

ORCA - Online Research @ Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:https://orca.cardiff.ac.uk/id/eprint/148330/

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Shao, Longyi, Li, Yaowei, Jones, Tim, Santosh, M., Liu, Pengju, Zhang, Mengyuan, Xu, Liang, Li, Weijun, Lu, Jing, Yang, Cheng-Xue, Zhang, Daizhou, Feng, Xiaolei and BéruBé, Kelly 2022. Airborne microplastics: A review of current perspectives and environmental implications. Journal of Cleaner Production 347, 131048. 10.1016/j.jclepro.2022.131048

Publishers page: http://dx.doi.org/10.1016/j.jclepro.2022.131048

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

Airborne microplastics: A review of current perspectives and 2 environmental implications 3 4 Longyi Shao ^{a,b}*, Yaowei Li ^{a,b,c*}, Tim Jones ^d, M. Santosh ^{e,f}, Pengju Liu ^{a,b}, 5 Mengyuan Zhang ^{a,b}, Liang Xu ^g, Weijun Li ^g, Jing Lu ^{a,b}, Cheng-Xue Yang ^e, 6 Daizhou Zhang^h, Xiaolei Feng^{a,b}, Kelly BéruBéⁱ 7 8 9 ^a State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), Beijing 100083, China 10 ^b College of Geoscience and Surveying Engineering, China University of Mining and 11 Technology (Beijing), Beijing 100083, China 12 13 ^c Hebei Center for Ecological and Environmental Geology Research, Hebei GEO University, Shijiazhuang 050031, China 14 ^d School of Earth and Environmental Sciences, Cardiff University, Park Place, Cardiff, 15 CF10, 3YE, UK 16 17 ^e School of Earth Sciences and Resources, China University of Geosciences Beijing, Beijing 100083, P.R. China 18 ^fDepartment of Earth Science, University of Adelaide, Adelaide SA 5005, Australia 19 ^g Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, 20 Hangzhou, 310027, China. 21 ^h Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, 22 Kumamoto 862-8502, Japan 23 ⁱ School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, Wales, UK 24 *Corresponding authors: ShaoL@cumtb.edu.cn; liyw0218@163.com 25 26 27

28 Highlights

- 29
- Atmospheric pollution by airborne microplastics is of increasing concern.
- Research methods require meaningful comparisons between different studies.
- Airborne microplastics can lead to the 'fiber paradigm' and bioreactivity.
- The atmosphere is one of the main pathways for microplastic transport.
- There is a need for a comprehensive inventory of airborne microplastics.
- 35
- 36
- 37

38 Graphical abstract

39 40

41 Abstract

Microplastics (MPs), as an entirely anthropogenic type of pollution, are considered 42 to be stratigraphic markers of the Anthropocene Epoch, and have become of increasing 43 public concern over the past decade. Recent studies have revealed that the atmosphere 44 is an efficient medium to disseminate MPs from their sources to remote mountains and 45 marine areas. However, current research on atmospheric MPs (i.e. airborne MPs) is 46 generally less highlighted than MP water and soil pollution studies due to the lack of 47 standard methods for the identification and quantification of atmospheric MPs. This 48 paper reviews the published literature on airborne MPs, gives an overview of the 49 advantages and disadvantages of current airborne MPs collection techniques, extraction 50 methods and identification (i.e., 'passive' and 'active' sampling, density separation and 51 visual identification), and lays a foundation for future studies. The physical and 52 chemical characteristics, classification, spatial and temporal scale distributions, sources, 53 transport, and environmental impacts of airborne MPs are summarized. There are 54 55 substantial research gaps in the quantification of airborne MPs and the exploration of toxicity mechanisms of inhalable MPs. The establishment of accredited methods is an 56 urgent challenge for a better understanding on airborne MPs and their environmental 57 and health effects. As one of the constituents in many aerosols, airborne MPs should be 58 59 treated as a recognized pollutant for long-term monitoring, and the factors that specifically affect airborne MPs could be better addressed by means of the 60 characterization of individual MPs. In the future, the effects and interaction of MPs in 61 62 the atmosphere, lithosphere and hydrosphere are also of critical importance.

Keywords: Airborne microplastics, analytical methods, Anthropocene, human health,
physicochemical characteristics, source and transport.

65 1. Introduction

66

The global concerns about environmental pollution caused by microplastics (MPs)

has significantly increased in both the popular media and scientific community over the 67 last decade (Beaurepaire et al., 2021; Ramkumar et al., 2021). The term "plastic" 68 69 includes materials composed of various elements, such as, carbon, hydrogen, oxygen, nitrogen, chlorine, and sulphur (Li et al., 2020). Plastics are made from natural materials 70 such as cellulose, coal, natural gas, salt and crude oil through a polymerization or 71 polycondensation process (Brydson, 1999). The distribution of Microplastics (MP) in 72 the marine environment was first described in 2004 (Thompson et al., 2004), and were 73 74 defined at the first international research workshop on the occurrence, effects, and fate of MP marine debris in 2008 (Arthur et al. 2009). MPs are plastic particles with a 75 particle size of < 5mm (Andrady, 2011), and this definition is recognized by the 76 American National Oceanic and Atmospheric Administration. MPs in different 77 environments can be broadly classified into two categories. Primary MPs are released 78 79 in their original plastic state from products containing MPs such as personal products (e.g., clothing, toothpaste, cosmetics, etc.) usually in the form of microfibers, beads and 80 pellets (Conkle et al., 2018). Secondary MPs result from large scale plastic 81 disintegration or degradation, such as natural weathering, mechanical decomposition, 82 oxidation, and degradation of manufactured plastic products during use and recycling 83 (Rezania et al., 2018). 84

85 MPs first gained global attention due to their presence in the oceans (Arthur et al. 2009). Subsequently, MPs have been found in soils, human populated areas and 86 numerous places around the globe, and of particular concern in the Antarctic and Arctic 87 regions (Bergmann et al., 2019; Petersen and Hubbart, 2021). Since MPs are found in 88 the polar regions and high Himalayas, some studies suggest that atmospheric transport 89 must be an important factor in the spread of MPs (Sridharan et al., 2021). Carbon in 90 plastic particles in the atmospheric, marine and soil environments can directly affect 91 natural carbon sequestration and climate change (Shen et al., 2020). Most of the MPs 92 93 found in the atmosphere are in the micron or nano-size range and are difficult or 94 impossible to observe with the naked eye (Gasperi et al., 2018). However, they still have a large pollution impact through transport and atmospheric deposition on all types 95 of environments and ecologies, as well as on human health (Fig. 1) (Huang et al., 2021; 96

97 Ramkumar et al., 2021). Previous research results have indicated that MPs have entered different terrestrial environments including the hydrosphere and atmosphere on a global 98 99 scale resulting in soil, water, and atmospheric pollution (Petersen and Hubbart, 2021; 100 Wang et al., 2021b). MPs are directly or indirectly ingested and introduced into the food chain by microorganisms and macro-organisms (Bi et al., 2020; Foekema et al., 101 102 2013; Khalid et al., 2020; Syafei et al., 2019). As a result of MPs passing through the food chain, this transportation pathway can result in a very significant proportion of the 103 104 biosphere becoming polluted (Toussaint et al., 2019). This is currently of special concern in the global oceans. Significant quantities of MPs can enter the bodies of 105 106 marine organisms via their respiratory systems, resulting in their death (Gong and Xie, 107 2020). Recently, MPs have been found in the Antarctic and Arctic regions (Bergmann et al., 2019; Bessa et al., 2019), indicating that atmospheric transport is an important 108 109 mechanism for the global transport of MPs (Brahney et al., 2021; Can-Güven, 2021; Qian et al., 2021; Szewc et al., 2021). Between 2015 and 2060, global plastic waste is 110 111 expected to triple to 265 million tons annually, which will increase the volume of MPs released into the environment (Lebreton and Andrady, 2019). Some studies have 112 defined the global pollution from MPs as 'plastisphere' (Ramkumar et al., 2021; Zettler 113 et al., 2013). This happens because larger plastic fragments or waste are degraded into 114 115 MPs (1 mm - 5 mm) or smaller nano-plastics (<1000 nm) (Jahnke et al., 2017). MPs have resilient physical and chemical characteristics, and are not easy to degrade 116 physically or chemically, albeit they can remain buoyant in soil and water for long 117 periods of time (Gong and Xie, 2020). As a result, MPs, which have been dispersed 118 around the globe, have considerable ability to resist degradation. This feature suggests 119 that plastic is an ideal marker of the Anthropocene in the future deposition record 120 (Corcoran et al., 2018; Ramkumar et al., 2021). 121

Numerous studies have investigated MP pollution and potential toxicity in the oceans and soil, although there are only a few systematic studies on MPs in the atmosphere. MPs can be suspended in the air and transported over long distances (i.e., 95 kilometers) (Allen et al., 2019). Eventually they will contaminate terrestrial surfaces and the hydrosphere through dry and wet deposition (Li et al., 2020). MPs release their

own chemical components such as plasticizers, flame retardants, antimicrobial agents, 127 bisphenol A (BPA) (Khalid et al., 2020). Some chemicals, such as polycyclic aromatic 128 hydrocarbons (PAHs), organochlorine pesticides (OCPs), polychlorinated biphenyls 129 (PCBs), and dichlorodiphenyltrichloro-ethane (DDTs), are adsorbed onto the surface of 130 MPs (Akhbarizadeh et al., 2021; Jiménez-Skrzypek et al., 2021). In addition, they can 131 release heavy metals that have been adsorbed during the degradation process (Santana-132 Viera et al., 2021; Wright and Kelly, 2017). Some MPs have hydrophobicity and large 133 specific surface areas to absorb more harmful substances, which will affect their 134 polluting potential (Akhbarizadeh et al., 2021). Concerns about the pollution 135 characteristics of atmospheric MPs and their potential harmful effects on human health 136 (e.g., oxidative stress, inflammatory lesions, metabolic disturbances, neurotoxicity, and 137 increased cancer risk) demands that more vigorous scientific research should be 138 139 undertaken (Wang et al., 2020b). The transport and toxicity of MPs in the atmosphere are important aspects that need further study (Huang et al., 2021). 140

141 In comprehensive databases such as ISI Web of Science and Science Direct, we searched keywords like "microplastics", "atmosphere" and "airborne" as valid data 142 records. The 145 papers published between 2015 and 2021 are summarized in this 143 review (Table S1). Although the initial retrieval dates were set for 2000-2021, the first 144 145 finding in the literature on atmospheric MPs was in 2015 (Dris et al., 2015). As shown in Fig. S1, there has been a gradual increase in the number of studies on MPs in the 146 atmospheric environment from 2015 to 2019, and then a rapid increase since 2020. The 147 study of atmospheric MPs pollution has become the focus since 2020. In recent years, 148 some review articles on atmospheric MPs have been published. 149

A small number of reviews have focused mostly on techniques for the collection and identification of atmospheric MPs (Auta et al., 2017; Crawford and Quinn, 2017). More recently, researchers have expanded the scope of MPs research to include toxicology and health effects (Bejgarn et al., 2015; Kutralam-Muniasamy et al., 2021; Wright et al., 2017). In addition, MPs transport and interactions in the atmospheric environment are discussed (Huang et al., 2021; Petersen and Hubbart, 2021). Currently, research on the fate and role of MPs in the atmosphere and terrestrial environments is now a significant topic (Wang et al., 2021b). However, most of these reviews or studies focus on a single research aspect, e.g., either the morphological characteristics or the chemical types, or a single process or sampling methods, and therefore they do not provide a comprehensive and systematic overview on airborne MPs. There is an urgent need for integration and critical analysis of various research units, and for new research directions or perspectives. This review provides readers with a comprehensive and systematic understanding and overview on airborne MPs.

In this paper, we present a detailed assessment of the global literature on MPs in the 164 atmospheric environment, and evaluate the collection, extraction and identification 165 methods (i.e., 'passive' and 'active' sampling, density separation and visual 166 167 identification) currently used to investigate atmospheric MPs. The physical and chemical characteristics of atmospheric MPs, as well as their possible sources, and the 168 169 spatial and temporal scale distributions, are summarized. We address the impact of MPs on the environment, particularly the impact of airborne MPs when deposited in soil and 170 the hydrosphere. Our study provides a reference for research on the prevention and 171 172 control of MP pollution and has identified further research priorities.

173 2. Sampling and analysis of airborne microplastics

174 2.1 Microplastics sampling

175 2.1.1 Passive sampling

The different sampling methods can collect different types of MPs in the air, due to factors such as particle morphology and density, and these diverse methods can also affect empirical values such as MPs concentration levels (Table 1). The currently used MPs sampling methods include 'passive' and 'active' sampling (Fig. 2). Passive sampling methods (Fig. 2a) can be ideal sampling methods for atmospheric MPs deposition due to simplicity, ease of use, low cost, and use of standard laboratory equipment. In addition, passive sampling methods do not require electricity or other

power supplies, and are suitable for outdoor or long-term sampling, lasting for weeks 183 or months (Chen et al., 2020). Passive sampling can collect a large particle size range 184 of MPs. Therefore, passive sampling methods are commonly used when it is necessary 185 to know detailed information of the whole MPs deposition range over a certain period 186 of time. However, adverse weather conditions may significantly affect the sampling 187 quality and outputs. Therefore, it is necessary to systematically record the weather 188 conditions for any subsequent assessment of weather impacts on MP deposition (Dris 189 190 et al., 2016). The most common passive sampling method is to collect dry or wet atmospheric deposition in a glass container through a funnel. The funnel is made of 191 192 stainless steel or glass which has a smooth surface (Akhbarizadeh et al., 2021; Dris et 193 al., 2016; Klein and Fischer, 2019). The atmospheric deposition will either slide down the slope of the funnel in a dry state into the bottle or will be washed into the bottle by 194 195 precipitation. If collecting dry samples, the equipment needs to be physically covered to protect it from precipitation (e.g., rain or snow). This 'dry' deposition sampling 196 method is widely used to collect and study outdoor MPs; however, it has drawbacks 197 that include contamination by vegetation or insects and is vulnerable to vandalism. 198

Wet deposition collection methods can be problematic for water-soluble pollution 199 (i.e., whole soluble particles or water-soluble components within non-soluble particles). 200 201 Roblin et al. (2020) investigated MPs deposition and its influencing factors by vacuum filtration of wet deposition and rainfall samples onto glass fiber filters. Another passive 202 sampling method is to collect a certain area of dustfall or collect a certain weight of 203 dustfall; this is applicable to both indoor and outdoor dust collection. This method can 204 use a vacuum cleaner or brush as a collection tool, then transferring the dust into sample 205 bags for further analysis. Dris et al. (2017) collected dust samples from apartments in 206 Paris, France, using a vacuum cleaner. Abbasi et al. (2017) studied MPs deposition in 207 the dust by collecting road dust with metal pans and brushes. A clear advantage of these 208 209 methods is the possibility of obtaining large masses for chemical analysis, where the 210 reproducibility of the analyses is improved via bulk sampling. A good example of this is the study of platinum group metals in road dust, with the samples analyzed by ICP-211 MS (Mitra et al., 2021). 212

Another passive sampling method is to collect atmospheric particles in a petri dish 213 with adhesive or a glass slide with adhesive using a sampler with a wind-sheltered and 214 215 low turbulence air volume; typically, a simply constructed container. Sommer et al. (2018) and Tian et al. (2017) used this passive sampling method to investigate tire wear 216 particles, a major source of MPs in the environment. Compared with other methods, 217 218 passive sampling amasses fewer particles and is generally utilized for measuring the morphology and volume of individual particles as well as the sedimentation rate. 219 220 Passive samplers can be employed for continuous sampling of atmospheric deposition, where these dust particles, including MPs, fall on the surface due to gravity and weather 221 conditions (i.e., wind or rain). MPs with smaller particle size and lighter weights can 222 223 be suspended in the air for a long time (e.g., days to weeks), and a recognized outcome of this is passive sampling tending to preferentially collect the coarser fractions of 224 225 airborne particles. Another important disadvantage of passive sampling using an adhesive tape substrate is that the adhesive chemically contaminates the sample, and 226 obscures the particles embedded in the adhesive if they are needed to be viewed under 227 228 high magnification, such as electron microscopy. Moreover, the volatile nature of the 229 adhesive can be problematic in the electron microscopy chamber, whereby the electron gun, specifically the 'filament', may be obscured by the volatiles, reducing the imaging 230 231 quality.

232 2.1.2 Active sampling

Active sampling methods are based on pumping sampler systems. These methods 233 involve pumping a controlled amount of air over a certain period of time. As the air 234 passes through the sampler (Fig. 2b), the particulate matter is collected on a filter or 235 substrate. Filters allow the air to pass through them while collecting the particles on the 236 surface or in the body of the filter. Substrates are impacted by the airflow which bounces 237 off leaving the particles behind. Some systems effectively work as hybrid 238 filters/substrates such as Tapered Element Oscillating Microbalances (TEOMs), which 239 are widely used Worldwide in air pollution monitoring networks (Jones et al., 2006). 240

Therefore, the sampling time and volume, and mass of particulate matter collected with 241 242 this sampling method are known; as a result, the quantity or mass concentration of particulate matter in each volume of air can be calculated. This method has been 243 routinely used for the study of PM₁₀, PM_{2.5} and PM₁ in the air, but now has also been 244 used for the study of MPs in the air. An advantage of active sampling methods is that 245 they can rapidly and accurately collect atmospheric MPs from outdoor or indoor air 246 247 over a range of different locations. An active pumped sampler system typically consists of a pumping or vacuum unit, multi-stage particulate matter size-sorter (TSP-PM₁₀-248 PM_{2.5}-PM₁) and filter or substrate. Air pumping rates can usually be adjusted, and the 249 particulate matter size ranges can be selected, and appropriate filter or substrate 250 251 characteristics and material can be chosen. Typical filter pore sizes are 2 µm, 1.6 µm, 0.8 µm, and collection materials could include glass or quartz fiber, cellulose, Teflon 252 253 and polycarbonate, to meet the requirements of different studies (Chen et al., 2020). For example, a study involving electron microscopy would choose to avoid fibrous media 254 255 to optimize imaging, whereas an analytical study might prefer a fibrous medium with more efficient collecting capacity. The sampling time, sampling volume and efficiency 256 of active collection methods can be controlled. Thus, the number or mass concentration 257 of particulate matter per volume of air can be calculated. This method has also been 258 259 routinely used for the study of individual particle size, morphology, type, color, etc. It is noteworthy that pollution by MPs in the atmosphere is exclusively related to human 260 activity, population density, and levels and sophistication of industrialization (Can-261 Güven, 2020). Dris et al. (2017) studying MPs in indoor and outdoor air showed that 262 the MPs concentration in outdoor air was significantly less than that seen indoors. Li et 263 al. (2020) recorded that the concentration of microfibers at 1.5 m above the land surface 264 is higher than that at 18 m above the surface, which has important implications as the 265 lower 1.5 m level corresponds to a typical human breathing height. It is necessary to 266 267 choose passive or active collection methods according to the research objectives, and 268 to consider the sampling sites and periods, and the effect of weather conditions.

It should be noted that each sampling method has its own limitations. Especially the collection process can be influenced by different background conditions and natural environments, such as meteorology, the precision of the collection instruments and human activities. There are currently no standardized methods for sampling MPs, which means that results cannot be effectively compared with each other. Therefore, it is imperative that standardized methods are developed for future research on MPs.

275

2.2 Sample preparation

The particles, collected using both passive and active sampling methods, will not consist of only MPs, but also other natural and anthropogenic particles. With the complex and variable compositions, the bulk atmospheric particles need to be processed to separate and concentrate MPs. Currently, there is no recognized standard for sample preparation. However, previous studies have suggested that the best methods are density separation, and chemical digestion that can be used in the removal of non-MP organic matter.

283 2.2.1 Density separation

Density separation to isolate the MPs from the non-MPs in the bulk sample is a 284 critical and challenging step (Table 2). Studies have used sodium chloride (NaCl) (Kunz 285 et al., 2016), calcium chloride (CaCl₂) (Stolte et al., 2015), sodium iodide (NaI) (Abbasi 286 287 et al., 2017) and zinc chloride (ZnCl₂) (Liu et al., 2019b). The different densities of the separation solutions have a direct effect on the flotation of different MPs and the 288 densities of the different plastics. Density separation using NaCl can be undertaken on 289 the less dense MPs by flotation; this depends on the molarity of the solution, but as a 290 guideline seawater typically ranges between 1.02 and 1.03 g/cm³, with the denser MPs 291 sinking to the base of the column. ZnCl₂ solution with a density of 1.6-1.7 g/cm³ or 292 higher has been widely used for MPs density separation (Imhof et al., 2012; Uddin et 293 294 al., 2020). Table 2 shows the densities of a range of plastics, and the suggested solutions 295 used for density separation. During the separation process, the solution is kept moving at a constant speed, avoiding turbulence, to prevent physical damage to the MPs. In 296 addition, to improve extraction efficiency, it is recommended that repeated extractions 297

are undertaken. After separation, the particles are washed and dried, and are thenavailable for analysis.

300 2.2.2 Digestion and removal of non-MP organic matter

301 Removing non-MP organic matter by digestion in oxidizing or reducing agents is an important first step, and this includes removing any organic matter adsorbed on the 302 surface of MPs. Hydrogen peroxide (H₂O₂) (Abbasi et al., 2019), Sodium hypochlorite 303 (NaClO) (Klein and Fischer, 2019), Hydrogen nitrate (HNO₃) (Van et al., 2015), 304 305 Hydrogen chloride (HCl) (Desforges et al., 2015), Potassium hydroxide (KOH) (Prata et al., 2020; Zhang et al., 2017; Zhang et al., 2019), Sodium hydroxide (NaOH) and 306 enzymes (Cole et al., 2014) have been used to remove non-plastic organics from the 307 bulk sample (Table S2). H₂O₂ solution or NaClO have typically been used to remove 308 309 organic matter from MPs in atmospheric particulate matter samples. In the work of Allen et al., (2019), the non-MP organic matter in the sample was removed by 30% 310 H₂O₂ solution. Other studies have used NaClO to remove non-MP organic matter (Dris 311 et al., 2016; Klein and Fischer, 2019). Notably, some studies suggest that the use of 30% 312 313 H₂O₂ has affected the MPs as well, with changes such as decolorization and making the MPs harder to positively identify. Reducing the concentration of H_2O_2 (20 - 25%) could 314 improve this situation, however further study is required on the removal efficiencies of 315 various digesting agents and their impact on the MPs themselves. Some researchers 316 have suggested that Fenton chemistry might be more efficient at removing unwanted 317 organic matter than H₂O₂; a suggestion that requires further research and verification 318 (Chen et al., 2020). 319

The preparation of MPs samples, including density separation and removal of organic matter, has some significant effects on the analysis and identification of MPs. On the one hand the composition of the reagents or filters may seriously interfere with the identification of plastics, e.g., H_2O_2 , a fluorescent indicator and colorant, on the other hand the quantity or mass concentration of MPs may be underestimated (Chen et al., 2020; Stanton et al., 2019). In addition, other substances, such as biofilms in the

solution, can be mixed in the preparation process, leading to incorrect estimates of 326 compositions of MPs (Santos Galva et al., 2022). Therefore, MPs samples should be 327 pre-treated depending on the collection environment. For example, the samples 328 obtained from dry and wet deposition and dustfall should follow the steps of density 329 separation, digestion, sieving and then filtration to ensure the validity of the sample 330 (Zhou et al., 2017). Without pre-treatment, non-MP components in the samples can be 331 misidentified as MPs during analysis by some analytical techniques that are sensitive 332 to carbon, silica, biofilm and other organic components, resulting in misidentification 333 (Santos Galva et al., 2022)." 334

335 **2.3 Instrumental analysis of microplastics**

Among the various methods for the analysis of atmospheric MPs, appropriate ones 336 can be selected for different research purposes (Fig. 3). In many studies included in this 337 review, the analyses of MPs mainly focused on morphological and chemical 338 composition analysis (Table 3). To determine the MPs morphology, the most used 339 method is microscopy. Stereoscopic microscopy has been employed in many studies to 340 identify MPs (Dris et al., 2017; Liu et al., 2019a). The shape, size, color and opacity of 341 MPs can be identified by stereoscopic microscopy (Al-Salem et al., 2020). Furthermore, 342 image analysis automated processing software can radically increase the numbers of 343 particles measured per analysis session. However, stereoscopic microscopy cannot 344 identify MPs with smaller particle sizes ($< 500 \mu m$), which are within the accepted 345 detection limit of optical instruments (Silva et al., 2018). To detect and characterize 346 MPs with smaller particle sizes (< 500 µm), some researchers have used scanning 347 electron microscopy (SEM) (Abbasi et al., 2019; Li et al., 2020). SEM can provide a 348 high-resolution image of the particle by emitting a high-intensity electron beam onto 349 the surface of the sample. As a result, the surface of MPs can be clearly observed, and 350 the microstructure can be determined. A problem that can occur with this analysis is 351 that some plastic materials are not stable under the electron beam and will visibly move 352 and distort when under that beam, which makes imaging or elemental analysis 353

impossible; however, this characteristic can be used to identify the least robust plastic 354 particles (Abbasi et al., 2019; Gniadek and Dąbrowska, 2019). Li et al., (2020) have 355 used the combined application of SEM and Energy-dispersive X-ray spectroscopy 356 (SEM-EDX) to analyze microfibers in the atmosphere. It is worth noting that SEM-357 EDX, as a powerful means of individual particle analysis (Li et al., 2016; Shao et al., 358 2021, 2022), can provide detailed quantitative information of the elements that make 359 up the MPs. It can also observe the surface morphology of MPs, such as grooves, pits, 360 cracks, and flakes (Fries et al., 2013; Wang et al., 2021c). Using these individual 361 particle analysis techniques, the pattern of mechanical degradation of microfibers can 362 be determined based on their surface characteristics (Cai et al., 2017; Chen et al., 2020). 363 364 In addition, SEM-EDX can help to distinguish between non-MP natural materials and MPs, thus establishing the ratios of these two particle types in the bulk samples. 365 366 Therefore, although time-consuming, optical microscopy and scanning electron microscopy can often effectively detect atmospheric MPs, especially for the 367 368 characterization of individual particles. Visual identification and SEM-EDX have been widely used to analyze the physical characteristics and semi-quantitative elemental 369 composition of MPs. 370

With advancements in the research in this field, often a more detailed understanding 371 of the chemical composition of MPs becomes more important. Studies have therefore 372 combined an initial microscopy identification with Fourier Transform Infrared 373 Spectroscopy (FTIR), Raman Spectroscopy, High Performance Liquid 374 Chromatography-Tandem Mass Spectrometry (HPLC-MS-MS), Pyrolysis-Gas 375 Chromatography-Mass Spectrometry (PYR-GC-MS), Thermal Desorption (TD), 376 Thermogravimetric Analysis (TGA) and hyperspectral cameras being widely used 377 techniques (Chen et al., 2020; Kitahashi et al., 2021; Maghsodian et al., 2021). 378

 FTIR is one of the most common techniques used for the chemical characterization of MPs. FTIR provides unique infrared spectra for specific chemical bonds. Infrared spectroscopy can not only accurately identify the polymer types of MPs, but also understand the physical and chemical weathering of MPs by analyzing their oxidation state (Corcoran et al., 2009). Micro-FTIR can detect MP particles (> 10 µm) (Suaria et al., 2020); Focal-plane-array Fourier transform infrared (FPA-FTIR) can detect MP particles (> 20 μ m) and has a high lateral separation rate (Sven and Knepper, 2018); Attenuated total reflectance Fourier transform infrared (ATR-FTIR) was more suitable for identifying irregular MP particles (> 500 μ m) (Vianello et al., 2019). Although FTIR can provide accurate MPs identification, this technology is not suited to high throughput (HTP) MPs analysis. It is also an expensive method, and is economically prohibitive to apply HTP analysis to regular airborne MPs monitoring programs.

Raman spectroscopy is another technique commonly used to identify MPs. A 391 monochrome laser beam is projected onto the target sample, and because different 392 chemistries scatter, reflect and absorb the beam to produce different backscattered light 393 394 frequencies, it can identify different plastics in MPs (Crawford and Quinn, 2017; Li et al., 2017). In particular, the combination of Raman spectroscopy and microscopy (i.e., 395 396 micro-Raman) has made it possible to chemically identify MPs with diameters less than 1 µm (Lder and Gerdts, 2015). Therefore, this technique is widely used in the 397 identification and classification of MPs (Kumar et al., 2020; Maghsodian et al., 2021). 398 Compared with FTIR, Raman spectroscopy has a wider spectral range, higher spatial 399 400 resolution, narrower spectral bonds and lower sensitivity to water interference (Araujo et al., 2018). Raman spectroscopy not only enables the non-destructive chemical 401 402 characterization of MPs, but it also has a high reliability with a small number of samples (Araujo et al., 2018; Shim et al., 2016). However, Raman spectroscopy is susceptible 403 to interference from sample surface attachments or additives contained in the sample 404 itself, which can reduce the determination of the particle plastic type but yields an 405 improved overview of the actual particle chemistry. It is still a powerful and high-406 resolution analysis technology. 407

HPLC-MS-MS can be used to detect polyethylene terephthalate (PET) and
polycarbonate (PC) based MPs in atmospheric dust (Wang et al., 2017b). The MPs
containing PET and PC are depolymerized in pentanol or butanol, then a determination
is made of the concentrations of the depolymerized building block compounds (Zhang
et al., 2019). Pyrolysis-gas chromatography-mass spectrometry (PYR-GC-MS),
Thermal desorption–gas chromatography–mass spectrometry (TD-GC-MS) and

Thermal extraction desorption-gas chromatography-mass spectrometry (TED-GC-MS) 414 with Thermogravimetric analysis (TGA) can be used to identify MPs particles by 415 416 thermal degradation (Chen et al., 2020; Kaeppler et al., 2018). The different types of MPs were determined by the chemical composition of the thermal degradation products 417 (Kaeppler et al., 2018). The advantages of these techniques are that they are not affected 418 by the physical characteristics of the MPs (e.g., shape, color, size), or by the additives 419 in the MPs (Kaeppler et al., 2018). However, these methods can only analyze a small 420 421 number of samples, only one sample each time, which limits their wider use (Duemichen et al., 2017). However, more recently, a hyperspectral camera enables 422 high-speed characterization of MPs. This analytical method can quickly and efficiently 423 424 measure hyperspectral data (chemical composition) of MPs and build classification models capable of classifying MPs types regardless of particle size or filtration 425 426 conditions (wet and dry) (Kitahashi et al., 2021).

427 **3.** Physicochemical characteristics of airborne microplastics

428 **3.1** Types and individual particle characteristics of microplastics

The morphology, size, color, thickness, and surface mechanical wear of individual MP particles collected by passive or active methods can be characterized by visual observation (Chen et al., 2020). Meanwhile, these physical characteristics constitute the basis for the classification of MPs.

The identification and classification of MPs, specifically microfibers (fibrous 433 MPs), can be based on their length into five categories: very long (1 000 μ m \leq L), long 434 $(500 \ \mu m \le L < 1 \ mm)$, middle (250 $\ \mu m \le L < 500 \ \mu m)$, short (100 $\ \mu m \le L < 250 \ \mu m)$), 435 and very short ($L \le 100 \mu m$) (Dehghani et al., 2017; Abbasi et al., 2017) (Table 4). 436 Fibers are normally defined as having an aspect ratio equal to or greater than 3:1. It is 437 worth noting that in atmospheric particles, fibrous particles have been subdivided into 438 two groups; organic fiber particles and inorganic particles (Li et al., 2020). Fibrous MPs 439 belong to the organic fiber particles which differ significantly from inorganic fiber 440

particles (e.g., asbestos fibers and man-made mineral fibers) in terms of their 441 microscopic morphology and chemical composition. SEM-EDX can be used to identify 442 443 the main elemental composition of fiber particles. The main elements of organic fiber particles are C and O as well as small or trace amounts of other elements (Li et al., 444 2020), while the inorganic fiber particles are characterized by an elemental composition 445 of S, Ca, Al, Si, Fe, Ca, Mg, Ti, Mg and Na (Li et al., 2020). In addition, Fourier 446 Transform Infrared Spectroscopy (FTIR) and Raman Spectroscopy can be used to 447 448 efficiently identify organic particles (Maghsodian et al., 2021; Suaria et al., 2020).

The length and quantity of fibrous microplastics varies from different countries or 449 regions. For example, the MPs in the atmosphere of Paris, France, were mainly fibrous, 450 451 ranging in length from 200 - 600 µm (Dris et al., 2016). MPs in the Pyrenees Mountains were predominantly smaller than 300 µm in length, and 60% of MPs in the atmosphere 452 453 of Hamburg, German were less than 63 µm in length (Klein and Fischer, 2019). Eighty seven percent of MPs in the atmosphere of Shanghai in China, were found to be 23-454 1000 µm in length (Liu et al., 2019b). Most MPs in the atmosphere of London, UK, 455 were 400 - 500 µm in length (Wright et al., 2020). Some of the recent studies showed 456 that MPs collected by the active collection method can also be fibrous with a length of 457 5 - 200 µm (Li et al., 2020)(Table 5). It is worth noting that MPs may act as 458 459 condensation nuclei for rain or snow. Among the MPs detected in snowfall samples, 98% were less than 100 µm in length, and 80% were less than 25 µm in length (Bergmann 460 et al., 2019). 461

Another scheme of MPs classification places them into five groups according to 462 their shape; fibers, sphere/pellets, fragments, film and foam (Dehghani et al., 2017; Cai 463 et al., 2017) (Table 4). Studies have shown that most MPs in the air are fibrous, followed 464 by fragments and then pellets. In Paris, France, more than 90% of MPs in the air were 465 fibers, and 0 - 10% were fragments (Dris et al., 2015). In Shanghai, China, fibers (67%), 466 467 fragments (30%), granules (i.e., sphere/pellets) (3%) were found in the atmosphere (Liu 468 et al., 2019a). In addition, films and foams MPs have been detected in atmospheric samples (Cai et al., 2017) (Table 5). It is probable that there are collection and analysis 469 bias in some datasets due to the difficulty of researching the smaller MPs ($< 50 \mu m$); 470

particularly, with optical microscopy (Dehghani et al., 2017), a problem not
encountered when using SEM to accurately image different sizes and shapes such as
fibers, spheres, hexagons, irregular polyhedrons and surface wear (Cai et al., 2017; Li
et al., 2020). So far, a variety of morphological types of MPs have been identified based
on SEM observation, including fragments, film, fiber and spherical. (Fig. 4) (Abbasi et
al. 2017, 2019; Li. et al., 2020).

The MPs can have different colors (Fig. 5), and so far, the reported colors of the 477 identified MPs include white, red, yellow, blue, green, black, grey, brown, pink, orange, 478 as well as transparent (Abbasi et al., 2017; Cai et al., 2017; Dris et al., 2015; 479 Dobaradaran et al., 2018; Liu et al., 2019a)(Table 5). Blue and red MPs were commonly 480 481 found in the air in Paris, France (Dris et al., 2015), and transparent, blue, red and grey MPs were identified in a study in Dongguan, China (Cai et al., 2017; Liu et al., 2019a). 482 483 Black, yellow, blue, red, and green are the most abundant colors. There were also small numbers of brown, pink and orange MPs observed in Tehran, Iran (Dehghani et al., 484 2017). In order to meet the needs of use, different colors are added to the plastic during 485 the manufacturing process, thus resulting in the different colors of MPs (Kwon et al., 486 2017; Khalid et al., 2020). 487

Finally, MPs can be classified according to their source, i.e., primary and secondary MPs. Plastics that were manufactured into particles (0.5 - 5 mm) are defined as primary MPs (Cole et al., 2011). For example, plastics such as polyethylene are commonly used in cosmetics, either in products designed to rinse-off, such as skin cleansers, or developed to stay on the skin, like eye make-up or face powders. Secondary MPs are formed by the physical, chemical and/or biological breakdown of larger plastic fragments (Auta et al., 2017).

3.2 Chemical compositions of airborne microplastics

After morphological identification, the focus is often on determining the chemical
 composition of atmospheric MPs. SEM-EDX, ICP-MS, FTIR, Raman, PYR-GC-MS
 and HPLC-MS-MS are commonly used to characterize the chemical composition of

499 MPs.

The elemental composition of individual MP particles can be detected using SEM-EDX (Abbasi et al. 2017; Li et al. 2020). Bulk analysis by ICP-MS has revealed that, in addition to major elements C and O, minor Ca, S, Mg, Al, Si Zn, Pb, Mn, Cu, Ni, Co, Cd, and Cr are also detected in MPs (Bolea-Fernandez et al. 2020; Wang et al. 2017c). However, these methods were limited to determining just that elemental composition, and cannot identify the organic chemical structure of MPs (Kutralam-Muniasamy et al. 2021).

507 FTIR, Raman spectroscopy and hyperspectral camera spectroscopy have been used 508 to identify the types of MP polymers (Kitahashi et al., 2021; Wang et al., 2017b). 509 Numerous studies have reported that PET, PC, polypropylene (PP), Polyphenylene 510 ether (PPE), , polyvinyl chloride (PVC), polystyrene (PS), polyethylene (PE), 511 polymethyl methacrylate (PMMA), Nylon, acrylonitrile–butadiene–styrene (ABS) and 512 Polyformaldehyde (POM) were identified and classified (Table S3) (Cai et al., 2017; 513 Kitahashi et al., 2021; Szewc et al., 2021; Zhang et al., 2020a).

Studies from China have reported PET, PP, PVC and PS (Cai et al., 2017; Liu et al., 514 2019a; Zhou et al., 2017). PET, PP, PE, PVC, and PMMA were found in the Baltic 515 coastal air (Szewc et al., 2021), while polycarbonate PC, PVC, Nylon, PE, PP and PS, 516 517 dominated the samples in the other areas of northern Europe and the Arctic (Allen et al., 2019; Bergmann et al., 2019). In addition, FTIR spectroscopy may be utilized to 518 identify the chemical weathering of MPs, which results from the oxidation of MPs by 519 photochemical reactions (Cai et al., 2017). Some studies on PET- and PC-based MPs 520 have suggested that PET and PC were prevalent in indoor dust in 12 countries (Wang 521 et al., 2017b; Zhang et al., 2020a), further confirming that MPs are globally common 522 indoor pollutants. 523

More recently, a hyperspectral camera enables high-speed characterization of MPs. PE, PP, PS, PVC, PET, PC, ABS, nylon, and POM can be quickly identified and characterized (Kitahashi et al., 2021). However, sometimes these chemical composition data of MPs can be interfered with by other substances. This is due to the fact that in the process of degradation and weathering, the surface of MPs undergoes different degrees of wear, which makes the MPs more vulnerable to chemical reactions and
influences the adsorption capacity for other chemicals (Abbasi et al., 2017). It has been
shown that MPs can adsorb organic matter, pharmaceuticals and some heavy metals.
PPE and PE have a strong ability to adsorb polycyclic aromatic hydrocarbons (PAHs)
(Peng et al., 2017; Santana-Viera et al., 2021), and hence, increasing the toxic capacity
of the MPs (Fig. 6).

535 **3.3 Concentration and distribution of microplastics**

536 The concentration and distribution of MPs are affected by numerous environmental factors, resulting in the types, concentrations and distribution of airborne MPs being 537 highly variable in different geographical locations and at different times of the day or 538 year/season. MPs have been recorded in different concentrations and types in indoor 539 540 and outdoor settings, at different sampling heights, and in urban, suburban, and rural conurbations (Dris et al., 2017; Liu et al., 2019a). The possible factors affecting MPs 541 pollution levels include population density, degree of industrialization, level of 542 afforestation, infrastructure, and meteorological conditions (Klein and Fischer, 2019). 543 In a pioneering study, Dris et al. (2015) found that there were 29 - 280 MP particles 544 /m²/ day in the atmospheric dustfall in Paris, France. This was followed by further 545 studies reporting that concentrations of MPs in urban air were higher than in suburban 546 areas (Dris et al. 2016), while indoor concentrations of plastic fibers (Dris et al. 2017) 547 and MPs (Zhang et al. 2020a) were higher than outdoor. Studies have shown the 548 concentrations of MPs in the indoor $(1586 - 11,130 \text{ particles/ } \text{m}^2/\text{ day})$ (Dris et al., 2017) 549 is significantly higher than the outdoor MPs concentrations (29 - 280 particles/ m^2/day) 550 (Dris et al. 2015) in Paris and that most of these MPs are fibers. However, Gaston et al. 551 (2020) reported that the concentration of MP fragments outdoor was higher than indoor. 552 The high detected concentrations of indoor MPs may be related to the source release 553 flux of indoor MPs and their dispersion mechanisms (Wang et al. 2021a). Li et al. (2020) 554 reported that the airborne fiber concentrations at 1.5 m above the ground were higher 555 than at 18 m above the ground in Beijing, China. This probably resulted from the fact 556

that the MPs were either generated or resuspended nearer the surface, and any higher 557 samples would have an overall movement downwards driven by gravity, unless carried 558 upwards by wind currents (i.e., fugitive dusts) (Szewc et al., 2021). In Dongguan city 559 of Guangdong in China, MPs and fiber content in dustfall ranged from 175 - 602 560 particles/ m²/ day (Cai et al., 2017; Zhou et al., 2017). In the UK, the concentrations of 561 MPs in Nottingham and central London were 3-128 fibers/ m²/ day and 550-874 562 particles/ m²/ day, respectively (Stanton et al., 2019; Wright et al., 2020). Further 563 studies on the factors affecting the MPs pollution showed that the wet deposition by 564 rain or snow of MPs (including fibers, fragment and films) was higher than dry 565 deposition, and most of MPs were fibers $(62 \pm 24\%)$ (Szewc et al., 2021). At present, 566 567 the majority of studies suggest that concentrations of fibers in the atmosphere are higher than those of fragments, and also indicated that the dry and wet deposition rates of MPs 568 569 might vary regionally depending on different climatic factors (e.g., wind and solar radiation) and on the quantity and mass of MPs in the atmosphere (Tan et al., 2020). 570 571 Roblin et al. (2020) showed that meteorological variables, i.e. relative humidity, rainfall, wind speed and direction, were significantly correlated with MPs abundance. Rainfall 572 and air masses are important influencing factors for MPs deposition. 573

4. Sources and transport of airborne microplastics

575 4.1 Sources of airborne microplastics

Understanding the sources and transport of atmospheric MPs are essential steps 576 towards implementing legislation and guidance to minimize this anthropogenic 577 pollution. Some studies have shown that atmospheric MPs were predominantly fibers, 578 579 and most of these fibers were synthetic (Dris et al., 2017; Liu et al., 2019a; Moreno et al., 2014). Therefore, textile fibers shed from clothing are a major source of natural or 580 synthetic fibers in the atmosphere (Wright et al., 2020). Vianello et al., (2019) found 581 that polyesters were the most abundant synthetic polymers in MPs from indoor 582 environments, and that polyesters could come from clothing, furniture and carpets. The 583

global production of textile fibers exceeded 90 million tons in 2016, two-thirds of which 584 were synthetic and plastic fibers (Barceló and Franzellitti, 2020); production and 585 consumption should continue to increase in the future as demand increases. This 586 supports the view that anthropogenic activity was an important factor affecting fiber 587 abundance in the air (Liu et al., 2019a). From the analysis of these particle 588 physicochemical characteristics, many researchers now believe that the sources of these 589 MPs could be construction materials, industrial emissions, furniture plastic debris, 590 particle resuspension, landfills, traffic particles and waste incineration (Abbasi et al., 591 2019; Dris et al., 2017; Li et al., 2020; Sun et al., 2021). However, some studies have 592 found that the majority of MPs in the atmosphere were secondary MPs, which suggests 593 594 that the MPs of different shapes, colors and lengths were degraded from larger plastic debris in a variety of different environments (Auta et al., 2017; Horton et al., 2017; 595 596 Wang et al., 2021a). A study estimated global mismanaged plastic waste production in 2015 to be between 60 and 99 million metric tons. Under normal circumstances, global 597 mismanaged plastic waste is expected to triple from 2015 - 2060 to 265 million metric 598 tons (Lebreton and Andrady, 2019). This discarded plastic waste is gradually degraded 599 in the environment; especially in atmospheric environments, photochemistry (Auta et 600 al., 2017), chemical weathering (Yan et al., 2018; Zhang et al., 2020b) and mechanical 601 physical weathering damage (Allen et al., 2020; Cai et al., 2017), such as abrasion in 602 turbulent airflow (Barnes et al., 2009). In addition, the physical and chemical 603 characteristics of the plastics themselves also determine their presence and ageing in 604 the environment (Table S3). The brittleness (glass transition temperature) and 605 extremely low degradation rate of these plastics lead to the formation of MPs from 606 plastic waste in the environment (Huerta Lwanga et al., 2016). 607

All these factors have led to an increasing number of MPs in the atmosphere (Dris et al., 2015; Li et al., 2019). All the above studies on the sources of MPs were based on the analysis of the physical and chemical characteristics of MPs. Recently, stable carbon isotope ratio mass spectrometry (IRMS) has been applied to the tracing of atmospheric MPs sources (Berto et al., 2017; Birch et al., 2021). IRMS is based on each polymer having a distinct δ^{13} C value to determine whether the MPs in the atmosphere were

plant-derived or fossil fuel-based materials (Jackson, 2009). In addition, IRMS can 614 detect differences in the raw materials of the same type of polymer to determine the 615 manufacturing sources (Birch et al., 2021). Birch et al. (2021) showed a trend towards 616 higher δ^{13} C values for PS and PP exposed to ultraviolet (UV) light, which correlated 617 with the UV sensitivity of these polymers. This result was consistent with previous 618 studies on the ageing of plastics. IRMS has a high sensitivity, rapid and automated 619 analysis and is relatively low cost (Birch et al., 2021). In addition, this technique is not 620 affected by additives in the plastic, as is the case with Raman and FTIR spectroscopy 621 (Berto et al., 2017). Therefore, a combination of different techniques such as IRMS can 622 623 be used in conjunction with Raman and FTIR spectroscopy to trace the sources of MPs 624 in the atmosphere.

625 4.2 Transport of airborne microplastics

Atmosphere is one of the main pathways for the transport of MPs. Dris et al. (2015) 626 first reported MPs transport in the atmosphere in Paris, France, and suggested that fibers 627 found in freshwater mainly originate from atmospheric deposition. The transport and 628 629 deposition of MPs are related to both meteorological factors such as rain, snow, temperature, humidity, air pressure and wind speed (Hitchcock, 2020; Wang et al., 630 2020a), and also to the shape and size of the MPs (Zhang et al., 2020a). Several studies 631 have found that the particle size of MPs suspended in air (i.e. < 0.5 mm, Wright et al., 632 2020) and in dustfall (i.e. < 5 mm, Syafei et al., 2019) is generally small compared to 633 that of MPs in water (i.e. < 4.975 mm, Deng et al., 2020) and soil (i.e. < 2 mm, Yang 634 et al., 2021). Airborne MPs need to be transported by suspension therefore their particle 635 size is generally small (Abbasi et al., 2019). The majority of airborne MP morphology 636 types are fibrous, which is probably due to the fact that fibrous MPs are more easily 637 suspended in the air (Li et al., 2020; Materic et al., 2020). Generally, PC, nylon, PVC 638 and PET, which have a higher density, sink more easily, while PE, PP and PS are prone 639 to floating or suspension, but biofouling of organic matter and adsorption of inorganic 640 matter can alter their original behaviour (Kaiser et al., 2017). The distribution 641

characteristics of MPs in different environments are different (Wang et al., 2021b). 642 Smaller MPs are more easily transported by the atmosphere (Allen et al., 2019). The 643 644 wind is the main factor and driver of transport of MPs to remote areas (Evangeliou et al., 2020; Liu et al., 2019a). Allen et al. (2019) found that the number of MPs in the 645 atmosphere was positively correlated with wind strength and suggested that wind was 646 very effective for the transport and keeping MPs in atmospheric suspension. However, 647 it is noted that for this correlation to work the MPs collection site needs to be downwind 648 649 from the major sources. Therefore, local meteorological factors are an important mechanism for MPs suspension and transport (Abbasi et al., 2019). Mahrooz et al. 650 (2019) reported higher concentrations of light-density MPs (LDMP) in recent wind-651 652 eroded surface deposits in Fars Province, Iran, than found in local stable soil surfaces; suggesting that the wind was the transport mechanism for synthetic polymer particles 653 654 resulting in the enrichment of MPs in recent wind-eroded superficial sediments. Researchers have used long-term wind direction and intensity data to predict and model 655 656 the movement of MPs. Allen et al. (2019) have used post-air mass trajectory analysis to show that the transport distance of MPs in the atmosphere can be up to 95 km/s. 657 González-Pleiter et al. (2021) noted the existence of MPs in the planetary boundary 658 layer (PBL) for the first time and based on air mass trajectory analyses, they showed 659 660 that MPs can be transported over 1000 km/s in the atmosphere. MPs have been found in the snow cover of glaciers in Europe, the Arctic and Antarctica, and the Tibetan 661 Plateau of China, proving that MPs can be transported over long distances, as these 662 remote areas are rarely affected by human activities (Bergmann et al., 2019; Zhang et 663 al., 2021). In cities, wind direction, rainfall and high humidity have significant effects 664 on MPs deposition (Liu et al., 2019a). It has also been reported that there is a correlation 665 between urban population density and MPs deposition (Wright et al., 2020), but this 666 result is still controversial (Can-Güven, 2021; Liu et al., 2019a). The shape and size of 667 668 the MPs determines the efficiency of atmospheric transport. MPs with smaller sizes and 669 lower densities are more likely to be suspended in the air for longer. Flat film MPs are more easily transported in the atmosphere than similar mass fragment MPs (Allen et al., 670 2019). Fibrous MPs are easily suspended in the air, and large amounts of fibrous MPs 671

are detected in many locations, including indoors and outdoors (Klein and Fischer, 2019; 672 Materic et al., 2020). Bergmann et al., (2019) reported that 98% of MPs found in the 673 674 Antarctic and Arctic regions were less than 100 µm. Currently, many researchers consider that MPs contribute to the aquatic and terrestrial environments via atmospheric 675 transport, and that MPs are already extensively distributed in the atmosphere, 676 677 hydrosphere, and lithosphere (Fig. 1) (Brahney et al., 2020; Gasperi et al., 2018; Zhang et al., 2020b). The transmission and interaction of MPs between these three units will 678 be an important focus of future research because these three spheres interact with each 679 other to make our planet livable (Brahney et al., 2021; Huang et al., 2021). 680

5. Implication for the environment and human health

5.1 Implication for the environment

MPs in the atmosphere are an important transport mechanism for the global 683 deposition of MPs in the hydrosphere and lithosphere (Huang et al., 2021; IMO, 2015; 684 Zhang et al., 2020a). The impact of these MPs on those environments often causes 685 significant damage to ecosystems, both by the plastics themselves and their strong 686 adsorption capacity for hydrophobic chemical pollutants, heavy metals and bacteria 687 (Uddin et al., 2020). Moreover, in the process of MPs degradation, a variety of 688 pollutants are released, such as flame retardants, plasticizers, antibacterial agents and 689 bisphenol A (BPA) (Madeleine et al., 2018). Earlier research on the environmental 690 impact of MPs has focused on soil, freshwaters, wetlands, and oceans, however in 691 recent years MPs in the atmosphere have become of increasing concern (Chen et al., 692 2019; Novotna et al., 2019; Qian et al., 2021; Rillig, 2012; Suaria et al., 2020). Studies 693 694 have shown that a variety of MPs (e.g., PE, PP, PVC, PET, PS) can be found in soil ecosystems, as films, fragments, pellets and fibers, the same morphologies seen in the 695 atmosphere (Sarah et al., 2018; Zhou et al., 2019). Therefore, a component of MPs in 696 the soil were considered to originate from atmospheric transport (Can-Güven, 2020). 697 MPs are not only found in the surface soils as a result of dust fall, but also in deep 698

subsoils (Liu et al., 2018). This is due to different processes such as agricultural tillage, 699 soil fracturing or soil biological disturbances that transport MPs down to deeper soil 700 horizons (He et al., 2018; Van et al., 2015). MPs can also be transported to the 701 702 groundwater through earthworm bioturbation and downwards leaching of contaminated near-surface water (Rillig, 2012). The falling MPs contamination of groundwater can 703 704 subsequently result in the contamination of surface water bodies where the water is in hydraulic connectivity; these affecting freshwaters and their sediments in different lakes 705 706 and rivers globally (Wang et al., 2021a). Where high concentrations of MPs are found in freshwater sediments, these MPs are typically polypropylene pellets, polystyrene 707 fragments, and acrylic fibers (Hoellein et al., 2019; Wang et al., 2017a). The smaller 708 709 and lighter MPs can be carried further from the sources or deposition sites by currents (Huang et al., 2021). MPs are also found in wetlands, coastal, near offshore and the 710 711 open ocean; where they have either been carried into these environments by water transport or directly deposited on the water surfaces by atmospheric transport (Qian et 712 713 al., 2021; Suaria et al., 2020). If there are sufficient MPs in the soil this can change the soil characteristics (e.g., bacterial community composition and structure, pH and C:N 714 715 ratio), which in turn impacts on the biological and microbial activities in the soil (Qi et 716 al., 2020). In addition, MPs not only affect biological and soil characteristics and 717 microbial communities, but can also lead to an increase in anaerobic communities, which cause an increase in CO₂ and methane emissions. Therefore, MPs pollution has 718 a direct impact on global climate change (Ng et al., 2020). 719

Smaller MPs (5 - 100 nm) in size can be absorbed by the plant's roots, accumulate 720 in the plant's body, and can obstruct vessels to slow or completely inhibit water 721 absorption in the plant (Khalid et al., 2020). MPs can be ingested by herbivores, 722 whether the MPs were adsorbed on the surface or inside plants (Khalid et al., 2020). In 723 addition, MPs in the atmosphere can enter plants directly through their leaves and 724 725 completely inhibit water circulation (Huang et al., 2021). MPs thus have the potential 726 to enter the food chain and cause harm to higher organisms (Bejgarn et al., 2015). In freshwater and marine ecosystems, the research on biological impacts is more 727 established. It has been shown that MPs are eventually degraded in the ocean, where 728

the plastic surface is covered by microorganisms (Jan et al., 2018). This microbial 729 covering changes the buoyancy of the MPs, potentially causing them to sink to deeper 730 waters (Wang et al., 2021a). MPs have a serious impact on marine life, with studies 731 finding MPs in fish, shellfish and microorganisms in the ocean (Al-Salem et al., 2020; 732 Liu et al., 2021; Van et al., 2015; Xu et al., 2021). MPs can affect the reproductive 733 capacity of fish (Clara et al., 2018), and can be deposited continuously in fish through 734 gill filtration (passive ingestion) or feeding (active ingestion) leading to slow growth 735 736 and even death (Al-Salem et al., 2020). Therefore, MPs in the aquatic, terrestrial and atmospheric environments could eventually have a negative impact on humans since 737 they are adversely affecting important human food resources. 738

739 The reduction and elimination of environmental pollution from MPs is a focus of future research. Some results have been achieved in recent years for the recovery and 740 741 elimination of MPs from wastewater. Jiang et al (2021) proposed a novel aluminum coating modification method for the flotation separation of PVC and PC in the 742 environment, which effectively removed MPs from wastewater. In addition, the 743 separated and collected MPs should not only be treated harmlessly, but also be 744 converted into Fenton-like catalysts for wastewater treatment by a "waste treating waste" 745 approach (Wang et al., 2021c). More effective treatments could be developed which 746 747 can be used to block the transport of MPs in air, water and soil and reduce their impact 748 on the environment..

749 **5.2 Implication for human health**

Recent studies have found significant amounts of MPs in the ambient air, hydrosphere, and lithosphere (Dehghani et al., 2017; Dris et al., 2016; Du and Wang, 2021; Huang et al., 2020; Wang et al., 2020a). Many of the MPs in the air have a fibrous morphology and range in size from 20 - 5000 μ m (Cai et al., 2017; Li et al., 2020). Akhbarizadeh et al., (2021) found that MPs were present in PM_{2.5} and that most of those MPs were less than 1 μ m in size, and as a result were respirable and a possible threat to human health. The average human breathes 10 - 20 times per minute (Russo et al., 2017),

therefore MPs can easily enter the body via the respiratory system (Akhbarizadeh et al., 757 2021). MPs can have the same aerodynamic characteristics as PM_{2.5} particles in the air, 758 and they can reach the deep lung or alveoli by respiration (Enyoh et al., 2019). Airborne 759 MPs vary in concentration, size, and shape, all of which are important considerations 760 when determining possible adverse effects in humans (Rainieri and Barranco, 2019). It 761 762 has been reported that humans inhale up to 272 MPs per day from indoor air (Vianello et al., 2019). It has been shown that MPs over the size range of 0.1-10 µm were able to 763 764 translocate from the lungs into organs, the placenta, cross cell membranes and the blood-brain barrier (Alexander et al., 2016). Specifically, MPs of < 1 µm were able to 765 cross lung epithelial cells (Goodman et al., 2021). In addition, airborne MPs can also 766 767 enter the body through eating contaminated foods (Toussaint et al., 2019) or foods containing MPs (e.g., seafood, sea salt, sugar, etc.) (Khalid et al., 2020; Madeleine et 768 769 al., 2018), and through dermal contact (Abbasi et al., 2017). At present, research is finding that MPs ingested into the human body are removed through the body's 770 excretory system (Madeleine et al., 2018), however, information about the longer-term 771 772 fate of MPs in the human body has yet to be determined (Akhbarizadeh et al., 2021). It is possible that MPs entering the human body could cause physical damage as MPs can 773 be absorbed into human tissues through phagocytosis and cellular adsorption in the 774 775 respiratory system and gastrointestinal tract, which results in inflammation, cellular necrosis and tissue tearing (Enyoh et al., 2019). In addition, MPs can cause chemical 776 damage in the human body by the production of Reactive Oxygen Species (ROS). 777 Several studies have shown that MPs have potential cytotoxic effects, especially MPs 778 $< 10 \ \mu m$ in diameter, which can generate oxidative stress on human cells (Schirinzi et 779 al., 2017). MPs in human cell models can also generate ROS, increase glutathione s-780 transferase activity and activate antioxidant-related enzymes and mitogen-activated 781 protein kinase signaling pathways (Alomar et al., 2017; Yu et al., 2018). Moreover, the 782 783 surface of MPs can be hydrophobic, which then potentially adsorb and concentrate 784 hydrophobic organic pollutants, such as polychlorinated biphenyls and organochlorine pesticides (Jiménez-Skrzypek et al., 2021) and polycyclic aromatic hydrocarbons 785 (PAHs) (Akhbarizadeh et al., 2021), and can also adsorb heavy metals such as Cd, Zn, 786

Ni and Pb (Brennecke et al., 2016; Wang et al., 2020b). The water-soluble heavy metals 787 absorbed on the airborne particles have been suggested to be toxic components which 788 789 is potentially harmful to human health (Feng et al., 2020; Shao et al., 2017). MPs can adsorb chemicals, heavy metals, bacteria and additives that can cause indirect harm to 790 the human body (Akhbarizadeh et al., 2021). The risks to children from MPs may be 791 even more serious. In urban areas of China, the number of days children are exposed to 792 PET through indoor dust is estimated to be 17,300 ng/kg body weight (Liu et al., 2019a). 793 794 Abbasi et al. 2022 showed that children aged 6 - 14 years may be exposed to approximately 5 and 440 MP per day through inadvertent ingestion in Shiraz, Iran. The 795 concentration of MPs quantities near the ground (1.6 m) was significantly higher than 796 797 at high altitude (Li et al., 2020).

However, the actual health risks presented by MPs requires more investigation to 798 799 elucidate the relationship of airborne MPs and their impact on human health to be able to determine clinical/therapeutic interventions, create risk assessments and to establish 800 public health guidelines. The techniques for assessing the toxicity of inhalable particles, 801 802 such as single-cell gel electrophoresis (Yang et al., 2003; Zhang et al., 2003), Ames fluctuation test (Brito et al., 2013; Du et al., 2019), micronucleus test (Brito et al., 2013), 803 lung cell apoptosis (Zhou et al., 2010; Zhou et al., 2014), the plasmid scission assay 804 805 (Feng et al., 2022; Moreno et al., 2004; Shao et al., 2017;) and hemolysis assay (Mesdaghinia et al., 2019; Zhang et al., 2022), could be used for the airborne PMs. 806

807 6. Conclusions and perspectives

The study of MPs in the atmosphere is attaining increased importance in environmental science, and clear progress has been achieved in this subject. The methods and techniques of MPs sample collection, extraction and identification are constantly being improved and optimized. A preliminary understanding of the physical and chemical characteristics and pollution sources of MPs has been achieved. However, standardized methods for the identification and classification of airborne MPs are

needed to allow meaningful comparisons of global data between different research 814 groups. Currently, the analysis of airborne MPs is a complex process involving multiple 815 816 factors. MPs cannot be satisfactorily identified by direct analysis with almost any single analytical technique on its own. Specifically, the methods of collection and preparation 817 of MPs have significant impacts on the results, such as the concentration of MPs in the 818 atmosphere. In addition, by necessity, researchers include a decontamination phase, 819 820 also known as the pre-treatment step, before analysis. Sample pre-treatment can 821 significantly change the interpretation of MPs in the atmosphere, making the study of their interaction with other particles or pollutants in the air very difficult. The use of 822 microscopy or SEM linked to FTIR and Raman spectroscopy offers advantages not 823 available with other analytical methods, allowing information on the original 824 morphology of the fragments to be obtained. 825

There are still many unknowns or poorly elucidated factors, such as the sources, degradation, chemistry and transport of MPs in the air. Our overall knowledge of atmospheric MPs still lacks sufficient data to undertake comparative studies, especially in different regions of the World. In addition, the potential toxicity of MPs in the atmosphere is not well understood. Important considerations for future work include the following aspects.

(1) The physicochemical characteristics of MPs in the atmosphere needs more
sophisticated research. A combination of active and passive collection methods
should be used to study MPs in the air, along with optimizing existing and
developing new analytical techniques. The focus on standardizing methods of
collection and identification of atmospheric MPs, including chemical
composition, shape, length, color and units of measurement will facilitate more
comparative studies of MPs.

(2) Airborne MPs are constituents of many aerosols, especially in urban settings,
and should be a recognized pollutant for long-term monitoring. The percentage
number of MPs per unit volume of aerosol particulate matter, and the percentage
mass of MPs per unit mass of aerosol particulate matter should be monitored.
Information on respirable MPs is imperative to produce meaningful human

health impact assessments.

- (3) The toxicity of additives or adsorbed pollutants on MPs should be further
 investigated. Toxic organic pollutants and heavy metals carried by MPs may
 affect and alter the physiology of organisms, microorganisms and ecosystems.
 Therefore, it is important to focus on the original occurrence of MPs in the
 atmosphere and their effects on human health, as well as their mechanisms of
 action in the overall ecosystem.
- (4) It is necessary to pay attention to the factors that specifically affect airborne
 MPs and the mechanisms by which these factors act on MPs. It is recommended
 to focus on the characterization of individual MPs. The method allows the
 influence of different factors on the fate of MPs to be taken into account, with
 the result that fingerprint features acting on MPs factors may be identified.
- (5) The degradation and transport mechanisms of MPs in the air needs to be better
 understood. The contribution of atmospheric MPs to MPs in the lithosphere and
 hydrosphere, and the effects and interaction of MPs in the atmosphere,
 lithosphere and hydrosphere are also critically important.
- 860

861 Acknowledgments

This study is supported by the National Natural Science Foundation of China (Grant No. 42075107, 41175109), the Fundamental Research Funds for the Central Universities, the Yueqi Scholar fund of China University of Mining and Technology (Beijing) and Natural Science Foundation of Hebei Province of China (Grant No. D2021402004).

867 **References**

Abbasi, S., Keshavarzi, B., Moore, F., Delshab, H., Soltani, N., Sorooshian, A., 2017.
Investigation of microrubbers, microplastics and heavy metals in street dust: a
study in Bushehr city, Iran. Environmental Earth Sciences, 76(23), 798.
http://doi.org/10.1007/s12665-017-7137-0.

Abbasi, S., Keshavarzi, B., Moore, F., Turner, A., Jaafarzadeh, N., 2019. Distribution

- and potential health impacts of microplastics and microrubbers in air and street
 dusts from Asaluyeh County, Iran. Environmental Pollution, 244, 153-164.
 http://doi.org/10.1016/j.envpol.2018.10.039.
- Abbasi, S., Turner, A., Sharifi, R., Nematollahi, M.J., Keshavarzifard, M., Moghtaderi,
 T., 2022. Microplastics in the school classrooms of Shiraz, Iran. Building and
 Environment, 207,108562. http://doi.org/10.1016/j.buildenv.2021.108562
- Arthur, C., Baker, J., Bamford, H., 2009. International research workshop on the
 occurrence, effects, and fate of microplastic marine debris. In: Conference
 Proceedings, 9–11.
- Akhbarizadeh, R., Dobaradaran, S., Torkmahalleh, M.A., Saeedi, R., Aibaghi, R.,
 Ghasemi, F.F., 2021. Suspended fine particulate matter (PM_{2.5}), microplastics
 (MPs), and polycyclic aromatic hydrocarbons (PAHs) in air: Their possible
 relationships and health implications. Environmental Research, 192, 110339.
 http://doi.org/10.1016/j.envres.2020.110339.
- Alexander, J., Ard, L.B., Bignami, M., Ceccatelli, S., Lundebye, A.K., 2016. Presence
 of microplastics and nanoplastics in food, with particular focus on seafood. EFSA
 Journal, 14, 4501. http://doi.org/10.2903/j.efsa.2016.4501.
- Allen, S., Allen, D., Moss, K., Roux, G.L., Sonke, J.E., 2020. Examination of the ocean
 as a source for atmospheric microplastics. PLOS ONE, 15, e232746.
 http://doi.org/10.1371/journal.pone.0232746
- Allen, S., Allen, D., Phoenix, V.R., Le Roux, G., Durántez Jiménez, P., Simonneau, A.,
 Binet, S., Galop, D., 2019. Atmospheric transport and deposition of microplastics
 in a remote mountain catchment. Nature geoscience, 12(8), 679.
 http://doi.org/10.1038/s41561-019-0335-5.
- Alomar, C., Sureda, A., Capo, X., Guijarro, B., Tejada, S., Deudero, S., 2017.
 Microplastic ingestion by Mullus Surmuletus Linnaeus, 1758 fish and its potential
 for causing oxidative stress. Environmental Research, 159, 135-142.
 http://doi.org/10.1016/j.envres.2017.07.043.
- Al-Salem, S.M., Uddin, S., Lyons, B., 2020. Evidence of microplastics (MP) in gut content of major consumed marine fish species in the State of Kuwait (of the Arabian/Persian Gulf). Marine Pollution Bulletin, 154, 111052.
 http://doi.org/10.1016/j.marpolbul.2020.111052.
- Andrady, A.L., 2011. Microplastics in the marine environment. Marine Pollution
 Bulletin, 62(8), 1596-1605. http://doi.org/10.1016/j.marpolbul.2011.05.030
- Araujo, C.F., Nolasco, M.M., Ribeiro, A.M.P., Ribeiro-Claro, P.J.A., 2018.
 Identification of microplastics using Raman spectroscopy: latest developments
 and future prospects. Water Research, 142, 426-440.
 http://doi.org/10.1016/j.watres.2018.05.060.
- Auta, H.S., Emenike, C.U., Fauziah, S.H., 2017. Distribution and importance of
 microplastics in the marine environment: A review of the sources, fate, effects,
 and potential solutions. Environment International, 102, 165-176.
 http://doi.org/10.1016/j.envint.2017.02.013.
- Barceló, A. N., Franzellitti, S., 2020. Plastic pollution in the environment science
 direct. Environmental Toxicology and Pharmacology, 73. 103274.

- 917 https://doi.org/10.1016/j.etap.2019.103274.
- Barnes, D. K. A., Galgani, F., Thompson, RC, Barlaz, M. Accumulation and
 fragmentation of plastic debris in global environments. Philosophical Transactions
 of the Royal Society B: Biological Sciences 2009; 364: 1985-1998.
 https://doi.org/10.1098/rstb.2008.0205.
- Bejgarn, S., Macleod, M., Bogdal, C., Breitholtz, M., 2015. Toxicity of leachate from
 weathering plastics: An exploratory screening study with Nitocra spinipes.
 Chemosphere, 132, 114-119. http://doi.org/10.1016/j.chemosphere.2015.03.010.
- Beaurepaire, M., Dris, R., Gasperi, J., Tassin, B., 2021. Microplastics in the atmospheric compartment: a comprehensive review on methods, results on their occurrence and determining factors. Current Opinion in Food Science, 41. http://doi.org/ 10.1016/j.cofs.2021.04.010.
- Bergmann, M., Mützel, S., Primpke, S., Tekman, M.B., Gerdts, G., 2019. White and
 wonderful? Microplastics prevail in snow from the Alps to the Arctic. Science
 Advances, 5(8), eaax1157. http://doi.org/10.1126/sciadv.aax1157.
- Berto, D., Rampazzo, F., Gion, C., Noventa, S., Ronchi, F., Traldi, U., Giorgi, G.,
 Cicero, A.M., Giovanardi, O., 2017. Preliminary study to characterize plastic
 polymers using elemental analyser/isotope ratio mass spectrometry (EA/IRMS).
 Chemosphere, 2017, 176(47), 39-46.
 http://doi.org/10.1016/j.chemosphere.2017.02.090.
- Bessa, F., Ratcliffe, N., Otero, V., Sobral, P., Marques, J. C., Waluda, C. M., Trathan, P.
 N., Xavier, J. C., 2019. Microplastics in gentoo penguins from the Antarctic
 region. Scientific Reports, 9(1), 1-7. https://doi.org/10.1038/s41598-01950621-2.
- Bi, M., He, Q., Chen, Y., 2020. What roles are terrestrial plants playing in global
 microplastic cycling? Environmental Science and Technology, 54(9), 5325-5327.
 https://doi.org/10.1021/acs.est.0c01009.
- Birch, Q.T., Potter, P.M., Pinto, P.X., Dionysiou, D.D., Abed, A., 2021. Isotope ratio
 mass spectrometry and spectroscopic techniques for microplastics characterization.
 Talanta, 224.121743. https://doi.org/10.1016/j.talanta.2020.121743.
- Bolea-Fernandez, E., Rua-Ibarz, A., Velimirovic, M., Tirez, K., Vanhaecke, F., 2020.
 Detection of microplastics using inductively coupled plasma-mass spectrometry
 (ICP-MS) operated in single-event mode. Journal of Analytical Atomic
 Spectrometry, 35(3), 455-460. https://doi.org/10.1039/c9ja00379g.
- Brahney, J., Hallerud, M., Heim, E., Hahnenberger, M., Sukumaran, S., 2020 Plastic
 rain in protected areas of the United States. Science, 368(6496), 1257-1260.
 https://doi.org/10.1126/science.aaz5819.
- Brahney, J., Mahowald, N., Prank, M., Cornwell, G., Klimont, Z., Matsui, H., Prather,
 K.A., 2021. Constraining the atmospheric limb of the plastic cycle. Proceedings of
 the National Academy of Sciences of the United States of America, 118(16),
 e2020719118. https://doi.org/10.1073/pnas.2020719118.
- Brito, K.C.T., Lemos, C.T., Rocha, J.A.V., Mielli, A.C., Matzenbacher, C., Vargas,
 V.M.F., 2013. Comparative genotoxicity of airborne particulate matter (PM2.5)
 using Salmonella, plants and mammalian cells. Ecotoxicology and Environmental

- 961 Safety. 94:14-20. https://doi.org/10.1016/j.ecoenv.2013.04.014
- Brydson, J. A. 1999. Cellulose Plastics, in J.A. Brydson (ed.), Plastics Materials
 (Seventh Edition), Butterworth-Heinemann, 613-634.
 https://doi.org/10.1016/B978-075064132-6/50063-2.
- Cai, L., Wang, J., Peng, J., Tan, Z., Chen, Q., 2017. Characteristic of microplastics in
 the atmospheric fallout from Dongguan city, China: preliminary research and first
 evidence. Environmental Science and Pollution Research, 24(32), 24928-24935.
 https://doi.org/10.1007/s11356-017-0116-x.
- Can-Güven, E., 2021. Microplastics as emerging atmospheric pollutants: a review and
 bibliometric analysis. Air Quality, Atmosphere & Health, 1-13.
 http://doi.org/10.1007/s11869-020-00926-3.
- Chen, G., Feng, Q., Wang, J., 2019. Mini-review of microplastics in the atmosphere
 and their risks to humans. Science of the Total Environment, 703.
 http://doi.org/10.1016/j.scitotenv.2019.135504.
- Chen, G., Fu, Z., Yang, H., Wang, J., 2020. An overview of analytical methods for
 detecting microplastics in the atmosphere. TrAC Trends in Analytical Chemistry,
 130, 115981. http://doi.org/10.1016/j.trac.2020.115981.
- Clara, T., Kathleen, S., Ralph, R., David, P., Hannah, D.F., Julieta, D.V., Grace, S.,
 Rochman, C.M., 2018. Leachate from expanded polystyrene cups is toxic to
 aquatic invertebrates (Ceriodaphnia dubia). Frontiers in Marine Science, 5, 71.
 http://doi.org/10.3389/fmars.2018.00071.
- Cole, M., Lindeque, P., Halsband, C., Galloway, T.S., 2011. Microplastics as
 contaminants in the marine environment: A review. Marine Pollution Bulletin,
 62(12), 2588-2597. http://doi.org/10.1016/j.marpolbul.2011.09.025.
- Cole, M., Webb, H., Lindeque, P.K., Fileman, E.S., Halsband, C., Galloway, T.S., 2014.
 Isolation of microplastics in biota-rich seawater samples and marine organisms.
 Scientific Reports, 4(1), 4528. http://doi.org/10.1038/srep04528.
- Conkle, J.L., Báez Del Valle, C.D., Turner, J.W., 2018. Are We Underestimating
 Microplastic Contamination in Aquatic Environments? Environmental
 Management, 61, 1-8. http://doi.org/10.1007/s00267-017-0947-8.
- 991 Corcoran, P.L., Biesinger, M.C., Grifi, M., 2009. Plastics and beaches: A degrading
 992 relationship. Marine Pollution Bulletin, 58(1), 80-84.
 993 http://doi.org/10.1016/j.marpolbul.2008.08.022.
- 994 Corcoran, P.L., Jazvac, K., Ballent, A., 2018. Plastics and the Anthropocene.
 995 Encyclopedia of the Anthropocene, 1, 163-170.
- 996 Crawford, C.B., Quinn, B., 2017. Microplastic identification techniques. Microplastic
 997 Pollutants, 219-267.
- Dehghani, S., Moore, F., Akhbarizadeh, R., 2017. Microplastic pollution in deposited
 urban dust, Tehran metropolis, Iran. Environmental Science & Pollution Research,
 24, 1-12. http://doi.org/10.1007/s11356-017-9674-1.
- Desforges, J.P.W., Galbraith, M., Ross, P.S., 2015. Ingestion of microplastics by
 Zooplankton in the Northeast Pacific Ocean. Archives of Environmental
 Contamination & Toxicology, 69, 320-330. http://doi.org/10.1007/s00244-0150172-5.

- Dris, R., Gasperi, J., Mirande, C., Mandin, C., Guerrouache, M., Langlois, V., Tassin,
 B., 2017. A first overview of textile fibers, including microplastics, in indoor and
 outdoor environments. Environmental Pollution, 221, 453-458.
 http://doi.org/10.1016/j.envpol.2016.12.013.
- Dris, R., Gasperi, J., Saad, M., Mirande, C., Tassin, B., 2016. Synthetic fibers in atmospheric fallout: a source of microplastics in the environment? Marine
 Pollution Bulletin, 104, 290-293. http://doi.org/10.1016/j.marpolbul.2016.01.006.
- Dris, R., Gasperi, J., Rocher, V., Saad, M., Renault, N., Tassin, B., 2015. Microplastic
 contamination in an urban area: a case study in Greater Paris. Environ. Chem. 12,
 592–599. https://doi.org/10.1071/EN14167.
- 1015 Dobaradaran, S., Schmidt, T.C., Nabipour, I., Khajeahmadi, N., Tajbakhsh, S., Saeedi,
 1016 R.,Mohammadi, M.J., Keshtkar, M., Khorsand, M., Ghasemi, F.F., 2018.
 1017 Characterization of plastic debris and association of metals with microplastics
 1018 incoastline sediment along the Persian Gulf. Waste Manag. 78, 649–658.
- Du, H. and Wang, J., 2021. Characterization and environmental impacts of
 microplastics. Gondwana Research. https://doi.org/10.1016/j.gr.2021.05.023.
- Du, X., Gao, S., Hong, L., Zheng, X., Zhou, Q., Wu, J., 2019. Genotoxicity evaluation
 of titanium dioxide nanoparticles using the mouse lymphoma assay and the Ames
 test. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 838,
 22-7. https://doi.org/10.1016/j.mrgentox.2018.11.015
- Duemichen, E., Eisentraut, P., Bannick, C.G., Barthel, A.K., Senz, R., Braun, U., 2017.
 Fast identification of microplastics in complex environmental samples by a
 thermal degradation method. Chemosphere Oxford, 174, 572-584.
 https://doi.org/10.1016/j.chemosphere.2017.02.010.
- Enyoh, C.E., Verla, A.W., Verla, E.N., Ibe, F.C., Amaobi, C.E., 2019. Airborne microplastics: a review study on method for analysis, occurrence, movement and risks. Environmental Monitoring and Assessment, 191(11), 1-17. http://doi.org/10.1007/s10661-019-7842-0.
- Evangeliou, N., Grythe, H., Klimont, Z., Heyes, C., Stohl, A., 2020. Atmospheric
 transport is a major pathway of microplastics to remote regions. Nature
 Communications, 11(1).3381. http://doi.org/10.1038/s41467-020-17201-9.
- Feng, XL., Shao, LY., Jones, T., Li, YW., Cao, YX., Zhang, MY., Ge, SY., Yang, CX.,
 Lu, J., BéruBé, K., 2022. Oxidative potential and water-soluble heavy metals of
 size-segregated airborne particles in haze and non-haze episodes: Impact of the
 "Comprehensive Action Plan" in China, Science of the Total Environment, 152774.
 https://doi.org/10.1016/j.scitotenv.2021.152774.
- Foekema, E. M., Gruijter, C. D., Mergia, M. T., Franeker, J., Murk, A., Koelmans, A.
 A. 2013. Plastic in North Sea Fish. Environmental Science and Technology, 47(15), 8818-8824. http://doi.org/10.1021/es400931b.
- Fries, E., Dekiff, J.H., Willmeyer, J., Nuelle, M.T., Ebert, M., Remy, D., 2013.
 Identification of polymer types and additives in marine microplastic particles
 using pyrolysis-GC/MS and scanning electron microscopy. Environmental
 Science Processes & Impacts, 15, 1949-1956. http://doi.org/10.1039/c3em00214d.
 Funck, M., Al-Azzawi, M., Yildirim, A., Knoop, O., Tuerk, J. 2021. Release of
- microplastic particles to the aquatic environment via wastewater treatment plants:
 the impact of sand filters as tertiary treatment. Chemical Engineering Journal
 (1526), 130933. http://doi.org/10.1016/j.cej.2021.130933.
- Gasperi, J., Wright, S.L., Dris, R., Collard, F., Mandin, C., Guerrouache, M., Langlois, 1052 1053 V., Kelly, F.J., Tassin, B., 2018. Microplastics in air: Are we breathing it in? 1054 Current Opinion in Environmental Science & Health, 1. 1-5. http://doi.org/10.1016/j.coesh.2017.10.002. 1055
- Gaston, E., Woo, M., Steele, C., Sukumaran, S., Anderson, S., 2020. EXPRESS:
 Microplastics differ between indoor and outdoor air masses: Insights from
 multiple microscopy methodologies. Applied Spectroscopy, 74(6),
 000370282092065. http://doi.org/10.1177/0003702820920652.
- Gniadek, M., Dąbrowska, A., 2019. The marine nano- and microplastics
 characterization by SEM-EDX: the potential of the method in comparison with
 various physical and chemical approaches. Mar. Pollut. Bull. 148, 210–216.
 https://doi.org/10.1016/j.marpolbul.2019.07.067
- Gong, J., Xie, P., 2020. Research progress in sources, analytical methods, ecoenvironmental effects, and control measures of microplastics. Chemosphere, 254,
 126790. http://doi.org/10.1016/j.chemosphere.2020.126790.
- González-Pleiter, M., Edo, C., Aguilera, Á., Viúdez-Moreiras, D., Pulido-Reyes, G.,
 González-Toril, E., Osuna, S., Diego-Castilla, G., Leganés, F., Fernández-Piñas,
 F., Rosal, R., 2021. Occurrence and transport of microplastics sampled within and
 above the planetary boundary layer. Science of the total environment, 761, 143213.
 https://doi.org/10.1016/j.scitotenv.2020.143213.
- Goodman, K. E., Hare, J. T., Khamis, Z. I., Hua, T., Sang, Q., 2021. Exposure of human
 lung cells to polystyrene microplastics significantly retards cell proliferation and
 triggers morphological changes. Chemical Research in Toxicology, 34(4), 1069 1081. https://doi.org/10.1021/acs.chemrestox.0c00486.
- He, D., Luo, Y., Lu, S., Liu, M., Song, Y., Lei, L., 2018. Microplastics in soils:
 Analytical methods, pollution characteristics and ecological risks. TrAC Trends in
 Analytical Chemistry, 109, 163-172. http://doi.org/10.1016/j.trac.2018.10.006.
- Hendrickson, E., Minor, E. C., & Schreiner, K., 2018. Microplastic abundance and composition in western Lake Superior as determined via microscopy, PYRGC/MS, and FTIR. Environmental Science and Technology, 52(4), 1787.
 http://doi.org/10.1021/acs.est.7b05829.
- Hitchcock, J. N., 2020. Storm events as key moments of microplastic contamination in
 aquatic ecosystems. Science of the Total Environment, 734.139436. http://doi.org/
 1085 10.1016/j.scitotenv.2020.139436.
- Hoellein, T.J., Shogren, A.J., Tank, J.L., Risteca, P., Kelly, J.J., 2019. Microplastic
 deposition velocity in streams follows patterns for naturally occurring
 allochthonous particles. Scientific Reports, 9(1), 37-40.
 http://doi.org/10.1038/s41598-019-40126-3.
- Horton, A.A., Walton, A., Spurgeon, D.J., Lahive, E., Svendsen, C., 2017.
 Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities.

- 1093
 Science
 of
 the
 Total
 Environment,
 586,
 127-141.

 1094
 http://doi.org/10.1016/j.scitotenv.2017.01.190.
 586,
 127-141.
- Huang, D., Tao, J., Cheng, M., Deng, R., Chen, S., Yin, L., Li, R., 2021. Microplastics
 and nanoplastics in the environment: Macroscopic transport and effects on
 creatures. Journal of Hazardous Materials, 407, 124399.
 http://doi.org/10.1016/j.jhazmat.2020.124399.
- Huang, Y., Xian, Q., Wang, W., Han, G., & Wang, J., 2020. Mini-review on current studies of airborne microplastics: analytical methods, occurrence, sources, fate and potential risk to human beings.TrAC Trends in Analytical Chemistry, 125, 115821.
 http://doi.org/10.1016/j.trac.2020.115821
- Huerta Lwanga, E., Gertsen, H., Gooren, H., Peters, P., Salánki, Ts, van der Ploeg, M.,
 Besseling, E., Koelmans, A.A., Geissen, V., 2016. Microplastics in the terrestrial
 ecosystem: implications for Lumbricus terrestris (Oligochaeta, Lumbricidae).
 Environment. Science and Technology. 50, 2685–2691.
 http://doi.org/10.1021/acs.est.5b05478.
- Imhof, H.K., Schmid, J., Niessner, R., Ivleva, N.P., Laforsch, C., 2012. A novel, highly
 efficient method for the separation and quantification of plastic particles in
 sediments of aquatic environments. Limnology & Oceanography Methods, 10(7),
 524-537. http://doi.org/10.4319/lom.2012.10.524.
- International Maritime Organization, IMO, 2015. Plastic particles in the ocean may be
 as harmful as plastic bags, report says. International Maritime Organization Press
 Briefing Archives. 27/04/2015
- 1115 Jackson, M.G.P., 2009. Isotope Ratio Mass Spectrometry. Analyst, 134(2), 213-222.
 1116 http://doi.org/10.1039/b808232d.
- Jahnke, A., Arp, H.P.H., Escher, B.I., Gewert, B., Gorokhova, E., Kühnel, D.,
 Ogonowski, M., Potthoff, A., Rummel, C., Schmitt-Jansen, M., 2017. Reducing
 uncertainty and confronting ignorance about the possible impacts of weathering
 plastic in the marine environment. Environmental Science & Technology Letters,
 4(3), 85-90. http://doi.org/10.1021/acs.estlett.7b00008.
- Jan, M., Angela, S., Mark, L., Kai, W., Anja, E., 2018. Rapid aggregation of biofilmcovered microplastics with marine biogenic particles. Proceedings of the Royal
 Society B: Biological sciences, 285(1885), 20181203.
- Jiang, HR., Zhang, YS., Wang, CQ., Wang, H., 2021 . A clean and efficient flotation towards recovery of hazardous polyvinyl chloride and polycarbonate microplastics through selective aluminum coating: process, mechanism, and optimization.
 Journal of Environmental Management, 299, 113626.
 http://doi.org/10.1016/j.jenvman.2021.113626.
- Jiménez-Skrzypek, G., Hernández-Sánchez, C., Ortega-Zamora, C., González-Sálamo,
 J., Hernández-Borges, J., 2021. Microplastic-adsorbed organic contaminants:
 Analytical methods and occurrence. TrAC Trends in Analytical Chemistry, 136,
 1133 116186. http://doi.org/10.1016/j.trac.2021.116186.
- Jones, T., Moreno, T., Berube, K., Richards, R., 2006. The physicochemical
 characterisation of microscopic airborne particles in South Wales: a review of the
 locations and methodologies. Science of the Total Environment, 360(1-3), 43-59.

- 1137 http://doi.org/10.1016/j.scitotenv.2005.08.055.
- Kaeppler, A., Fischer, M., Scholz-Boettcher, B.M., Oberbeckmann, S., Labrenz, M.,
 Fischer, D., Eichhorn, KJ., Voit, B., 2018. Comparison of MU-ATR-FTIR
 spectroscopy and PY-GCMS as identification tools for microplastic particles and
 fibers isolated from river sediments. Analytical & Bioanalytical Chemistry,
 410(21), 5313-5327. http://doi.org/10.1007/s00216-018-1185-5.
- Kaiser, D., Kowalski, N., Waniek, J.J., 2017. Effects of biofouling on the sinking
 behavior of microplastics. Environmental Research Letters. 12(12), 124003.
 http://doi.org/10.1088/1748-9326/aa8e8b.
- Kutralam-Muniasamy, G., PEREZ-Guevara, F., Elizalde-Martínez, I., Shruti, V.C.,
 2021. Overview of microplastics pollution with heavy metals: analytical methods,
 occurrence, transfer risks and call for standardization. Journal of Hazardous
 Materials, 415,125755. http://doi.org/10.1016/j.jhazmat.2021.125755.
- Khalid, N., Aqeel, M., Noman, A., 2020. Microplastics could be a threat to plants in terrestrial systems directly or indirectly. Environmental Pollution, 267, 115653.
 http://doi.org/10.1016/j.envpol.2020.115653.
- Kitahashi, T., Nakajima, R., Nomaki, H., Tsuchiya, M., Yabuki, A., Yamaguchi, S., Zhu,
 C., Kanaya, Y., Lindsay, D.J., Chiba, S., Fujikura, K., 2021. Development of robust
 models for rapid classification of microplastic polymer types based on near
 infrared hyperspectral images. Analytical Methods, 13, 2215-2222.
 http://doi.org/10.1039/d1ay00110h.
- Klein, M., Fischer, E.K., 2019. Microplastic abundance in atmospheric deposition
 within the Metropolitan area of Hamburg, Germany. Science of the Total
 Environment, 685, 96-103. http://doi.org/10.1016/j.scitotenv.2019.05.405.
- Kumar, B.N.V., Lschel, L.A., Imhof, H.K., Lder, M.G.J., Laforsch, C., 2020. Analysis
 of microplastics of a broad size range in commercially important mussels by
 combining FTIR and Raman spectroscopy approaches. Environmental Pollution,
 269, 116147. http://doi.org/10.1016/j.envpol.2020.116147.
- Kunz, A., Walther, B.A., Lowemark, L., Lee, Y.C., 2016. Distribution and quantity of microplastic on sandy beaches along the northern coast of Taiwan. Marine
 Pollution Bulletin, 111(1-2), 126-135.
 http://doi.org/10.1016/j.marpolbul.2016.07.022.
- 1169 Kwon, J.H., Chang, S., Hong, S.H., Shim, W.J., 2017. Microplastics as a vector of 1170 hydrophobic contaminants: importance of hydrophobic additives. Integrated
 1171 Environmental Assessment and Management, 13, 494-499.
 1172 http://doi.org/10.1002/ieam.1906.
- Lder, M.G.J., Gerdts, G., 2015. Methodology used for the detection and identification
 of microplastics- A critical appraisal. Springer International Publishing.
 http://doi.org/10.1007/978-3-319-16510-3_8.
- Lebreton, L., Andrady, A., 2019. Future scenarios of global plastic waste generation
 and disposal. Palgrave Communications, 5(1), 1-11.
 http://doi.org/10.1057/s41599-018-0212-7.
- Li, J., Liu, H., Chen, J.P., 2017. Microplastics in freshwater systems: A review on
 occurrence, environmental effects, and methods for microplastics detection. Water

- 1181 Research, 137, 362-374. http://doi.org/10.1016/j.watres.2017.12.056.
- Li, W.J., Shao, L.Y., Zhang, D.Z., Ro, C.U., Hu, M., Bi, X.H., Geng, H., Matsuki, A.,
 Niu, H., Chen, J.M., 2016. A review of single aerosol particle studies in the
 atmosphere of East Asia: morphology, mixing state, source, and heterogeneous
 reactions. J Clean Prod. 112, 1330-1349.
 http://dx.doi.org/10.1016/j.jclepro.2015.04.050
- Li, Y.W., Shao, L.Y., Wang, W.H., Zhang, M.Y., Feng, X.L., Li, W.J., Zhang, D.Z.,
 2020. Airborne fiber particles: Types, size and concentration observed in Beijing.
 The Science of the Total Environment, 705, 135967.
 http://doi.org/10.1016/j.scitotenv.2019.135967.
- Liu, C., Li, J., Zhang, Y., Wang, L., Sun, H., 2019a. Widespread distribution of PET and PC microplastics in dust in urban China and their estimated human exposure.
 Environment international, 128, 116-124.
 http://doi.org/10.1016/j.envint.2019.04.024.
- Liu, K., Wang, X., Fang, T., Xu, P., Zhu, L., Li, D., 2019b. Source and potential risk
 assessment of suspended atmospheric microplastics in shanghai. Science of the
 Total Environment, 675, 462-471. http://doi.org/10.1016/j.scitotenv.2019.04.110.
- Liu, M., Lu, S., Yang, S., Lei, L., Hu, J., Lv, W., 2018. Microplastic and mesoplastic
 pollution in farmland soils in suburbs of Shanghai, China. Environmental
 Pollution, 242, 855-862. http://doi.org/10.1016/j.envpol.2018.07.051.
- Liu, Y., Zhang, K., Xu, S., Yan, M., Tao, D., Chen, L., Wei, Y., Wu, C., Liu, G. and Lam,
 P.K., 2021. Heavy metals in the "plastisphere" of marine microplastics: adsorption
 mechanisms and composite risk. Gondwana Research,
 https://doi.org/10.1016/j.gr.2021.06.017.
- Lönnstedt, O.M., Eklöv, P., 2016. Environmentally relevant concentrations of
 microplastic particles influence larval fish ecology. Science, 352(6290), 12131207 1216. http://doi.org/10.1126/science.aad8828.
- Madeleine, S., Love, D.C., Rochman, C.M., Neff, R.A., 2018. Microplastics in Seafood
 and the Implications for Human Health. Current Environmental Health Reports,
 5(3), 375-386. http://doi.org/10.1007/s40572-018-0206-z.
- Maghsodian, Z., Sanati, A.M., Ramavandi, B., Ghasemi, A., Sorial, G.A., 2021.
 Microplastics accumulation in sediments and Periophthalmus waltoni fish,
 mangrove forests in southern Iran. Chemosphere, 264, 128543.
 http://doi.org/10.1016/j.chemosphere.2020.128543.
- Mahrooz, R., Michel, J.P.M.R., Elham, S., Abdolmajid, S., Violette, G., 2019. Wind
 erosion as a driver for transport of light density microplastics. Science of the Total
 Environment, 669, 273-281. http://doi.org/10.1016/j.scitotenv.2019.02.382.
- Materic, D., Kasper-Giebl, A., Kau, D., Anten, M., Holzinger, R., 2020. Micro- and nanoplastics in Alpine snow: A new method for chemical identification and (Semi) quantification in the nanogram range. Environmental Science and Technology, 2353-2359. http://doi.org/10.1021/acs.est.9b07540.
- Mesdaghinia, A., Pourpak, Z., Naddafi, K., Nodehi, R.N., Alizadeh, Z., Rezaei,
 S.,Faraji, M., 2019. An in vitro method to evaluate hemolysis of human red blood
 cells (RBCs) treated by airborne particulate matters (PM₁₀). MethodsX, 6, 156-

- 1225 161. http://doi.org/10.1016/j.mex.2019.01.001.
- Mitra, A., Sen, I. S., Walkner, C., Meisel, T. C., 2021. Simultaneous determination of
 platinum group elements and rhenium mass fractions in road dust samples using
 isotope dilution inductively coupled plasma-tandem mass spectrometry after
 cation exchange separation. Spectrochimica Acta Part B: Atomic Spectroscopy,
 177, 106052. http://doi.org/10.1016/j.sab.2020.106052.
- Moreno, T., Merolla, L., Gibbons, W., Greenwell, L., Jones, T., Richards, R., 2004.
 Variations in the source, metal content and bioreactivity of technogenic aerosols:
 a case study from Port Talbot, Wales, UK. Science of the Total Environment 333,
 59–73. http://doi.org/10.1016/j.scitotenv.2004.04.019.
- Moreno, T., Rivas, I., Bouso, L., Viana, M., Jones, T., Alvarez-Pedrerol, M., Alastuey,
 A., Sunyer.,J., Querol, X., 2014. Variations in school playground and classroom
 atmospheric particulate chemistry. Atmospheric Environment, 91, 162-171.
 http://doi.org/10.1016/j.atmosenv.2014.03.066.
- Ng, E.L., Lin, S.Y., Dungan, A.M., Colwell, J.M., Ede, S., Huerta Lwanga, E., Meng,
 K., Geissen, V., Blackall, L.L., Chen, D., 2020. Microplastic pollution alters forest
 soil microbiome. J. Hazard. Mater. 409, 124606
 https://doi.org/10.1016/j.jhazmat.2020.124606.
- Novotna, K., Cermakova, L., Pivokonska, L., Cajthaml, T., Pivokonsky, M., 2019.
 Microplastics in drinking water treatment Current knowledge and research needs.
 Science of the Total Environment, 667, 730-740.
 http://doi.org/10.1016/j.scitotenv.2019.02.431.
- Peng, G., Zhu, B., Yang, D., Su, L., Shi, H., Li, D., 2017. Microplastics in sediments
 of the Changjiang Estuary, China. Environmental Pollution, 225, 283-290.
 http://doi.org/10.1016/j.envpol.2016.12.064.
- Petersen, F., Hubbart, J.A., 2021. The occurrence and transport of microplastics: The
 state of the science. Science of the Total Environment, 758, 143936.
 http://doi.org/10.1016/j.scitotenv.2020.143936.
- Prata, JC., Sequeira, IF., Monteiro, SS., Silva, ALP., Da Costa, JP., Dias-Pereira, P.,
 Fernandes, AJS., Da Costa, FM., Duarte, AC., Rocha-Santos, T.,2020. Preparation
 of biological samples for microplastic identification by Nile red. Science of the
 Total Environment, 783. http://doi.org/10.1016/j.scitotenv.2021.147065.
- Qi, Y., Ossowicki, A., Yang, X., Lwanga, E.H., Andreote, D., Geissen, V., Garbeva, P.,
 2020. Effects of plastic mulch film residues on wheat rhizosphere and soil
 properties. Journal of Hazardous Materials, 387, 121711.
 http://doi.org/10.1016/j.jhazmat.2019.121711.
- Qian, J., Tang, S., Wang, P., Lu, B., Li, K., Jin, W., He, X., 2021. From source to sink:
 Review and prospects of microplastics in wetland ecosystems. Science of the Total
 Environment, 758, 143633. http://doi.org/10.1016/j.scitotenv.2020.143633.
- Rainieri, S., Barranco, A., 2019. Microplastics, a food safety issue? Trends in food
 Science & Technology, 84, 55-57. http://doi.org/10.1016/j.tifs.2018.12.009.
- Ramkumar, M., Balasubramani, K., Santosh, M., Nagarajan, R., 2021. The Plastisphere:
 a morphometric genetic classification of plastic pollutants in the natural
 environment, Gondwana Research. https://doi.org/10.1016/j.gr.2021.07.004.

- Rezania, S., Park, J., Md Din, M.F., Mat Taib, S., Talaiekhozani, A., Kumar Yadav, K.,
 Kamyab, H., 2018. Microplastics pollution in different aquatic environments and
 biota: A review of recent studies. Marine Pollution Bulletin, 133, 191-208.
 http://doi.org/10.1016/j.marpolbul.2018.05.022.
- Rillig, Matthias, C., 2012. Microplastic in terrestrial ecosystems and the soil?
 Environmental Science and Technology, 46(12), 6453-6454.
 http://doi.org/10.1021/es302011r.
- Roblin, B., Ryan, M., Vreugdenhil, A., Aherne, J., 2020. Ambient atmospheric deposition of anthropogenic microfibers and microplastics on the Western
 Periphery of Europe (Ireland). Environmental Science and Technology, 54(18), 11100-11108. http://doi.org/10.1021/acs.est.0c04000.
- Russo, M.A., Santarelli, D.M., O Rourke, D., 2017. The physiological effects of slow
 breathing in the healthy human. Breathe, 13(4), 298-309.
 http://doi.org/10.1183/20734735.009817.
- Santana-Viera, S., Montesdeoca-Esponda, S., Torres-Padrón, M.E., Sosa-Ferrera, Z.,
 Santana-Rodríguez, J.J., 2021. An assessment of the concentration of
 pharmaceuticals adsorbed on microplastics. Chemosphere, 266, 129007.
 http://doi.org/10.1016/j.chemosphere.2020.129007.
- Santos Galva, L. D., Sarti Fernandes, E. M, Ferreira, R. Reis., Santos Rosa, D. D.,
 Wiebeck, H'elio., 2022. Critical steps for microplastics characterization from the
 atmosphere. Journal of Hazardous Materials, 424, 127668.
 http://doi.org/10.1016/j.jhazmat.2021.127668
- Sarah, Piehl, Anna, Leibner, Martin, G, J, Der, L., Dris, R., 2018. Identification and
 quantification of macro- and microplastics on an agricultural farmland. Scientific
 Reports, 8(1), 17950. http://doi.org/10.1038/s41598-018-36172-y.
- Schirinzi, G.F., Perez-Pomeda, I., Sanchis, J., Rossini, C., Farre, M., Barcelo, D., 2017.
 Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral
 and epithelial human cells. Environmental Research, 159, 579-587.
 http://doi.org/10.1016/j.envres.2017.08.043.
- Shim, W.J., Hong, S.H., Eo, S., 2016. Identification methods in microplastic analysis:
 a review. Analytical Methods, 9(9), 1384-1391.
 http://doi.org/10.1039/C6AY02558G.
- Shao, L.Y., Hu, Y., Shen, R.R., Schäfer, K., Wang, J., Wang, J.Y., Schnelle-Kreis, J.,
 Zimmermann, R., BéruBé, K., Suppan, P., 2017. Seasonal variation of particleinduced oxidative potential of airborne particulate matter in Beijing. Science of
 the Total Environment, 579, 1152-1160.
 https://doi.org/10.1016/j.scitotenv.2016.11.094.
- Shao, L.Y., Li, J., Zhang, M.Y., Wang, X.M., Li, Y.W., Jones, T., Feng, X.L., Silva
 L.F.O., Li W.J., 2021, Morphology, composition and mixing state of individual
 airborne particles: Effects of the 2017 Action Plan in Beijing, China. Journal of
 Cleaner Production, 329, 129748. https://doi.org/10.1016/j.jclepro.2021.129748
- Shao, L.Y., Liu, P.J., Jones, T., Yang, S.S., Wang, W.H., Zhang, D.Z., Li Y.W., Yang, C.X., Xing, J.P., Hou, C., Zhang, M.Y., Feng, X.L., Li, WJ., BéruBé, K., 2022. A
 review of atmospheric individual particle analyses: Methodologies and

- 1313applications in environmental research.Gondwana Research.1314https://doi.org/10.1016/j.gr.2022.01.007.
- Shen, M., Ye, S., Zeng, G., Zhang, Y., Xing, L., Tang, W., Wen, X., Liu, S., 2020. Can
 microplastics pose a threat to ocean carbon sequestration? Marine Pollution
 Bulletin. 150, 110712. https://doi.org/10.1016/j.marpolbul.2019.110712
- Silva, A.B., Bastos, A.S., Justino, C.I.L., Da Costa, J.P., Duarte, A.C., Rocha-Santos, 1318 T.A.P., 2018. Microplastics in the environment: Challenges in analytical 1319 chemistry Α review. Analytica Chimica 1017, 1-19. 1320 -Acta, http://doi.org/10.1016/j.aca.2018.02.043. 1321
- Sommer, F., Dietze, V., Baum, A., Sauer, J., Gilge, S., Maschowski, C., Gieré, R., 2018.
 Tire Abrasion as a Major Source of Microplastics in the Environment. Aerosol and
 Air Quality Research, 18, 2014-2028. http://doi.org/10.4209/aaqr.2018.03.0099.
- Sridharan, S., Kumar, M., Singh, L., S. Bolan, N., Saha, M., 2021. Microplastics as an
 emerging source of particulate air pollution: a critical review. Journal of Hazardous
 Materials.418, 126254. https://doi.org/10.1016/j.jhazmat.2021.126245
- Stanton, T., Johnson, M., Nathanail, P., Naughtan, M., Gomes, R.L., 2019. Freshwater
 and airborne textile fibre populations are dominated by 'natural', not microplastic,
 fibers. Science of the Total Environment, 666, 377-389.
 http://doi.org/10.1016/j.scitotenv.2019.02.278.
- Stolte, A., Forster, S., Gerdts, G., Schubert, H., 2015. Microplastic concentrations in
 beach sediments along the German Baltic coast. Marine pollution bulletin, 99(12), 216. http://doi.org/10.1016/j.marpolbul.2015.07.022.
- Suaria, G., Achtypi, A., Perold, V., Lee, J.R., Ryan, P.G., 2020. Microfibers in oceanic
 surface waters: A global characterization. Science Advances, 2020, 6(23),
 eaay8493. http://doi.org/10.1126/sciadv.aay8493.
- Sun, J., Zhu, Z.R., Li, W.H., Yan, X., Ni, B.J., 2021. Revisiting microplastics in landfill
 leachate: Unnoticed tiny microplastics and their fate in treatment works. Water
 Research, 190(4), 116784. http://doi.org/10.1016/j.watres.2020.116784.
- Sven, H., Knepper, T.P., 2018. Instrumental analysis of microplastics- benefits and
 challenges. Analytical & Bioanalytical Chemistry, 410, 6343-6352.
 http://doi.org/10.1007/s00216-018-1210-8.
- Syafei, A. D, Nurasrin, N. R, Assomadi, A. F, Boedisantoso, R., 2019. Microplastic
 Pollution in the ambient air of surabaya, Indonesia. Current World Environment,
 14, 290-298. http://doi.org/10.12944/CWE.14.2.13.
- Szewc, K., Graca, B., Doga, A., 2021. Atmospheric deposition of microplastics in the
 coastal zone: Characteristics and relationship with meteorological factors. Science
 of the Total Environment, 2020, 761(1).
 http://doi.org/10.1016/j.scitotenv.2020.143272.
- Tan, J., Fu, J.S., Carmichael, G.R., Itahashi, S., Wang, Z., 2020. Why do models
 perform differently on particulate matter over East Asia? A multi-model
 intercomparison study for MICS-Asia III. Atmospheric Chemistry and Physics,
 20(12), 7393-7410. http://doi.org/10.5194/acp-20-7393-2020.
- Thompson, R.C., Ylva, O., Mitchell, R.P., Anthony, D., Rowland, S.J., John, A.W.G.,
 Daniel, M.G., Russell, A.E., 2004. Lost at sea: where is all the plastic? Science.

- 1357 304(5672), 838. http://doi.org/10.1126/science.1094559.
- Tian, Z., Sommer, F., Dietze, V., Baum, A., Gieré, R., 2017. Coarse-particle passivesmpler measurements and single-particle analysis by transmitted light microscopy
 at highly frequented motorways. Aerosol and Air Quality Research, 2017, 17(8),
 1939-1953. http://doi.org/10.4209/aaqr.2017.02.0064.
- Toussaint, B., Raffael, B., Angers-Loustau, A., Gilliland, D., Kestens, V., Petrillo, M.,
 Rio-Echevarria, I.M., Guy, V.D.E., 2019. Review of micro- and nanoplastic
 contamination in the food chain. Food Additives & Contaminants, Part A36, 1-35.
 http://doi.org/10.1080/19440049.2019.1583381.
- Tunahan Kaya, A., Yurtsever, M., Çiftçi Bayraktar, S., 2018. Ubiquitous exposure to
 microfiber pollution in the air. European Physical Journal Plus, 133(11).
 http://doi.org/10.1140/epjp/i2018-12372-7.
- Uddin, S., Fowler, S.W., Saeed, T., 2020. Microplastic particles in the Persian/Arabian
 Gulf A review on sampling and identification. Marine Pollution Bulletin, 154,
 111100. http://doi.org/10.1016/j.marpolbul.2020.111100.
- 1372 Van, C. L., Claessens, M., Vandegehuchte, M.B., Janssen, C.R., 2015. Microplastics
 1373 are taken up by mussels (Mytilus edulis) and lugworms (Arenicola marina) living
 1374 in natural habitats. Environmental pollution, 199, 10-17.
 1375 http://doi.org/10.1016/j.envpol.2015.01.008.
- Vianello, A., Jensen, R.L., Liu, L., Vollertsen, J., 2019. Simulating human exposure to
 indoor airborne microplastics using a breathing thermal manikin. Scientific
 Reports, 9(1).8670. http://doi.org/10.1038/s41598-019-45054-w.
- Wang, C., Zhao, J., Xing, B., 2021a. Environmental source, fate, and toxicity of
 microplastics. Journal of Hazardous Materials, 407,124357.
 http://doi.org/10.1016/j.jhazmat.2020.124357.
- Wang, X., Liu, K., Zhu, L., Li, C., Li, D., 2021b. Efficient transport of atmospheric microplastics onto the continent via the East Asian summer monsoon. Journal of Hazardous Materials, 414(5), 125477.
 http://doi.org/10.1016/j.jhazmat.2021.125477.
- Wang, C.Q., Sun, R.R., Huang, R., Wang, H., 2021c. Superior fenton-like degradation
 of tetracycline by iron loaded graphite carbon derived from microplastics:
 synthesis, catalytic performance, and mechanism. Separation and Purification
 Technology, 270, 118773. http://doi.org/10.1016/j.seppur.2021.118773.
- 1390 Wang, W.H., Shao, L.Y., Mazzoleni, C., Li, Y.W., Kotthaus, S., Grimmond, S., Bhandari, J., Xing, J.P., Zhang, M.Y., Shi, Z.B., 2021c. Measurement report: Comparison of 1391 wintertime individual particles at ground level and above the mixed layer in urban 1392 Atmospheric Chemistry and Physics, 21(7), 5301-5314. 1393 Beijing. http://doi.org/10.5194/acp-21-5301-2021 1394
- Wang, C., Zhou, S., He, Y., Wang, J., Wang, F., 2017a. Developing a black carbonsubstituted multimedia model for simulating the PAH distributions in urban
 environments. Scientific Reports, 7(1), 14548. http://doi.org/10.1038/s41598-01714789-9.
- Wang, L., Zhang, J., Hou, S., Sun, H., 2017b. A simple method for quantifying
 polycarbonate and polyethylene terephthalate microplastics in environmental

- 1401 samples by liquid chromatography-Tandem Mass Spectrometry. Environmental
 1402 Science and Technology Letters, 2017, 4(12), 530-534.
 1403 http://doi.org/10.1021/acs.estlett.7b00454.
- Wang, J., Peng, J., Tan, Z., Gao, Y., Zhan, Z., Chen, Q., Cai, L., 2017c. Microplastics
 in the surface sediments from the Beijiang river littoral zone: composition,
 abundance, surface textures and interaction with heavy metals. Chemosphere, 171,
 248-258. http://doi.org/10.1016/j.chemosphere.2016.12.074.
- Wang, T., Li, B., Zou, X., Wang, Y., Li, Y., Xu, Y., Mao, L., Zhang, C., Yu, W., 2019.
 Emission of primary microplastics in mainland China: Invisible but not negligible.
 Water Resources, 162, 214-224.
- Wang, X., Li, C., Liu, K., Zhu, L., Li, D., 2020a. Atmospheric microplastic over the
 South China Sea and East Indian Ocean: abundance, distribution and source.
 Journal of Hazardous Materials, 389, 121846.
 http://doi.org/10.1016/j.jhazmat.2019.121846.
- Wang, Z., Dong, H., Wang, Y., Ren, R., Qin, X., Wang, S., 2020b. Effects of
 microplastics and their adsorption of cadmium as vectors on the cladoceran Moina
 monogolica Daday: Implications for plastic-ingesting organisms. Journal of
 hazardous materials, 400, 123239. http://doi.org/10.1016/j.jhazmat.2020.123239.
- Wright, S.L., Kelly, F.J., 2017. Plastic and human health: a micro issue? Environmental
 Science & Technology, 51(12), 6634-6647.
 http://doi.org/10.1021/acs.est.7b00423.
- Wright, S.L., Ulke, J., Font, A., Chan, K.L.A., Kelly, F.J., 2020. Atmospheric microplastic deposition in an urban environment and an evaluation of transport.
 Environment International, 136, 105411.
 http://doi.org/10.1016/j.envint.2019.105411.
- 1426 Xu, K., Ai, W., Wang, Q., Tian, L., Liu, D., Zhuang, Z. and Wang, J., 2021.
 1427 Toxicological effects of nanoplastics and phenanthrene to zebrafish (Danio rerio).
 1428 Gondwana Research. https://doi.org/10.1016/j.gr.2021.05.012.
- Yan, M., Nie, H., Xu, K., He, Y., Wang, J., (2018). Microplastic abundance, distribution
 and composition in the pearl river along guangzhou city and pearl river estuary,
 china. Chemosphere, 217, 879886.
 http://doi.org/10.1016/j.chemosphere.2018.11.093.
- Yang, D.P., Zhang, MB., He, J.L., 2003. Detection for DNA damage in human
 lymphocytes induced by four chemicals using comet assay. J Environment Health,
 2003(1): 6-9 (in Chinese with English abstract).
- Yu, P., Liu, Z., Wu, D., Chen, M., Lv, W., Zhao, Y., 2018. Accumulation of polystyrene
 microplastics in juvenile eriocheir sinensis and oxidative stress effects in the liver.
 Aquatic Toxicology, 200, 28-36. http://doi.org/10.1016/j.aquatox.2018.04.015.
- 1439 Zettler, E.R., Mincer, T.J., Amaral-Zettler, L.A., 2013. Life in the "plastisphere":
 1440 microbial communities on plastic marine debris. Environmental Science &
 1441 Technology. 47, 7137–7146. https://doi.org/10.1021/es401288x.
- Zhang, J., Wang, L., Kannan, K., 2020a. Microplastics in house dust from 12 countries
 and associated human exposure. Environment international, 134, 105314.
 http://doi.org/10.1016/j.envint.2019.105314.

- Zhang, K., Xiong, X., Hu, H., Wu, C., Bi, Y., Wu, Y., Zhou, B., Lam, P.K.S., Liu, J.,
 2017. Occurrence and characteristics of microplastic pollution in Xiangxi Bay of
 Three Gorges Reservoir, China. Environmental Science & Technology, 2017,
 51(7), 3794-3801. http://doi.org/10.1021/acs.est.7b00369.
- Zhang, M Y, Shao, L Y, Jones, T, Hu, Y, Adams, R, BéruBé, K, 2022, Hemolysis of
 PM10 on RBCs in vitro: An indoor air study in a coal-burning lung cancer
 epidemic area. Geoscience Frontiers, 13(1),101176,
 https://doi.org/10.1016/j.gsf.2021.101176.
- Zhang W.L., Xu, D.Q., Cui, J.S., 2003, Air pollutant PM_{2.5} monitoring and study on its
 genotoxicity. J Environment Health, 2003(1): 3-6 (in Chinese with English
 abstract).
- Zhang, Y., Kang, S., Allen, S., Allen, D., Sillanp, M., 2020b. Atmospheric
 microplastics: A review on current status and perspectives. Earth-Science Reviews,
 203, 103118. http://doi.org/10.1016/j.earscirev.2020.103118.
- Zhang, Y.L., Gao, T.G., Kang, S.C., Allen, S., Luo, X., Allen, D., 2021. Microplastics
 in glaciers of the tibetan plateau: evidence for the long-range transport of
 microplastics. Science of the Total Environment, 758. 143634.
 http://doi.org/10.1016/j.scitotenv.2020.143634.
- Zhang, Y.L., Gao, T.G., Kang, S.C., Sillanpää, M., 2019. Importance of atmospheric
 transport for microplastics deposited in remote areas. Environmental Pollution,
 254. 112953. http://doi.org/10.1016/j.envpol.2019.07.121.
- Zhou, B., Liang, G.Q., Qin, H.Y., Peng, X.W., Huang, J.L., Li, Q., Qing, L., Zhang,
 L.E., Chen, L., Ye, L., Niu, P.Y., Zou, Y.F., 2014. p53-Dependent apoptosis
 induced in human bronchial epithelial (16-HBE) cells by PM2.5 sampled from air
 in Guangzhou, China. Toxicology Mechanisms and Methods. 24(8):552-559.
 http://doi.org/10.3109/15376516.2014.951814
- 1471 Zhou, B., Wang, J., Zhang, H., Shi, H., Barceló, D., 2019. Microplastics in agricultural
 1472 soils on the coastal plain of Hangzhou Bay, east China: Multiple sources other
 1473 than plastic mulching film. Journal of Hazardous Materials, 388, 121814.
 1474 http://doi.org/10.1016/j.jhazmat.2019.121814.
- 1475 Zhou, L., Shao, L.Y., Liu, J.X., Song, X.Y., 2010. Affects of indoor PM10 in Xuanwei
 1476 on lung cell apoptosis. China Environmental Science, 30(7): 1004-1008 (in
 1477 Chinese with English abstract)
- 1478 Zhou, Q., Tian, C., Luo, G., 2017. Various forms and deposition fluxes of microplastics
 1479 identified in the coastal urban atmosphere. Science Bulletin, 62, 3902-3909.
 1480 http://doi.org/10.1360/N972017-00956.
- 1481 1482

1484 **Figure captions**

1485

- Fig. 1. Schematic illustration showing the sources, transport paths and fate of airborne
 microplastics and the interaction with pedosphere, hydrosphere and human community.
- Fig. 2. Two methods for microplastic sampling in the atmosphere. (A) Passiveatmospheric deposition. (B) Active pumping sampler.
- 1491
- 1492 Fig. 3. Principles of collection, preparation and identification of airborne microplastics.1493

Fig. 4. SEM images of MPs. (a) Fragments MPs, (b) film MPs, (c), fibrous MPs and (d)
Spherical MPs, (e) fibrous MPs and (f) film MPs. (a), (b) and (d) were collected in
Beijing, China; (c) was collected in Beijing, China by Li et al. (2020), with permission
from Elsevier (License number: 5223390347409);(e) and (f) were collected in
Hangzhou, China.

- Fig. 5. Optical microscope images of different types of MPs. (a) fibrous MPs, (b) film
 MPs, (c) film MPs, (d) spherical MPs, (e) fragmented MPs. Modified after Abbasi et al.
 (2019), with permission from Elsevier (License number: 5223490330353).
- 1503

1499

1504 Fig. 6. Degradation process of microplastics and its impact on humans.

- Partly derived by Abbasi et al. (2019), with permission from Elsevier (License number:5223490330353).
- 1507

1508 Fig. S1. Publication trend of related literature on microplastic contamination in1509 atmosphere.

1510

1511

1512

1513	Table captions
1514	
1515	Table 1. Different sampling techniques for collection of microplastics.
1516	
1517	Table 2. The density of microplastics in aerosol and suitable solutions used for
1518	separation.
1519	
1520	Table 3. Different methods and techniques used for laboratory identification of
1521	microplastics in atmospheric samples.
1522	
1523	Table 4. Morphological types of individual MP particles
1524	
1525	Table 5. Physical and chemical characteristics of airborne microplastics in some
1526	megacities.
1527	
1528	
1529	Table S1. Published papers on atmospheric microplastics between 2015 and 2020.
1530	
1531	Table S2. Sample collection, processing, and identification of microplastics from
1532	atmospheric samples
1533	
1534	Table S3. Physical and chemical characteristics of airborne MPs.
1535	
1536	
1537	
1538	
1539	
1540	
1541	
1542	
1543	
1544	
1545	
1546	
1547	
1548	
1549	
1550	
1551	
1552	
1553	
1554	

1555 Figures 1556 1557 Deposition Pedosphere Microplastics Weathering Re-suspension Wind Airborne Microplastics Deposition Atmospheric Transport Human Hydrosphere Inhalation **Re-suspension** Ingestion 1558

Fig. 1. Schematic illustration showing the sources, transport paths and fate of airbornemicroplastics and the interaction with pedosphere, hydrosphere and human community.

1561

1562

1564

Fig. 2. Two methods for microplastic sampling in the atmosphere. (A) Passive
atmospheric deposition. (B) Active pumping sampler.

1571 Fig. 3. Principles of collection, preparation and identification of airborne microplastics.

1577

Fig. 4. SEM images of MPs. (a) Fragments MPs, (b) film MPs, (c), fibrous MPs and (d)Spherical MPs, (e) fibrous MPs and (f) film MPs.

1580 (a), (b) and (d) were collected in Beijing, China; (c) was collected in Beijing, China by

Li et al. (2020), with permission from Elsevier (License number: 5223390347409);(e)

- 1582 and (f) were collected in Hangzhou, China.
- 1583

1586 Fig. 5. Optical microscope images of different types of MPs. (a) fibrous MPs, (b) film

1587 MPs, (c) film MPs, (d) spherical MPs, (e) fragmented MPs. Modified after Abbasi et al. (2010) with normalizing from Electric (License number 5222400220252)

(2019), with permission from Elsevier (License number: 5223490330353).

1593 Fig. 6. Degradation process of microplastics and its impact on humans.

Partly derived by Abbasi et al. (2019), with permission from Elsevier (License number:5223490330353).

1601 Fig. S1. Publication trend of related literature on microplastic contamination in1602 atmosphere.

1604 Tables

1605	Table 1. Different	sampling	techniques	for collection	of microplastics.
------	--------------------	----------	------------	----------------	-------------------

Sampling	mpling Mode		City/	Location	Sampling Technique	Reference
methods	Mout	Matrix	Country	LUCATION		Kelefence
		Dry	Paris,	Outdoor	Samples are collected through a stainless steel	Dris et al.,
		atmospheric	France		funnel, with a 20 L glass bottle placed at the	2015,2016
		deposition			bottom to collect water in an opaque box.	
		Dry	Dongguan,	Outdoor	a glass bottle (30 cm \times 15 cm)	Cai et al.,
		atmospheric	China			2017
	The funnel collects the	deposition				
	fallout in the container.	Dry/wet	Central	Outdoor	Aluminum rain gauge with a 200 mm diameter	Wright et
		atmospheric	London, UK		(0.03 m^2) ; samples collected 50 m above	al., 2020
		deposition			ground	
Dessive		Dry/wet	Gdynia,	Outdoor	steel funnel (Ø 65 cm,0.33 m ²), and 20 L glass	Szewc et
Passive		atmospheric	Poland		jar with an aluminium cap	al., 2021
		deposition				
		Dustfall	Bushehr,	Outdoor	Brush and pan; About 500 g of dustfall were	Abbasi et
			Iran		collected within a 5 meter radius of the	al. 2017
	Callest a contain ana				sampling site	
	(main a certain area	Dustfall	39 major	Outdoor	Pre-Cleaned Aluminium-Lined paper bags,	Liu et al.,
	(weight) of dustiali;		cities in		dust samples collected from balconies and	2019
	Antistatic orush		China		Window sill	
		Snow	Bremen,	Outdoor	Spoon to collect freshly surface snow deposits	Bergmann
			Germany		into glass jar	et al., 2019

		Dustfall	Beijing,	Outdoor	Pre-Cleaned Aluminium-Lined paper bags,	Li et al.,
			China		dust samples collected from the surface of	2020
					public facilities.	
	Atmospheric particles are	Total	Freiburg,	Outdoor	a petri dish with adhesive or on a glass slide	Sommer et
	collected in a petri dish	suspended	Germany		with adhesive.1.5 m height and at a horizontal	al. 2018
	with adhesive or on a glass	particulate			distance of 4.6 m from the roadway	
	slide with adhesive using					
	a sampler with a wind-					
	sheltered and a low					
	turbulent air volume.					
Active		Aerosol	Paris,	Indoor	A pump for drawing air (8 L/ min) and quartz	(Dris et al.,
			France		fiber GF/A Whatman filters (1.6 mm, 47 mm)	2017)
					for Sample collection $(2 - 5 m^3)$ from two sites	
					and an office	
		Aerosol	Asaluyeh,	Outdoor	Volume air sampler (16.67 L/ min); size-	Abbasi et
	Suction numps corosol		Iran		fractionated samples (PM _{2.5} , PM ₁₀ , and TSP)	al., 2019
	suction pump, acrosor				were collected.	
	sample confected at milers	Aerosol	Beijing,	Outdoor	Fliter: MCE; pore size 0.8 µm; diameter 47 mm	Li et al.,
			China		The flow rate: 5 L/ min (particles:TSP)	2020
		Aerosol	The	Outdoor	GF/A glass microfiber filters (1.6 μ m pore size,	Wang et
			southeastern		90 mm diameter) at a sampling flow rate of	al., 2021b
			coast of		$100 \pm 0.1 \text{ L/min}$	
			china			

1609 Table 2. The density of microplastics in aerosol and suitable solutions used for 1610 separation.

	Dereciter	Solutions (g cm ⁻³)					
Polymer type of MPs	Density	NaCl	NaI	KI	ZnCl ₂		
	(g cm °)	(1.2)	(1.60)	(1.67)	(3.02)		
Polyethylene (PE)	0.910 - 0.925	\checkmark	\checkmark	\checkmark	\checkmark		
Ethylene vinyl acetate (EVA)	0.93 - 0.95	\checkmark	\checkmark	\checkmark	\checkmark		
Polyethylene (HDPE)	0.959 - 0.965	\checkmark	\checkmark	\checkmark	\checkmark		
Polypropylene (PP)	0.90 - 0.91	\checkmark	\checkmark	\checkmark	\checkmark		
Polyamide (Nylon)	1.02 - 1.05	\checkmark	\checkmark	\checkmark	\checkmark		
Polystyrene (PS)	1.04 - 1.10	\checkmark	\checkmark	\checkmark	\checkmark		
Acrylonitrile butadiene styrene (ABS)	1.05 - 1.18	\checkmark	\checkmark	\checkmark	\checkmark		
Acrylic	1.09 - 1.20	\checkmark	\checkmark	\checkmark	\checkmark		
Polypheylene ether (PPE/PPO)	1.10 - 1.13	\checkmark	\checkmark	\checkmark	\checkmark		
Polyamide (Nylon 6 / Nylon 66)	1.13 - 1.15	\checkmark	\checkmark	\checkmark	\checkmark		
Polyvinylchloride (PVC)	1.16 - 1.58	\checkmark	\checkmark	\checkmark	\checkmark		
Poly methyl methacrylate (PMMA)	1.16 - 1.20	\checkmark	\checkmark	\checkmark	\checkmark		
Polycarbonate (PC)	1.20 - 1.22		\checkmark	\checkmark	\checkmark		
Polyurethane (PU)	1.20 - 1.26		\checkmark	\checkmark	\checkmark		
Alkyd	1.24 - 2.10		\checkmark	\checkmark	\checkmark		
Polyster	1.24 - 2.30		\checkmark	\checkmark	\checkmark		
Polyethylene terephthalate (PET)	1.29 - 1.40		\checkmark	\checkmark	\checkmark		
Polyformaldehyde (POM)	1.39 - 1.43		\checkmark	\checkmark	\checkmark		
Polyoximethylene	1.41 - 1.61		\checkmark	\checkmark	\checkmark		
Polyvinylidene difluoride (PVDF)	1.70 - 1.80			\checkmark	\checkmark		
Polyvinyl alcohol (PVA)	1.91 - 2.31			\checkmark	\checkmark		
Polytetrafluoroethylene (PTFE)	2.10 - 2.30			\checkmark	\checkmark		

1615 Table 3. Different methods and techniques used for laboratory identification of microplastics in atmospheric samples.

Identification methods /	Limit of detection	Features of the outcome	Analysis and identification results	Reference
techniques	detection			
Stereoscopic	particle sizes (>	Shapes, Colors, opacity, size,	Fibers (> 90%), Fragments (~ 10%);	Dris et al.,
microscopy	500 µm)	and the number concentrations	Blue, Red	2015
			Size 100 - 5000 μm (50% fibres > 1000 μm)	
			29 - 280 particle/ m ² / day	
SEM- EDX	0.2 nm	Shapes, microstructure, size,	Fibers (Beijing, China); Spherules, Films (Asaluyeh, Iran)	Li et al., 2020
		and the number Concentrations,	Size 5 - 600 μm (Beijing, China); 100 - > 1000 μm (Asaluyeh,	Abbasi et al.,
		elemental compositions	Iran)	2019
			Concentration 5.7×10 ⁻³ f/ ml (Beijing, China); 0.3 - 1.1 n/	
			m ³ (Asaluyeh, Iran)	
FTIR	particle sizes (>	Tyeps of organic compounds	Polyester, Polyacrylonitrile, Nylon, Polyethylene,	Liu et al.,2019a
	10 µm)	(functional groups)	Polypropylene, Poly(ethylene: propylene), Acrylic,	Suaria et al.,
			Polyurethane, Polyethylenimine	2020
Raman	particle sizes (>	Tyeps of organic compounds	Polystyrene, Polyethylene, Polypropylene, Polyethylene	Allen et al.,
spectroscopy	1 μm)	(functional groups)	terephthalate; polystyrene polycarbonate	2019
				Maghsodian et
				al., 2021
HPLC-MS-	-	Tyeps of organic compounds	Polyethylene terephthalate, Polycarbonate	Wang et al.,
MS		(molecular mass)		2017b
PYR-GC-MS	-	Tyeps of organic compounds	Polyvinyl chloride, polymer, polypropylene and	Hendrickson et
		(molecular mass)	polyethylene.	al., 2018
TD-GC-MS	-	Tyeps of organic compounds	polypropylene, polyethylene and polystyrene	Chen et al.,

		(molecular mass)		2020		
TED-GC-MS	-	Tyeps of organic compounds	Polyethylene, Polystyrene, Polypropylene, Polyethylene	Funck	et	al.,
		(molecular mass)	terephthalate	2021		
TGA	-	Chemical compositions	polypropylene, polyethylene and polystyrene	Chen	et	al.,
		(thermal stability)		2020		
ICP-MS		Elemental compositions	Metal elements in MPs (Ni, Cd, Pb, Cu, Zn and Ti)	Wang	et	al.,
				2017c		
Hyperspectral	particle sizes (>	Tyeps of organic compounds	polystyrene	Kitaha	shi e	et al.,
camera	100 µm)	(functional groups)		2021		
IRMS	20 µg	Sources of microplastics	Higher values are expected for plant derived materials and	Birch	et	al.,
		$(\delta^{13}C \text{ values})$	lower values are expected for petroleum-based plastics.	2021)		
			(polyethylene terephthalate, high- and low-density			
			polyethylene, polypropylene, polystyrene, polyvinyl			
			chloride, polylactic acid, acrylonitrile butadiene styrene and			
			polyester)			

1620 Table 4. Morphological types of individual MP particles

Morphological types	Major characteristics	References
Fiber	Aspect ratio equal to or greater than 3:1,	Dris et al., 2016
	including fowling sub-types according to length	Abbasi et al., 2017;
	(L):	Cai et al., 2017;
	very long (1000 μ m \leq L)	Dehghani et al., 2017
	long (500 μ m \leq L $<$ 1 000 μ m)	Li et al., 2020;
	middle (250 μ m \le L $<$ 500 μ m)	Wright et al., 2020
	short (100 $\mu m \leq L < 250$ μm), and	
	very short (L < 100 μ m)	
Sphere/Pellet	Spherical or subspherical	
Fragments	Irregular shape, hexagon, or polygon	
Film	Irregular shape	
Foam	Irregular shape	

1624 Table 5. Physical and chemical characteristics of airborne microplastics in some megacities.

Collection location	Sample Matrix	MPs Concentra tion	Shape Classification	Size range	Fiber category	Polymer	Color	Surface mechanical wear	Reference
Paris, France	Atmospheri c fallout (passive)	Urban: 2 - 355 particles/ m ² / day avg. 110 ± 96 particle/ m ² / day Suburban: Avg.: 53 ± 38 particles/ m ²	Fibers Fragment	50 - 200 μm: 3% 200 - 600 μm: 42% 600 - 1400 μm: 40% 1400 - 4850 μm: 15%	Long very long	PET; PA; PET–PU; cotton–PA	N/A	N/A	Dris et al., 2016
Hamburg,Ger many	Atmospheri c deposition wet and dry (passive)	Avg. 275 n/ m ² / day (Median range: 136 - 512 particles/ m ² / day)	Fragment Fibers	Fragments : < 63 μm: 60%, 63 - 300 μm: 30% > 300 μm: 20% Fibres:	Long very long	PE, EVAC, PTFE, PVA, PET	bright yellow to white	N/A	(Klein and Fischer, 2019)

				300 - 5000 μm: 68% 63 - 300 μm: 25% < 63 μm: 7%					
Shanghai, China	Aerosol (passive)	0 - 4.18 n/ m ³ (average 1.42 ± 1.42 n/ m ³)	Fibers fragment, sphere/pellets	Fibres: 23 - 1000 μm: 87%	Long	PET, PE, PES, PAN, PAA, EVA, RY, EP, ALK	blue, black, red, transpa rent, brown, green, yellow, grey	N/A	(Liu et al, 2019b)
London, UK	Atmospheri c fallout (passive)	Fibrous: 510 - 925 MP/ m^2/ day (average 712 $\pm 162MP/$ m^2/ day). Non-fibrous: 12 - 99 MP/ m^2/ day , (average of 59 ± 32 MP/	Fibers fragment, films	Fibers: Most abundant 400 - 500 μm	Middle	Polyacrylo nitrile, Polyester, Polyamaid e	N/A	N/A	(Wright et al., 2020)

		m ² / day). Total MPs Deposition rate from 575 - 1008 MP/ m ² / day.							
Beijing, China	Aerosol (active)	А	Fibers	Fibres: 5 - 200 µm	Short	N/A	N/A	YES	(Li et al., 2020)
Dongguan, China	Atmospheri c fallout (dry & wet deposition) (passive)	36 ± 7 particles/ m ² / day (average of three sites), Deposition rate175 - 313 particles/ m ² / day	Fibers (80%), fragments , Films, Foam	200 – 4200 μm (majority of fibres to be 200 - 700 μm in length)	Short Middle	PE, PP, PS	Blue, Red, Transp arent, Grey	YES	(Cai et al.,2017)
Surabaya, Indonesia	Aerosol (passive)	55.93 - 174.97 particles/ m ³	Fibers, fragments, films	< 500 - 5000 μm	Long very long	Polyethene terephthala te, polyester, cellophane	N/A	N/A	(Syafei et al., 2019)

1628Table S1. Published papers on atmospheric microplastics between 2015 and 2020

No.	Authors	Article Title	Source Title	DOI	Volume	Page	Article	Publication
							Number	Year
1	Ding, Yongcheng	The abundance and	Atmospheric	10.1016/j.atmosenv.2021.118389	253		118389	2021
	et al	characteristics of	Environment					
		atmospheric						
		microplastic						
		deposition in the						
		northwestern South						
		China Sea in the fall						
2	Huang, Yumei et	Atmospheric	Journal Of	10.1016/j.jhazmat.2021.126168	416		126168	2021
	al	transport and	Hazardous					
		deposition of	Materials					
		microplastics in a						
		subtropical urban						
		environment						
3	Dong, Huike et al	Microplastics in a	Environmental	10.1021/acs.est.1c03227	55	12951-		2021
		Remote Lake Basin	Science &			12960		
		of the Tibetan	Technology					
		Plateau: Impacts of						
		Atmospheric						
		Transport and Glacial						
		Melting						

4	Bain, Alison;	Hygroscopicity of	Environmental	10.1021/acs.est.1c04272	55	11775-		2021
	Preston, Thomas	Microplastic and	Science &			11783		
	С.	Mixed Microplastic	Technology					
		Aqueous Ammonium						
		Sulfate Systems						
5	Zhang, Yulan et al	Microplastics in	Science Of The	10.1016/j.scitotenv.2020.143634	758		143634	2021
		glaciers of the	Total Environment					
		Tibetan Plateau:						
		Evidence for the						
		long-range transport						
		of microplastics						
6	Can-Güven, Emine	Microplastics as	Air Quality	10.1007/s11869-020-00926-3	14	203-215		2021
		emerging	Atmosphere And					
		atmospheric	Health					
		pollutants: a review						
		and bibliometric						
		analysis						
7	Allen, S. et al	Evidence of free	Nature	10.1038/s41467-021-27454-7	12		7242	2021
		tropospheric and	Communications					
		long-range transport						
		of microplastic at Pic						
		du Midi Observatory						
8	Agathokleous,	Ecological risks in a	Journal Of	10.1016/j.jhazmat.2021.126035	417		126035	2021
	Evgenios et al	'plastic' world: A	Hazardous					
		threat to biological	Materials					
		diversity?						

9	Brahney, Janice et	Constraining the	Proceedings Of	10.1073/pnas.2020719118	118		e2020719118	2021
	al	atmospheric limb of	The National					
		the plastic cycle	Academy Of					
			Sciences Of The					
			United States Of					
			America					
10	Huang, Danlian et	Microplastics and	Journal Of	10.1016/j.jhazmat.2020.124399	407		124399	2021
	al	nanoplastics in the	Hazardous					
		environment:	Materials					
		Macroscopic						
		transport and effects						
		on creatures						
11	Sridharan, Srinidhi	Microplastics as an	Journal Of	10.1016/j.jhazmat.2021.126245	418		126245	2021
	et al	emerging source of	Hazardous					
		particulate air	Materials					
		pollution: A critical						
		review						
12	Wang, Yi et al	Airborne	Bulletin Of	10.1007/s00128-021-03180-0	107	657-664		2021
		Microplastics: A	Environmental					
		Review on the	Contamination					
		Occurrence,	And Toxicology					
		Migration and Risks						
		to Humans						
13	Yang, Huirong et	Characteristics,	Nanomaterials	10.3390/nano11102747	11		2747	2021
	al	Toxic Effects, and						
		Analytical Methods						

		of Microplastics in						
1.4	Denall Learne Dert	Direct maliation	Natara	10 1029/-4159/-021 029/4	509	462 467		2021
14	Revell, Laura E et	Direct radiative	Nature	10.1038/\$41586-021-03864-x	598	462-467		2021
	al	effects of airborne						
		microplastics						
15	Wang, Xiaohui et	Efficient transport of	Journal Of	10.1016/j.jhazmat.2021.125477	414		125477	2021
	al	atmospheric	Hazardous					
		microplastics onto	Materials					
		the continent via the						
		East Asian summer						
		monsoon						
16	Smyth, Kelsey et al	Bioretention cells	Water Research	10.1016/j.watres.2020.116785	191		116785	2021
		remove microplastics						
		from urban						
		stormwater						
17	Hamilton, Bonnie	Microplastics around	Science Of The	10.1016/j.scitotenv.2021.145536	773		145536	2021
	M et al	an Arctic seabird	Total Environment					
		colony: Particle						
		community						
		composition varies						
		across environmental						
		matrices						
18	Beaurepaire, Max	Microplastics in the	Current Opinion In	10.1016/j.cofs.2021.04.010	41	159-168		2021
	et al	atmospheric	Food Science					
		compartment: a						
		comprehensive						

		review on methods,					
		results on their					
		occurrence and					
		determining factors					
19	Akanyange,	Does microplastic	Science Of The	10.1016/j.scitotenv.2021.146020	777	146020	2021
	Stephen Nyabire et	really represent a	Total Environment				
	al	threat? A review of					
		the atmospheric					
		contamination					
		sources and potential					
		impacts					
20	Gonzalez-Pleiter,	Occurrence and	Science Of The	10.1016/j.scitotenv.2020.143213	761	143213	2021
	Miguel et al	transport of	Total Environment				
		microplastics					
		sampled within and					
		above the planetary					
		boundary layer					
21	Tran-Nguyen-Sang	Microplastic in	Chemosphere	10.1016/j.chemosphere.2021.129874	272	129874	2021
	Truong et al	atmospheric fallouts					
		of a developing					
		Southeast Asian					
		megacity under					
		tropical climate					
22	Bullard, Joanna E	Preferential transport	Atmospheric	10.1016/j.atmosenv.2020.118038	245	118038	2021
	et al	of microplastics by	Environment				
		wind					

23	Parker-Jurd,	Quantifying the	Marine Pollution	10.1016/j.marpolbul.2021.112897	172		112897	2021
	Florence N. F et al	release of tyre wear	Bulletin					
		particles to the						
		marine environment						
		via multiple						
		pathways						
24	Chen, Jiaxin et al	A review on the	Environmental	10.1080/26395940.2021.1960198	33	227-246		2021
		occurrence,	Pollutants And					
		distribution,	Bioavailability					
		characteristics, and						
		analysis methods of						
		microplastic						
		pollution in						
		ecosystem s						
25	Yao, Ying et al	Characterization of	Environmental	10.1016/j.envres.2021.112142			112142	2021
		microplastics in	Research					
		indoor and ambient						
		air in northern New						
		Jersey.						
26	Pires, Ana; Sobral,	Application of failure	Waste	10.1177/0734242X211003133	39	744-753		2021
	Paula	mode and effects	Management &					
		analysis to reduce	Research					
		microplastic						
		emissions						

27	Patil, Sakshi et al	Environmental	Environmental	10.1007/s11356-020-11700-4	28	4951-4974		2021
		prevalence, fate,	Science And					
		impacts, and	Pollution Research					
		mitigation of						
		microplastics-a						
		critical review on						
		present						
		understanding and						
		future research scope						
28	Senathirajah, Kala	Estimation of the	Journal Of	10.1016/j.jhazmat.2020.124004	404		124004	2021
	et al	mass of microplastics	Hazardous					
		ingested - A pivotal	Materials					
		first step towards						
		human health risk						
		assessment						
29	Chaudhry, Akshay	Microplastics' origin,	Regional Studies	10.1016/j.rsma.2021.102018	48		102018	2021
	Kumar; Sachdeva,	distribution, and	In Marine Science					
	Payal	rising hazard to						
		aquatic organisms						
		and human health:						
		Socio-economic						
		insinuations and						
		management						
		solutions						
30	Choi, Yu Ri et al	Plastic contamination	Journal Of Soils	10.1007/s11368-020-02759-0	21		1962-1973	2021
		of forest, urban, and	And Sediments					

		agricultural soils: a case study of Yeoju City in the Republic of Korea						
31	Hu, Wei et al	Photochemical Degradation of Organic Matter in the Atmosphere	Advanced Sustainable Systems	10.1002/adsu.202100027	5		2100027	2021
32	O'Brien, Stacey et al	Quantification of selected microplastics in Australian urban road dust	Journal Of Hazardous Materials	10.1016/j.jhazmat.2021.125811	416		125811	2021
33	Ali, Muhammad Ubaid et al	Environmental emission, fate and transformation of microplastics in biotic and abiotic compartments: Global status, recent advances and future perspectives	Science Of The Total Environment	10.1016/j.scitotenv.2021.148422	791		148422	2021
34	Hollerova, Aneta et al	Microplastics as a potential risk for aquatic environment organisms - a review	Acta Veterinaria Brno	10.2754/avb202190010099	90	99-107		2021
35	Liao, Zhonglu et al	Airborne	Journal Of	10.1016/j.jhazmat.2021.126007	417	126007	2021	
----	---------------------	-----------------------	-------------------	---------------------------------	-----	--------	------	
		microplastics in	Hazardous					
		indoor and outdoor	Materials					
		environments of a						
		coastal city in						
		Eastern China						
36	Kernchen, Sarmite	Airborne	The Science Of	10.1016/j.scitotenv.2021.151812		151812	2021	
	et al	microplastic	The Total					
		concentrations and	Environment					
		deposition across the						
		Weser River						
		catchment.						
37	Penalver, Rosa et	Assessing the level	Science Of The	10.1016/j.scitotenv.2021.147656	787	147656	2021	
	al	of airborne	Total Environment					
		polystyrene						
		microplastics using						
		thermogravimetry-						
		mass spectrometry:						
		Results for an						
		agricultural area						
38	Alfonso, Maria B	Continental	Science Of The	10.1016/j.scitotenv.2021.149447	799	149447	2021	
	et al	microplastics:	Total Environment					
		Presence, features,						
		and environmental						
		transport pathways						

39	Padha, Shaveta et	Microplastic	Environmental	10.1016/j.envres.2021.112232			112232	2021
	al	pollution in mountain	Research					
		terrains and foothills:						
		A review on source,						
		extraction, and						
		distribution of						
		microplastics in						
		remote areas.						
40	Huang, Daofen et	Effect of cadmium	Ecotoxicology And	10.1016/j.ecoenv.2020.111255	207		111255	2021
	al	on the sorption of	Environmental					
		tylosin by	Safety					
		polystyrene						
		microplastics						
41	Wang, Yuan et al	Effects of exposure	Chemical	10.1016/j.cej.2020.126412	404		126412	2021
		of polyethylene	Engineering					
		microplastics to air,	Journal					
		water and soil on						
		their adsorption						
		behaviors for copper						
		and tetracycline						
42	Vaid, Mansi et al	Microplastics as	Environmental	10.1007/s11356-021-16827-6	28	68025-		2021
		contaminants in	Science And			68052		
		Indian environment:	Pollution Research					
		a review						
43	Rosal, Roberto	Morphological	Marine Pollution	10.1016/j.marpolbul.2021.112716	171		112716	2021
		description of	Bulletin					

		microplastic particles for environmental					
44	Facciola, Alessio; Visalli, Giuseppa	Newly Emerging Airborne Pollutants:	International Journal Of	10.3390/ijerph18062997	18	2997	2021
	et al	Current Knowledge	Environmental				
		of Health Impact of	Research And				
		Micro and	Public Health				
		Nanoplastics					
45	Ronda, Ana C et al	Plastic Impacts in	Current	10.1007/s40572-021-00323-7	55	373-384	2021
		Argentina: a Critical	Environmental				
		Research Review	Health Reports				
		Contributing to the					
		Global Knowledge					
46	Jiang, Xuefeng	Future directions of	Pure And Applied	10.1515/pac-2020-0806	93	1403-1409	2021
		environmental	Chemistry				
		chemistry					
47	Akhbarizadeh,	Suspended fine	Environmental	10.1016/j.envres.2020.110339	192	110339	2021
	Razegheh et al	particulate matter	Research				
		(PM2.5),					
		microplastics (MPs),					
		and polycyclic					
		aromatic					
		hydrocarbons					
		(PAHs) in air: Their					
		possible relationships					

		and health						
		implications						
48	Jenner, Lauren C.	Household indoor	Atmospheric	10.1016/j.atmosenv.2021.118512	259		118512	2021
	et al	microplastics within	Environment					
		the Humber region						
		(United Kingdom):						
		Quantification and						
		chemical						
		characterisation of						
		particles present						
49	Barr, Brian Charles	Mitigation of	Sustainability	10.3390/su13179607	13		9607	2021
	et al	Suspendable Road						
		Dust in a Subpolar,						
		Oceanic Climate						
50	Vasiljevic, Tijana;	Bisphenol A and its	Science Of The	10.1016/j.scitotenv.2021.148013	789		148013	2021
	Harner, Tom	analogues in outdoor	Total Environment					
		and indoor air:						
		Properties, sources						
		and global levels						
51	Wang, Liuwei et al	Modeling the	Environmental	10.1021/acs.est.1c01042	55	6012-6021		2021
		Conditional	Science &					
		Fragmentation-	Technology					
		Induced Microplastic						
		Distribution						
52	Parolini, Marco et	Microplastic	International	10.3390/ijerph18020768	18		768	2021
	al	Contamination in	Journal Of					

-								
		Snow from Western	Environmental					
		Italian Alps	Research And					
			Public Health					
53	Masry, Maria et al	Experimental	Environmental	10.1016/j.envpol.2021.116949	280	11	6949	2021
		evidence of plastic	Pollution					
		particles transfer at						
		the water-air						
		interface through						
		bubble bursting						
54	Gonzalez-Pleiter,	A pilot study about	Cryosphere	10.5194/tc-15-2531-2021	15	2531-2539		2021
	Miguel et al	microplastics and						
		mesoplastics in an						
		Antarctic glacier						
55	Ageel, Hassan	Occurrence, human	Environmental	10.1039/d1em00301a				2021
	Khalid et al	exposure, and risk of	Science-Processes					
		microplastics in the	& Impacts					
		indoor environment						
56	Li, Penghui et al	Characteristics of	Bulletin Of	10.1007/s00128-020-02820-1	107	577-584		2021
		Plastic Pollution in	Environmental					
		the Environment: A	Contamination					
		Review	And Toxicology					
57	Szewc, Karolina;	Atmospheric	Science Of The	10.1016/j.scitotenv.2020.143272	761	14	3272	2021
	Graca, Bozena;	deposition of	Total Environment					
	Dolega, Anna	microplastics in the						
		coastal zone:						
		Characteristics and						

		relationship with meteorological factors					
58	Rai, Prabhat Kumar et al	Environmental fate, ecotoxicity biomarkers, and potential health effects of micro- and nano-scale plastic contamination	Journal Of Hazardous Materials	10.1016/j.jhazmat.2020.123910	403	123910	2021
59	Song, Zhangyu et al	To what extent are we really free from airborne microplastics?	Science Of The Total Environment	10.1016/j.scitotenv.2020.142118	745	142118	2021
60	Kumar, Manish et al	Current research trends on micro- and nano-plastics as an emerging threat to global environment: A review	Journal Of Hazardous Materials	10.1016/j.jhazmat.2020.124967	409	124967	2021
61	Kannan, Kurunthachalam; Vimalkumar, Krishnamoorthi	A Review of Human Exposure to Microplastics and Insights Into Microplastics as Obesogens	Frontiers In Endocrinology	10.3389/fendo.2021.724989	12	724989	2021

62	Shi, Minghao et al	Influence of	Environmental	10.1039/d1ew00520k	7	2156-2165		2021
		atmospheric	Science-Water					
		deposition on surface	Research &					
		water quality and	Technology					
		DBP formation						
		potential as well as						
		control technology of						
		rainwater DBPs: a						
		review						
63	Sun, Kailun et al	A review of human	Science Of The	10.1016/j.scitotenv.2021.145403	773		145403	2021
		and animals exposure	Total Environment					
		to polycyclic						
		aromatic						
		hydrocarbons: Health						
		risk and adverse						
		effects, photo-						
		induced toxicity and						
		regulating effect of						
		microplastics						
64	Abbasi, Sajjad;	Dry and wet	Science Of The	10.1016/j.scitotenv.2021.147358	786		147358	2021
	Turner, Andrew	deposition of	Total Environment					
		microplastics in a						
		semi-arid region						
		(Shiraz, Iran)						

65	Wlasits, Peter	Size characterization	Aerosol Science	10.1080/02786826.2021.1998339	56	176-185		2021
	Josef; Stoellner,	and detection of	And Technology					
	Andrea et al	aerosolized						
		nanoplastics						
		originating from						
		evaporated						
		thermoplastics						
66	Ji, Yunxia et al	Revisiting the	Nanoscale	10.1039/d0nr06747d	13	1016-1028		2021
		cellular toxicity of						
		benzo[a]pyrene from						
		the view of						
		nanoclusters: size-						
		and nanoplastic						
		adsorption-dependent						
		bioavailability						
67	Athey, Samantha	Are We	Environmental	10.1002/etc.5173	00	1-16		2021
	N.; Erdle, Lisa M.	Underestimating	Toxicology And					
		Anthropogenic	Chemistry					
		Microfiber Pollution?						
		A Critical Review of						
		Occurrence,						
		Methods, and						
		Reporting						
68	Materic, Dusan et	Nanoplastics	Environmental	10.1016/j.envpol.2021.117697	288		117697	2021
	al	transport to the	Pollution					

		remote, high-altitude					
		Alps					
69	Soltani, Neda	Quantification and	Environmental	10.1016/j.envpol.2021.117064	283	117064	2021
	Sharifi et al	exposure assessment	Pollution				
		of microplastics in					
		Australian indoor					
		house dust					
70	Stanton, Thomas et	It's the product not	Wiley	10.1002/wat2.1490	8	e1490	2021
	al	the polymer:	Interdisciplinary				
		Rethinking plastic	Reviews-Water				
		pollution					
71	Fang, Guor-Cheng	Ambient air	Journal Of	10.1080/10934529.2021.1918976	56	1-8	2021
	et al	particulates and	Environmental				
		Hg(p) concentrations	Science And				
		and dry depositions	Health Part A-				
		estimations,	Toxic/Hazardous				
		distributions for	Substances &				
		various particles	Environmental				
		sizes ranges	Engineering				
72	Antwi, Henry	Progressing towards	Sustainability	10.3390/su13073664	13	524118	2021
	Asante et al	Environmental					
		Health Targets in					
		China: An Integrative					
		Review of					
		Achievements in Air					
		and Water Pollution					

		under the Ecological					
		Civiliantian and the					
		Civilisation and the					
		Beautiful China					
		Dream					
73	Robin, R. S et al	COVID-19	Marine Pollution	10.1016/j.marpolbul.2021.112739	171	112739	2021
		restrictions and their	Bulletin				
		influences on					
		ambient air, surface					
		water and plastic					
		waste in a coastal					
		megacity, Chennai,					
		India					
74	Prenner, Stefanie	Static modelling of	Environmental	10.1016/j.envpol.2021.118102	290	118102	2021
	et al	the material flows of	Pollution				
		micro- and					
		nanoplastic particles					
		caused by the use of					
		vehicle tyres					
75	Yang, Sheng et al	In vitro evaluation of	Ecotoxicology And	10.1016/j.ecoenv.2021.112837	226	112837	2021
		nanoplastics using	Environmental				
		human lung	Safety				
		epithelial cells,					
		microarray analysis					
		and co-culture model					

76	Condon, Caitlin A	Fate and transport of	Journal Of	10.1016/j.jenvrad.2021.106630	234	1066	30 2021
	et al	unruptured tri-	Environmental				
		structural isotropic	Radioactivity				
		(TRISO) fuel					
		particles in the event					
		of environmental					
		release for advanced					
		and micro reactor					
		applications					
77	Chae, Eunji; Jung,	Quantification of tire	Environmental	10.1016/j.envpol.2021.117811	288	1178	1 2021
	Uiyeong; Choi,	tread wear particles	Pollution				
	Sung-Seen	in microparticles					
		produced on the road					
		using oleamide as a					
		novel marker					
78	Petersen, Fritz;	The occurrence and	Science Of The	10.1016/j.scitotenv.2020.143936	758	1439	2021
	Hubbart, Jason A.	transport of	Total Environment				
		microplastics: The					
		state of the science					
79	Purwiyanto, Anna	The deposition of	Marine Pollution	10.1016/j.marpolbul.2021.113195	174	1131	2021
	Ida Sunaryo et al	atmospheric	Bulletin				
		microplastics in					
		Jakarta-Indonesia:					
		The coastal urban					
		area.					

80	Tian, Xia et al	Plastic mulch film	The Science Of	10.1016/j.scitotenv.2021.152490	813	152490	2021
		induced soil	The Total				
		microplastic	Environment				
		enrichment and its					
		impact on wind-					
		blown sand and dust.					
81	Zhang, Yulan et al	Atmospheric	Earth-Science	10.1016/j.earscirev.2020.103118	203	103118	2020
		microplastics: A	Reviews				
		review on current					
		status and					
		perspectives					
82	Wright, S. L et al	Atmospheric	Environment	10.1016/j.envint.2019.105411	136	105411	2020
		microplastic	International				
		deposition in an					
		urban environment					
		and an evaluation of					
		transport					
83	Malygina, N. S et	Atmospheric supply	26th International	10.1117/12.2575577	11560	115604L	2020
	al	of microplastics in	Symposium On				
		the south of Western	Atmospheric And				
		Siberia according to	Ocean Optics,				
		microscopic analysis	Atmospheric				
		of snow cover	Physics				
		samples					
84	Chen, Guanglong	Mini-review of	Science Of The	10.1016/j.scitotenv.2019.135504	703	135504	2020
	et al	microplastics in the	Total Environment				

		atmosphere and their					
		risks to humans					
85	Mbachu, Oluchi et	A New Contaminant	Water Air And	10.1007/s11270-020-4459-4	231	85	2020
	al	Superhighway? A	Soil Pollution				
		Review of Sources,					
		Measurement					
		Techniques and Fate					
		of Atmospheric					
		Microplastics					
86	Chen, Guanglong	An overview of	Trac-Trends In	10.1016/j.trac.2020.115981	130	115981	2020
	et al	analytical methods	Analytical				
		for detecting	Chemistry				
		microplastics in the					
		atmosphere					
87	Gong, Jian; Xie,	Research progress in	Chemosphere	10.1016/j.chemosphere.2020.126790	254	126790	2020
	Pei	sources, analytical					
		methods, eco-					
		environmental					
		effects, and control					
		measures of					
		microplastics					
88	Roblin, Brett;	Moss as a biomonitor	Science Of The	10.1016/j.scitotenv.2020.136973	715	136973	2020
	Aherne, Julian	for the atmospheric	Total Environment				
		deposition of					
		anthropogenic					
		microfibres					

89	Liu, Kai et al	Global inventory of	Journal Of	10.1016/j.jhazmat.2020.123223	400	123223	2020
		atmospheric fibrous	Hazardous				
		microplastics input	Materials				
		into the ocean: An					
		implication from the					
		indoor origin					
90	Liu, Kai et al	Terrestrial plants as a	Science Of The	10.1016/j.scitotenv.2020.140523	742	140523	2020
		potential temporary	Total Environment				
		sink of atmospheric					
		microplastics during					
		transport					
91	Narmadha, Vellora	Assessment of	International	10.1007/s41742-020-00283-0	14	629-640	2020
	Veetil et al	Microplastics in	Journal Of				
		Roadside Suspended	Environmental				
		Dust from Urban and	Research				
		Rural Environment					
		of Nagpur, India					
92	Prata, Joana C et al	The importance of	Marine Pollution	10.1016/j.marpolbul.2020.111522	159	111522	2020
		contamination	Bulletin				
		control in airborne					
		fibers and					
		microplastic					
		sampling:					
		Experiences from					
		indoor and outdoor					

		air sampling in						
		Aveiro, Portugal						
93	Du, Fangni et al	Microplastics in take-	Journal Of	10.1016/j.jhazmat.2020.122969	399		122969	2020
		out food containers	Hazardous					
			Materials					
94	Levermore, Joseph	Detection of	Analytical	10.1021/acs.analchem.9b05445	92	8732-8740		2020
	M et al	Microplastics in	Chemistry					
		Ambient Particulate						
		Matter Using Raman						
		Spectral Imaging and						
		Chemometric						
		Analysis						
95	Prata, Joana C et al	An easy method for	Methodsx	10.1016/j.mex.2019.11.032	7	1-9		2020
		processing and						
		identification of						
		natural and synthetic						
		microfibers and						
		microplastics in						
		indoor and outdoor						
		air.						
96	Evangeliou, N. et	Atmospheric	Nature	10.1038/s41467-020-17201-9	11		3381	2020
	al	transport is a major	Communications					
		pathway of						
		microplastics to						
		remote regions						

97	Sun, Yue et al	Effect of	Science Of The	10.1016/j.scitotenv.2020.139856	737	139856	2020
		microplastics on	Total Environment				
		greenhouse gas and					
		ammonia emissions					
		during aerobic					
		composting					
98	Hale, Robert C. et	A Global Perspective	Journal Of	10.1029/2018JC014719	125	e2018JC0147	2020
	al	on Microplastics	Geophysical			19	
			Research-Oceans				
99	Huang, Yumei et al	Mini-review on	Trac-Trends In	10.1016/j.trac.2020.115821	125	115821	2020
		current studies of	Analytical				
		airborne	Chemistry				
		microplastics:					
		Analytical methods,					
		occurrence, sources,					
		fate and potential risk					
		to human beings					
100	Bianco, Angelica	Degradation of	Science Of The	10.1016/j.scitotenv.2020.140413	742	140413	2020
	et al	nanoplastics in the	Total Environment				
		environment:					
		Reactivity and					
		impact on					
		atmospheric and					
		surface waters					
101	Amato-Lourenco,	An emerging class of	Science Of The	10.1016/j.scitotenv.2020.141676	749	141676	2020
	Luis Fernando et al	air pollutants:	Total Environment				

		Potential effects of						
		microplastics to						
		respiratory human						
		health?						
102	Ding, Ling et al	High temperature	Water Research	10.1016/j.watres.2020.115634	174		115634	2020
		depended on the						
		aging mechanism of						
		microplastics under						
		different						
		environmental						
		conditions and its						
		effect on the						
		distribution of						
		organic pollutants						
103	Xu, Guanjun et al	Surface-Enhanced	Environmental	10.1021/acs.est.0c02317	54	15594-		2020
		Raman Spectroscopy	Science &			15603		
		Facilitates the	Technology					
		Detection of						
		Microplastics < 1 mu						
		m in the						
		Environment						
104	Bianco, Angelica;	Atmospheric Micro	Sustainability	10.3390/su12187327	12		7327	2020
	Passananti, Monica	and Nanoplastics: An						
		Enormous						
		Microscopic Problem						

	1	1	1		1		
105	Zhang, Qun et al	Microplastic Fallout	Environmental	10.1021/acs.est.0c00087	54	6530-6539	2020
		in Different Indoor	Science &				
		Environments	Technology				
106	Bancone, Chiara E.	The Paleoecology of	Frontiers In	10.31119/fenvs.2020.574008	8	574008	2020
	P et al	Microplastic	Environmental				
		Contamination	Science				
107	Kelly, Frank J.;	Toxicity of airborne	Philosophical	10.1098/rsta.2019.0322	378	20190322	2020
	Fussell, Julia C.	particles-established	Transactions Of				
		evidence, knowledge	The Royal Society				
		gaps and emerging	A-Mathematical				
		areas of importance	Physical And				
			Engineering				
			Sciences				
108	Allen, Steve et al	Examination of the	Plos One	10.1371/journal.pone.0232746	15	e0232746	2020
		ocean as a source for					
		atmospheric					
		microplastics					
109	O'Brien, Stacey et	Airborne emissions	Science Of The	10.1016/j.scitotenv.2020.141175	747	141175	2020
	al	of microplastic fibres	Total Environment				
		from domestic					
		laundry dryers					
110	Xu, Chenye et al	Are we	Journal Of	10.1016/j.jhazmat.2020.123228	400	123228	2020
		underestimating the	Hazardous				
		sources of	Materials				
		microplastic					
		pollution in					

		terrestrial						
		environment?						
111	Wang, Ting et al	Interactions between	Science Of The	10.1016/j.scitotenv.2020.142427	748		142427	2020
		microplastics and	Total Environment					
		organic pollutants:						
		Effects on toxicity,						
		bioaccumulation,						
		degradation, and						
		transport						
112	Zhang, Junjie et al	Microplastics in	Environment	10.1016/j.envint.2019.105314	134		105314	2020
		house dust from 12	International					
		countries and						
		associated human						
		exposure						
113	Hufnagl, Benedikt;	A graph-based	Analytica Chimica	10.1016/j.aca.2019.10.071	1097	34-48		2020
	Lohninger, Hans	clustering method	Acta					
		with special focus on						
		hyperspectral						
		imaging						
114	Roblin, Brett et al	Ambient	Environmental	10.1021/acs.est.0c04000	54	11100-		2020
		Atmospheric	Science &			11108		
		Deposition of	Technology					
		Anthropogenic						
		Microfibers and						
		Microplastics on the						

		Western Periphery of						
		Europe (Ireland)						
115	Dong, Cheng-Di et	Polystyrene	Journal Of	10.1016/j.jhazmat.2019.121575	385		121575	2020
	al	microplastic	Hazardous					
		particles: In vitro	Materials					
		pulmonary toxicity						
		assessment						
116	Zhu, Kecheng et al	Enhanced	Environment	10.1016/j.envint.2020.106137	145		106137	2020
		cytotoxicity of	International					
		photoaged phenol-						
		formaldehyde resins						
		microplastics:						
		Combined effects of						
		environmentally						
		persistent free						
		radicals, reactive						
		oxygen species, and						
		conjugated carbonyls						
117	Brahney, Janice et	Plastic rain in	Science	10.1126/science.aaz5819	368	1257-1260		2020
	al	protected areas of the						
		United States						
118	Cheng, Leilei et al	Polyethylene high-	Chemical	10.1016/j.cej.2019.123866	385		123866	2020
		pressure pyrolysis:	Engineering					
		Better product	Journal					
		distribution and						

		process mechanism					
		analysis					
119	Kawecki,	A proxy-based	Science Of The	10.1016/j.scitotenv.2020.141137	748	141137	2020
	Delphine; Nowack,	approach to predict	Total Environment				
	Bernd	spatially resolved					
		emissions of macro-					
		and microplastic to					
		the environment					
120	Li, Yaowei et al	Airborne fiber	Science Of The	10.1016/j.scitotenv.2019.135967	705	135967	2020
		particles: Types, size	Total Environment				
		and concentration					
		observed in Beijing					
121	Hohn, Soenke et al	The long-term legacy	Science Of The	10.1016/j.scitotenv.2020.141115	746	141115	2020
		of plastic mass	Total Environment				
		production					
122	Hu, Lingling et al	Chronic microfiber	Plos One	10.1371/journal.pone.0229962	15	e0229962	2020
		exposure in adult					
		Japanese medaka					
		(Oryzias latipes)					
123	Fournier, Sara B.	Nanopolystyrene	Particle And Fibre	10.1186/s12989-020-00385-9	17	55	2020
	et al	translocation and	Toxicology				
		fetal deposition after					
		acute lung exposure					
		during late-stage					
		pregnancy					

124	Liu, Kai et al	Consistent Transport	Environmental	10.1021/acs.est.9b03427	53	10612-		2019
		of Terrestrial	Science &			10619		
		Microplastics to the	Technology					
		Ocean through						
		Atmosphere						
125	Zhang, Yulan et al	Importance of	Environmental	10.1016/j.envpol.2019.07.121	254		112953	2019
		atmospheric transport	Pollution					
		for microplastics						
		deposited in remote						
		areas						
126	Cai, Liqi et al	Characteristic of	Environmental	10.1007/s11356-019-06979-x	26	36074-		2019
		microplastics in the	Science And			36075		
		atmospheric fallout	Pollution Research					
		from Dongguan City,						
		China: preliminary						
		research and first						
		evidence						
127	Allen, Steve et al	Atmospheric	Nature Geoscience	10.1038/s41561-019-0335-5	12	339-344		2019
		transport and						
		deposition of						
		microplastics in a						
		remote mountain						
		catchment						
128	Allen, Steve et al	Atmospheric	Nature Geoscience	10.1038/s41561-019-0409-4	12	339-344		2019
		transport and						
		deposition of						

		microplastics in a					
		remote mountain					
		catchment (vol 12, pg					
		339, 2019)					
129	Liu, Kai et al	Source and potential	Science Of The	10.1016/j.scitotenv.2019.04.110	675	462-471	2019
		risk assessment of	Total Environment				
		suspended					
		atmospheric					
		microplastics in					
		Shanghai					
130	Enyoh, Christian	Airborne	Environmental	10.1007/s10661-019-7842-0	191	668	2019
	Ebere et al	microplastics: a	Monitoring And				
		review study on	Assessment				
		method for analysis,					
		occurrence,					
		movement and risks					
131	Bergmann,	White and	Science Advances	10.1126/sciadv.aax1157	5	eaax1157	2019
	Melanie et al	wonderful?					
		Microplastics prevail					
		in snow from the					
		Alps to the Arctic					
132	Liu, Kai et al	Accurate	Environment	10.1016/j.envint.2019.105127	132	105127	2019
		quantification and	International				
		transport estimation					
		of suspended					
		atmospheric					

				I I	1		
		microplastics in					
		megacities:					
		Implications for					
		human health					
133	Ganguly, Mainak;	Ice Nucleation of	Acs Earth And	10.1021/acsearthspacechem.9b00132	1729-1739		2019
	Ariya, Parisa A.	Model Nanoplastics	Space Chemistry				
		and Microplastics: A					
		Novel Synthetic					
		Protocol and the					
		Influence of Particle					
		Capping at Diverse					
		Atmospheric					
		Environments					
134	Xu, Mingkai et al	Internalization and	Science Of The	10.1016/j.scitotenv.2019.133794 694		133794	2019
		toxicity: A	Total Environment				
		preliminary study of					
		effects of nanoplastic					
		particles on human					
		lung epithelial cell					
135	Abbasi, Sajjad et al	Distribution and	Environmental	10.1016/j.envpol.2018.10.039 244	153-164		2019
		potential health	Pollution				
		impacts of					
		microplastics and					
		microrubbers in air					
		and street dusts from					

		Asaluyeh County,					
		Iran					
136	Andrady, A. L.;	Interactive effects of	Photochemical &	10.1039/c8pp90065e	18	804-825	2019
	Pandey, K. K.;	solar UV radiation	Photobiological				
	Heikkila, A. M.	and climate change	Sciences				
		on material damage					
137	Martyanov, S.D et	On the assessment of	Fundamental'naya		12	32-41	2019
	al	microplastic	I Prikladnaya				
		distribution in the	Gidrofizika				
		eastern part of the					
		Gulf of Finland					
138	Prata, Joana	Airborne	Environmental	10.1016/j.envpol.2017.11.043	234	115-126	2018
	Correia	microplastics:	Pollution				
		Consequences to					
		human health?					
139	Garaba,	An airborne remote	Remote Sensing	10.1016/j.rse.2017.11.023	205	224-235	2018
	Shungudzemwoyo	sensing case study of	Of Environment				
	P.; Dierssen, Heidi	synthetic					
	М.	hydrocarbon					
		detection using short					
		wave infrared					
		absorption features					
		identified from					
		marine-harvested					
		macro- and					
		microplastics					

140	Gundogdu, Sedat	Contamination of	Food Additives	10.1080/19440049.2018.1447694	35	1006-1014	2018
		table salts from	And Contaminants				
		Turkey with	Part A-Chemistry				
		microplastics	Analysis Control				
			Exposure & Risk				
			Assessment				
141	Cai, Liqi et al	Characteristic of	Environmental	10.1007/s11356-017-0116-x	24	24928-	2017
		microplastics in the	Science And			24935	
		atmospheric fallout	Pollution Research				
		from Dongguan city,					
		China: preliminary					
		research and first					
		evidence					
142	Peng, Jinping;	Current	Integrated	10.1002/ieam.1912	13	476-482	2017
	Wang, Jundong;	understanding of	Environmental				
	Cai, Liqi	microplastics in the	Assessment And				
		environment:	Management				
		Occurrence, fate,					
		risks, and what we					
		should do					
143	Dris, Rachid et al	A first overview of	Environmental	10.1016/j.envpol.2016.12.013	221	453-458	2017
		textile fibers,	Pollution				
		including					
		microplastics, in					
		indoor and outdoor					
		environments					

144	Dris, Rachid et al	Synthetic fibers in	Marine Pollution	10.1016/j.marpolbul.2016.01.006	104	290-293	2016
		atmospheric fallout:	Bulletin				
		A source of					
		microplastics in the					
		environment?					
145	Dris, Rachid et al	Microplastic	Environmental	10.1071/EN14167	12	592-599	2015
		contamination in an	Chemistry				
		urban area: a case					
		study in Greater Paris					

1632Table S2. Sample collection, processing, and identification of microplastics

1633

City/Country	Sample Matrix	Sampling	Sampling prepa	ration	The difference		Reference
		methods	Treatment	Extraction		Characterization	
Paris, France	Atmospheric fallout	passive	glass fiber GF/A	NA	Stereomicroscope	NA	(Dris et al., 2016b)
			Whatman filters				
Dongguan, China	Atmospheric fallout	passive	1.0 µm glass filters	NA	Digital microscope	Micro-FTIR	(Cai et al., 2017)
			with a vacuum pump				
Bushehr, Iran	Atmospheric fallout	passive	30% H ₂ O ₂	NaI	Upright fluorescence	SEM/EDX	(Abbasi et al., 2017)
					microscope		
Yantai, China	Atmospheric fallout	passive	stainless steel sieves	NA	Stereomicroscope	FTIR	(Zhou et al., 2017)
			(5mm&1mm)				
Tehran metropolis,	Street dust	passive	30% H ₂ O ₂	ZnCl ₂	Upright fluorescence	SEM/EDX	(Dehghani et al., 2017)
Iran					microscope		
Hamburg,	Atmospheric fallout	passive	0.15:1 NaClO	Nile Red	Fluorescence microscope	Micro-Raman	(Klein and Fischer,
Germany							2019b)
12 Countries	Indoor dust	passive	КОН	pentanol	NA	HPLC MS/MS	(Zhang et al., 2020a)
Paris, France	Aerosol	Active	2.5 mm mesh size sieve	ZnCl ₂	Stereomicroscope	FTIR	(Dris et al., 2017c)
Sakarya Province,	Aerosol	Active	35% H ₂ O ₂	ZnCl ₂	Light microscope	Micro-FTIR	(Tunahan Kaya et al.,
Turkey							2018)
Asaluyeh, Iran	Aerosol	Active	30% H ₂ O ₂	NaI	Light microscope and	SEM-EDX	(Abbasi et al., 2019)
					fluorescence microscope		
Aarhus, Denmark	Aerosol	Active	Ethanol (99.9%, HPLC	ZnSe	Optical microscope	Micro-FTIR	(Vianello et al., 2019)
			grade)				
Beijing, China	Aerosol	Active	Mixed cellulose ester,	NA	SEM	SEM-EDX	(Li et al., 2020)
			0.8 μm				

1635 Table S3. Physical and chemical characteristics of airborne MPs.

	Types	PET	РР	PPE	PC	PVC	PS	PE	PMMA	Nylon	ABS	POM
Characteristics												
	Organic	$(C_{10}H_8O_4)_n$	$(C_3H_6)_n$	(C ₈ H ₈ O)n	[C ₆ H ₄ C(CH ₃)2C	(C ₂ H ₃ Cl)n	(C ₈ H ₈)n	(C ₂ H ₄)n	$C_5H_8O_2$	C ₂ ClF ₃	C45H51N3	(CH ₂ O)n
Chemical	chemical				₆ H ₄ OCO ₂ -]n					(unspec.)	X ₂	
abamatamiatian	structure											
characteristics	Inorganic elements	Ca, S, Mg, Al, Si Zn, Pb, Mn, Cu, Ni, Co, Cd, Cr										
	Degree of	Semi-	Semi-	Semi-	Amorphous	Amorphous	Amorphous	High	Amorphous	Semi-	Amorpho	Crystallin
	crystallinity	crystalline	crystalline	crystalline				(Semi)-		crystalline	us	e
			(isotactic,					crystallinity				
Physical			syndiotactic)									
characteristics	Glass	73 ~ 78	-49/ -20	118	150	60 ~ 100	$74 \sim 105$	-120/ -20	85~105	125 ~ 155	88 ~ 105	-
	transition											
	temperature											
	(Tg) (°C)											