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Abstract

Non-rigid registration computes an alignment between a source surface with a target surface in a non-rigid manner. In the

past decade, with the advances in 3D sensing technologies that can measure time-varying surfaces, non-rigid registration

has been applied for the acquisition of deformable shapes and has a wide range of applications. This survey presents a

comprehensive review of non-rigid registration methods for 3D shapes, focusing on techniques related to dynamic shape

acquisition and reconstruction. In particular, we review different approaches for representing the deformation field, and the

methods for computing the desired deformation. Both optimization-based and learning-based methods are covered. We also

review benchmarks and datasets for evaluating non-rigid registration methods, and discuss potential future research directions.

CCS Concepts

• Computing methodologies → Shape modeling; Computer vision; Machine learning;

1. Introduction

Surface registration computes a deformation that aligns a source
surface with a target surface (see Fig. 1 for an example). It has
many applications in computer graphics and computer vision. One
common application is 3D surface acquisition, where an object
is scanned from different directions and the scans are aligned via
registration to derive the 3D measurements in a common coordinate
system. Depending on the application, the surfaces can be aligned by
a rigid or non-rigid deformation. In the former case, the whole source
surface undergoes a single rotation and translation, which is suitable
for the registration of static shapes. In the latter case, different parts
of the source surface can undergo different deformations, to account
for the non-rigid behavior—such as articulation of the underlying
shape. Computing such deformations is a fundamental problem for
the acquisition and analysis of non-rigidly deformable objects. In
the past decade, with the availability of consumer depth sensors that
can measure time-varying surfaces, non-rigid registration has been
applied to dynamic shape reconstruction problems such as human
performance capture, enabling a wide range of applications in VR,
AR, and entertainment.

Non-rigid registration is a challenging problem. First, unlike rigid
registration which only involves a single rotation and translation,
non-rigid registration often needs to determine a deformation field
for the source surface. A proper representation of the deformation
field needs to be chosen to ensure sufficient expressiveness for
an accurate alignment without incurring excessive computational
costs. In addition, 3D measure data often contain noise and outliers,

† Corresponding author: juyong@ustc.edu.cn (Juyong Zhang)

Source Target Initial alignment Registration

Figure 1: An example of non-rigid registration, where the source

surface is deformed in a non-rigid manner to align with the target.

and the two surfaces to be aligned can have a low ratio of overlap
when they cover different parts of an object. These can make it
difficult to derive a reliable correspondence between the two surfaces
for their alignment. Moreover, in many practical applications, the
registration needs to be performed efficiently, preferably in real-time.
This survey provides an overview of significant work that addresses
these challenges.

1.1. Scope and Related Works

This survey considers non-rigid registration methods for surfaces in
3D spaces, focusing on techniques related to dynamic shape acqui-
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sition and reconstruction in computer graphics and vision. As such,
some shape correspondence methods intended for other applications
are not included in this survey. For example, we do not include shape
correspondence methods that require the source and target surfaces
to have a bijective correspondence, as the inputs to a 3D acquisition
system are often partial scans rather than complete shapes. We do
include methods that compute correspondence between a partial
shape and a complete shape, since such scenarios can occur in a
reconstruction system where a template mesh is updated according
to input partial scans [GXW∗15, LJY∗17, YZG∗18, SXZ∗20]. Our
discussion is focused on methods that perform registration using
geometry information. Multimodal methods that utilize geometry to-
gether with other types of information have been recently reviewed
in [ST20] and are outside the scope of this survey.

Methods for 3D registration and correspondence have been re-
viewed in some existing surveys. Among them, [vKZHCO11]
and [Sah20] focus on shape correspondence rather than registra-
tion. [TCL∗13] consider both rigid and non-rigid registration, but
it was published almost a decade ago and did not include more re-
cent development in non-rigid registration, such as the use of robust
norms to handle outliers and partial overlaps, efficient numerical
solvers for non-smooth formulations, and deep learning-based meth-
ods. A more recent review of non-rigid registration methods and
software solutions is presented in [KBD17], but it focused on appli-
cations in medical imaging only. Our survey provides an up-to-date
overview of the literature in graphics and vision.

1.2. Organization

We first review different representations of deformation fields
in Section 2. Afterwards, methods for determining the deforma-
tion/correspondence are reviewed in detail. We divide such methods
into two categories: extrinsic methods attempt to directly reduce
the distance between the source and target surfaces measured in
the ambient 3D space, while intrinsic methods utilize intrinsic met-
rics on the surfaces to compute the alignment. These two types of
methods are reviewed in Section 3 and Section 4 respectively, each
covering both optimization-based and learning-based approaches.
Section 5 provides an overview of datasets and benchmarks for eval-
uating non-rigid registration methods. Finally, we discuss research
challenges and future directions in Section 6.

1.3. Notations

In the following discussion, we use X and Y to denote the source
surface and the target surface in the 3D space, respectively. The sur-
faces can be represented either explicitly as point clouds or meshes,
or implicitly as level sets of signed distance functions. For explicit
representations, we use X = {x1, . . . ,xm} and Y = {y1, . . . ,yn} to
denote the point sets on the source surface and the target surface
respectively, and use X̂ = {x̂1, . . . , x̂m} to denote the positions of
source surface points after the deformation.

2. Representation of the Deformation Field

Many methods compute a deformation field that transforms the
source surface to align it with the target surface. The representation

of the deformation field often involves a trade-off between its expres-
siveness and the computational cost. On one hand, a representation
with higher degrees of freedom tends to be more expressive and
may achieve better alignment. On the other hand, higher degrees of
freedom will require a larger number of variables to be determined,
which can increase the computational cost. In this section, we review
different representations that have been used in the literature. Since
our aim is to categorize different representations, for each type of
representation we only cite some representative papers as examples
instead of listing all methods that use the representation.

Pointwise position variables One of the simplest ways to define
a deformation field is to directly regard the point positions x̂ on
the new shape as the variables and compute them via optimiza-
tion [LZW∗09, HBH11, YKM13]. In practice, due to the physical
behavior modeled by the deformation, a vertex can rarely move in-
dependently of other vertices, and such pointwise position variables
can lead to redundant degrees of freedom. Therefore, the variables
are often subject to additional regularization such as local shape
preservation [LZW∗09, HBH11] and local similarity [YKM13].

Pointwise affine transformation Instead of treating the point po-
sitions as variables, some methods define an affine transformation
(Ai, ti) on each point of the source surface [ACP03]:

x̂i = Aixi + ti, (1)

where Ai ∈ R
3×3 and ti ∈ R

3. Compared with pointwise position
variables, this can better model more complex deformations such
as local rotations. Based on the observation that the deformations
in many non-rigid registration problems are locally rigid, affine
transformations are often computed with a constraint that they are
close to rigid transformations, i.e., the matrix Ai ∈ R

3×3 should be
close to a rotation matrix [ARV07, YMYK14, YLLL15, LYLG19,
YGL∗19].

Deformation graph-based methods The methods mentioned pre-
viously store the deformation field densely over each sample point
on the source surface. This can lead to a large number of variables
that incur high computational costs and memory consumption. To
reduce the degrees of freedom and achieve better efficiency, some
methods adopt an embedded deformation graph [SSP07] to repre-
sent the deformation [LSP08, LAGP09, BSB14, CTL15, LLM∗16,
LJY∗17,LJY∗17,YDXZ20,LZXH20,ZFA21]. These methods build
a deformation graph with nodes embedded on the surface, and with
edges indicating the proximity between the nodes (see Fig. 2 for an
example). The nodes are typically a subset of the sample points on
the source surface. Each node is associated with an affine transfor-
mation and influences the deformation in its surrounding region on
the surface. For a point xi on the surface, the deformation is a convex
combination of the transformations induced from the deformation
graph nodes that influence xi. Specifically, let {p1, . . . ,pr} be the
set of nodes in the deformation graph. Then the new position of xi

can be computed as [SSP07]:

x̂i = ∑
p j∈I(xi)

ωi j · (A j(xi −p j)+p j + t j), (2)

where A j ∈ R
3×3 and t j ∈ R

3 represent the affine transformation
corresponding to the node p j , I(xi) is the set of nodes that influence

© 2022 The Author(s)
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Figure 2: A deformation graph defined over a mesh surface, with

the graph nodes shown in orange.

xi, and {ωi j | p j ∈ I} are convex combination weights determined
by the distance from xi to the nodes in I(xi). Similar to pointwise
transformation, the affine transformation is often required to be close
to a rigid transformation, which can be enforced via a regularization
term when computing the deformation. Alternatively, some methods
directly assign a rigid transformation to each node, with the rigid
transformation represented using Lie algebra, quaternions or dual
quaternions [KCŽO08, DDF∗17, LZXH20, LYP∗20, ZFA21]. In ad-
dition, for smoothness of the deformation, it is a common practice
to use a regularization term that enforces consistency between the
deformation induced by two neighboring nodes pi and p j on the
same node p j [SSP07, LSP08]:

Esmooth = ∑
i

∑
j∈Ng(i)

‖A(p j −pi)+pi + ti − (p j + t j)‖
2
2, (3)

where Ng(i) is the index set of neighboring nodes for pi.

A deformation graph is typically constructed by selecting a subset
of the sample points on the surface as nodes via uniform sampling,
and connecting nearby nodes with edges [SSP07]. Since the num-
ber of deformation graph nodes is typically much smaller than the
number of sample points on the surface, such a representation can
significantly reduce the number of variables compared to point-
wise transformations. Besides efficiency, the deformation graph also
provides more flexibility in the algorithm: a user can change the
number of nodes to control the balance between expressiveness and
efficiency. It is also possible to adopt a non-uniform sampling that
adapts to the semantics of the deformation [YZG∗18].

RKHS-based methods Some methods model the deformation with
a displacement field d(·) over the source surface [MSCPn06, MS10,
MZT∗13, MZY16, MZJZ17]:

x̂i = xi +d(xi). (4)

The displacement field d(·) is often constructed within a reproducing
kernel Hilbert space (RKHS) using a Gaussian kernel Γ :R3×R

3 7→
R

3×3 with the form

Γ(x,y) = e
−β‖x−y‖2

· I,

where β is a parameter and I ∈ R
3×3 is the identity matrix. The

displacement at a point xi can then be written as

d(xi) = ∑
j∈I

Γ(xi,x j) c j, (5)

where I is the index set for either all the source surface points or a
subset of them, and c j ∈ R

3 are the variables to be determined. The
deformation is usually optimized via a probabilistic model, with
regularization on the displacement function such as the coherence
of motion of nearby points [MSCPn06, MS10].

Patch-based methods Some methods deform the surface in a
patch-based manner [HAWG08, CBI10, KSI18]. They first segment
the surface into a set of patches that are either disjoint or partially
overlapping. Each patch is assigned with a separate rigid transforma-
tion, which induces deformation for points inside and adjacent to the
patch. For globally consistent deformation, the new position of a sur-
face point is computed by combining the deformations induced by
the patches, typically using Gaussian weights related to the distance
from the point to the patches. Such approaches lead to approximately
rigid deformation with each patch. For registration between partially
overlapping surfaces, the patch-based representation also helps to
extend deformation to regions without correspondence to the target
shape [HAWG08].

[XSWL14] also perform registration with a patch-based defor-
mation. Instead of rigid transformation, each patch is deformed by a
displacement field using a linear combination of deformation modes
learned from simulated data. When determining the deformation, a
regularization term is included that penalizes deviation between the
displacement fields of two neighboring patches on their common
points, to achieve consistency across patches.

[LKSS14] align a depth image of a human face with a database of
face shapes in a patch-based manner, to derive a high-resolution face
mesh. The input face is divided into several patches corresponding
to different facial parts. Each patch is first matched with the faces in
the database to determine its new point positions and normals. The
positions and normals from different patches are then fused into the
complete 3D mesh.

Spline function-based methods Some methods transform the sur-
face using a deformation field defined by a spline function over
the 3D space. One common approach is based on the thin plate
spline (TPS) [Boo89], which is used to define a displacement
field [CR03, DNK12, SK16, FYZ∗17, HZD∗19]

d(x) = Ax+b+∑
i

wiQ(‖ci −x‖),

where {ci} is a set of pre-selected control points, and A ∈ R
3×3,

b ∈ R
3 and wi ∈ R

3 are parameters that control the displacement
field, and Q(·) is a radial basis function. The control points can be
either placed on a uniform grid [DNK12], or chosen based on the
feature correspondence between the two surfaces [HZD∗19].

Another common approach is free-form deformation
(FFD) [SP86], which transforms a point x = (x1,x2,x3) via

X̂ = ∑
i

∑
j
∑
k

pi jkBi(x1)B j(x2)Bk(x3),

© 2022 The Author(s)
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where Bi,B j,Bk are spline basis functions, and {pi jk} are control
points that are to be determined. These methods usually select regu-
lar grid points as the control points to deform [RSH∗99, RS12].

Grid-based methods Some methods define a surface implicitly as
a level set of a scalar function [FNT∗11, NFS15, ZCS∗15, IZN∗16,
SBCI17]. Typically, the scalar function is a signed distance function
(SDF) or a truncated signed distance function (TSDF). The SDF at
a point x ∈ R

3 can be written as [FNT∗11]

SDF(x) = (x−x
∗) ·n∗, (6)

where x∗ is the closest point to x on the surface, and n∗ is the unit
normal vector of the surface at x∗. Note that the definition above
is applicable also for surfaces represented as point clouds: in this
case, (x−x∗) ·n∗ is the signed distance from x to the tangent plane
at x∗ which is a first-order approximation of the underlying sur-
face [HDD∗92]. Considering that points far away from the surface
have little effect on the level set, the TSDF truncates the value of
SDF(x) beyond a certain threshold:

TSDF(x) = max{−1,min{1,SDF(x)/t}},

where t is a threshold parameter. The SDF or TSDF is often
discretized using its values evaluated at a set of points sampled
as a uniform grid within a volume that encloses the surface. A
deformation field defined over the same volume is then used
to transform the implicit surface. The deformation field can be
represented discretely either on the same grid as the SDF or
TSDF [ZCS∗15, IZN∗16, SBCI17], or on a coarser grid for bet-
ter efficiency [NFS15]. The deformation of a point on the implicit
surface is interpolated from nearby grid points in the deformation
field. Alternatively, some methods use such a deformation field to
move a set of FFD control points embedded in the same volume, and
transform the surface via FFD [FNT∗11]. To achieve local rigidity,
the deformation field is either represented using a rigid transforma-
tion at each grid point [FNT∗11,NFS15,ZCS∗15,IZN∗16], or using
a translation at each grid point together with regularization that main-
tains the distance between points after the deformation [SBCI17].

Prior-based representations Some methods deform the surface
in specific ways based on priors about the underlying shape. One
example is articulated shapes, which can be deformed using skeleton
models [ACP02, PG08, GSDA∗09, ZST∗10, YGX∗17]. For exam-
ple, in [GSDA∗09] the human body motion is modeled using a
kinematic skeleton, which consists of straight edges representing
the bones, connected at end points representing body joints. The
movement of the skeleton is parameterized by a global rigid mo-
tion together with the joint angles. The surface is then deformed
via skinning [JDKL14], which transfers the skeleton motion to the
surface points. Compared with deformation graphs, such skeletons
encode a stronger prior of the structure of the underlying shape and
can often represent the deformation behavior with fewer degrees of
freedom. Some methods also combine a skeleton with a deformation
graph or pointwise displacements to model deformations with more
detail [BBLR15, YGX∗17, YZZ∗19, YZG∗18, SXZ∗20]. Besides
skeletons, other representations have been proposed to model articu-
lated structures. For example, the shape of human hands is modeled
using a combination of spheres and cylinders in [TST∗15], and
using sphere-meshes in [TPT16]. The SMPL [LMR∗15], a learned

parameterized human body model, has been used for the non-rigid
registration of 3D human shapes [BRPMB17, YZG∗18, MMRC20].

The shape of human faces is another example where non-rigid
registration can benefit from shape priors. Some parameterized
models that capture the variation of human face shapes have been
used successfully for facial reconstruction and tracking [BTLP16].
For example, the morphable model from [BV99] provides a linear
representation for the geometry and texture of the human face, and
can be used to reconstruct a neutral face model via alignment to
scanned data [WBLP11, IBP15]. Different facial expressions for the
same person can be modeled using a linear blendshape model, which
can be used for real-time face tracking via registration [WBLP11].
The bilinear face model from [CWZ∗14] is used in [AZB15] to align
a template face mesh with a point cloud.

Summary and discussion Each representation of deformation has
its benefits and limitations. Pointwise position variables and point-
wise affine transformations provide an abundance of degrees of
freedom to model the deformation in detail, with pointwise affine
transformations having the additional benefit of making it easy to
model local rotations. However, they require a large number of vari-
ables and may induce a high computational cost. Representations
based on deformation graphs, RKHS and spline functions can reduce
the degrees of freedom needed to model a deformation. This can be
suitable for deformations that have a low-dimensional structure. For
example, deformation graphs are commonly used for registration
between shapes of the same human subject with different poses,
where the deformation is primarily induced by the articulation of
joints. Meanwhile, such lower-dimensional representations may be
less capable of modeling fine-scale variations in the deformation
field, and the control structure may need to be carefully selected
to account for the topology of the shape and to ensure expressive-
ness. Patch-based representations can be suitable when the shape
consists of multiple regions and the points within the same region
undergo similar deformation. Additional care needs to be taken to
ensure a smooth transition of the deformation across the boundaries
between patches, which can increase the complexity of the algo-
rithm. Grid-based methods provide implicit representations for the
surfaces, which can better handle topological changes between the
source and the target surfaces. However, they can incur high mem-
ory consumption when a high-resolution grid is used. Prior-based
representations can effectively utilize the characteristics of specific
classes of shapes such as human faces and hands. On the other hand,
their performance may degrade for shapes that are not covered by
the parametric model.

3. Extrinsic Methods

Given the representation of a deformation field, non-rigid registra-
tion amounts to searching the space of deformations for one solution
that best aligns the two surfaces. Therefore, it is important to design
criteria to measure the alignment quality. A large class of meth-
ods measures the alignment error using the distance between two
surfaces in the ambient 3D space. These methods are called extrin-
sic methods in this paper, since they involve the extrinsic distance
between surfaces. This section reviews extrinsic methods in detail.

© 2022 The Author(s)
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3.1. Optimization-Based Methods

Many methods compute the deformation by minimizing a target
function E about the deformation, typically formulated as

E = Ealign +αEreg, (7)

where Ealign measures the alignment error between the deformed
source surface and the target surface, and Ereg is a regularization
term that enforces constraints on the deformation such as smooth-
ness. α > 0 is a weight that controls the balance between these two
terms. Various forms of the alignment term and the regularization
term have been proposed in the past. In the following, we review
some representative formulations of the terms.

3.1.1. Alignment term

A simple and popular alignment term is based on the distance from
each source surface point to the target surface [BM92]:

Epp =
m

∑
i=1

w
d
i ‖x̂i −yρ(i)‖

2, (8)

where ρ(i) is the index of the corresponding point on the target
surface for the point x̂i, and wd

i is a weight that can be used to control
the influence of different points based on the reliability of their
correspondence. Such point-to-point distance terms have been used
in many registration methods [ACP03, PMG∗05, ARV07, LSP08,
LZW∗09, CZ11, HMS12, RS12, YMYK14]. The correspondence
can be identified by either searching for the closest point on the
target surface [ACP03, ARV07], formulating the correspondence as
optimization variables [LSP08], or matching features such as scene
flows [XLC∗18].

Some methods measure the alignment using the following func-
tion instead [CM92]:

Eppl = ∑
i

w
d
i

(
nρ(i) · (x̂i −yρ(i))

)2
, (9)

where nρ(i) is the unit normal of the target surface at the corre-

sponding point yρ(i) for xi. The term
(

nρ(i) · (x̂i −yρ(i))
)2

mea-

sures the squared distance from x̂i to the tangent plane at yρ(i),
and is often called the point-to-plane distance. In rigid registra-
tion, it is well-known that the ICP algorithm based on the point-
to-plane distance can converge faster than the point-to-point dis-
tance, as the tangent plane provides a first-order approximation
of the local surface shape [PHYH06]. The point-to-plane distance
has been used in many non-rigid registration algorithms [LAGP09,
XLC∗18, LYP∗20]. It can be used either as the alignment term
alone [DKD∗16, YGX∗17, DDF∗17, LZG18, YZG∗18, ZBYX19,
LYP∗20, LZXH20], or in combination with the point-to-point dis-
tance in (8) [LAGP09, CZ11, YKM13, AZB15, GXW∗15, TT16,
IZN∗16, LJY∗17, WZX17, XLC∗18, LG20, SXZ∗20, ZFA21].

If the target surface is represented implicitly with an SDF or TSDF
and the source surface is represented explicitly, then the distance
from a source point xi to the target surface can be simply evaluated
as |D(xi)|, where D(·) is the SDF or TSDF. The alignment term can
then be defined as

Ealign = ∑
i

w
d
i φ(|D(xi)|), (10)

where φ is an increasing function on [0,+∞). This definition has
been used in [DDF∗17, XSH∗20, SXZ∗20, LYP∗20] for aligning a
template mesh with a TSDF.

If both surfaces are represented using SDFs, the alignment
term can be defined as the sum of the squared difference be-
tween the SDFs of the deformed source surface and the target
surface, evaluated over some sample points in an enclosing vol-
ume [FNT∗11, ZCS∗15, SBCI17]. The underlying idea is that if the
two surfaces are entirely aligned, their SDFs should be the same
everywhere.

Some methods consider the alignment from a probabilistic per-
spective, typically using mixtures of Gaussians [JV05, MSCPn06,
MS10, JV11, MZT∗13, GFD14, GF15, MQZ∗15, MZY16]. Their
alignment terms are formulated as a probabilistic measure, such as
the negative log posterior probability [MSCPn06, MS10] and the ℓ2
difference between probability density functions [JV05,JV11]. Such
probabilistic approaches are discussed in detail in Section 3.1.4.

3.1.2. Regularization term

The regularization term can be a weighted sum of multiple terms,
each enforcing a different requirement on the deformation field.
Below we review the main types of regularization that have been
used in the literature.

Smoothness To avoid unnatural deformed shapes, it is a common
requirement that the deformation field should be smooth. This can be
achieved using different types of regularization terms according to
the representation of the deformation. For deformation fields repre-
sented as pointwise transformations, the smoothness can be enforced
by penalizing the difference between transformations on neighbor-
ing points. For example, in [ACP03] the surface is deformed by
pointwise affine transformations, and the regularization term for
smoothness is defined as

Esmooth = ∑
i

∑
j∈N (i)

‖Ti −T j‖
2
F , (11)

where the matrix Ti represents the affine transformation on xi, ‖ ·‖F

is the Frobenius norm, and N (i) is the index set of the neighbor-
ing vertices for xi. Similar smoothness terms have also been used
in [PMG∗05, ARV07, FHCP18, ZFA21].

For deformations defined using a deformation graph, the smooth-
ness can be enforced via consistency between the deformations on
a graph node that is induced by a neighboring node and the node
itself, resulting in a smoothness term as shown in (3). This regular-
ization is commonly used in registration methods using deforma-
tion graphs [LSP08, LAGP09, GXW∗15, CTL15, WZX17, XLC∗18,
YDXZ20].

For RKHS-based deformation fields, the smoothness is often
induced by penalizing a norm of the deformation field within the
RKHS. For example, the deformation field in [MSCPn06] is defined
using Gaussian kernels as shown in (5), and the regularization is
defined as

Esmooth = ∑
i∈I

∑
j∈I

Γ(xi,x j) ci · c j. (12)

Similar regularizations are also used in [JV05, MS10, MZT∗13,
GFD14, GF15, MZJZ17].

© 2022 The Author(s)
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Positional constraints Depending on the application, some points
on the deformed surface are required to be close to some target posi-
tions. For example, when aligning a template mesh for human bodies
or heads to scanned data, the landmark vertices on the deformed
template mesh are required to be close to the landmark locations on
the data [ACP03, SCO04, ARV07, YLSL10, TT16, LG20, ZFA21].
Such positional constraints can be enforced with the following term:

Epos = ∑
xi∈C

‖x̂i −mi‖
2, (13)

where C is the set of source surface points with positional constraints,
and mi is the target position for xi.

Local shape preservation When deforming the source surface, it is
desirable to prevent distortion of the local surface. Depending on the
assumption about the deformation, different types of regularizations
can be introduced to achieve this goal.

Many methods assume the deformation to be locally rigid,
i.e., each local region undergoes an approximately rigid transforma-
tion while the whole surface is deformed in a non-rigid way to align
with the target. Various forms of regularization have been proposed
to achieve such local rigidity. For many methods that assign affine
transformations to either the source points or the deformation graph
nodes, regularization terms are introduced to require each affine
transformation to be close to a rigid transformation. Some methods
use the following term [LSP08,LAGP09,GXW∗15,CTL15,WZX17,
XLC∗18]:

Erigid = ∑
i

Rot(Ai), (14)

where Ai ∈ R
3 denotes the transformation matrix for the affine

transformation at a graph node, and

Rot(Ai) =(ai,1 ·ai,2)
2 +(ai,1 ·ai,3)

2 +(ai,2 ·ai,3)
2

+(1−ai,1 ·ai,1)
2 +(1−ai,2 ·ai,2)

2(1−ai,3 ·ai,3)
2

with ai,1,ai,2,ai,3 being the three column vectors of Ai. The func-

tion Rot(Ai) enforces the condition A⊤
i Ai = I by penalizing the

deviation between the two matrices using their upper triangular ele-
ments. This condition alone does not guarantee Ai to be a rotation
matrix, since a reflection matrix Ai with orthonormal columns and
det(Ai) =−1 can still satisfy the condition. In [DKD∗16], an addi-
tional term (det(Ai)−1))2 is introduced to avoid such reflections.
Alternatively, some methods enforce local rigidity by penalizing
the deviation between the matrix Ai and its closest rotation ma-
trix [YLLL15, GLLY17, LYLG19, YGL∗19, YDXZ20]. A similar
approach is adopted in [Sah15] for the registration of tetrahedral
meshes, by penalizing the deviation between the deformation gradi-
ent of each tetrahedron in the source mesh and its closest rotation
matrix; an additional Tikhonov regularizer is also introduced to
penalize the change of point positions between compared with the
previous iteration, which helps to prevent element inversions and
handle large deformations.

Since local rigidity implies that the distance metric is also pre-
served locally, some methods enforce the condition by penaliz-
ing the change of distance between each point and its neighboring

points [WJH∗07, SWG08, IZN∗16, YGL∗19, LG20]:

EARAP =
m

∑
i=1

γi ∑
j∈N (i)

γi j‖Ri(x j −xi)− (x̂ j − x̂i)‖
2
2, (15)

where Ri is an auxiliary variable for a local rotation, and γi,γi j

are weights. Unlike previous formulations of local rigidity, this
regularization term can be applied to general deformation fields, not
just those represented with affine transformations.

The local rigidity conditions require the deformation to be near-

isometric. Other regularizations based on weaker conditions have
also been proposed to allow for non-isometric deformations. Since
the Laplacian at each point encodes the local geometry [Ale03],
some methods penalize the change of the Laplacians after the defor-
mation (potentially up to rotation and scaling) [LZW∗09, HBH11,
AZB15, GF15]. Meanwhile, in [YKM13, APL14, JQL∗17, JYZ∗19]
the deformation is required to be locally close to a similarity trans-
formation. In other works, [YMYK14, WLLY19] require the de-
formation to be locally as conformal as possible, while [WAO∗09]
introduce a regularization for local volume preservation.

Parameter regularization In some methods that rely on a param-
eterized shape model for the deformation, regularization terms for
the shape parameters are introduced to obtain more natural results.
In [BWP13], the registration for facial tracking uses a linear blend-
shape model to represent facial expressions, and the target function
includes a regularization term that penalizes the ℓ2-norm of the
blendshape coefficients. In [TST∗15], a parameterized hand model
is aligned with the scanned data, using a regularization term that
penalizes the deviation between the hand parameters and a PCA
subspace that indicates feasible poses.

Other regularizations Other types of regularization can be used
according to the specific need of an application. For example, the
registration between human body motion frames in [LJY∗17] in-
troduces a regularization for the temporal coherence of deforma-
tion between adjacent frames. For the registration of hand shapes
in [TST∗15], regularization terms are introduced to prevent self-
collision and avoid impossible poses.

3.1.3. Improving robustness

Many alignment terms and regularization terms are formulated in
a sum-of-squares form, which can be the squared ℓ2 norm of an
error vector. The minimization of such an ℓ2-norm will attempt to
reduce the magnitude of all the error components, which may not
be suitable for some cases. For example, when the two point sets
contain outliers or overlap partially, some source points may not
correspond to any point on the target surface. If we minimize the
point-to-point distance (8) with the same weights for all points, then
reducing the distance for the points without true correspondence
may result in an erroneous alignment. One way to address this
issue is to choose a proper weight wd

i to reduce the influence of
source points without reliable correspondence on the target surface.
This can be done either by setting the weights according to specific
quality criteria of the correspondence, or by jointly optimizing the
weights such that they are adjusted automatically [ARV07, LSP08,
CZ11, ZCS∗15, LLM∗16, IZN∗16, KSI18].
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Another popular approach is to perform sparsity optimization on
the distance values. The idea is to minimize a robust norm that can
reduce the magnitudes of many error components while allowing
some components to gain large values, thus promoting the sparsity of
the error vector [BJMO12]. This can be applied to not only the align-
ment term, but also a regularization term such as the smoothness
of the transformation. Sparsity optimization for the regularization
error is beneficial in some applications, because this would allow
a deformation that is less smooth in some local regions such as the
joints for an articulated motion.

A popular choice of sparsity-inducing norms is the ℓp-norm with
0 ≤ p ≤ 1. In [GXW∗15], the ℓ0-norm is applied to the smoothness
term for the affine transformations defined over a deformation graph.
[YLLL15] apply the ℓ1-norm to the smoothness term for the affine
transformations on each point. In [JYZ∗19], the ℓ1-norm is applied
to the alignment term instead. [LYLG19] and [YGL∗19] apply the
ℓ1-norm to both the smoothness term and the alignment term.

Other robust norms have also been used in the literature. The
Tukey function is applied to the point-to-plane alignment term
in [NFS15]. The Geman-McClure function is used in the align-
ment terms in [YZG∗18], [XSH∗20] and [SXZ∗20]. The Huber-L1
loss is applied to the smoothness term in [JYZ∗19] and [ZFA21].
The Welsch function is used for both the alignment term and the
smoothness term in [YDXZ20].

3.1.4. Probabilistic models

The optimization-based methods above penalize the geometric dis-
tance between the two surfaces. Another class of methods models
the alignment accuracy from a probabilistic perspective instead.

A popular probabilistic approach is coherent point drift (CPD)
and its variants. The original CPD method [MSCPn06] considers the
source point set as the centroids of equally-weighted Gaussians with
equal isotropic covariance matrices in a Gaussian Mixture Model
(GMM), and considers the target point set as the data points. Using
an RKHS-based displacement field (5) to deform the source surface,
they align the two surfaces by minimizing the posterior probability,
which is equivalent to minimizing the following alignment term

Ealign =−
n

∑
j=1

log
m

∑
i=1

exp(−
1
2

∥∥∥∥
y j − x̂i

σ

∥∥∥∥
2

), (16)

where σ is the standard deviation parameter for the Gaussians.
The above measure is combined with a regularization term for
the smoothness of the displacement to derive the target function.
In [MS10], an additional uniform distribution is introduced to the
GMM to account for noise and outliers. In [GFD14] and [GF15],
the CPD framework is used with additional regularization terms that
preserve local structures.

Local structures are also utilized in [MZY16] for registration.
Similar to CPD, they use a GMM to model the relationship between
the two point sets. Unlike the CPD that uses equal membership
probabilities in the mixture model, they use local shape features
to find correspondence between point sets and determine the mem-
bership probabilities. The correspondence and the probabilities are
continuously updated during the optimization according to the de-
formation. [MZT∗13] and [MQZ∗15] adopt a similar strategy and

SHOT SHOT + Prune

Figure 3: Sparse initial correspondence between two models, com-

puted by matching SHOT descriptors [STDS14] followed by pruning

the correspondence [TMRL14a].

use feature-based correspondence to facilitate registration. Instead
of maximum likelihood estimation, they update the deformation ac-
cording to the correspondence via L2E [Sco01], a robust estimator
related to minimizing the L2 distance to the ground-truth density
function.

[Hir21] formulates the CPD problem in a Bayesian setting and
proposes a solver with guaranteed convergence as well as an accel-
eration scheme. The Bayesian formulation was also used in [Hir20]
to accelerate non-rigid registration, by first performing registration
on a downsampled source point set and then interpolating the defor-
mation using Gaussian process regression.

Different from CPD, in [JV05] and [JV11] each of the two point
sets is modeled as a mixture of Gaussians, and the registration is
formulated as a problem of aligning the two mixtures. They measure
the alignment error using the L2 distance between the probability
density functions of the two Gaussian mixtures. Using either a TPS
or RKHS representation for the deformation field, the above measure
is combined with a regularization term for the deformation field,
which is then minimized to derive the deformation.

3.1.5. Initialization

Typically, numerical optimization only finds a local minimum
near the initial solution. Therefore, it is often necessary to find
a proper initialization in order to achieve the desired result. A sim-
ple and popular approach is to first compute a rigid transformation
and (optionally) a uniform scaling that roughly align the two sur-
faces [LSP08, LZW∗09, YKM13, FHCP18, YDXZ20, SK21], using
the ICP algorithm or its variants.

When there is a significant non-rigid deformation between the
two surfaces, more sophisticated initialization may be needed. Many
methods initialize the optimization using sparse correspondence
that is computed by matching features on the two surfaces. These
features are often identified using shape descriptors.

[CZ08] construct correspondence using spin-images [Joh97], a
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descriptor for local geometry. They randomly subsample the points
on the two surfaces to compute their spin-images, and find the point
pairs whose spin-images are significantly more similar than others.

[GTRS16] extract 3D keypoints on the point clouds with an
Intrinsic Shape Signature descriptor [Zho09], [RBMB08] compute
Persistent Feature Histograms (PFH) at the keypoints, and then
compare the PFHs to determine initial correspondence. [MZY16,
MZJZ17] adopt Fast Point Feature Histograms (FPFH) [RBB09]
descriptors, which simplify the calculation of PFH and achieve
comparable discriminative power.

[YLLL15, LYLG19, YGL∗19, YDXZ20] find the initial corre-
spondence using the SHOT descriptor [STDS14], which is more
robust to noisy data. They first match the closest SHOT descrip-
tors, and then use a diffusion pruning method [TMRL14a] to prune
the correspondences with inconsistent geodesic distances on the
source surface and the target surface. Further discussion of pruning
techniques may be found in Section 4.1.1.

Besides the 3D geometry itself, auxiliary information can also
be used to identify initial correspondence. For example, for input
surfaces in RGB-D format, some methods first use compute SIFT
features [Low04, LZW∗09, IZN∗16, LG20, ZFA21] on the RGB
images to identify corresponding pixels; the correspondence is then
transferred to the 3D surfaces using the association between the
RGB and the depth data [ZST∗10, MQZ∗15, IZN∗16].

3.1.6. Numerical solvers

The optimization problem for non-rigid registration is typically
non-linear and non-convex, and the solution is often computed
using an iterative numerical solver. Problems with a differentiable
target function can be solved using gradient-based solvers. Each
iteration of such solvers typically amounts to using the gradient
information to determine a search direction, followed by a line
search along the direction to find new variable values that lower
the target function. Examples of such solvers include quasi-Newton
methods such as BFGS or L-BFGS [JS06], which are popular for
unconstrained optimization problems [ACP02, ACP03, WAO∗09,
MZT∗13, YHL∗16, YDXZ20]. If the target function has a sum-of-
squares form, then the problem can also be solved using specialized
non-linear least squares (NLLS) solvers such as Gauss-Newton
or Levenberg-Marquardt [WJH∗07, LSP08, LAGP09, CZ11, SK13,
YMYK14,BSB14,ZCS∗15,CLS20,ZFA21]. Such quasi-Newton and
NLLS solvers can achieve a super-linear convergence rate [JS06],
and there are established open-source implementations such as Ceres
Solver for Levenberg-Marquardt [AMO ]. For a complicated target
function, the derivation and computation of its gradient can be
non-trivial and error-prone. This issue is mitigated by automatic
differentiation tools provided by software libraries such as Ceres
Solver, which only require the user to implement the target function
and can automatically compute its derivatives.

Despite the popularity of gradient-based solvers, they are not
applicable to all problems. For example, robust norms can lead to a
non-smooth target function that cannot be handled using gradient-
based solvers. Such non-smooth problems are often solved using
a first-order method [Bec17] instead. The main idea is to intro-
duce auxiliary variables to reformulate an equivalent optimization

problem, whose solution can be computed using a method that
involves simple sub-problems that are easy to solve. For exam-
ple, block coordinate descent [Tse01] is used to solve the refor-
mulated problem in [GXW∗15], while ADMM [BPC∗11] is used
in [YLLL15, LYLG19, YGL∗19]. One benefit of first-order solvers
is that their sub-problems often have closed-form solutions that can
be computed in parallel, allowing them to benefit from multi-core
systems to improve efficiency.

The idea of decomposing a problem into sub-problems with
closed-form solutions is not limited to non-smoooth problems.
In [ARV07], it is noted that the target function can be minimized
in closed-form by solving a linear system if the point correspon-
dence is fixed. Thus they alternate between point correspondence
search and linear solve, resulting in a procedure similar to the
ICP algorithm for rigid registration. Such ICP-like solvers are
also used in [YKM13, YMYK14, IZN∗16]. For methods based
on probabilistic models, the problem is often solved using an
EM algorithm consisting of alternating updates with closed-form
steps [MSCPn06, MS10, GF15, MZJZ17, KSI18, GT19, Hir21].

3.2. Learning-Based Methods

With a suitable target function, an optimization-based registration
method tends to work well when the two surfaces are close. For
problems that involve large deformations, optimization methods may
converge to an undesirable local minimum if a reliable initial corre-
spondence is not provided. Such a correspondence is not always easy
to compute: closest point correspondence is sensitive to the relative
position between the surfaces, while shape descriptors may still be
ambiguous. For such challenging cases, prior knowledge learned
from large-scale data can be beneficial. With the fast development
of deep learning in recent years, various learning-based methods
have been proposed for non-rigid registration. These methods train
a model—typically a neural network—using a set of example data,
such that the trained model can reliably predict the deformation or
correspondence for unseen data. The training is done by searching
for model parameters to minimize a loss function that is evaluated
using the training data. In the following, we will review some repre-
sentative exiting works.

3.2.1. Supervised methods

A supervised method trains the model using data with ground-truth
labels, such as the correspondence or the deformation field. The aim
is to train a model that can predict the unknown ground truth for
unseen data with reasonably high accuracy.

Shape correspondence Some methods focus on finding correspon-
dence between shapes. [WHC∗16] propose a method to compute
dense correspondence between human body shapes. They use a con-

volutional neural network (CNN) to extract the feature descriptors
of the depth image and establish the correspondences by nearest
neighbor search in the space of descriptors. [TCM∗21] propose a
transformer-based architecture to register 3D point clouds and ob-
tain their correspondence, using a surface attention mechanism that
adapts to the point cloud density and the underlying geometry.
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Learnable correspondence with deformation graph Some meth-
ods integrate the learned correspondence and combine it with a
deformation graph, to deform the source surface and align with the
target surface by optimization. [BZTN20] adopt an encoder-decoder
architecture to determine the correspondence between two RGB-D
frames, by predicting for each source point a heatmap of correspon-
dence probability on the target frame. The correspondence, iden-
tified with the highest-probability point on the target, is then used
to optimize a deformation graph-based transformation to align the
surfaces. They also use a semi-supervised process to collect a large
amount of data for training and testing. Concurrently, [LBZ∗20]
propose an end-to-end method to perform non-rigid RGB-D track-
ing. They train a fully convolutional network to extract feature maps
for both the source and the target frames, which are used to de-
fine a feature term in an optimization problem for a deformation
graph-based transformation that aligns the frames. They solve the
optimization using Gauss-Newton, and train an encoder-decoder
network to produce PCG preconditioners that accelerate the solver’s
convergence. Further, [BPZ∗20] propose a dense correspondence
prediction module for the source RGB image and the target RGB
image. Through this module, they obtain the dense correspondences
and weights to measure the accuracy of these correspondences. Un-
der these correspondences, they use the deformation graph with
a differentiable solver to align the input point clouds, which are
obtained by depth images. They can obtain better correspondences
and reliable weights by end-to-end training.

Learnable displacement field In [SGT∗19], two input point
clouds are first converted to voxel grid representations, and then
aligned using a voxel displacement field predicted by a network
pipeline. The pipeline consists of a displacement estimation stage
that predicts large global deformation and a refinement stage that
recovers small displacements, each implemented with a UNet-
style 3D convolutional network. The model is trained on the
FLAME [LBB∗17], DFAUST [BRPMB17], thin plate [GSVS18],
and cloth [BFS18] datasets.

Registration with parametric representation Recently, many
methods based on parametric shape models have emerged. Some
methods use the SMPL model [LMR∗15] as the template for
the human shape, then optimize SMPL parameters to align with
any human body point clouds, including the human body in
clothes [GFK∗18, WXZ∗20, WGT21]. In [GFK∗18], an autoen-
coder network is used to predict the correspondence between a
template shape and an input human shape, which is then used to
perform matching between two human shapes with the template
mesh as the proxy. The network is trained using synthetic data gen-
erating from SMPL with estimated parameters from the SURREAL
dataset [VRM∗17]. [WXZ∗20] take a sequence of point clouds as
the input, and propose a spatial-temporal attention convolution to
directly regress the vertex coordinates of a fitted mesh model in
a coarse-to-fine manner. The model is trained using the scanned
data sequences and corresponding SMPL models from the DFAUST
dataset [BRPMB17]. In [WGT21], the SMPL model is fitted to
the input point cloud of a dressed human. They use the occupancy
functions to represent the canonical space, and propose a piecewise
transformation field to deform the source point into the canonical
space. The CAPE dataset [MYR∗20] is used for training.

Loss function design Different loss function terms have been
adopted in supervised methods to learn the correspondence or de-
formation. When ground-truth correspondence is available in the
training data, some methods introduce function terms that require
the predicted correspondence to be close to the ground truth. For
example, [BZTN20] use a probability heatmap to represent point
correspondence, and compute the binary cross-entropy loss and neg-
ative log-likelihood loss between the predicted and ground-truth
heatmaps to penalize their deviation. Other methods require some
points on the predicted deformed source surface to be close to their
ground-truth positions, using a loss function term that penalizes
the difference [GFK∗18, BPZ∗20, WXZ∗20, LBZ∗20, TCM∗21].
In [SGT∗19], a coarse alignment prediction module is trained with a
loss function that penalizes the deviation from the ground-truth dis-
placement, while a refinement module is trained using an alignment
loss similar to (8) to refine the registration.

3.2.2. Unsupervised methods

Supervised methods require training data with ground-truth cor-
respondence or deformation, which are not easy to obtain. Thus
some methods train the model in an unsupervised manner, using
data without ground-truth labels. In this case, the loss function plays
an important role in guiding the training of the model. Below we
review some loss functions that have been used in the literature.

GMM loss [WCLF19] use a CNN to predict a TPS-based defor-
mation field that aligns two point clouds. To train the model, they
use a GMM loss to measure the alignment quality, which has the
same form as (16), with the Gaussian standard deviation being a
hyper-parameter.

Chamfer distance [WLCF19] use an MLP to predict a displace-
ment field for aligning two point clouds. They train the model using
the Chamfer distance to measure the alignment [FSG17]:

LChamfer = ∑
x∈X

min
y∈Y

‖x̂−y‖2
2 + ∑

y∈Y

min
x∈X

‖x̂−y‖2
2.

For point clouds with outliers and missing data, they also propose
the following clipped Chamfer distance loss:

LC-Chamfer = ∑
x∈X

max(min
y∈Y

‖x̂−y‖2
2,c)+ ∑

y∈Y

max(min
x∈X

‖x̂−y‖2
2,c),

where c is a hyper-parameter.

Point-to-point reconstruction loss [ZQZ∗21] propose a feature
embedding module to extract the deep features of the input point
clouds, a correspondence indicator module to learn the correspon-
dences, and a symmetric deformer module to deform the source
point cloud to align with the target point cloud and deform the target
point cloud to align with the source point cloud. Then they use
a point-to-point reconstruction loss to measure the quality of the
deformation and the alignment:

Lpp-recon = ‖X− Ŷ‖2
F +‖Y− X̂‖2

F ,

where X̂ and Ŷ are the deformed source point cloud and the target
point cloud, respectively. This point-to-point reconstruction loss is
often easier to train than the Chamfer distance.
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Earth mover’s distance [WCMN19] use an encoder-decoder net-
work to learn a displacement field to align a source mesh with
a target mesh or point cloud. They use the earth mover’s dis-
tance [FSG17] as part of their alignment measure between the source
and target:

LEMD = min
φ:X 7→Y

∑
x∈X

‖x̂−φ(x̂)‖2,

where φ : X 7→ Y is a bijection. In [WCMN19], this term is used
in conjunction with the Chamfer distance to measure the alignment
error.

Multi-view projection loss [FZC∗21] propose a multi-view projec-
tion loss function for aligning point clouds and achieve better results
than the Chamfer distance. The idea is to project the 3D shapes
onto multiple 2D planes with different orientations, and measure the
differences of the depth and mask images between the source shape
and the target shapes as an indication of the alignment error. The
main difference compared with Chamfer distance and Earth mover’s
distance is that it provides more directional information. In addition,
they propose a recurrent update framework that defines several rigid
transformations {Rr} without specific locations to represent the de-
formation field. To represent the deformation on each source point,
they define

x̂i =
K

∑
r=1

w
r
i ·Rr,

where wr
i is the skinning weight for xi with the constraint:

k

∑
r=1

w
r
i = 1, ∀i = 1,2, . . . ,m.

Their model is trained on the HumanMotion [VBMP08],
TOSCA [BBK08] and SURREAL [VRM∗17] datasets, and tested on
the FaceWareHouse [CWZ∗14] and DFAUST [BRPMB17] datasets.

Regularization Similar to optimization-based methods, it is often
insufficient to use just an alignment term for the training loss. Some
additional regularization terms may be needed to prevent trivial so-
lutions and to produce natural results. For example, in [WCMN19],
the training loss includes a symmetry term to promote symme-
try for man-made objects, a Laplacian term to preserve local ge-
ometric detail, and a local permutation invariant term to prevent
self-intersections. In [FZC∗21], they include an as-rigid-as-possible
term to preserve local shapes, and regularization terms for the trans-
lation and the skinning weights, respectively. Some methods in-
clude other regularization terms, such as the regularization of the
learnable parameters, to make the training easier and to prevent
overfitting [FZC∗21, BPZ∗21].

3.3. Applications and Systems

With the development of the RGB-D data acquisition equipment
and technologies, there has been a growing number of works on
dynamic reconstruction and tracking based on non-rigid registration.

3.3.1. Template-less methods

DynamicFusion [NFS15] adopts the TSDF to represent the canon-
ical model and support the fusion operation over multiple frames.

Without any prior, they simultaneously fuse geometry information
and estimate the deformation field. The system can run in real-time
and obtain relatively complete reconstruction results with details.
However, it is not robust to fast movements and occluded areas.
Further, VolumeDeform [IZN∗16] uses a volumetric representation
to define the deformation graph and encode the scene’s geometry,
the accuracy of correspondences is improved by introducing the
SIFT feature. [DKD∗16] use multi-view capture information and
propose a key volume strategy to handle failures in tracking. To
improve the accuracy of the correspondences obtained, they use a
learning-based method, GPC [WRFR∗16], and extend it to make use
of both the RGB image and the depth image to obtain more robust
results within an acceptable time. [GXY∗17] use a single RGB-D
camera to reconstruct geometry, albedo, and motion in real-time.
Observing that the appearance is beneficial to the accuracy of the
reconstruction, they combine the shading information to estimate
the motion more accurately and also obtain a lighting estimation.

[WZX17] split the input RGB-D sequences into several parts.
In each part, they perform the local non-rigid bundle adjustment
to register all scans. Then they merge all parts to eliminate the
drift problem by global optimization. A final 3D model can be
generated by using Poisson surface reconstruction or volumetric
fusion. [SBI18] represent each RGB-D frame as a TSDF and deform
it to align with the canonical TSDF. They use a Sobolev gradient
flow to achieve faster computation and better detail. They addition-
ally compare different regularization strategies, and utilize signature
matching to handle rapid motions [SBI21]. [XSWL15] propose a
two-stage method. First, they perform CPD to register the previous
frame and the current frame. Second, they use a mean shape and a
deformation on a low-dimensional space to fuse the information of
the new frame. [XXY∗18] uses non-rigid registration to reconstruct
nearly rigid objects. Due to the noise and distortion caused by cam-
era acquisition, they use a deformed graph with few graph nodes as
a deformation representation to reduce the error and improve the
reconstruction quality.

3.3.2. Methods based on priors

Considering the prior information of the human body, [BBLR15]
use the human parametric model to reconstruct people in mo-
tion from monocular RGB-D sequences. Besides estimating the
low-dimensional representation, they define a variable-detail shape
model and use a low polygon count mesh with a high-resolution
texture map and displacement map to represent the details. Body-
Fusion [YGX∗17] embeds the body skeleton model in the human
model to enhance the robustness to large motions. They propose
a binding term to establish the relationship between the skeleton
model and the deformation graph. They improve the performance
and robustness of the non-rigid reconstruction and tracking. How-
ever, a skeleton model that is too sparse is not robust to handle
fast motion or incomplete surfaces. [YZG∗18] propose a double-
layer model including a body template model and a dense geometry
model to address this problem. It makes the system more robust
to the fast movement. [ZYL∗18] add sparse inertial measurement
units (IMUs) to improve the tracking performance. Unstructured-
Fusion [XSH∗20] uses three deep cameras without any careful pre-
calibration to cover the whole human body and achieve real-time
high-quality human capture. In addition, they propose a skeleton
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warping based non-rigid tracking scheme to calibrate the camera
and track at the same time. [TT16] use the first RGB-D frame
with facial landmarks and neutral expression to obtain an initial
head model, then they use it to track changes in facial expres-
sion. [YMO18] combine 3D Morphable Model (3DMM) [BV99]
and a head reconstruction framework without prior for accurate
head tracking. [TST∗15, TPT16, TTR∗17] use the prior of a hand to
model and track dynamic hand motion in real-time. In [WBLP11]
and [BWP13], parametric face models are used for real-time face
tracking on commodity RGB-D sensors, allowing the user to control
the facial expressions of a digital avatar. Besides these class-specific
priors, some methods establish the template model by the first frame
or use a pre-scanned model [TZL∗12, XLC∗18, LZXH20].

3.3.3. Learning-based methods

[DDF∗17, BZTN20] use the learning-based technique to obtain a
more accurate correspondence. [LBZ∗20] improve the registration
quality by using the learned feature as an alignment term. [BPZ∗20]
combine correspondence learning and differentiable solving, and
form an end-to-end network. [BPZ∗21] propose an implicit neu-
ral deformation graph with learnable node positions and influence
radii, which can be applied to a sequence of depth camera obser-
vations to perform globally-consistent registration and reconstruct
a non-rigidly moving object. [SXZ∗20] adopts an occupancy net-
work, a pose and shape estimation and semantics networks are
used to improve the robustness of the reconstruction. [YZG∗21]
combine a temporal volumetric fusion technique and deep implicit
functions. They first use the multi-view RGB-D input to perform
dynamic fusion and obtain a volumetric fusion. They then re-render
multi-view RGB-D images from this volume. Finally, they obtain
the detailed model through a deep implicit surface reconstruction
step. [ZBYX19] perform real-time reconstruction of a hand and de-
formable objects held by the hand. They first segment the hand, the
deformable object and the background, and then use an LSTM-based
network to predict the hand pose according to temporal information.
Finally, they utilize the predicted pose to perform the frame-by-
frame optimized tracking.

3.3.4. Methods combining optimization and learning

Some methods combine optimization-based and learning-based
approaches to improve non-rigid reconstruction performance.
[BZTN20] first use a learning-based approach to obtain sparse
correspondences represented by probability heatmaps. The corre-
spondences are then utilized to formulate an optimization problem
for non-rigid registration. [ZBYX19, SXZ∗20] first use a learning-
based method to predict the parameters of a prior-based shape
model to achieve an initial coarse alignment. Afterwards, the reg-
istration is further improved by optimizing a detailed deformation
field. [BPZ∗20] first use a CNN to predict dense correspondences
between the two surfaces; the correspondences are then used as
constraints to perform an optimization-based registration. [LBZ∗20]
propose an optimization formulation with an alignment term that
is based on learned features and helps the Gauss-Newton solver to
avoid local minima; additionally, a learned preconditioner is uti-
lized to improve the convergence of the PCG solver used by the
Gauss-Newton method.

3.4. Summary

Tables 1 and 2 summarize the optimization-based and learning-based
extrinsic methods discussed in this section, respectively. Papers that
involve both optimization-based and learning-based methods are
listed in both tables according to their relevant components.

4. Intrinsic Methods

Unlike extrinsic methods that align surfaces in the original R
3

coordinate space, by the most general definition, intrinsic meth-
ods transform a set of surfaces into an alternative representa-
tion in another coordinate space—or domain—in which they are
aligned. With this in mind, intrinsic methods can be categorized
by the characteristics of the domain they are embedded in, i.e., (1)
parametric; (2) minimum-distortion; and (3) spectral/functional.
Parametrization-based methods compute low-dimensional embed-
dings, typically in R

2. Minimum-distortion refers to methods that
minimize some form of intrinsic correspondence measure, the di-
mensions of which depend on the number of keypoints between
surfaces. Spectral/functional methods embed surfaces in a high-
dimensional space where the correspondence problem may be solved
using established mathematical tools. Furthermore, by avoiding
working directly on the graph, the influence of mesh connectivity is
lessened greatly.

Much of the related literature only establishes correspondence.
Few methods explicitly deform the source shape to the target shape.
However, it is possible to incorporate correspondences as hard/soft
constraints in a non-rigid registration framework to help align sur-
faces.

A variety of techniques can be extended to the problem of non-
rigid registration. A key deficiency of many approaches is their
sensitivity to partial data—a common scenario in registration. This
vulnerability is caused by the use of intrinsic measures that are
sensitive to geometric and topological noise. Despite this chal-
lenge, a variety of methods have been proposed in the literature
to address this problem, e.g., minimum-distortion [Sah18]; spec-
tral reconstruction [CPR∗19, HZFH20]; learning-based [ENK∗21];
hybrid (intrinsic initialization then extrinsic refinement) meth-
ods [ELC20, MMRC20].

[Sah20] recently reviewed a broad range of literature that ex-
plores the problem of shape correspondence—with a predominant
emphasis on intrinsic methods. For this survey, a keen focus is made
on literature that seeks to develop robust partial matching techniques.
These works contribute towards solving the partial matching prob-
lem, which is especially relevant for applications, such as reconstruc-
tion, where data is missing or incomplete. One may consider these
methods to address similar problems to registration methods through
the use of intrinsic data. It is also possible to combine intrinsic and
extrinsic techniques to form robust registration pipelines. After a sys-
tematic review of material relating to parameterization-based meth-
ods, it has been deemed appropriate to limit the scope of this survey
to exclude such methods. The reader is directed to [SPR07, HLS07]
for a broad overview of parameterization techniques and discussions
on early works on cross-parameterization.
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Table 1: A summary of optimization-based extrinsic methods.

Alignment Regularization Robustness Deformation field
Point-to-

point
Point-to-

plane
SDF/
TSDF

Probabi-
listic Smooth Position Near-

isometry
Non-

isometry Other Adapt.
Weight

Robust
Norm

Pointwise
Pos. Var.

Pointwise
Aff. Trans.

Deform.
Graph Patch RKHS Spline

Func. Grid Prior

[RSH∗99] X X X

[ACP02] X X

[ACP03] X X X X

[CR03, RS12] X X X

[JV05, HZD∗19] X X X

[PMG∗05, FHCP18] X X X

[ARV07] X X X X X

[MSCPn06, MS10, MZT∗13,
MQZ∗15,MZY16,MZJZ17,Hir20]

X X X

[WJH∗07] X X X X

[LSP08, LLM∗16] X X X X X

[PG08, GSDA∗09, JQL∗17] X X X

[LAGP09] X X X X X

[LZW∗09] X X X

[WAO∗09] X X X X X X

[CBI10] X X X

[YLSL10] X X X

[CZ11] X X X X X

[FNT∗11] X X

[HBH11] X X X

[JV11] X X

[WBLP11] X X X X X

[HMS12] X X X X

[TZL∗12] X X X X

[BWP13] X X X X

[YKM13] X X X X

[BSB14] X X X

[CWZ∗14] X X X X

[GFD14] X X X X

[LKSS14] X X X

[XSWL14] X X X

[YMYK14] X X X X

[AZB15] X X X X X

[BBLR15] X X X X X

[CTL15] X X X X

[GF15] X X X X

[GXW∗15] X X X X X X

[NFS15] X X X X X

[Sah15] X X X X

[TST∗15, YMO18] X X X

[XSWL15] X X X

[YLLL15] X X X X

[ZCS∗15] X X X

[DKD∗16] X X X X X

[IZN∗16] X X X X

[SK16, FYZ∗17] X X

[TPT16] X X X

[TT16] X X X

[BRPMB17] X X X

[DDF∗17] X X X X X

[GLLY17] X X X X X

[GXY∗17] X X X X

[LJY∗17] X X X X X X

[SBCI17, SBI18, SBI21] X X X

[TTR∗17] X X X X

[WZX17, XLC∗18] X X X X X

[YGX∗17] X X X X X X

[KSI18] X X X X

[LZG18] X X X

[XXY∗18] X X X X

[YZG∗18] X X X X X

[ZYL∗18] X X X X X

[JYZ∗19] X X X X

[LYLG19, YGL∗19] X X X X X

[WLLY19] X X X X X X X

[YZZ∗19] X X X

[ZBYX19] X X X X

[BPZ∗20] X X X X X

[BZTN20] X X X X

[LBZ∗20] X X X X

[LG20] X X X X

[LYP∗20] X X X X X

[LZXH20] X X X X

[SXZ∗20] X X X X X

[XSH∗20] X X X X X

[YDXZ20] X X X X X

[YZG∗21] X X X

[ZFA21] X X X X X
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Table 2: A summary of learning-based extrinsic methods.

Objective Training type Loss
Learnable

correspondences
Learnable

deformation Supervised Semi-
supervised Unsupervised Ground-truth

correspondences
Ground-truth

positions Alignment Near-isometry Non-isometry Other

[WHC∗16] X X X

[GFK∗18] X X X X X X X X

[SGT∗19] X X X X

[WCLF19] X X

[WCMN19] X X X

[WLCF19] X X X

[ZBYX19, SXZ∗20] X X X

[BPZ∗20] X X X

[BZTN20] X X X X X

[LBZ∗20] X X X

[WXZ∗20] X X X X X X

[BPZ∗21] X X X X X

[FZC∗21] X X X X X

[TCM∗21] X X X X

[ZQZ∗21] X X X X X

4.1. Optimization-Based methods

The general objective of most intrinsic matching algorithms is to
compute a bijective linear map T : X 7→ Y that maps corresponding
points between two shapes (X and Y). For convenience of notation,
in this section, let all shapes comprise of n points (i.e., m = n).

Point-to-point mapping Many intrinsic methods seek to approx-
imate T by computing a point-to-point mapping of a permutation
matrix P ∈ Pn where Pn = {P ∈ {0,1}n×n | P⊤P = I} is the set of
permutations. The problem of finding P is cast as an optimization
problem by a given energy function E:

argmin
P∈Pn

E(P). (17)

In this form, P is an orthogonal matrix (s.t. P⊤P = I), which is
naturally bijective. The permutation set is quite large |Pn| = n!.
It is therefore impractical to evaluate all permutations, so further
heuristics must be employed.

Worse yet, in the case of partial shape matching, the optimal
solution is no longer a bijection but either injective or surjective.
The solution space is therefore no longer contained within P but
expanded to an even larger set. If the overlap between X and Y
was known, then it would be possible to simply seek an optimal
bijection between the overlapping regions. However, this leads to a
chicken-or-the-egg problem, as without some form of mapping it is
not possible to determine the overlap.

4.1.1. Minimum-distortion methods

Minimum-distortion methods are a subset of intrinsic techniques
that operate principally in the spatial domain and penalize
the distortion of intrinsic measures. Intrinsic measures include:
e.g., geodesics [BBK06]; conformal maps [LF09,KLCF10,KLF11];
heat kernel maps [OMMG10]; and local feature descriptors [SOG09,
BK10, TSDS10, ASC11]. The objective is to then optimize a la-
tent correspondence such that the distortion induced is minimized.
There is a substantial amount of literature surrounding this class
of approach. The discussions in this survey are therefore limited
to methods that consider the problem of partial matching, as these
have greater applicability to the problems of registration and recon-
struction.

Partial matching The early work [ASP∗04] proposes a complete
registration pipeline for part-to-full shape matching. To aid the non-
rigid ICP method, sparse correspondences are established using
a belief propagation algorithm. The algorithm seeks to promote
matches between similar keypoint signatures probabilistically. The
solution space is constrained by pairwise geodesics, which discard
matches that lead to a large metric distortion. This helps to ensure
correspondences are locally consistent. The probability-based op-
timization computes a general mapping, which allows the method
to handle partial correspondence. Finally, a non-rigid registration
algorithm is applied to align the surfaces. The proposed approach
is only suitable for piecewise rigid shape deformation, while most
works in the past decade facilitate isometric or near-isometric defor-
mation. [BBK06] extend multi-dimensional scaling to isometrically
embed one surface into another. The method is capable of han-
dling partial matching, but is limited to isometric deformation. The
method requires points on the input meshes to be sampled coarsely
due to the use of geodesics and a quadratic optimization. Given a
set of sparse keypoints between a partial source shape and a full
target shape, [SY12b] select five of the farthest keypoints on the
partial shape, and then perform an exhaustive search to find an
optimal permutation of correspondences on the target shape that
minimizes a geodesic-based distortion measure. The proposed opti-
mization procedure becomes expensive as the number of keypoints
on the full shape is increased. [RBA∗12,Sah18] formulate distortion
minimization in evolutionary optimization frameworks. [Sah18] em-
ploy a genetic algorithm in which permutations of correspondences
are represented by chromosomes. Modifying a part of the current
correspondence is equivalent to a mutation, and error is measured
by geodesic distance. An important advantage of this approach is
that it is robust to poor initialization. Similar to the previously dis-
cussed works, [Sah18] relies on establishing keypoints consistently
between shapes. Uniquely, after each optimization iteration, [Sah18]
refines the keypoint locations on the target shape with respect to
the pairwise geodesics of candidate correspondences on the source
shape. [RBA∗12] use an evolutionary game theory-based approach.
Rather than determining a bijective correspondence by solving a
traditional quadratic assignment problem, they relax this require-
ment such that not all points must be in correspondence by solving a
quadratic semi-assignment problem. [OMMG10] propose a method
that relies on constructing heat kernel maps for each shape. To han-
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dle partial correspondence, the heat diffusion parameter is decreased,
which effectively reduces the size of the neighborhood represented
in the map. However, the approach is limited to isometric defor-
mation. [VLB∗17] establish a correspondence by solving a linear
assignment problem that is refined in an iterative manner. To han-
dle partial correspondence the assignment problem is relaxed by
introducing slack variables, which are intended to absorb erroneous
candidate correspondences from parts of a full shape that do not
overlap. [vKZH13] develop a geodesic-based pairwise descriptor
that is designed to be robust for partial matching. When incorporated
with distortion-minimizing techniques, the method is demonstrated
to be robust to a degree of topological noise. The descriptor requires
large geodesics, therefore it is relatively expensive to compute, and
is superseded by recent descriptor learning methods.

A common problem amongst most of the described approaches
is that many rely on solving complex assignment problems that
become very expensive to solve at larger problem sizes. This leads
to the use of sparse keypoint sampling techniques, which introduce
further complexity to consistently sample shapes. Also, methods
that use global measures (e.g., geodesics over the entire shape) are
sensitive to topological change in which geodesic paths may change.
Furthermore, for partial matching, these methods are only suited
to (near-)isometric deformation due to their reliance on consistent
geodesics between overlapping regions. [CRB∗16] demonstrate that
state-of-the-art minimum-distortion methods tend to perform rela-
tively poorly for partial correspondence problems when compared
to functional and learning-based approaches.

Sampling Broadly, the partial matching methods, discussed previ-
ously, employ computationally demanding techniques to solve gen-
eral assignment problems. To alleviate some of the computational
complexity, sparse sets of keypoints are used. Sampling may be nec-
essary in cases where a method requires the same number of points
on each shape. A variety of strategies are employed. [TBW∗11]
use a probabilistic approach to construct an order to incrementally
introduce points that discriminate highly from previously added
points, minimizing an entropic measure. [SY11, SY12a] propose a
coarse-to-fine strategy, where points that are at shape extremities
and high curvature areas are sampled first. Ideally, both shapes will
exhibit similar geometric curvature properties. After applying an
initial sampling procedure, [Sah18] optimize the location of the
sampled points on the target shape—helping to reduce geodesic
distortion. [VLB∗17] propose a multi-scale/coarse-to-fine approach
that uses farthest point sampling [ELPZ97]. A key benefit of this
method is that a dense correspondence is retrieved. This is not so
critical when used to initialize a registration method; however, if
the initial correspondence is too sparse for a particular scenario,
such a refinement technique may be necessary. [LJO19] propose
a coarsening strategy that seeks to preserve the original shape’s
spectral representation. [VLB∗17] is adapted to use this technique—
producing superior results. [CCS12, NBH18, LLT∗20] explore other
sampling strategies for surfaces that are able to effectively coarsen
and accurately approximate spectral properties of the original sur-
face. When sampling partial shapes, the greatest challenge is se-
lecting consistently localized sample points on the surfaces. Meth-
ods that support partial matching generally must incorporate ma-

chinery for this into the matching portion of the correspondence
pipeline [SY12b, VLB∗17, Sah18].

Correspondence pruning Many non-rigid registration methods
require a set of accurate sparse correspondences for initializa-
tion [ASP∗04, HAWG08, YLLL15, LYLG19, YGL∗19, YDXZ20].
A simple approach to compute an initial correspondence is to match
feature descriptors between shapes by their similarity. In practice,
it is challenging to engineer feature descriptors that are suitably
discriminative while also being invariant to different types of defor-
mation. It is therefore necessary to remove poor correspondences.
A successful intrinsic-based approach has been to prune correspon-
dences that cause a large amount of geodesic distortion with re-
spect to other candidate correspondences (see Fig. 3). An early
work, [HAWG08], measures consistency between geodesics ci j as
a ratio of their distances. This formulation has the advantage that
distortions between distant geodesics do not disproportionately in-
fluence the measure.

ci j = min

{
dX (xi,x j)

dY ( f (xi), f (x j))
,

dY ( f (xi), f (x j))

dX (xi,x j)

}
. (18)

A threshold τ is set experimentally to 0.7. Correspondence pairs are
removed if ci j ≤ τ. Using this measure for determining isometry
globally is slow due to the cost associated with computing geodesics
over large distances. The proposed method is incorporated into a
registration pipeline that is suitable for piecewise rigid deformation.

[TMRL14a, TMRL14b] adapt (18) to only be computed within
a small geodesic disc. The authors note that geodesics to distant
points become unreliable due to the presence noise, and under non-
isometric deformation or geometric changes such as holes. For
queue-based path finding algorithms that are similar to Dijkstra, this
is simple to implement: (1) remove nodes from the queue that are
beyond the distance threshold; and (2) terminate execution once
there are no more unvisited nodes neighboring visited nodes in the
queue. [DLRT19] further adapt this algorithm for non-isometric
deformation by replacing the conventional geodesic algorithm with
an anisotropic geodesic distance algorithm in which the model for
anisotropy is updated iteratively. The described methods are sen-
sitive to their initialization, requiring shape descriptors that are
invariant to the exhibited deformation.

Optimal transport A variety of works have formulated shape cor-
respondence as an optimal transport problem [SNB∗12, RBA∗12,
SdGP∗15,MCSK∗17,PRM∗21]. These works consider the Gromov-
Wasserstein distance, which is a quadratic problem. This can be
computed more efficiently using the Sinkhorn algorithm [Cut13],
which alternately optimizes the transport of the source and the target.
Relevantly, [BPC16] demonstrate that optimal transport can be used
for shape completion of voxel-based shapes. However, for intrinsic
shape correspondence, these techniques are yet to be successfully
applied to partial correspondence.

Non-isometry Predominantly, intrinsic methods in the literature
typically consider isometric and near-isometric deformation. The
challenge of handling non-isometries has been considered in a se-
lect range of works. The types of non-isometric deformation ad-
dressed by different techniques varies greatly. [LF09] search for an
optimal conformal map. The method is sensitive to deformations
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Y φφφY2 φφφY3 φφφY4 φφφY5 φφφY6 φφφY7 φφφY8 φφφY9

X φφφX2 φφφX3 φφφX4 φφφX5 φφφX6 φφφX7 φφφX8 φφφX9

Figure 4: The first eight eigenvectors on X and Y in the ascending order of their corresponding eigenvalues. Red indicates where the

eigenvector is positive, blue negative, and white is the reference with a value of zero. N.B. the first eigenvalue λλλ
X
1 is approximately zero and is

therefore omitted.

that distort the map, and, therefore, the method performs poorly
on partial matching problems. [KLF11] combine multiple confor-
mal maps to produce a “blended map” that minimizes this distor-
tion. [TMRL14a] seek locally isometric correspondences between
shapes, using a geodesic-based global consistency check to prune
inconsistent correspondences. This global check can be relaxed to
increase the degree of global non-isometry permitted. [DLRT19]
extend [TMRL14a] to handle local anisotropy. [SPKS16] solve an
optimal transportation problem, that for full-to-full matching, can
handle some non-isometric distortion; however, the approach is not
guaranteed to obtain the globally optimal solution. [VLB∗17] imple-
ment a probabilistic framework that is suitable for finding smooth
maps. [Sah20] provides further discussions on the development of
shape correspondence approaches that handle non-isometries.

Shape recovery Given a template, [DRB∗09] consider the problem
of reconstructing a deformed triangle mesh by using an optimization-
based technique. An objective function comprising of a regulariza-
tion term and a data term is proposed. The regularization term uses
a pairwise geodesic-based distance between the original template
and the deformed template, which seeks to reduce distortion. The
data term measures the distance between corresponding points on
the deformed shape and the target shape.

To summarize, metrics used by minimum-distortion methods,
such as geodesics, are highly sensitive to geometric and topological
noise. For these methods to cope with partial correspondence, an
assumption of (near-)isometric deformation must be made. The sam-
pling strategies discussed exhibit inconsistent results when sampling
on partial or full surfaces.

4.1.2. Spectral/Functional mapping methods

Functional mapping fundamentals Rather than directly comput-
ing a point-to-point map, the shapes are abstracted by functions
defined upon each surface. The functions are computed from the
Laplace–Beltrami operator. A common discretization is the cotan-
gent Laplacian [MDSB02] L = D−1M, which is composed of Dn×n

a diagonal mass matrix equal to 1
3 of the total area of the faces within

the 1-ring neighborhood of each vertex, and Mn×n is a matrix of
cotangent weights between connected vertices:

mi j =

{
1
2 (cotαi j + cotβi j) i, j ∈ E

0 otherwise,

where αi j and βi j are the internal angles at the vertices opposite
edge i j.

The eigenbasis of the intrinsic Laplace–Beltrami operator—
denoted by ΦΦΦ, with corresponding eigenvalues ΛΛΛ—is often selected
as it is invariant under isometric deformation.

MΦΦΦ = DΦΦΦΛΛΛ. (19)

Fig. 4 illustrates the characteristics of the eigenvectors. It can be
seen that each eigenfunction φφφi varies smoothly over the surface. As
the eigenvalue increases, the oscillations observed in the eigenfunc-
tion are similar between the isometrically deforming shapes, up to
their sign (i.e., φφφXi ≈±φφφYi ). For the motivations and specific imple-
mentation details, please refer to the seminal paper on functional
maps [OBCS∗12].

Given this functional representation, it is possible to compute
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V φφφV2 φφφV3 φφφV4 φφφV5 φφφV6 φφφV7 φφφV8 φφφV9

Figure 5: The first eight eigenvectors on shape V in the ascending order of their corresponding eigenvalues.

a functional correspondence matrix C that maps corresponding
eigenvectors between surfaces, i.e., ΦΦΦYC = ΦΦΦX , where ΦΦΦ is a
matrix of column eigenvectors. N.B. ΦΦΦY and ΦΦΦX are truncated to
k eigenvalues. In the example in Fig. 4, this would induce a map
that would approximately be an identity matrix I, where φφφYi maps

to φφφXi .

Since the Laplacian operator is only invariant under isometric
deformation, the strong diagonal of C gradually weakens to greater
non-isometries. This effect is most significant in eigenvectors with
larger eigenvalues, while smaller eigenvalues are progressively less
affected. This leads to a pre-dominantly diagonal structure, with
the strongest diagonal found between smaller eigenvalues. φφφV3,7,8 in

Fig. 5 are negative equivalents of φφφY3,7,8 and φφφX3,7,8 in Fig. 4, and φφφV9
presents a completely different eigenvector that is not present in any
φφφYi and φφφXi (i ≤ 9).

An optimal C can generally be computed by solving the following
linear system:

argmin
C

‖ΦΦΦY −CΦΦΦX ‖2 +Ecorr. (20)

Where Ecorr imposes some regularization on C, e.g., promoting
Laplacian commutativity by penalizing matches of dissimilar eigen-
values Ecorr = α‖ΛΛΛX C−CΛΛΛY‖

2.

Considering the example of X and V , once C is obtained (such
as in Fig. 6), we see that negated corresponding eigenvectors cause
negative entries along the diagonal, while eigenvectors that do not
correspond have values close to zero.

Much like the permutation matrix P, for computing bijective
correspondence, a key property of C is that it should be an orthog-
onal matrix. Since C is a soft map, it is a member of the larger
Stiefel manifold set Sk1×k2 = {C ∈ R

k1×k2 | C⊤C = I}, where
P ⊂ S. This can either be incorporated explicitly by limiting the
solution space to S or added as a regularization term [RCB∗17]
(e.g., off(C⊤C) = ∑

k
i 6= j(C

⊤C)2
i j [CS96]).

For shape correspondence, it is necessary to recover a point-to-
point mapping. [OBCS∗12] propose the following energy term:

argmin
P∈P

‖ΦΦΦY −P(CΦΦΦX )‖2, (21)

where C is fixed. This may be considered to be a form of point align-
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1

Figure 6: A functional map C between X in Fig. 4 & V in Fig. 5.

ment in a high-dimensional space where other alignment schemes
can be employed [RMC15, RMC17].

Partial matching For partial matching, the requirements of (17)
must be relaxed. [RCB∗17] propose to optimize a correspondence
map by adopting suitable correspondence and part regularization
terms, i.e.,

E = Edata +Ecorr +Epart︸ ︷︷ ︸
regularization

,

where the Ecorr and Epart are solved in alternating steps to optimize
the correspondence and the part separately. In the first step, a cor-
respondence is estimated between a part of the full shape X ′ ⊆X
and a partial shape Y . Given a deformation that is near-isometric,
Ecorr helps constrain the optimizer to guide it towards a sensible
solution. The part regularizer seeks to match the area between Y
and X ′, while also minimizing the boundary length ℓ of X ′,

argmin
X ′

Edata +Epart,

where

Epart = α
∣∣area(Y)− area

(
X ′)∣∣2 +βℓ(∂X ′).

The Edata term is modified to optimize the functional map for the
subset of eigenvectors ΦΦΦX ′ ⊆ ΦΦΦX for X ′,

argmin
C

Edata +αEcorr,
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where

Edata = ‖ΦΦΦY −CΦΦΦX ′‖2.

In practice, this is implemented using a fuzzy approach. This is
done by giving eigenvectors that are not in X ′ a low weight, rather
than completely removing them.

A fundamental observation by [RCB∗17] is that for a given eigen-
vector φφφYi on Y , there exists a corresponding φφφXj where i ≤ j. This
is illustrated in Fig. 7, where the following pairs of eigenvectors
(partially) match: (φφφY2 , φφφX4 ); (φφφY3 , φφφX5 ); and (φφφY5 , φφφX9 ).

The proposed formulation by [RCB∗17] is not suitable for part-
to-part matching as it relies on an estimate of overlap that assumes
the mapping to be injective. [CRM∗16] extend [RCB∗17] for part-
to-part matching by attempting to optimize for both the part Y ′

and X ′. To do this, three optimization steps are used: first C is
computed, then X ′ is estimated, and finally Y ′ is estimated, before
repeating all three steps until a convergence criterion is met. Simi-
larly, [LRB∗16b] adapt [RCB∗17] for matching multiple parts (Y ′

i

and X ′
i ) between a full shape (X ′

i ⊆X ) and multiple partial shapes
(Y ′

i ⊆ Yi). Unfortunately, the proposed formulations do not scale
well, and require optimization in both the spectral domain and the
spatial domain.

[LRBB17] propose an approach that is conducted entirely in
the spectral domain for computing part-based correspondence. The
method builds upon the full-to-full matching method by [KBB∗13].
The authors align the eigenbases ΦΦΦX and ΦΦΦY jointly by formulating
an optimization in the form of the joint approximate diagonalization
problem,

argmin
A,B∈Sn×n

off(A⊤ΛΛΛX A)+off(B⊤ΛΛΛYB)︸ ︷︷ ︸
diagonalization

+α‖PΦΦΦX A−QΦΦΦYB‖2
F︸ ︷︷ ︸

coupling

.

P,Q ∈ {0,1}l×n are matrices that map between l initial correspond-
ing vertices and rows from the eigenbases. In practice, a discrete
point p is a row in ΦΦΦ, i.e., φφφi(p) ∈ R for i = 1, . . . ,k. Effectively,
PΦΦΦX and QΦΦΦY , represent a subset of corresponding rows from
each eigenbasis. The diagonalization terms promote A and B to
be orthogonal matrices. These are used to perform an orthogonal
transform, which rotates and flips PΦΦΦX and QΦΦΦY . Importantly,
the inner products are preserved. The coupling term then measures
the similarity of corresponding rows between PΦΦΦX and QΦΦΦY . The
aligned eigenbases can now be computed as:

Φ̂ΦΦX = ΦΦΦX A and Φ̂ΦΦY = ΦΦΦYB.

This formulation is not suitable for partial matching problems, as
all rows in PΦΦΦX and QΦΦΦY must be aligned.

For partial correspondence [LRBB17] modify the coupling term
to the following:

argmin
A,B∈Sk×r

off(A⊤ΛΛΛX A)+off(B⊤ΛΛΛYB)

+α‖Wr (ΦΦΦX A−ΦΦΦYB)‖2,1 .

(22)

The solution space is constrained to a set of rectangular orthogo-
nal matrices Sk×r. The rank r = rank(C) is based on an estimate
of the overlapping area between X and Y , where r ≪ k. A mask

Wr =
(
Ir×r 0r×k−r

)⊤
is applied. The ℓ2,1-norm (‖·‖2,1) pro-

motes sparsity in the columns of the masked matrix. The proposed
method demonstrates a strictly spectral approach to the partial func-
tional map problem. How to effectively determine a suitable estimate
of r for part-to-part matching is unclear. The authors suggest that an
optimal r can be estimated by solving (22) for multiple r’s; however,
this is an expensive procedure.

[MRR∗19] propose a fully-spectral method that uses a coarse-
to-fine approach in which the size of C is increased incrementally.
C initially only maps low-frequency eigenvectors, as the size of C

increases the map is refined by high-frequency eigenvectors. The
refinement process comprises of two steps in which the method
transforms correspondence data between a functional map C and
a pointwise map P, i.e., (21). Initially, C = I2×2 (or larger), and
a point-to-point map P is recovered, using ΦΦΦY

n×k1
and ΦΦΦX

n×k2
pre-

computed n× k eigenbases that are truncated to the first k1 and k2
columns respectively (i.e., ΦΦΦY

n×k j
= {φφφYi | i = 1, . . . ,k j}, j = 1,2).

For full-to-full matching, the value of k1 and k2 are then increased
by one (or more) before recomputing the functional map,

Ck1×k2 =
(

ΦΦΦY
n×k1

)+
P ΦΦΦX

n×k2
. (23)

where (·)+ denotes the Moore-Penrose inverse. Solving for P

and (23) are alternated between until k is reached by either k1 or k2.

To handle partial matching, [MRR∗19] propose to compute a
rectangular functional map Ck1×k2 . An estimate of rank r, based
on [RCB∗17], is used to determine the shape of C for each iteration,

k1 = k1 +1, k2 = k2 +

⌈
k2

k
(k− r)

⌉
.

This simple approach achieves excellent results for full-to-full
matching. However, the method does not fare so well with partial
matching. This is because the method still relies on stable eigenvec-
tors, especially in the initial iterations where only low-frequencies
are mapped. As illustrated in Fig. 7, even the order of low-frequency
eigenvectors that have been independently decomposed can prove
to be highly inconsistent for partial matching.

[RTO∗19] demonstrate that replacing the typical Laplacian op-
erator with the Hamiltonian operator facilitates the computation of
consistent eigenvectors between partial shapes. For the Hamiltonian
operator, only the left-hand side of (19) is modified to solve the fol-
lowing generalized eigenvalue problem for the cotangent Laplacian,

(M+Ddiag(v))ΨΨΨ = DΨΨΨλλλ.

v : X 7→ {0,τ}n is a potential function that indicates whether a point
p ∈ X is inside (v(p) = 0) or outside (v(p) = τ) of the overlapping
region X ′ =X ∩Y in X . The effect of adding Ddiag(v) is that rows
in ΨΨΨ that correspond to a point assigned a value of τ (i.e., v(p) = τ)
become ΨΨΨ(p)≈ 0⊤. [RTO∗19] set τ = 10Λk experimentally, Λk is
the largest eigenvalue of ΛΛΛ.

The advantage of this operator is that given a potential function
v that characterizes X ′ ⊆ X , the eigenvectors on X are localized
to X ′. This corresponds with the Laplcian operator—up to the sign

(φφφX
′

i =±ψψψX
i )—when computed on a disconnected component X ′

(see Fig. 8).
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Y φφφY2 φφφY3 φφφY4 φφφY5 φφφY6 φφφY7 φφφY8 φφφY9

X φφφX2 φφφX3 φφφX4 φφφX5 φφφX6 φφφX7 φφφX8 φφφX9

Figure 7: The first eight eigenvectors on X and Y ordered by their corresponding eigenvalues.

(a) v (b) φφφX
′

7
(c) ψψψX

7

Figure 8: Given two shapes where the overlapping region is known,

the seventh eigenvector (φφφX
′

7 and ψψψX
7 ) computed using (b) the Lapla-

cian operator and (c) the Hamiltonian operator τ ≈ 0.2313.

To determine X ′, simply v must be found. An optimization func-
tion is formulated to align the Hamiltonian eigenvalues λλλX with the
Laplacian eigenvalues ΛΛΛY ,

min
v∈Rn

∥∥∥λλλX (D−1
X MX +diag(v))−ΛΛΛY

∥∥∥
2

w
. (24)

To prevent large eigenvalues disproportionately influencing the re-
sult, a weighted ℓ2-norm is used,

‖λλλ−ΛΛΛ‖2
w =

k

∑
i=1

1

Λ2
i

(λi −Λi)
2.

Once (24) is solved, the eigenvectors should be sufficiently aligned
to compute C, as per (20). The described approach is suitable for iso-
metric partial-to-full matching, additionally the method is capable
of handling multiple disconnected non-rigid components. Unfortu-
nately, the non-convex nature of (24) makes this implementation

moderately slow. The method also fails when the number of eigen-
vectors k is too low.

4.1.3. Spectral/Functional shape recovery methods

Given a mapping, by examining the intrinsic differences between
two shapes it is possible to reconstruct a deformed source surface in
the pose of the target shape. This section focuses on the problem of
reconstructing an extrinsic representation from spectral representa-
tions and its application to non-rigid registration.

Shape difference operator reconstruction Given a functional
mapping between a source shape and a target shape, [ROA∗13]
search for a mesh in a shape collection that has the minimal
conformal- and equiareal-based shape difference. The method is lim-
ited by the collection available, and the complexity of the optimiza-
tion increases when searching in large shape collections. [BEKB15]
consider the problem of finding an embedding of the computed met-
ric that minimizes an energy based on the shape difference operator.
The method alternates between minimizing an energy term (based
on [ROA∗13]) to the Riemannian metric, and generating the extrin-
sic shape based on the discrete metric. The intrinsic metric does not
suitably capture extrinsic curvature, causing ambiguity with possibly
multiple isometric solutions. [CSBC∗17] address this problem by
incorporating extrinsic information into an intrinsic operator. The
edge lengths of an offset surface from a dual mesh are used to guide
the reconstruction to a better solution. The authors demonstrate how
the accuracy of the reconstruction deteriorates as the eigenbasis
is truncated. [HRA∗19] propose a deep learning framework to re-
cover a shape using shape difference operators that also possess
both extrinsic and intrinsic information. A set of training shapes is
used to help constrain the solution space. The advantage of learning
from shape operators is that the matrices may be treated as a grid
structure—a convenient and well-studied domain for deep learning
architectures. The method demonstrates superior results compared
to [BEKB15, CSBC∗17].
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Template-less reconstruction Unlike the previously discussed
shape recovery works, which rely on shape difference operators,
[CPR∗19] do not require a mapping to recover a shape as the method
deforms a source mesh such that the Laplacian spectra better align.
Similarly, [MRC∗20, MRC∗21] propose a learning-based approach
to recover a shape from a given mesh Laplacian. By training a neu-
ral network to constrain the solution space to seen examples, the
approach efficiently aligns the given spectra. To facilitate partial cor-
respondence within the same class of shapes, [MMC∗21] develop a
shape union operator, which they incorporate into a reconstruction
pipeline [MRC∗20]. With this method, reconstructed shapes are in
a canonical pose.

Spectral operators The problem of reconstructing a shape based
on its spectral representation is not a new problem [KG00]; however,
its use for registration has been limited. Given two shapes with
an unknown correspondence, [ELC20] align intrinsic and extrinsic
shape representations to recover a deformed mesh in a coarse-to-
fine manner. A novel operator is proposed that helps constrain the
smoothness of the recovered mesh when increasing the number
of dimensions of the embedding. In order to align the source and
target shapes, the spectral representation is combined with Cartesian
coordinates and surface normals. The correspondence and alignment
are optimized in alternating steps.

4.2. Learning-Based Methods

Over the past decade, an increasing amount of effort has been
placed into developing learning-based techniques that improve or
enhance existing intrinsic pipelines. Many techniques seek to de-
velop robust shape descriptors. As input to artificial neural net-
works, mesh geometry has been adapted to a variety of domains
(n-dimensional descriptors [LRR∗17], images [WGY∗18], vox-
els [ZSN∗17], spectra [LB14], geodesics [MBBV15], and oth-
ers [CYHH20,BBCV21]). Intrinsic information is also incorporated
into the loss function (or equivalent energy) of these techniques
(e.g., labels [RBW∗14, MBM∗17], geodesic distance [LB14], func-
tional map quality [LRR∗17, RSO19]).

Learning-based shape descriptors A recent survey of related liter-
ature on data-driven descriptors was undertaken recently [RBRY19],
so the discussion here is focused on intrinsic methods specifically. A
key series of works investigated learning-based methods to develop
effective spectral descriptors [LB14,WVR∗14,BMM∗15,BMR∗16].
[LB14] learn low-dimensional class-specific descriptors from the
eigenvectors of the Laplacian. The authors observe that the heat

kernel signature (HKS) [SOG09] and wave kernel signature

(WKS) [ASC11] may be considered as low-pass and band-pass
filters in the spectral domain. A descriptor model that general-
izes HKS and WKS is formulated. The training phase attempts
to compute coefficients of a cubic spline that optimize the model
to produce similar descriptors between corresponding points us-
ing a linear discriminant analysis-based approach. For the task of
partial matching, the optimized descriptor is found to out-perform
HKS & WKS. [WVR∗14] propose a similar approach to metric
learning to construct an infinite-dimensional descriptor. [BMM∗15]
exploit a localized spectral CNN. [BMR∗16] propose the use of

multiple anisotropic kernels to form a directionally-sensitive descrip-
tor. [BMRB16] incorporate the anisotropic technique as a weighting
scheme into a CNN framework. [MBBV15] propose a CNN that uses
a geodesic-based local operator based on [KBLB12]. [CRM∗16]
learn an embedding function to construct descriptors that are robust
to cluttered scenes. [MBM∗17] present a CNN framework that uti-
lizes an intrinsic local operator that is shown to generalize operators
from previous works [MBBV15,BMRB16] as mixtures of Gaussian
kernels.

A deficiency of previous chart-based methods is that they require
a canonical orientation—well-structured data like digital images nat-
urally have this property, but this is ill-defined on meshes. Previous
methods use the maximal response over a set of rotations [MBBV15]
and the principal curvature directions [BMRB16], which can be-
come inconsistent. [PO18,WEH20] propose to address this problem
by establishing a directional function, based on parallel transport,
over the surface. [SRC∗20] replace discrete bins used in [PO18]
with a 2D rotation through the use of Zernike radial polynomials.

Learning-based functional maps A collection of works have in-
vestigated task-driven approaches to learning enhanced descriptors
for functional maps [COC15, LRR∗17, HLR∗19, RSO19, DSO20].
The earliest method [COC15] proposes a shallow learning frame-
work in which spectral descriptors are re-weighted. These re-
weighted descriptors are then used to initialize a functional
map [OBCS∗12], where the difference to a known ground-truth
map for training is minimized. [LRR∗17] consider a similar ap-
proach in a deep learning framework. During the training phase,
weights are learned to enhance feature descriptors. The loss func-
tion then measures the quality of the subsequent spatial map with
geodesic distances to a ground-truth map. The method requires
training data with pointwise correspondence, which are often ex-
pensive and difficult to acquire. Follow-up works have sought to
facilitate unsupervised learning through penalizing geodesic distor-
tion [HLR∗19], and functional map heuristics (e.g., orthogonality,
bijectivity, and commutativity) [RSO19]. [DSO20] propose a similar
framework in which the descriptors are learned from point clouds.
While some of these methods do demonstrate promising evalua-
tive results, they rely on simple functional mapping techniques that
are known to not be suitable for partial correspondence leading
to sub-optimal performance in this scenario. Recently, to address
the problem of partial matching, [APO21] propose to incorporate a
cross-attention block between sets of learned features for two input
shapes. This block enables the communication of features between
shapes and causes non-overlapping features to be down-weighted,
making it possible to efficiently predict the overlapping region.

Learning-based reconstruction [ETLTC20] incorporate the
scheme from [ELC20] to produce a spectral-based learning frame-
work, which—with sufficiently high-dimensional eigenvectors—can
approximately reconstruct a target surface. [CNH∗20] incorporate
geodesic regularization into an auto-encoder framework, leading
to low-distortion reconstructions. [ENK∗21] adopts a deep neural
network architecture to match intrinsic feature descriptors and in-
terpolate extrinsic vertex locations simultaneously unsupervised.
The method is not fully intrinsic as it also relies on an as-rigid-
as-possible error term. Given a shape’s spatial coordinates as in-
put, [BBP∗19, GCBZ19] implement auto-encoder architectures that
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Table 3: A summary of optimization-based intrinsic methods.

Sampling strategy
Data term Regularization constraints Output

Point-to-point Spectral Smooth Point
constraints

Near-
isometry

Non-
isometry

Bijective or
part-to-full injective Partial

Precision
Transform

Point-to-point Fuzzy
[ASP∗04] X X X X

[BBK06] X X X X X X

[HAWG08] X X X X X

[DRB∗09] X X X X

[LF09] X X X X

[OMMG10] X X X X

[KLF11] X X X X

[SY11] X X X

[TBW∗11] X X X X

[OBCS∗12] X X X X X X X

[RBA∗12] X X X X

[SY12a] X X X

[SY12b] X X X X

[SNB∗12] X X X X

[KBB∗13] X X X X X X X

[ROA∗13] X X X X X

[vKZH13] X X X

[TMRL14a] X X X

[TMRL14b] X X X

[RMC15] X
a

X X X

[SdGP∗15] X X X

[AL16] X X X X

[LRB∗16b] X X X X X X X

[SPKS16] X X X

[LRBB17] X X X X X X X

[MCSK∗17] X X X X

[RCB∗17] X X X X X X X X

[RMC17] X
a

X X X X

[VLB∗17] X X X X X

[BCK18] X X X
b

X

[Sah18] X X X X

[CPR∗19] X X
a

X X X

[DLRT19] X X X X

[LJO19] X X X X

[MRR∗19] X
a

X X X X

[RTO∗19] X X X X X X
c

X

[ZQW∗19] X
d

X
b

X

[ELC20] X X X X X X

[PRM∗21] X X X X X

aRefines an initial functional map (e.g., [NO17]); bNear-conformal; cPart-to-part correspondence; dBoundary-to-boundary.

Table 4: A summary of learning-based intrinsic methods.

Objective Training type Loss
Learnable

correspondences
Learnable

deformation Supervised Semi-
supervised Unsupervised Ground-truth

correspondences
Ground-truth

spectra Alignment Functional
map heuristics

Non-
isometry

[LB14] X X X

[RBW∗14] X X X X

[MBBV15, BMRB16, MBM∗17] X X X

[LRR∗17] X X X

[WGY∗18] X X X

[HLR∗19] X X X

[RSO19] X X X

[DSO20] X X X

[MRC∗20, MRC∗21] X X X X

[WRY∗20] X X X

[MMC∗21] X X X X

at their core comprise of intrinsic convolutional operators. The oper-
ator is composed of neighboring vertices that are traversed in a spiral
pattern, which is inherently sensitive to variations in connectivity.

4.3. Summary

The key optimization-based and learning-based works discussed in
this section are summarized in Tables 3 and 4.

5. Datasets and Benchmarks

There are many publicly available datasets that can be used for the
effective evaluation of non-rigid registration methods. Such datasets
may be used to measure the quality of a surface alignment quanti-
tatively (e.g., fitting error [CRS98, RL01], geodesic error [KLF11],
coverage error [DLR∗20], area ratio [ZWW∗10, ZWG∗16]) and
qualitatively (e.g., model rendering, distortion [OBCCG13], infor-
mation transport [MMM∗19]). Alternatively, applications that may
rely on registration (e.g., shape retrieval [FKMS05,ELBS10]) can be
used to indirectly measure the performance of registration methods.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



B. Deng et al. / A Survey of Non-Rigid 3D Registration

Table 5: Datasets for benchmarking correspondence and registration methods.

Deformation type
Partial

correspondence

Scan type Ground-truths
Anthropometric No. of

scans > 25K verticesNear-
isometry

Non-
isometry

Topological
change Real Synthetic Deformed

template Dense
Acquisition Training

facilityManual Automatic Intrinsic
[RDP99] X X X X X X 4,431a

X

[SP04] X X X X X partially 551
[ASK∗05] X X X X X 71 X

[Ado ] X X X X X 121b
X

[BBK08] X X X X X partially 80 X

[VBMP08] X X X X X partially 1,500
[HSS∗09] X X X X X X X 550 X

[BBC∗10] X
c

X X X X X 56 X

[KLF11] X X X X X partially 551
[BRLB14] X X X X X

d
X X X X 300 X

[CWZ∗14] X X X X X X 3,000 X

[RBW∗14] X X X X X 32 X

[YYZ∗14] X X X X X X 3,000
[LRB∗16a] X X X X X X X X 26 X

[BRPMB17] X X X X X
d

X X X X 40,000 X

[PWH∗17] X X X X X X 4,309
[RCB∗17] X X X X X X partially 1,216 X

[RCL∗17] X X X X X X X partially 4,258 X

[CKPZ18] X X X X X X 1,800,000 X

[SAS∗18] X X X X X X X 400 X

[DSL∗19] X X X X 50 X

[MMR∗19] X X X X X X X X 44 X

[DLR∗20] X X X X X X 14 X

[DZL∗20] X X X X 12 X

[CPMK21] X X X X X X 10,200
aDataset contains some shapes that are isometric up to scaling; bOnly a subset of ground-truths are publicly available; c110 of the scans do not have landmarks; dBase models.

The reader is directed to [vKZHCO11] for further discussion of
other relevant evaluation methods.

State-of-the-art datasets for benchmarking often include ground-
truth correspondences, which can be used to measure the root-
mean-square error and geodesic error [KLF11] between a pre-
dicted ground-truth location and the known ground-truth loca-
tion on a target surface. This is an effective and commonly
used technique to summarize and compare the accuracy of reg-
istration methods (e.g., RMSE [SGT∗19, YDXZ20, LZXH20],
geodesics [CK15, CR16, MDK∗16, GFK∗18, EC20]). [RBRY19]
discuss benchmarks for the purposes of evaluating 3D learning-
based shape descriptors, many of which can be—and are—used for
evaluating registration techniques.

A common trend has been the use of anthropomorphic shapes,
such as human bodies and human faces. An extended overview
of public 3D facial datasets is discussed by [ZX18]. Most contain
sparse fiducial landmarks (e.g., [PFS∗05, SAD∗08, GCMB10]) that
can be used for evaluating registration methods [GSM15, SK16,
FHCP18]. If RGB texture data is acquired, it is possible to estab-
lish reliable landmarks automatically [CWZ∗14]. Beyond facial
datasets, texture data is commonly used for computing ground-truth
correspondences reliably [BRLB14, BRPMB17, DSL∗19, DZL∗20].

Over the past decade, many notable benchmarks have
been developed for Shape Retrieval Contest (SHREC)
tracks [BBC∗10, LRB∗16a, RCL∗17, DSL∗19, MMR∗19,
DZL∗20, DLR∗20]. [LRB∗16a, RCL∗17] introduce challenges such
as topological changes and partial correspondence by applying
synthetic modifications to models.

Dense ground-truth correspondences for real meshes are often
automatically acquired by non-rigidly aligning a template to a
given scan using methods such as non-rigid registration [ZKJB17,
MMR∗19], linear blend skinning [VBMP08,PMRMB15,CPMK21]

or parametric modeling [ASK∗05, YYZ∗14, XZC18]. The ad-
vantage of aligning a template mesh to a set of target scans
is that it is possible to compute dense correspondences; how-
ever, these correspondences may contain local alignment errors.
The alignment can be improved by incorporating texture informa-
tion [BRLB14,CWZ∗14, BRPMB17,CKPZ18,SAS∗18] or a sparse
set of reliable landmarks [HSS∗09].

A key deficiency in existing datasets is the lack of a training
facility for learning-based methods. As the popularity of machine
learning continues to expand, the necessity for benchmarks that
enable fair and consistent comparisons between techniques has
increased. Presently, only a few benchmarks address this prob-
lem [BRLB14, BRPMB17, RCL∗17, SAS∗18]. For the benchmark
dataset [DSL∗19], which does not have a training facility, the
learning-based method [GFK∗18] is trained on [VRM∗17]. Also,
[MRC∗20, MRC∗21] utilize a generative face model [RBSB18] to
train a learning-based method for evaluative purposes.

Table 5 provides an overview of datasets used for evaluative
purposes in the literature.

6. Directions for Future Works

Input Data Type One important application for non-rigid regis-
tration is the acquisition of 3D shapes from scanned data. For ex-
isting works, the input data type is mainly 3D geometry such as
point clouds or depth maps. Although such data can be captured
with depth sensors, currently for the general public it is still eas-
ier to capture RGB videos with portable devices. For convenient
3D content acquisition, it is desirable to efficiently reconstruct 3D
geometry from monocular RGB video on mobile devices. Recent
developments in differentiable rendering [KBM∗20] and neural ren-
dering [TFT∗20] have enabled 3D reconstruction from monocular
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videos [YKM∗20, NMOG20, YGKL21, ZYQ21, OPG21], but ex-
isting methods are mainly designed for rigid shapes. Their high
computational costs also prevent them from being run in real-time
on mobile devices. Efficient reconstruction of dynamic 3D shapes
from monocular videos will be an interesting research avenue with
a significant impact.

Geometric Shape Representation The input 3D data of cur-
rent registration methods is usually represented as discrete sig-
nals. Recently, neural implicit representations [PFS∗19, SMB∗20,
CMPM20], which are based on parameterizing a continuous dif-
ferentiable signal with a neural network, have become a promising
alternative to conventional 3D representations such as point clouds
and meshes. They are not coupled to the spatial resolution, and have
been successfully applied to various tasks like novel view synthe-
sis [MST∗20] and multi-view 3D reconstruction [YKM∗20]. It must
be noted that neural implicit representations are different from the
implicit surface representations discussed in Section 2. The neural
implicit function is defined over the whole continuous space and
is represented in the form of function composition rather than the
explicit grid and explicit function values. Adapting existing reg-
istration methods to this new representation, as well as designing
new methods that can make use of its representational power, is a
promising research direction.

Extrinsic methods For registration problems that involve large de-
formation, optimization-based approaches often require proper ini-
tialization to achieve good results. Although they can be initialized
using shape descriptors such as FPFH or SHOT, such handcrafted
features are inevitably ambiguous when the local shapes are sim-
ilar. Moreover, such descriptors tend to be sensitive to noise, and
may lead to poor registration results on noisy models. Therefore,
further research is needed for optimization-based approaches that
can handle large deformation between noisy models. In recent years,
learning-based approaches have shown promising results for such
problems, either as a standalone registration technique or as a way
to determine initial correspondence for an optimization method.
However, the performance of machine learning models is highly
dependent on the quality of the data. Currently, public datasets with
accurate correspondence labels are still limited in terms of both
their quantities and the types of shapes they cover. As a result, the
generalizability of existing machine learning models is still not
satisfactory. It will be highly beneficial to construct more labeled
datasets with better coverage of shapes, and/or to develop machine
learning approaches with better generalization performance.

The use of adaptive weights and robust norms have helped
optimization-based methods align shapes that overlap partially. How-
ever, their performance is still not satisfactory when the overlap area
is small, especially when the alignment involves large deformation
and/or the data is noisy. A key issue is that due to the non-rigid
nature of the problem, an extrinsic formulation may not effectively
distinguish whether a source point has a corresponding point on the
target surface. This is a challenging case that can occur in practical
applications (e.g., dynamic reconstruction from a small number of
scans), and will require further investigation.

Existing shape regularizations in optimization-based methods
assume the deformation to be either near-isometric, non-isometric

but with certain characteristics such as conformality, or a combi-
nation of them. While such priors can handle deformations with a
certain degree of regularity, they are less effective for some complex
physically-based deformations such as the ones shown in [DZL∗20].
New strategies for handling such complex deformations, such as
data-driven approaches to properly model the deformation behavior,
will be an interesting research direction.

Intrinsic methods A substantial amount of work has focused on
the development of correspondence techniques between humans.
Consequentially, we observe the strong performance in anthropo-
metric applications.

Many registration methods are sensitive to their initialization, or
depend upon invariant point-wise features. While intrinsic methods
can also be susceptible to these problems, the use of pairwise mea-
sures can alleviate these in some scenarios. Unfortunately, pairwise
measures introduce other challenges: for example, geodesic dis-
tances are only invariant under isometric deformation. Furthermore,
the convenient assumptions of many intrinsic methods can quickly
deteriorate when confronted with partial geometry, where certain
bijectivity conditions can no longer be satisfied.

For real-time applications, the performance of hand-crafted in-
trinsic partial matching techniques is inadequate for larger models.
Learning-based methods have the potential to achieve superior per-
formance, as they may avoid expensive optimization problems.

Accurately estimating the overlap between the source and tar-
get surfaces is instrumental to the accuracy of these methods. The
development of overlap estimation techniques (e.g., [APO21]) is a
promising avenue of research that may lead to intrinsic methods that
handle both partial and non-isometric shapes.

For 3D reconstruction using devices such as hand-held scanners,
where the subject is captured in small patches, the inconsistency
of standard Laplacian eigenfunctions means that current functional
mapping methods are not suitable.

Existing literature on intrinsic shape correspondence tends to
focus on a subset of related challenges. The past ten years has
seen a focus on relevant problems such as non-isometry of smooth
deformations, mesh connectivity and part-to-full correspondence.
Topological changes caused by fused geometry during scanning
continue to be a challenge for intrinsic optimization methods, while
data-driven approaches may help with such scenarios. Furthermore,
geometry with extensive and numerous surface discontinuities are
understudied (such as that of a tea towel that has been wound up).
This type of problem challenges the key underlying assumption
about the local smoothness of a mapping. (A variety of challenging
deformations are considered in [SPF19, DZL∗20].)

Acknowledgements This work was partially supported by the
Swiss National Science Foundation (SNSF) under project number
200021-188577, the Guangdong International Science and Technol-
ogy Cooperation Project (2021A0505030009), the National Natural
Science Foundation of China (No. 62122071), the Youth Innovation
Promotion Association CAS (No. 2018495), and “the Fundamental
Research Funds for the Central Universities” (No. WK3470000021).

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



B. Deng et al. / A Survey of Non-Rigid 3D Registration

References

[ACP02] ALLEN B., CURLESS B., POPOVIĆ Z.: Articulated body de-
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A., CREMERS D., SAHILLIOĞLU Y.: Partial matching of deformable
shapes. In Eurographics Workshop on 3D Object Retrieval (2016), The
Eurographics Association. 14

[CRM∗16] COSMO L., RODOLÀ E., MASCI J., TORSELLO A., BRON-
STEIN M. M.: Matching deformable objects in clutter. In International

Conference on 3D Vision (2016), pp. 1–10. 17, 19

[CRS98] CIGNONI P., ROCCHINI C., SCOPIGNO R.: METRO: Measuring
error on simplified surfaces. Computer Graphics Forum 17, 2 (1998),
167–174. 20

[CS96] CARDOSO J.-F., SOULOUMIAC A.: Jacobi angles for simultane-
ous diagonalization. SIAM Journal on Matrix Analysis and Applications

17 (1996), 161–164. 16

[CSBC∗17] CORMAN É., SOLOMON J., BEN-CHEN M., GUIBAS L. J.,
OVSJANIKOV M.: Functional characterization of intrinsic and extrinsic
geometry. ACM Transactions on Graphics 36, 2 (Mar. 2017), 14:1–14:17.
18

[CTL15] CAO V.-T., TRAN T.-T., LAURENDEAU D.: A two-stage ap-
proach to align two surfaces of deformable objects. Graphical Models 82

(2015), 13–28. 2, 5, 6, 12

[Cut13] CUTURI M.: Sinkhorn distances: Lightspeed computation of
optimal transport. In Advances in Neural Information Processing Systems

(2013), vol. 26, Curran Associates, Inc. 14

[CWZ∗14] CAO C., WENG Y., ZHOU S., TONG Y., ZHOU K.: Face-
Warehouse: A 3D facial expression database for visual computing. IEEE

Transactions on Visualization and Computer Graphics 20, 3 (2014), 413–
425. 4, 10, 12, 21

[CYHH20] CAO W., YAN Z., HE Z., HE Z.: A comprehensive survey on
geometric deep learning. IEEE Access 8 (2020), 35929–35949. 19

[CZ08] CHANG W., ZWICKER M.: Automatic registration for articulated
shapes. Computer Graphics Forum 27 (2008), 1459–1468. 7

[CZ11] CHANG W., ZWICKER M.: Global registration of dynamic range
scans for articulated model reconstruction. ACM Transactions on Graph-

ics 30, 3 (2011), 26:1–26:15. 5, 6, 8, 12

[DDF∗17] DOU M., DAVIDSON P., FANELLO S. R., KHAMIS S., KOW-
DLE A., RHEMANN C., TANKOVICH V., IZADI S.: Motion2Fusion:
Real-time volumetric performance capture. ACM Transactions on Graph-

ics 36, 6 (2017), 246:1–246:16. 3, 5, 11, 12

[DKD∗16] DOU M., KHAMIS S., DEGTYAREV Y., DAVIDSON P.,
FANELLO S. R., KOWDLE A., ESCOLANO S. O., RHEMANN C., KIM

D., TAYLOR J., KOHLI P., TANKOVICH V., IZADI S.: Fusion4D: Real-
time performance capture of challenging scenes. ACM Transactions on

Graphics 35, 4 (2016), 114:1–114:13. 5, 6, 10, 12

[DLR∗20] DYKE R. M., LAI Y.-K., ROSIN P. L., ZAPPALÀ S., DYKES

S., GUO D., LI K., MARIN R., MELZI S., YANG J.: SHREC’20: Shape
correspondence with non-isometric deformations. Computers & Graphics

92 (2020), 28–43. 20, 21

[DLRT19] DYKE R. M., LAI Y.-K., ROSIN P. L., TAM G. K.: Non-rigid
registration under anisotropic deformations. Computer Aided Geometric

Design 71 (2019), 142–156. 14, 15, 20

[DNK12] DOMOKOS C., NEMETH J., KATO Z.: Nonlinear shape regis-
tration without correspondences. IEEE Transactions on Pattern Analysis

and Machine Intelligence 34, 5 (2012), 943–958. 3

[DRB∗09] DEVIR Y. S., ROSMAN G., BRONSTEIN A. M., BRONSTEIN

M. M., KIMMEL R.: On reconstruction of non-rigid shapes with intrinsic
regularization. In IEEE International Conference on Computer Vision

Workshops (2009), pp. 272–279. 15, 20

[DSL∗19] DYKE R. M., STRIDE C., LAI Y.-K., ROSIN P. L., AUBRY

M., BOYARSKI A., BRONSTEIN A. M., BRONSTEIN M. M., CREMERS

D., FISHER M., GROUEIX T., GUO D., KIM V. G., KIMMEL R., LÄH-
NER Z., LI K., LITANY O., REMEZ T., RODOLÀ E., RUSSELL B. C.,
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GÖKBERK B., SANKUR B., AKARUN L.: Bosphorus database for 3D
face analysis. In Biometrics and Identity Management (2008), Springer
Berlin Heidelberg, pp. 47–56. 21
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[SY12b] SAHILLIOĞLU Y., YEMEZ Y.: Scale normalization for isometric
shape matching. Computer Graphics Forum 31, 7 (2012), 2233–2240. 13,
14, 20

[TBW∗11] TEVS A., BERNER A., WAND M., IHRKE I., SEIDEL H.-
P.: Intrinsic shape matching by planned landmark sampling. Computer

Graphics Forum 30, 2 (2011), 543–552. 14, 20

[TCL∗13] TAM G. K., CHENG Z.-Q., LAI Y.-K., LANGBEIN F. C.,
LIU Y., MARSHALL D., MARTIN R. R., SUN X.-F., ROSIN P. L.:
Registration of 3D point clouds and meshes: A survey from rigid to
nonrigid. IEEE Transactions on Visualization and Computer Graphics

19, 7 (2013), 1199–1217. 2

[TCM∗21] TRAPPOLINI G., COSMO L., MOSCHELLA L., MARIN R.,
MELZI S., RODOLÀ E.: Shape registration in the time of transformers.
NeurIPS 2021 (2021). 8, 9, 13

[TFT∗20] TEWARI A., FRIED O., THIES J., SITZMANN V., LOMBARDI

S., SUNKAVALLI K., MARTIN-BRUALLA R., SIMON T., SARAGIH

J. M., NIESSNER M., PANDEY R., FANELLO S. R., WETZSTEIN G.,
ZHU J., THEOBALT C., AGRAWALA M., SHECHTMAN E., GOLDMAN

D. B., ZOLLHÖFER M.: State of the art on neural rendering. Computer

Graphics Forum 39, 2 (2020), 701–727. 21

[TMRL14a] TAM G. K., MARTIN R. R., ROSIN P. L., LAI Y.-K.: Diffu-
sion pruning for rapidly and robustly selecting global correspondences
using local isometry. ACM Transactions on Graphics 33, 1 (2014), 4:1–
4:17. 7, 8, 14, 15, 20

[TMRL14b] TAM G. K., MARTIN R. R., ROSIN P. L., LAI Y.-K.: An
efficient approach to correspondences between multiple non-rigid parts.
Computer Graphics Forum 33, 5 (2014), 137–146. 14, 20

[TPT16] TKACH A., PAULY M., TAGLIASACCHI A.: Sphere-meshes for
real-time hand modeling and tracking. ACM Transactions on Graphics

35, 6 (2016), 222:1–222:11. 4, 11, 12

[TSDS10] TOMBARI F., SALTI S., DI STEFANO L.: Unique signatures
of histograms for local surface description. In Proceedings of the Euro-

pean Conference on Computer Vision (2010), Springer Berlin Heidelberg,
pp. 356–369. 13

[Tse01] TSENG P.: Convergence of a block coordinate descent method
for nondifferentiable minimization. Journal of Optimization Theory and

Applications 109, 3 (2001), 475–494. 8

[TST∗15] TAGLIASACCHI A., SCHRÖDER M., TKACH A., BOUAZIZ

S., BOTSCH M., PAULY M.: Robust articulated-ICP for real-time hand
tracking. Computer Graphics Forum 34, 5 (2015), 101–114. 4, 6, 11, 12

[TT16] THOMAS D., TANIGUCHI R.-I.: Augmented blendshapes for
real-time simultaneous 3D head modeling and facial motion capture. In
IEEE Conference on Computer Vision and Pattern Recognition (2016),
pp. 3299–3308. 5, 6, 11, 12

[TTR∗17] TKACH A., TAGLIASACCHI A., REMELLI E., PAULY M.,
FITZGIBBON A.: Online generative model personalization for hand
tracking. ACM Transactions on Graphics 36, 6 (2017), 243:1–243:11. 11,
12

[TZL∗12] TONG J., ZHOU J., LIU L., PAN Z., YAN H.: Scanning 3D
full human bodies using kinects. IEEE Transactions on Visualization and

Computer Graphics 18, 4 (2012), 643–650. 11, 12

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



B. Deng et al. / A Survey of Non-Rigid 3D Registration

[VBMP08] VLASIC D., BARAN I., MATUSIK W., POPOVIĆ J.: Articu-
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