the RDPIs in time domain at 0.534s are plotted in Fig. 18. It can be seen that the 

distribution trend of the upper/lower bound is different from the actual load for both the 

upper and lower surface. The average RDPI of FEM nodes is 15.454%, and the RDPIs are 

relatively large at the root part of the wing structure. Eventually, the identified DDL at the 

nominal parameter and the load intervals in time domain of node 85 (maximum load of all 

FEM nodes) are shown in Fig. 19. Identical conclusions can be drawn as examples 1 and 2. 
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upper 

surface 

   

Actual load (N) Identified load by SP 3 (N) Identified load by SP 6 (N) 

The 

lower 

surface 

   

Actual load (N) Identified load by SP 3 (N) Identified load by SP 6 (N) 

The 

upper 

surface 

  

PRE by SP 3 (%) PRE by SP 6 (%) 

The 

lower 

surface 

  

PRE by SP 3 (%) PRE by SP 6 (%) 

Fig. 17 The deterministic identified results in space domain 
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The 

upper 

surface 

   

Upper load (N) Lower load (N) NMSE (%) 

The 

lower 

surface 

   

Upper load (N) Lower load (N) NMSE (%) 

Fig. 18 The uncertain identified results in space domain 

 

(a) At the nominal parameter               (b) Load boundaries 

Fig. 19 The identified results in time domain of node 85 

7 Conclusions 

As revealed by the above issues, a novel spatio-temporal DDL identification method 

using limited acceleration measurements considering convex-fuzzy hybrid uncertainties is 

developed for proportionally damped systems, which combines the dynamic inverse, RBF 

approximation and uncertainty treatment. Major novelty contributions lie in that: (1) The 

DDLs are decomposed by the hierarchical-clustering-oriented RBF approximation and time 

discreteness, which converts the DDL identification to the calculation of RBF coefficients at 
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every sampling instant. (2) The hybrid convex-fuzzy uncertainties are uniformly 

characterized by a multi-dimensional interval model through space transformation and 

membership truncation. (3) The Chebyshev-interval collocation method is proposed to 

effectively achieve the fuzzy interval bounds of the DDLs through uncertain dynamics 

evolution. Numerical examples demonstrate the effectiveness of the presented methodology 

(including uncertain propagation and DDL approximation), and they also show that the 

sensor deployments and RBF parameters both have great influences on the identified results. 
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