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Abstract

CNN architectures that take videos as an input are often
overlooked when it comes to the development of explana-
tion techniques. This is despite their use in often critical
domains such as surveillance and healthcare. Explanation
techniques developed for these networks must take into ac-
count the additional temporal domain if they are to be suc-
cessful. In this paper we introduce SWAG-V, an extension of
SWAG for use with networks that take video as an input. In
addition we show how these explanations can be created in
such a way that they are balanced between fine and coarse
explanations. By creating superpixels that incorporate the
frames of the input video we are able to create explanations
that better locate regions of the input that are important to
the networks prediction. We compare SWAG-V against a
number of similar techniques using metrics such as inser-
tion and deletion, and weak localisation. We compute these
using Kinetics-400 with both the C3D and R(2+1)D net-
work architectures and find that SWAG-V is able to outper-
form multiple techniques.

1. Introduction

In recent years a number of explanation techniques have
been introduced that aim to offer explanations for the pre-
dictions made by Convolutional Neural Networks (CNNs).
However, the majority of these methods are aimed at CNNs
which take an image as an input, with little thought for
those which use video as an input. Network architectures
which are designed for a video input typically have sub-
stantially different designs, in particular, the inclusion of
a temporal element to facilitate learning across the mul-
tiple frames of a video. Despite this lack of explanation
techniques for video based CNNs, they are beginning to be

used in such critical applications as security [23, 25] and
healthcare [2, 9, 16, 31]. This introduces an extra impetus
to develop accurate and interpretable explanation methods
for these networks.

The explanation techniques that do exist typically use
similar (or in some cases identical) techniques as explana-
tions for image based networks with little alteration to adapt
for the temporal domain [5, 24]. Often explanations can be
grouped into 3 categories: activation-based, perturbation-
based, and gradient-based. Activation-based methods use
the activation produced by the final convolution which can
result in explanations that are very coarse. The coarseness
is due to importance scores being assigned to very large re-
gions of an image in both temporal and spatial dimensions.
An example of this can be seen in Figure 1. Here we show
an activation based method (Saliency Tubes [24]) compared
to our SWAG-V method. Note, the Saliency Tubes expla-
nation is coarse and cannot locate the skier correctly.

Conversely, black box techniques which perturb the in-
put space (such as LIME [18] or RISE [17]) can be effective
as the temporal domain can also be perturbed. However,
techniques which perturb the input space of an action recog-
nition network have the potential to be vastly inefficient as
the models often contain more parameters compared to im-
age based networks, and the input volume is larger.

Finally, gradient based techniques are able to assign a
score to every pixel in both the spatial and temporal dimen-
sions. However, assigning a score for individual pixels of-
ten has the appearance of noise and has been deemed to
be less interpretable than methods which score larger re-
gions [13, 29, 30]. Recently techniques have been intro-
duced that pool these individual pixel scores into more in-
terpretable regions [10, 13]. Of these, Superpixels Weighted
by Average Gradient (SWAG) [10], is able to produce ex-
planations efficiently using only a single forward and back-
ward pass. We believe that SWAG can serve as a basis to
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Figure 1. Example explanations for the ski slalom class using
Saliency Tubes vs our proposed SWAG-VI+G method.

create accurate and interpretable explanations for networks
that take videos as an input.

In this paper we introduce SWAG for Video (SWAG-V)
by extending SWAG to produce explanations that incorpo-
rate the temporal domain. However, the original SWAG
technique was optimised to perform well in deletion met-
rics, rather than both insertion and deletion metrics. To rec-
tify this we will show how we can optimise the explanations
created to perform well in both deletion and insertion met-
rics. We then conduct a number of experiments to show how
SWAG-V performs compared to a range of similar methods.

2. Related Work

Whilst explanation methods designed specifically for
networks which take a video as input are less common than
their image based counterparts, a number have been pro-
posed. Activation based techniques such as CAM [33],
Grad-CAM [19], and Grad-CAM++ [5], rely on the acti-
vations from the final convolution layer to form the core of
the visualisation. From here, it is simply a case of weight-
ing the activations and rescaling back to the original input
size. However, in action recognition networks that often
use 3D convolutions, there is a temporal element to the ac-
tivation maps that must also be considered. As the input
passes through the network, not only is the spatial compo-
nent reduced, so is the temporal component. This means
that when the activation maps are resized back to the input
size, the explanation created from the activation maps has to
be stretched across frames, causing coarseness in the tem-
poral dimension. A number of approaches have been taken
to aligning the original 2D intent of these techniques with
an additional temporal domain. In the simplest case, the

CAM can be generated as it would in a 2D network. This
produces a CAM with the same dimensions as the final ac-
tivation layer, for example in C3D [26] this is a 14×14×2
(height×width×depth), while in I3D [4], R(2+1)D [27] or
ResNet3D [27], this is 7×7×2. A number of techniques
have attempted to build on top of this simple method. In
the Saliency Tube work by Stergiou et al. [24], this is mod-
ified so that the activation maps themselves from the final
convolution layer, following batch normalisation, are used
to weight the activation maps rather than the gradients. In
Grad-CAM++ [5], the authors discuss the application of
their technique for use in action recognition networks. They
propose a technique similar to the input�gradient technique
proposed by Shrikumar et al. [20] whereby the resized
CAM is combined with the spatio-temporal volume via
point-wise multiplication. None of the above techniques, to
our knowledge, have been subject to an empirically sound
analysis using techniques that measure the accuracy of the
generated heatmaps. Without first performing these experi-
ments it is difficult to compare them against each other.

Extremal Perturbation 3D (EP-3D), a recently intro-
duced technique by Li et al. [15] takes the methods pro-
posed by Fong and Vedaldi [7, 8] and reconfigures it to work
with action recognition networks. This is done through the
introduction of a loss function that helps create masks that
are smooth in both the spatial and temporal dimensions.
These perturbation methods require multiple passes through
the network (the authors suggest 2,000 per image) to gen-
erate a single explanation, therefore these quickly become
inefficient when working with spatio-temporal volumes.

Gradient based methods, which create explanations by
backpropagation, still perform admirably for networks that
use a spatio-temporal volume. The gradients are backprop-
agated back to the original input space which means that
the inherent problem faced by activation based methods
is avoided as their is no spatial or temporal resizing re-
quired. However, it is still a more difficult task to under-
stand saliency maps based on individual pixel scores com-
pared to more coherent heatmaps such as CAMs or those
produced using perturbation techniques [13, 29, 30]. This
is exasperated as often there is no cohesion between frames
leading to explanations produced this way to appear like
noise. Hiley et al. [11, 12] have subsequently proposed
a modification to these gradient-based techniques to make
them more suitable to action recognition networks.

Recently, a set of techniques have been introduced that
aim to pool the individual pixel scores given by gradient-
based techniques into more interpretable regions. These are
XRAI [13] and SWAG [10]. Both have a similar approach
in that they generate superpixels using the input image, and
then assign a score to these regions based on the gradient
values that lie within them. Of the two, XRAI is computa-
tional inefficient, requiring multiple sets of superpixels to be



created whereas a SWAG explanation can be computed in a
single forward and backward pass. In addition, the original
SWAG technique incorporates the gradient scores into the
superpixel creation process. This allows superpixels to be
created which better align to the regions deemed important
to the networks prediction.

3. SWAG for Video: SWAG-V
We begin with a brief recap of SWAG and the two tech-

niques that were introduced in the paper. The first was that
an explanation for a networks prediction Ei could be cre-
ated by weighting superpixel regions Ri (where Ri is the
set of pixels belonging to the ith superpixel) with the mean
values M of the gradients found within that superpixel:

Ei =
1

|Ri|
∑

M ∩Ri. (1)

The second method introduced was a way of incorporating
gradients into the superpixel creation process. SWAG uses
Simple Linear Iterative Clustering (SLIC)[1] as its method
of generating superpixels. SLIC generates an initial grid,
and then forms the superpixels based on the pixels distance
(D′) to the cell. The distance is given as:

D′ =

√(
dc
wc

)2

+

(
ds
ws

)2

(2)

where dc is the colour distance, and ds is the spatial dis-
tance. To ensure these values are scaled correctly a scaling
component is used for each, given by wc and ws respec-
tively. SWAG modifies this to also include the distance to
the gradient values as well:

D′ =

√(
dc
wc

)2

+

(
ds
ws

)2

+

(
dg
wg

)2

(3)

where dg is the gradient distance to a pixel and wg is the
associated scaling value. Superpixels can then created that
use only the image (I), the combined image and gradient
(I + G), or the gradient by itself (G). As with SWAG, we
will show how superpixels can be generated for video inputs
using both the image and the gradients individually as well
as combining them. We will refer to these as SWAG-VI, G,
and I+G respectively.

We propose that SWAG is extremely well suited for use
in networks that take a video as an input. These networks
are often used for action recognition, and in this paper we
will evaluate explanation methods on this task. However, a
number of alterations must be made to the original SWAG
implementation in order to allow it to produce appropriate
explanations for networks using video as an input. The first
is with regards to how superpixels are used. Whilst SWAG

creates a single set of superpixels per images, we generate
3D superpixels that posses both a spatial and temporal ele-
ment. This allows us to use Equation 1 to weight a super-
pixel through time as opposed to only representing a spa-
tial area. We suggest that this will allow SWAG-V expla-
nations to better follow motion throughout the video. We
must then ascertain how many superpixels to generate, as
the sizes of inputs used for action recognition networks are
typically smaller than those used in image-based networks.
SWAG uses 300 superpixels per image, so it may be that this
is simply to many to produce a useful explanation. Indeed,
the original SWAG technique optimised the number of su-
perpixels to perform well at a metric called deletion, with
no regard to the corresponding insertion metric. In the fol-
lowing section we propose a method for finding the optimal
number of superpixels that allow us to balance these metrics
and produce an explanation that is neither too coarse, or too
fine.

4. Optimisation
While SWAG-V is a natural extension of SWAG, a num-

ber of changes must be considered to adapt it to use for ac-
tion recognition networks. The primary considerations are
the attribution method (i.e. which gradient method to use),
the number of superpixels to create, and how best to com-
bine superpixels and gradients to create SWAG-V I+G. In
this section we present the rationale behind the choices for
the above considerations. Throughout this section we show
results using Kinetics 400 [14] with the R(2+1)D [27] ar-
chitecture. We start with an initial value of 100 superpixels,
and then update this when we determine the optimal value.

To determine which choices lead to a good explanation,
we use the local accuracy metric consisting of insertion and
deletions scores as introduced by Petsiuk et al. [17]. We
outline this further in Section 5.2. Briefly, it is a measure of
how well an explanation scores regions of an image. For the
deletion score, the pixels are ranked according to their im-
portance to the prediction and then iteratively removed and
the models prediction score observed. The area under the
curve (AUC) is then used as the score. A low AUC score
is desirable, suggesting the most important pixels were able
to be located and removed first. Conversely, for insertion,
the image pixels are again scored and ranked, but starting
from a blank image the most important pixels are added
back in. Again, we observe how the models predictions
changes. Here a high AUC score is desirable.

4.1. Attribution Method

The attribution method is key to the success of SWAG-V.
Determining which gradients produce the best initial results
is important to discover early on, before further decisions
are made. In this section we show results for two baselines
(random noise and Sobel edges), and 3 methods for gener-



Table 1. Determining the optimal method of attribution. Results
are shown for both insertion and deletion local accuracy metrics.
For deletion, lower is better. For insertion, higher is better.

Deletion Insertion
Method R(2+1)D R(2+1)D
Random Noise 0.194 0.192
Sobel 0.162 0.298
Vanilla Backprop 0.188 0.302
Guided Backprop 0.113 0.371
Input�Gradients 0.156 0.185

ating gradients (vanilla backpropagation [21], guided back-
propagation [22], and Input�Gradients [20]). These results
are shown in Table 1. From these results we observe that
the baselines perform poorly for both deletion and insertion
metrics. Vanilla backpropagation performs almost as poorly
as random noise for the deletion metric, but performs much
better for the insertion metric. With Input�Gradients this
is reversed with the deletion metric performing much better
than the insertion metric, which performs worse than ran-
dom noise. Of all the techniques tested though, it is clear to
see that, as with SWAG for 2D images, guided backpropa-
gation performs the best. Easily outperforming all the other
techniques in both deletion and insertion results. We will
use guided backpropagation going forward.

4.2. Choice of Weights for SWAG-VI+G

It is not initially obvious that when creating superpixels
using a combination of the image and gradients, what is the
best way to combine them. In this section we determine
the optimal way of combining the images and gradients in
the superpixel creation process. To do this we modify the
weights for each input. The weights are labelled wc and
wg for the image and gradients respectively. Each weight
modifies how important the input is in the generation of the
superpixel. A low weight score means a high importance,
while a high weight score gives lower importance.

For both deletion and insertion metrics, we begin by per-
forming a coarse grid search using wc and wg values of
[5, 10, 20]. Here, 10 is the default value used by SLIC,
while 5 and 20 represent a doubling and halving of an in-
puts influence respectively. To ensure that some aspect of
the image is always taken into account, we only increase
the image weight to a maximum of 20. From these initial
results, we observed that both deletion and insertion results
tend to favour a high wc value and a low wg value. This
suggests that both metrics find the addition of the gradients
to be beneficial to creating superpixels that better align with
the explainable regions.

Based on this, we narrow in on the best performing
values and subsequently produce a finer grid search using
the combined scores of insertion and deletion to find the

optimal value. We combined the scores as so: (deletion
+ (1−insertion)). Subtracting the insertion score from 1
means that as both scores approach 0, the better they are.
We compute the combined scores for wc = [18, 20] and
wg = [8, 9, 10, 11, 12]. These results are shown in Figure 2.
From these results we see that the lowest score occurs at
wg = 9 and wc = 20. We will use these values for SWAG-
VI+G going forward.

Figure 2. Fine search for optimal values for wc and wg . Here we
show the combined insertion and deletion score. Lower (dark blue)
is better.

4.3. Initial Superpixel Count

With SWAG, the authors determined that an initial count
of 300 was appropriate for creating explanations for image
based networks. These typically take a 224×224 image as
an input. However, action recognition networks typically
take an input with a spatial dimension of 112×112. Sim-
ply using the same number of superpixels as SWAG may
result in explanations that are therefore too fine grained. In
this section we explore the optimal number of superpixels
to generate. We again use both the insertion and deletion
metrics. We sweep through a range of superpixel counts
and store the results. To find the optimal value, we add the
deletion scores to 1−insertion scores. In this way both sets
of scores are better as they approach 0. The results from
the sweep of superpixels counts, and this combined result is
shown in Figure 3. From the deletion and insertion results
we see that they are the opposite of each other. Deletion
(where a low score is better) improves the more superpixels
there are in the image. The insertion metric (where a high
score is better) performs much better with a very low num-
ber of superpixels and degrades as more are added. Again,
looking at the combined values (deletion + (1−insertion)),
where a low value is better, we see that after an initial rapid
improvement in performance, the scores plateau. When we
analyse this we found that the lowest score occurs at a su-
perpixel count of 120. This is marked with the red cross in
the figure. Going forward we will use a superpixel count
of 120. This technique could be used for other explanation



Figure 3. Top: Showing how the superpixel count affects the insertion and deletion scores. Bottom: Showing the optimal superpixel size.

techniques that offer control over the size of the explanation
regions. For example both LIME and RISE could use this to
optimise the number of superpixels or grid size respectively.

4.4. Final Parameter Choices

For clarity we present the final SWAG-V parameters:

• Attribution Method: We chose guided backpropaga-
tion as our attribution method. As with SWAG, we
found it to outperform the other methods tests using
the local accuracy metric.

• Initial Superpixel Count: Using the combined dele-
tion and insertion results, we found that 120 was the
optimal superpixel count to start the explanation with.

• SWAG-VI+G weights: We showed, using the com-
bined deletions and insertion results, that wg = 9 and
wc = 20 were the optimal values for use with SWAG-
VI+G.

5. Experiments
In this section, we present our results based on the appli-

cation of SWAG-V to action recognition networks. We find
our technique well suited to explaining networks that use
spatio-temporal volumes. Here, we show this both quantita-
tively, through the use of experiments that measure saliency
map accuracy, and qualitatively.

To generate local accuracy results, we use two architec-
tures (C3D [26] and R (2+1)D [27]) and the Kinetics 400
dataset. Weights for the models were imported from those
released by Tran et al. as part of the R(2+1)D paper [27].
We perform experiments on the spatial stream only. We do
not perform any experiments on motion streams. From each
of the Kinetics 400 validation videos, we extract the centre
16 frames and use these to obtain our results. This gives us
18,362 clips.

We compare SWAG-V against a number of explana-
tion methods, namely Grad-CAM, Grad-CAM++, Saliency
Tubes and EP-3D. Saliency Tubes requires a network ar-
chitecture where there is only one linear layer in order to
generate the weights for the activations. As such, we do
not produce results for C3D using Saliency Tubes. In addi-
tion, we also compare against both guided backpropagation
and the original implementation of SWAGI. As SWAG I is
designed for single images, we produce an explanation for
each frame separately.

Finally we introduce two baselines based on the Eu-
clidean distance from a specific pixel in each frame. We use
both a centre point Euclidean distance map (referred to as
centre), and the Euclidean distance to a uniformly randomly
chosen pixel (referred to as random). For each clip, the ran-
dom pixel is only assigned once meaning the same random
explanation is produced for each frame in a 16 frame clip.

5.1. Qualitative Inspection of Results

We begin by presenting example explanations created
using Kinetics 400 and R(2+1)D. Examples for the classes
capoeira (a Brazilian martial art) and sheep shearing are
shown in Figure 4. In the figure we show select frames from
a 16-frame clip. We show our results alongside the initial
input frames as well as comparable methods. From these
examples we can see how much more precise all variants of
SWAG-V are when compared to the activation based meth-
ods and EP-3D. For example, note that the activation map
based methods are unable to precisely follow the motion
of the person in the capoeira action class. Instead the ex-
planations produced by the activation based methods seem
to highlight the centre of the frame and highlight all of the
action in that region. EP-3D [15], despite being trained for
2,000 epochs, produces coarse explanations which also lack
definition. By this we mean that large areas of the image are
assigned the highest importance value (shown by the large
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Figure 4. An explanation for the Kinetics 400 classes of capoeira and sheep shearing using R(2+1)D. We show frames 1, 6, 11 and 16 from
a 16 frame clip. SWAG-V finds a middle ground between fine and coarse explanations. Best viewed on a PDF reader with zoom capability.

areas of red). In contrast to this, the original SWAGI and
guided backprop methods produce fine explanations that are
overly detailed, making them difficult to interpret.

In comparison, we see that our proposed methods are
much able to better track smaller regions within both ex-

amples. For example, note how the movement in the per-
sons legs are tracked for the capoeria class, or the precision
with which the shears are highlighted in the sheep shearing
class. Interestingly, SWAG-VG appears to be much noisier,
with superpixels mixing into each other, compared to the



other SWAG-V methods. SWAG-VI and SWAG-VI+G seem
to have smoother superpixels that follow the motion and ob-
ject boundaries more accurately. Additional examples can
be found in the supplemental material.

5.2. Local Accuracy

Now that we have qualitatively shown that SWAG-V pro-
duces explanations that are better able to highlight an action
both spatially and temporally, we now perform quantitative
experiments. We begin by exploring the accuracy of the ex-
planation. For this we use the deletion and insertion metrics
introduced by Petsiuk et al. [17]. Both deletion and in-
sertion metrics measure how well an explanation aligns to
the regions of the image used by the network to inform the
predicted class. Deletion measures how well an explanation
can locate the pixels that are very important to the network.
By removing these pixels, in order from most important to
least, we would expect to see that the more accurately an
explanation can locate the important pixels, the faster the
network is unable to predict the class. The insertion metric
works slightly differently by reversing the order in which
the pixels are altered. Starting from a blank image (all pix-
els set to 0), the pixels are iteratively reintroduced most im-
portant first. This insertion metric is similar to a concept
introduced by Dabkowski and Gal [6], called the smallest
sufficient region (SSR). They used this to help build expla-
nations that were compact and cohesive. In the qualitative
examples from Dabkowski and Gal, the SSR is cohesive,
rather than a scatter of pixels the network finds important.

This then sets up a conflict between the insertion metric,
and the deletion metric. While the deletion metric favours
the precision of an explanation to accurately locate individ-
ual pixels that are important, the insertion metric rewards
finding cohesive regions that are important. It therefore be-
comes a balance between how well a method performs at
the insertion vs deletion metric. It is likely that as a tech-
nique becomes more precise it will give better deletion re-
sults, while a technique that becomes more cohesive should
give better insertion scores.

To generate our insertion and deletion scores we first cre-
ate an explanation for an input using one of our chosen
methods. Using these explanations, we rank every pixel
based on its importance to the network. For deletion, we
begin with the video and remove pixels from most impor-
tant to least. For insertion, we begin with a video containing
only zeros and reintroduce the pixels from the original in-
put, most important first. We introduce or remove pixels
over 28 iterations. This equates to 7,168 pixels being intro-
duced or removed at a time. While this is more pixels than
introduced or deleted for the original image experiments
(1,792 pixels at each iteration), it is necessary to ensure that
the experiments are able to be run efficiently.

We show the results for the insertion and deletion met-

Table 2. Deletion and insertion scores for C3D and R(2+1)D

Deletion Insertion
Method C3D R(2+1)D C3D R(2+1)D
Centre 0.153 0.167 0.264 0.304
Random 0.222 0.265 0.272 0.322
Guided Bp 0.031 0.035 0.184 0.287
G-CAM 0.157 0.118 0.313 0.447
G-CAM++ 0.136 0.125 0.315 0.422
S-Tubes – 0.118 – 0.447
EP-3D 0.082 0.074 0.233 0.266
SWAGI 0.068 0.069 0.190 0.222
SWAG-VI 0.091 0.113 0.312 0.372
SWAG-VI+G 0.087 0.111 0.314 0.381
SWAG-VG 0.068 0.080 0.262 0.343

rics in Table 2. From these results we can begin to discern
a number of important points. The first is that a number of
methods are beaten by the baselines. In particular, whilst
guided backpropagation, EP-3D and the original SWAGI
perform well in the deletion metric, none are able to out-
perform the baselines in the insertion metric. In contrast to
this, the activation based methods perform the best at the
insertion metric and poorly at the deletion metric. Indeed,
when using the C3D network, the centre baseline outper-
forms Grad-CAM. This suggests that the methods based on
activation maps sacrifice precision for a more cohesive ex-
planation, whilst the methods that did well in the deletion
metric do so by sacrificing cohesion.

When we look at the results for our proposed methods,
we see that SWAG-VG performs the best in the deletion
metric. However, SWAG-VG suffers in the insertion metric,
being unable to outperform the insertion baseline for C3D.
Both SWAG-VI and SWAG-VI+G outperform the baselines.
Alongside Grad-CAM++ and Saliency-Tubes, these are the
only techniques to do so for both models tested. Of the two,
SWAG-VI+G outperforms SWAG-VI is the majority of ex-
periments, and outperforms the activation based methods in
the deletion metric. For the insertion metric, SWAG-VI+G is
only marginally outperformed by the activation based meth-
ods. Of all methods, SWAG-V I+G seems to be the optimal
method, balancing both insertion and deletion metrics well.

5.3. Weak-Localisation

It has become common when introducing a novel inter-
pretability technique to have a section of experiments that
discuss how well the generated saliency map locates the
given object within an image. In networks that deal with
image classification this primarily takes the form of extract-
ing some portion of an explanation and seeing how it aligns
spatially with a bounding box. However, for video inputs
we need to localise in both the spatial and temporal dimen-
sions. To do this, we extend the weak-localisation method
established in [3, 8, 32]) for use with video inputs. We



Table 3. Localisation results as error %, where a low score is more
desirable. For the 3 thresholds tested, we present the mean score.

C3D R(2+1)D
Val Mea Ene Val Mea Ene

Centre 87.91 88.26 87.66 87.91 88.26 87.66
Random 90.51 90.63 90.34 90.51 90.63 90.40
Guided Bp 90.62 90.69 100.00 90.68 87.58 85.64
G-CAM 90.57 90.46 90.53 85.40 87.08 85.32
G-CAM++ 90.21 89.91 89.92 85.40 87.08 85.32
S-Tube – – – 85.58 85.86 85.64
EP-3D 90.70 90.70 88.34 90.70 90.70 87.53
SWAGI 90.00 89.84 89.81 90.33 90.14 89.96
SWAG-VI 74.00 74.46 74.26 71.76 72.61 72.58
SWAG-VI+G 73.00 72.52 72.99 70.02 69.94 71.25
SWAG-VG 75.22 74.25 74.09 69.88 70.80 70.59

threshold each explanation in 3 ways as: using the pixel
value scaled between 0 and 1 (Val), thresholding based on
the mean value (Mean), and thresholding based on the en-
ergy (Ene). A comprehensive explanation of these thresh-
olds can be found in the work by Fong and Vedaldi [8].

To begin to adapt this experiment for use with spatio-
temporal inputs, a suitable dataset with corresponding
bounding boxes is required. For this experiment, we chose
UCF101. This is both a commonly available dataset, and
crucially contains localisation annotations for 24 of the
classes. It is these classes that we will use to measure the lo-
calisation abilities of the interpret ability techniques. This is
also in-line with techniques for specifically generating ac-
tion localisations in spatio-temporal inputs (i.e. bounding
boxes through time) [28]. For simplicity, we filter out any
videos from the validation set (containing 914 videos) that
have more than one action to localise per frame, and any
clips that have fewer than 16 contiguous bounding boxes
present. This reduces the validation set to 697 videos. We
crop videos into 16 frame clips, starting a new clip every 8
frames. If the 16 frame clip does not contain a ground truth
bounding box for every frame, we ignore it. This generates
a total of 10,704 clips. To evaluate, we generate a bound-
ing box for each frame in the clip, and get an IOU score for
each frame. We average these over the 16 frame clip. If the
average IOU is greater than 0.5 we classify it as correct.

We show the results for this experiment in Table 3. The
first striking result is that Guided-Backpropagation, EP-3D
and the original SWAGI struggle to offer any improvements
over the centre baseline (i.e. simply pointing at the centre
of each frame better locates the action). The second is that
despite having a cohesive explanation that scored well in the
insertion metric, the activation-based methods also perform
poorly. Indeed when creating explanations for C3D they are
unable to outperform the centre baseline. This is likely due
to the temporal stretching that occurs when the explanation
is resized, making it difficult to follow movement.

Given these results, our SWAG-V methods outperform
all others tested by a large margin, often by around 15%
to 20%. Of the 3 SWAG-V methods, SWAG-VI performs

Table 4. Mean computation time in seconds

Method C3D R(2+1)D
Grad-CAM 0.08 0.15
G-CAM++ 0.08 0.15
Saliency Tubes – 0.05
EP-3D 75.45 123.89
SWAG-VI 0.41 0.68
SWAG-VI+G 0.46 0.74
SWAG-VG 0.26 0.40

the worst, with SWAG-VI+G performing best with C3D, and
SWAG-VG the best with R(2+1)D. Compared to the differ-
ence with the other methods though, there is little difference
between the SWAG-V methods, with around 2% variation.

5.4. Efficiency

We show the mean time taken to generate an explanation
in Table 4. We can see that SWAG-V adds an additional
computational overhead when compared to the Guided-
Backpropagation and the activation-based methods. How-
ever, compared to EP-3D, SWAG-V is much more efficient,
with EP-3D requiring over 2 minutes to create a single ex-
planation for R(2+1)D. This is due to the multiple passes
required to compute a single EP-3D explanation when com-
pared to the single pass required by SWAG-V.

SWAG G is the fastest of the SWAG-V methods due to
the simplicity of making the superpixels. SWAGI+G is the
slowest due to the overhead involved in combining the gra-
dients and images. Despite the additional computational
cost, we believe the improvement in the other metrics justi-
fies the increase.

6. Conclusion

In this paper, we have proposed SWAG-V, an extension
of SWAG that allows for the creation of explanations for ac-
tion recognition networks. SWAG-V posses a number of al-
terations that make it more suitable for use in these networks
than the original SWAG. This includes the use of a tech-
nique for finding the optimal number of superpixels to allow
a trade-off between the creation of fine and coarse explana-
tions. We have shown through experimentation that SWAG-
V is the only method used to consistently beat all the base-
lines. With the original SWAG and EP-3D failing to outper-
form the baseline for insertion and weak-localisation, and
activation based methods failing to outperform the base-
line consistently for weak-localisation. Of the 3 proposed
SWAG-V techniques, we suggest SWAG-VI+G is the op-
timal variant. We showed qualitatively that it produced
cleaner explanations that SWAG-VG whilst outperforming
SWAG-VI in the local accuracy and weak-localisation met-
rics.
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