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Changes in land use enhance 
the sensitivity of tropical 
ecosystems to fire‑climate 
extremes
Sujay Kumar1*, Augusto Getirana1,2, Renata Libonati3, Christopher Hain4, 
Sarith Mahanama1,2 & Niels Andela5

The Pantanal, the largest contiguous wetland in the world with a high diversity of ecosystems 
and habitat for several endangered species, was impacted by record‑breaking wildfires in 2020. In 
this study, we integrate satellite and modeling data that enable exploration of natural and human 
contributing factors to the unprecedented 2020 fires. We demonstrate that the fires were fueled by 
an exceptional multi‑year drought, but dry conditions solely could not explain the spatial patterns 
of burning. Our analysis reveals how human‑caused fires exacerbated drought effects on natural 
ecosystem within the Pantanal, with large burned fractions primarily over natural (52%), and low 
cattle density areas (44%) in 2020. The post‑fire ecosystem and hydrology changes also had strong 
ecological effects, with vegetation productivity less than − 1.5 σ over more than 30% of the natural 
and conservation areas. In contrast to more managed areas, there was a clear decrease in evaporation 
(by ~ 9%) and an increase in runoff (by ~ 5%) over the natural areas, with long‑term impacts on 
ecosystem recovery and fire risk. This study provides the first tropical evidence outside rainforests 
of the synergy between climate, land management and fires, and the associated impacts on the 
ecosystem and hydrology over the largest contiguous wetlands in the world.

Vegetation disturbance from fires is an essential component of savanna and woodland  ecosystems1. Fires clear 
older biomass, release nutrients, and open the canopy, stimulating new vegetation  growth2–4. Irrespective of the 
ignition source, fires are often exacerbated by climate conditions such as warmer and drier conditions, drought, 
and heatwaves which increase vegetation flammability. In the contemporary tropics, most ignitions are from 
human  origin5. Human influence in triggering and redistributing ignitions are well established over different 
 areas6,7, with 84 to 97% of the wildfires in the United States being humans  driven8,9, only 13% of the bushfires in 
Australia from natural  causes6, and similar trends in other places in the  world10. In contrast to global  savanna11, 
the increase in managed land from deforestation, forest clearing for livestock grazing, and climate-change driven 
changes in extremes combined with increases in anthropogenic ignitions pose an increasing threat to the sustain-
ability of tropical forests and  woodlands12–17. Commensurate with the increase in global temperatures, droughts 
have been more  severe18–21, with approximately 19% increase in the mean fire weather season length globally 
attributed to climate change  variations22. These novel climate conditions have resulted in the emergence of a 
new fire type, synchronized fire events that affect significant portions of entire  landscapes23,24 in different parts 
of the world. The magnitude of these recent events has fundamental consequences for trajectories of post-fire 
recovery, through alterations of hydrological fluxes and regional climate.

Coincident with the extreme  droughts25–29, biomes in Brazil have been hotspots for forest fires over recent 
 decades22,30. Similar to the fire occurrences in other parts of the world, human initiation is attributed to most 
fires in the humid tropical forest ecosystems of the  Amazon16,31. The industrial agriculture and cattle ranching 
induced forest clearing with  fires32,33 have increased the frequency of understory fires in recent  years34 and fire 
might become the dominant driver of forest degradation under scenarios of future  change35.
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The Pantanal is a region in central South America consisting of the largest contiguous wetland in the world 
(Fig. 1), located mostly in the Brazilian state of Mato Grosso do Sul. The Pantanal hosts the highest concentration 
of wildlife in South America, which is sustained by the floodplains that are submerged in the rainy season and 
drained in the dry  season36. Cattle ranching is a major part of the Pantanal economy, and 93% of the land on the 
Pantanal is private, which is where the industrialized farming typically occurs. The region also includes protected 
areas and indigenous lands, over which cattle ranching is  minimal37. Despite the long history of the use of fires 
to clear the area for grazing, large-scale vegetation density in the region has largely remained unaffected by such 
 activities38, particularly over the conservation areas. The Pantanal has been hit by an unprecedented drought 
since  201839,40, followed by extreme  wildfires41,42. Here, we used burned area estimates from the Moderate Reso-
lution Imaging Spectroradiometer (MODIS) sensor aboard the NASA Terra and Aqua satellites  (MCD64A143), 
and found that approximately 3.7 Mha burned, representing 28.9% of the region burned from the 2020 fires 
(Fig. 1c), corroborating data from the ALARMES warning  system44 from the Laboratory for Environmental 
Satellite Applications (LASA-UFRJ; https:// lasa. ufrj. br/ alarm es). The exceptional nature of these fires has raised 
widespread concerns about the conservation of the Pantanal  landscape42,45,46, but much remains unknown about 
the precise drivers of the event and its long-term implications.

In this study, we use state-of-the-art land surface modeling and remote sensing data assimilation techniques 
to understand processes that led to the 2020 Pantanal fires and their impacts. First, using a land surface modeling 
 integration47 that incorporates information from remote sensing inputs of vegetation changes, we assess the 
severity, duration, and extent of the recent drought. Second, we use remotely sensed estimates of burned areas 
to examine the changing influence of drought on fire instances over time and how the historical occurrences of 
fires increase over the natural areas and reduce over heavily managed regions. We combine model results with 
data about cattle density and land cover (Fig. 1a-b) to identify the outlier nature of the 2020 fires and interpret its 
drivers. Finally, we use the land surface model integration to assess the nature of the changes in the ecosystem and 
regional hydrology as a result of the fires by quantifying the unprecedented nature of the changes in vegetation, 
ecosystem productivity, and hydrology due to the fire-induced removal of vegetation. Combined, these analyses 
highlight how human activity in recent years has disproportionately made natural systems of the Pantanal more 
prone to fire occurrences during extreme droughts.

The driving factors behind the 2020 Pantanal fires. Over 71% of the region, about 9.2 Mha, face 
standardized root zone soil moisture anomaly values below − 1 σ , indicating the unprecedented nature of the 
2020 drought, both in terms of the magnitude and spatial extent (Fig. 1d). We examine the severity and extent 
of the recent drought over the Pantanal using deficits in antecedent precipitation and root zone soil moisture as 
analogs of drought conditions. Precipitation shortages represent the meteorological factors driving the anoma-
lous dry conditions. Deficits of soil moisture resulting from the imbalance between moisture supply on the land 
surface and the losses from evaporation and runoff are typically used to characterize agricultural  droughts48–50. 
Maps of root zone soil moisture anomalies for the dry season (Aug-Nov) across 2017 to 2020 (Fig. S1) indicate 
that, prior to 2018, the small root zone soil moisture anomalies are representative of the typical dry season. The 
drought onset is noticed in 2018, and by 2019 much of the region is in consistent negative soil moisture anoma-
lies, exacerbating in 2020.

Historical trends (2003–2020) in MODIS-burned  area43 stratified by cattle density (Fig. 2) and land cover 
type (Fig. S2) highlight the influence of the land use changes on the 2020 fires. Strikingly, we found that under 
similar drought conditions, natural landscapes were most sensitive to fire extremes. During 2020, 52% (362% 
increase compared to long-term mean) of protected areas and 44% (357% increase) of areas with very low cattle 
density burned, compared to 6% (16% increase) and 0.5% (8% decrease) of areas with medium and high cattle 
density, respectively (Fig. 2e). Similarly, 52% of all forests (692% increase compared to the long-term mean), 31% 
(814% increase) of wetlands have burned in 2020, compared to 27% (200% increase) of the grass and croplands 
and 21% (125% increase) of savannas, areas that are, to a large part, used for grazing (Fig. S2e). These patterns 
are also reflected in the historical time series, while there is a general correspondence between negative root 
zone soil moisture anomalies and the fire occurrences over the very low-density pasture areas, the strength of 
this relationship decreases with increasing cattle density (Fig. 2f).

The sensitivity of protected and extensively used land to the 2020 extreme fire occurrence is further high-
lighted by time series analysis. Figure 2f shows that the correlation between antecedent precipitation and burned 
area range from − 0.16 to 0.12 and the root zone soil moisture and burned area range from − 0.21 to − 0.03 
during 2003–2019. Over the very low pasture areas, the association between precipitation and burned areas 
increases significantly (from − 0.16 to − 0.24) when 2020 data are considered, whereas no considerable change 
in the medium and high pasture density areas is seen. These results highlight the extreme and unequal impact 
of the 2020 drought, but also suggest that the sensitivity of natural ecosystems to fire has increased over time. 
Indeed, the observed trends in fraction of burned areas in the very low, low, and medium pasture areas were 
not significant during 2003–2019 (Table 1), but when 2020 data are included, there is a statistically significant 
increasing trend in the fraction of burned area over the protected and very low-density pasture areas. In contrast, 
no change is observed over the low and medium density areas where the relationship between burned area and 
drought remains weak. It is also notable that a statistically significant decreasing trend in the fire occurrences 
is seen over the high-density pasture areas, which is unaffected by the inclusion or exclusion of the 2020 data, 
consistent with increasing industrialization and cattle densities over time.

Similar results are obtained with comparisons of the fraction of burned areas and the associated root zone soil 
moisture anomalies over the four main land cover types (Fig. S2). The forests and wetlands are mostly natural 
areas whereas the crop, grass, and savanna areas are, to a large part, used for grazing. The natural vegetation 
areas show significantly higher percent of burns in 2020 compared to such occurrences in the observational 
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record. On the other hand, the fraction of the burned areas over the crop, grass and savanna areas, is similar 
to the historical period prior to 2020. The anomalous nature of the fires is also seen over the wetlands, where 
fire occurrences are rare and range around 2%. In 2020, however, more than 10% of the wetlands burned. Our 
analysis quantifies that as much as 45% of the conserved areas have burn scar features in late 2020, significantly 

Figure 1.  Map of the study domain over the Pantanal: (a) shows four categories of pasture based on cattle 
head density per cattle ranch (estimated from the Mapbiomas  project37), with the conservation areas (shown 
in the hatched patterns) with the indigenous and environmental reserves (http:// www. funai. gov. br/ index. php/ 
shape; https:// antigo. mma. gov. br/ areas- prote gidas/ cadas tro- nacio nal- de- ucs/ dados- georr efere nciad os. html), 
(b) shows the four dominant land cover types from the MODIS land cover  data67, (c) shows the locations of 
the burned areas in 2019 and 2020, based on the MCD64A1 burned area  product43, and (d) shows a map of the 
standardized 6-month root zone soil moisture anomaly averaged across the Aug-Nov of 2020. The spatial maps 
are created using QGIS (https:// qgis. org/ en/ site/).

http://www.funai.gov.br/index.php/shape
http://www.funai.gov.br/index.php/shape
https://antigo.mma.gov.br/areas-protegidas/cadastro-nacional-de-ucs/dados-georreferenciados.html
https://qgis.org/en/site/
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larger than the fire occurrences in the MCD64A1 data record. In the years prior to 2020, the percent of burns in 
the conserved areas never exceeded 18%.

Patterns similar to Figure 2f are observed when the level of association between antecedent moisture condi-
tions and the fraction of burned area is stratified by the main land cover types and over the conservation and 
non-conservation areas (Fig. S3). Compared to the 2003–2019 period, there is a statistically significant change in 
the correlation between antecedent precipitation with the percent of burned area over the forests (a decrease of 
36%) and wetlands (a decrease of 52%) when data from year 2020 is included (Fig. S3a). On the other hand, over 

Figure 2.  Time series of the standardized anomalies of antecedent 6-month root zone soil moisture (black 
lines) and fraction of burned areas per month (red bars) over areas with different pasture density (panels a, 
b, c, d). The dashed blue and gray lines show the linear trend of the monthly fraction of burned area (Table 1) 
over the 2003–2020 and 2003–2019 time periods, respectively. Panel e shows the distribution of annual fraction 
of burned area across 2003–2019 and from 2020 and Panel f shows the Spearman correlation between the 
standardized anomalies in variables relevant for fuel moisture (i.e., 12-month precipitation, 6-month root zone 
soil moisture) and percent of burn area, stratified for areas with four different levels of pasture density.

Table 1.  Slope of the trendlines of monthly fraction of burned area over areas  (month−1) with different levels 
of pasture density and land cover type. The statistical significance of the trends is also indicated in the table.

2003–2019 Trend 2003–2020 Trend

Protected areas (1.31 Mha) 2.2E−5 No trend 1.4E−3 Increasing

Very low pasture density (4.22 Mha) − 1.2E−6 No trend 4.92E−3 Increasing

Low pasture density (3.59 Mha) − 9.93E−4 No trend 8.22E−4 No trend

Medium pasture density (1.95 Mha) − 2.67E−3 No trend − 2.13E−3 No trend

High pasture density (0.22 Mha) − 1.95E−3 Decreasing − 1.85E−3 Decreasing

Forests (2.57 Mha) − 1.73E−4 No trend 6.50E−3 Increasing

Wetlands (0.60 Mha) 1.16E−3 No trend 5.24E−3 Increasing

Grass and Crops (2.63 Mha) − 9.25E−4 No trend 1.98E−3 No trend

Savannas (6.99 Mha) − 8.81E−4 No trend 9.16E−4 No trend
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the crop, grass and savanna areas, the changes in correlation between the antecedent precipitation anomalies and 
burned area with and without 2020 are not statistically significant. Similar patterns are observed between areas 
classified as reserves and non-reserves (Fig. S3b). Over the reserves, there is a statistically significant increase 
in the association between antecedent precipitation and the fraction of burned areas, when the 2020 record is 
considered, whereas over non-reserves no statistically significant change in the fire activity is observed for 2020.

We also examined the influence of large climate patterns (Fig. S3c) by examining the changes in correla-
tion between the percentage of burned areas with the climate indices of the Atlantic Multidecadal Oscillation 
 (AMO51), the Pacific Decadal Oscillation  (PDO52) and the Multivariate El Nino Index  (MEI53). The AMO repre-
sents the anomalous warming of the Atlantic Ocean, whereas PDO and MEI represent the anomalous warming 
of the equatorial and eastern tropical Pacific and tropical north Atlantic oceans, respectively. Consistent with 
prior studies over  Amazon31,54 and  Pantanal40, there is a general association between these climate indices and 
the drought and fire instances in the Pantanal. Though these correlation values show a marginal change when 
the year 2020 is included, compared to the period of 2002–2019, these changes are not statistically significant, 
suggesting that the increase in fire activity in 2020 is not solely explained by the anomalies in large scale climate 
variability indices. In contrast to the widely held assumption that remote areas are well protected from ecosystem 
degradation, our results highlight how the natural environments are more prone to fires under extreme drought 
conditions and human-induced ignitions, such as in 2020. Under such scenarios, fires spread over large areas 
without any suppression, increasing the difficulty of controlling  fires42. Conservation strategies such as domes-
ticated cattle exclosures will be less effective in such areas, under scenarios of future climate change with more 
frequent occurrences of dry  extremes55.

To confirm the inferences from the correlation analysis, a Random Forest (RF) classifier model using the 
pasture density, landcover type, standardized anomalies of precipitation, root zone soil moisture, Leaf Area Index 
(LAI), and Gross Primary Production (GPP) as predictors and the burned area locations as the predictand is 
used (the larger scale climate indicators are not included given their lack of specific influence in the 2020 fires). 
The ordering of the importance of the predictors is generally consistent (Fig. S4) with the results from the one-
variable at a time regression estimates described above, with the pasture density and the antecedent root zone 
soil moisture anomalies being the predictors with larger importance values. For example, the drop column 
importance values for the pasture density and antecedent root zone soil moisture are 0.28 each, higher than 0.21 
for precipitation, 0.18 for landcover, 0.04 for LAI and 0.0 for GPP. The relative importance of the pasture density 
from this analysis also points to the role of human management in the fires over the Pantanal. This suggests 
human-caused fires often escape beyond their intended area in natural landscapes while controlled fires over 
areas with more grazing and pasture are not necessarily influenced by dry and drought conditions.

Ecosystem and hydrology impacts from the 2020 Pantanal fires. The impact of fires on the eco-
system and hydrological conditions had strong ecological effects, though the exceptional drought is largely uni-
form across the whole region. Except for 2020, the correspondence between drought and negative vegetation 
anomalies is weak in this region (Fig.  3a; S5a-b), indicating that the Pantanal ecosystem is very resilient to 
moisture stress conditions. Moreover, while the entire region is in drought, the significant drop in LAI and GPP 
is primarily observed over areas such as the forests, wetlands, and conservation areas (Fig. 3b), with close cor-
respondence to burned areas during 2020. Over the non-forested areas, a more moderate drop in LAI and GPP 
is observed. The results of this study also show that changes in precipitation are not the main driver of vegetation 
variability, consistent with prior studies that indicated that rainfall is not a good predictor of local vegetation 
structure in areas that flood  seasonally56. The correlation between the standardized LAI and GPP anomalies and 
antecedent precipitation anomalies (Fig. S5a-b) is generally small (< 0.10), particularly in the 2002–2019 period. 
The significant negative anomalies in precipitation and vegetation states in 2020 increase these associations 
when the entire period is considered. This pattern is observed in the stratification with the dominant vegetation 
types and the pasture areas.

Our results show that antecedent vegetation conditions are not a major factor in the development of fires, 
rather, negative vegetation anomalies are observed following the fires (Fig. S5c-d). Compared to precipitation 
and root zone soil moisture, the antecedent vegetation anomalies are more weakly correlated with the burn areas. 
There is no statistically significant relationship between the antecedent LAI and burned areas prior to 2020, 
whereas the correlation between antecedent GPP and burned areas show little change with and without 2020, 
both over different land cover and pasture regimes. This is an indication that the potential fuel loads from the 
negative vegetation anomalies are not a major factor in the fire occurrences. On the other hand, the 2-month 
leading LAI and GPP anomalies show stronger correlations with the burned areas, indicating that the negative 
anomalies in vegetation variables follow the fire related burns or are consequences of the fires. The changes in 
the correlation between leading LAI/GPP and burn area in the 2002–2019 and 2002–2020 are statistically sig-
nificant over the forests, confirming that the vegetation disturbances follow the fires over these areas. Over the 
crop, grassland, and savannas, the change in the correlations with and without 2020 is not statistically significant. 
During the 2003–2019 period, the average % of conservation areas with standardized LAI (GPP) values below 
− 1.5 σ is only 3.3 (1.5), whereas in 2020, the % of areas with such large vegetation alterations jump to 35.6 (28.2) 
(Table 2). Similar large changes in vegetation anomalies are seen in areas with historically very low pasture density 
and forests, whereas over other areas, more moderate reductions in vegetation productivity are seen.

The annual average precipitation in 2020 was 40% below average fueling the drought and wildfires. A number 
of precipitation events in late October and early November, 2020 eventually helped in extinguishing the fires. 
During those rain events, the changes in ET and runoff had strong ecological effects with increasing runoff (with 
the interquartile range of 3–9%) and reduced ET (with the interquartile range of 0 to − 15%) over the burned 
areas of forests, conservation, and very low-density pasture (Fig. 3c), confirming that the removal of vegetation 
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due to fire impacted the local hydrological response. Over other areas, the magnitude of such changes is smaller 
with a net impact of no clear shift in the hydrological regime (Fig. S6). Note that the increasing runoff and reduc-
ing ET impact from fires quantified here is likely underestimated, as factors such as water repellence of the soil 
from  fires57, are not represented in our modeling system. As a consequence of the increased runoff, increased 
erosion and sediment yield can further contribute to the land degradation. The drastic changes in the local 
hydrology from the 2020 fires in the Pantanal underscore how the combination of droughts and human caused 

Figure 3.  Time series (Panel a) of domain averaged standardized anomalies of 12-month precipitation, 
6-month root zone soil moisture (RZSM), 2-month Leaf Area Index (LAI), and 2-month Gross Primary 
Production (GPP). The bottom panel b shows the ecosystem impacts of the 2020 fire events, with spatial maps of 
standardized anomalies in 2-month LAI, and 2-month GPP, averaged during Sep-Nov for 2020. Panel c shows 
impacts of fires on the local hydrology over the Pantanal. The percentage change in evapotranspiration (ET) 
and runoff (Q) during the post-fire time period, relative to a scenario where climatological average vegetation 
conditions are present. The spatial maps in Panels b and c are created using matplotlib (https:// matpl otlib. org/).

Table 2.  Standardized anomalies of LAI and GPP and the percentage of area where the standardized 
anomalies are less than − 1.5 σ, stratified over conservation areas and regions with different pasture density and 
land cover types, averaged across 2003–2019 and for 2020.

LAI (standardized 
anomaly, % of area below 
– 1.5 σ)

GPP(standardized 
anomaly, % of area below 
– 1.5 σ)

2003–2019 2020 2013–2019 2020

Conservation areas 0.02,3.3 − 0.23,35.6 0.02,1.5 − 0.10,28.2

Very low pasture density 0.00,3.5 − 0.24,30.8 0.02,2.3 − 0.10,26.8

Low pasture density − 0.02,2.9 − 0.11,14.4 0.03,2.4 − 0.03,18.1

Medium pasture density − 0.02,1.9 − 0.14,6.3 0.02,1.6 − 0.02,10.1

High pasture density − 0.03,1.3 − 0.11,2.0 0.01,0.1 0.01,4.1

Forests 0.02,5.7 − 0.47,55.3 0.03,1.9 − 0.19,41.4

Wetlands 0.06,3.4 − 0.03,25.8 0.00,1.6 − 0.03,26.5

Grass and Crops − 0.02,3.2 − 0.10,17.0 0.02,2.5 − 0.04,20.3

Savannas − 0.02,2.1 − 0.10,10.4 0.02,2.3 − 0.03,14.8

https://matplotlib.org/
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fires can have long lasting effects on the hydrological cycle and regional climate. These changes in turn form part 
of a positive feedback loop, with drier and warmer conditions, more open cover types, and enhanced fire risk.

Implications. Understanding the complex feedback mechanisms involving fire, climate, vegetation, and 
human activity is crucial, but can only be achieved when there is comprehensive knowledge about these patterns. 
The sensitivity of natural landscapes to fire-driven degradation has been a concern across the southern Amazon 
for years, but here we demonstrate that the same mechanisms may be more universally applicable across the 
tropics. This study provides the first tropical evidence outside rainforests of the synergy between climate, land 
management and fires, and the associated impacts on the ecosystem and hydrology over the largest contiguous 
wetlands in the world. Though similar levels of drought anomalies have been observed in the past decades, the 
temporal extent of the 2020 drought exceeds what has been observed in prior years. Nevertheless, climate alone 
could not explain the unprecedented extent and location of wildfires in the Pantanal, in particularly during 2020, 
as previous observed over the Amazon  rainforest16,31. Here, we demonstrate how cattle density, and associated 
shifts in land use drive regional fire patterns and its sensitivity to climate. Strikingly, natural areas, not human-
dominated landscapes, were most sensitive to fire driven ecosystem degradation. While such conditions have 
been predicted to occur across parts of the southern  Amazon34,35,58–61, here we provide large-scale evidence from 
the observational record. In addition, the biome-scale extent of the fires may further slow ecosystem recovery 
through its impacts on regional hydrology and climate. We observed a 30% decrease in the vegetation productiv-
ity, 9% decrease in ET and a 5% increase in runoff across the burned regions presenting an important feedback 
 mechanism12,62,63. Our findings have global implications, as they demonstrate how tropical land management 
and fires impact the regional water cycle. Combined, these two factors can result in rapid degradation of natural 
areas previously assumed to be protected by their remoteness. Based on these findings, there is an urgent need 
to rethink tropical ecosystem conservation and adaptation strategies, using a framework that acknowledges the 
compounding, cascading and long-term effects of land management and climate. The quantification of such 
long-term impact assessments is left for a future work.

Methods
Modeling and data assimilation setup. A combination of physical modeling and machine learning 
approaches are employed in this study to examine the anomalous nature of the exceptional 2020 drought over 
the Pantanal and to identify their contribution to exacerbating the fires in this region. The Noah-MP land surface 
model (version 4.0.147,64) is forced with the surface meteorology from NASA’s Modern Era Retrospective-Anal-
ysis for Research and Applications, version 2  (MERRA265) and precipitation data from NASA’s Global Precipita-
tion Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM  (IMERG66). MERRA2 data is available 
at hourly intervals and approximately about 50-km spatial resolution whereas IMERG provides precipitation 
data at every 30-minute intervals at, approximately, 10-km spatial resolution. The land surface model (LSM) 
simulations are conducted at 1-km spatial resolution over the domain shown in Fig. 1. The model configuration 
employs land cover data (at 1-km resolution) from the modified International Geosphere Biosphere Program 
(IGBP) Moderate Resolution Imaging Spectroradiometer  (MODIS67) and soil parameters (at 1-km resolution) 
from the International Soil Reference and Information Centre  (ISRIC68), and topography (at 90m resolution) 
from the Multi-Error Removed Improved-Terrain  (MERIT69) digital elevation map. Statistical downscaling 
approaches are used to transform the coarse resolution MERRA2 and IMERG data to 1-km spatial resolution. 
The input meteorological fields of air temperature, humidity, surface pressure, wind, downward shortwave radia-
tion, and downward longwave radiation are downscaled to 1-km by adjusting for terrain differences in elevation, 
slope, and  aspect70. Precipitation fields at 1-km are generated by using the monthly high resolution WorldClim 
 climatology71 to spatially disaggregate IMERG data to 1-km. The initial conditions for the LSM are generated 
through a long integration of the Noah-MP model starting in 2000. The model is cycled from year 2000 to 2020 
and then reinitialized in 2000. All model integrations are conducted using the open source NASA Land Informa-
tion System  (LIS72) software.

Among other features, Noah-MP LSM includes a dynamic phenology  model73 integrated with the Ball-Berry 
photosynthesis based stomatal resistance  model74. In this study, we assimilate the 500m MCD15A2H collection 
6 leaf area index (LAI) retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors 
aboard NASA’s Terra and Aqua satellites, using this feature in Noah-MP. Similar to the studies that describe 
the assimilation of MODIS LAI  data75,76, a 1-dimensional Ensemble Kalman Filter (EnKF) algorithm is used to 
assimilate the LAI retrievals, with a 20 member model ensemble. The ensemble spread is created by applying 
small perturbations to the model states and meteorological  inputs75. During assimilation, the prognostic leaf 
mass variable in the LSM is updated in response to the LAI inputs from the MODIS data. Before assimilation, 
the MCD15A2H data is aggregated to 1-km resolution and only data values flagged as ‘good quality’ considering 
factors such as cloud contamination, algorithm saturation, and detector signal quality are used in assimilation.

To evaluate the impact of the vegetation disturbances from the 2020 Pantanal fires on the local hydrology, an 
additional integration is conducted where the daily climatological vegetation conditions across the 2002–2019 
time period are assimilated into the Noah-MP model (called the LAI-climo DA) during the year 2020. As the 
difference between the LAI-DA and LAI-climo-DA model runs is solely the vegetation changes from the 2020 
fires, these two integrations are used to quantify the influence of the fire driven vegetation changes.

A multi-variable random forest (RF) classifier  model77 focusing on the local scale variables, was developed 
to consider the joint or cross influence of the human management, fuel moisture and fuel load variables to fire 
occurrences over the Pantanal. RF models are non-parametric and are shown to work well with correlated and 
conditional variables and are robust in the presence of outliers and noise in the  data78–80. RF also generates 
measures of feature importance, a score to indicate the usefulness of the input variable at predicting the target. 
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Three different approaches are used to compute the feature importances generated by the RF model. The native 
approach with RF models computes the feature importances based on how much each feature decreases the 
variances of the optimality criteria used in the model. Similarly, the permutation feature importance method 
computes the feature importances by randomly reshuffling while preserving the distribution of each predictor 
to assess its influence on the model performance. The third approach, drop-column importance, excludes each 
feature one at a time and examines how it impacts the predictive accuracy.

The characterization of the extremes in hydrology and ecosystem variables is captured based on the outputs 
from the model integrations assimilating remotely sensed LAI. Deficits in precipitation and root zone soil mois-
ture from the model integrations are assumed to represent the meteorological and agricultural  droughts48,81. 
Specifically, the 12-month standard anomalies in precipitation and 6-month standardized anomalies in the top 
1m root zone soil moisture across 2003–2020 are used as analogs of drought. This 12 month precipitation lag 
window is chosen based on the convention used at the NOAA National Centers for Environmental Information 
to characterize long-term and persistent droughts. A six-month and two-month window is chosen for captur-
ing agricultural droughts based on the assumed temporal limits soil moisture and vegetation  memory82–84, 
respectively.

Ancillary datasets. A number of ancillary datasets are used in the analysis and evaluation of the results 
presented in the article. A map representing the variation in the potential density of cattle head per ranch (certi-
fied in the Cadastro Ambiental Rural in the Brazilian Pantanal)37 is used as an index of the level of pasture in this 
area. This map is estimated by the Mapbiomas  project85 (https:// mapbi omas. org/), which is a multi-institutional 
initiative to map the land use dynamics in Brazil and other tropical countries based on information from remote 
sensing and local information. There are large ranches in this region with 62.3% or more than 5000  ha37. As 
shown in Fig. 1, we define four categories of pasture with cattle heads per hectare ranging from 0 to 0.03, 0.03 to 
0.1, 0.1 to 0.4, and > 0.4 for very low, low, medium, and high pasture density areas, respectively.

The impact of assimilating LAI data on various water and carbon fluxes and states is evaluated by comparing 
the model simulations with a number of remote sensing-based global reference data products (Extended Analysis 
1). Soil moisture states from the model are evaluated by comparing against the Level 2 retrievals from NASA’s Soil 
Moisture Active Passive  (SMAP86) mission. In addition to soil moisture, SMAP also provides estimates of vegeta-
tion optical depth (VOD), an analog of the above ground canopy  biomass87, derived as part of the radiometric 
soil moisture retrieval. Here we use both VOD and soil moisture from the SMAP SPL2SMP_E product, which 
is available at 9-km spatial resolution through Backus-Gilbert interpolation applied to oversampled antenna 
 measurements88. To evaluate the evapotranspiration (ET) estimates, MODIS thermal infrared (TIR) data based 
ET from the Atmosphere-Land Exchange Inverse  (ALEXI89,90) model is used. The 5-km resolution gridded 
ALEXI ET estimates are used in this study. The subsurface moisture simulations are evaluated by comparing the 
monthly terrestrial water storage anomalies against those from NASA’s Gravity Recovery and Climate Experi-
ment (GRACE) and GRACE-Follow On (GRACE-FO) satellites. Specifically, we use the Release 06  GRACE91 
Level-2 Mass Concentration blocks (mascons) data products available from the Center for Space Research (CSR) 
at University of Texas. This product is available at 0.25 deg spatial resolution at monthly intervals. The impact of 
LAI DA on carbon fluxes is evaluated by comparing the simulated Gross Primary Production (GPP), which rep-
resents the total carbon fixation by plants through photosynthesis, against two remote sensing-based estimates: 
(1) remote sensing retrievals of Solar Induced Fluorescence (SIF) from the Global Ozone Monitoring Experi-
ment-2 (GOME-2) aboard the MetOp-A  satellite92,93 and (2) MODIS reflectance-based FLUXSAT  product94. SIF 
represents the amount of solar radiation absorbed by chlorophyll and reemitted as fluorescence and is considered 
as a functional analog of GPP. FLUXSAT is developed through a data driven modeling approach by calibrating 
the MODIS reflectance information to ground measurements from the FLUXNET network. For uniformity of 
comparison, all reference data products are interpolated to the 1-km modeling grid in these evaluations.
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