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Alginate oligosaccharides enhance 
diffusion and activity of colistin 
in a mucin‑rich environment
Joana Stokniene1*, Mathieu Varache1,3, Philip D. Rye2, Katja E. Hill1, David W. Thomas1 & 
Elaine L. Ferguson1

In a number of chronic respiratory diseases e.g. cystic fibrosis (CF) and chronic obstructive pulmonary 
disease (COPD), the production of viscous mucin reduces pulmonary function and represents an 
effective barrier to diffusion of inhaled therapies e.g. antibiotics. Here, a 2‑compartment Transwell 
model was developed to study impaired diffusion of the antibiotic colistin across an artificial sputum 
(AS) matrix/medium and to quantify its antimicrobial activity against Pseudomonas aeruginosa 
NH57388A biofilms (alone and in combination with mucolytic therapy). High‑performance liquid 
chromatography coupled with fluorescence detection (HPLC‑FLD) revealed that the presence of AS 
medium significantly reduced the rate of colistin diffusion (> 85% at 48 h; p < 0.05). Addition of alginate 
oligosaccharide (OligoG CF‑5/20) significantly improved colistin diffusion by 3.7 times through mucin‑
rich AS medium (at 48 h; p < 0.05). Increased diffusion of colistin with OligoG CF‑5/20 was shown (using 
confocal laser scanning microscopy and COMSTAT image analysis) to be associated with significantly 
increased bacterial killing (p < 0.05). These data support the use of this model to study drug and small 
molecule delivery across clinically‑relevant diffusion barriers. The findings indicate the significant loss 
of colistin and reduced effectiveness that occurs with mucin binding, and support the use of mucolytics 
to improve antimicrobial efficacy and lower antibiotic exposure.

Over the past three decades, mortality due to chronic respiratory diseases has increased by 18%, accounting for 
7% of all deaths  worldwide1. Respiratory mucins secreted by surface epithelial goblet cells and mucous cells of 
submucosal glands, play an important role in protecting the lung from environmental factors, but conversely 
their inflammation-associated hypersecretion contributes to pathogenesis in muco-obstructive diseases, e.g. 
cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD)2. Impaired mucociliary clearance results 
in a cycle of chronic bacterial infection, airway inflammation and obstruction, leading to respiratory failure 
and increased mortality in CF  patients3. Within the mucin-rich CF lung, bacteria are embedded in a com-
plex, charged, hydrated extracellular polymer matrix (EPS). The precise EPS composition varies depending on 
bacterial species and physicochemical environment; being comprised of host- (e.g. extracellular [e]DNA) and 
bacterial-derived extracellular polysaccharides (e.g. alginates)4. This polymer network confers considerable fit-
ness advantages to bacteria in resisting hydrodynamic shear and, importantly, chemical disruption via systemic 
and inhaled antimicrobial  therapies5–7. In chronic respiratory disease, it is evident that diffusion of therapeutic 
agents across the biofilm and mucus barrier may be impaired via charge-interactions8,9, and by binding to specific 
components of the entangled mucin polymer  network10.

The antibiotic colistin has emerged as an antibiotic of ‘last resort’ against multidrug-resistant (MDR) Gram-
negative bacteria and is increasingly used as an inhalation therapy to treat chronic airway infections caused 
by Pseudomonas aeruginosa in patients with  CF11,12. Although the prevalence of P. aeruginosa infections has 
decreased in individuals with CF over the last 15 years, it still remains the predominant pathogen, affecting ~ 80% 
of  adults13. Colistin is a cationic amphipathic antibiotic composed of at least 30 closely related molecules, with 
colistin A (polymyxin E1) and B (polymyxin E2) being the major  constituents14. Colistin bactericidal activity is 
driven by electrostatic interactions between the antibiotic cationic amino groups and lipopolysaccharide (LPS) 
anionic phosphate groups on the outer membrane of Gram-negative bacteria. These displace magnesium and 
calcium cations, disrupting the physical integrity of the bacterial outer membrane, causing cell  death15. Despite 
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potent in vitro antimicrobial activity against P. aeruginosa16,17, colistin effectively binds to mucin in CF sputum 
or on the airway epithelium, substantially reducing its availability and  efficacy10.

To increase the effectiveness of antibiotic delivery across the mucosal barrier, a number of therapeutic 
approaches have been described that disrupt the structural integrity of the mucin polymer matrix, including 
hypertonic saline and  gentamicin18, N-acetyl cysteine (NAC) and  clarithromycin19, and latterly poly(ethylene 
glycol)-co-poly(D,L,-lactide-co-glycolide) diblock (PEG-PLGA) nanoparticles with  tobramycin20.

OligoG CF-5/20 (OligoG) is a low molecular weight alginate oligosaccharide (Mn 3200 g/mol) derived from 
the stem of brown algae Laminaria hyperborea, currently undergoing clinical trials as an inhalation therapy in 
CF patients. OligoG has previously been shown to modify the surface charge (at pH 5 and 7) and porosity of 
the respiratory mucin  matrix21–23, potentiate the efficacy of antibiotics against MDR  pathogens24 and disrupt 
the EPS of bacterial  biofilms25. Disruption of the cross-linked respiratory mucin polymer network in CF mucus 
could greatly improve the bioavailability, diffusion and efficacy of inhaled antibiotics at the site of  infection26.

Several strategies have been employed to analyze mucin-drug interactions in vitro27, including the use of 
microfluidic mucus-chips28, UV–visible localized  spectroscopy29 and the Transwell diffusion  model30. We have 
previously demonstrated ability of OligoG to bind mucin and alter the viscoelastic properties of CF  sputum21,22. 
Therefore, this study aimed to investigate the ability of OligoG to improve mucus penetration by colistin, to 
enhance its antimicrobial activity against mucoid P. aeruginosa biofilms using a Transwell diffusion model.

Results
Colistin quantification in the lower Transwell compartment using high‑performance liquid 
chromatography‑fluorescence detection (HPLC‑FLD). Initial experiments sought to optimise quan-
tification of colistin in the model. A typical HPLC chromatogram of a Transwell diffusion sample spiked with 
the internal standard (IS), polymyxin B, is shown in Fig. 1a. A peak corresponding to colistin was observed in 
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Figure 1.  Optimization of colistin detection and quantification using high-performance liquid 
chromatography-fluorescence detection. (a) A typical chromatogram showing colistin detection in a polymyxin 
B spiked sample following colistin diffusion through artificial sputum (AS) medium. (b) Calibration curve 
of colistin. (c) Colistin quantification in the lower Transwell compartment after diffusion through AS 
medium ± OligoG at 0.5, 1 and 2% added to the surface of AS medium or pre-incubated for 4 h (± SD; n = 3). 
Abbreviations: PBS (black), AS (blue), 1% OligoG (surface treatment; orange), 0.5% OligoG (4 h pre-incubation; 
pink), 1% OligoG (4 h pre-incubation; green), 2% OligoG (4 h pre-incubation; burgundy).
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the sample from the lower Transwell compartment, which was separate to that of the IS (polymyxin B) and was 
clearly distinguishable from artificial sputum (AS) medium impurities or derivatization by-products (results not 
shown). Separation of polymyxin species was achieved within 20 min; the FMOC derivatives of colistin B and A 
eluting at 13.1 and 16.4 min and polymyxin B2 and B1 at 12.3 and 15.2 min, respectively. The colistin calibration 
curve is shown in Fig. 1b.

Initial diffusion of colistin in PBS through the Transwell membrane increased over time and reached 94.5% 
of the initial applied dose at 48 h (Fig. 1c and Table 1). In contrast, a substantial reduction in colistin diffusion 
through AS medium was evident (> 85% at 48 h; p < 0.05), with only 5.6% of the initial applied dose detected in 
the lower compartment after 48 h. Pre-treatment of AS medium with OligoG (at 0.5, 1 or 2%) caused a concen-
tration-dependent increase in the amount of colistin detected in the lower Transwell compartment, changed the 
slope and improved the diffusion rate (up to 3.7 times), reaching 13.6, 15.1 and 20.8% (Table 1) of the applied 
colistin dose after 48 h, respectively (p < 0.05). Surface treatment with 1% OligoG proved less effective than 
pre-treatment, leading to detection of only 7.1% of the applied colistin dose in the lower chamber after 48 h.

Metabolic activity of P. aeruginosa NH57388A in the Transwell diffusion model. A representa-
tive schematic of the Transwell diffusion model is presented in Fig. 2. To assess effective diffusion of colistin 
through the model, an ATP cell viability assay was used to quantify metabolically active (viable) P. aeruginosa 
NH57388A cells in the lower chamber following treatment. It was evident from the results that viability of plank-
tonic bacteria decreased with increasing concentration of OligoG, reflecting the increased colistin diffusion to 
the lower Transwell compartment (Fig. 3a–c). Although ≥ 40 µg/ml colistin caused a decrease in P. aeruginosa 
NH57388A cell viability, only 60 µg/ml colistin with 1 or 2% OligoG (surface treatment or pre-incubation for 
4 h) caused a significant reduction in ATP production, compared to the untreated control (Fig. 3c; p < 0.05). A 
similar trend was observed for the attached biofilm cell population, however the cell viability decrease was only 
significant (Fig. 3d; p < 0.05) at 60 µg/ml colistin with 0.5 or 1% OligoG (surface treatment or pre-incubation 
for 4 h).

Table 1.  Percentage of the original colistin dose detected in the lower Transwell compartment after 48 h 
diffusion through artificial sputum (AS) medium ± OligoG using a high-performance liquid chromatography-
fluorescence detection method. Significant difference is indicated by *, where *p < 0.05 compared to OligoG 
untreated control.

Artificial sputum treatment

% of colistin original dose

2 h 4 h 6 h 24 h 48 h

PBS (no AS medium) 59.0 65.5 68.6 88.9 94.5

No OligoG 7.9 8.2 9.2 12.5 5.6

1% OligoG (surface treatment) 9.3 8.2 7.1 14.4 7.1

0.5% OligoG (4 h pre-incubation) 6.6 6.3 6.3* 14.9* 13.6*

1% OligoG (4 h pre-incubation) 6.3 5.7 5.9* 13.8 15.1*

2% OligoG (4 h pre-incubation) 8.0 8.6 11.0 19.8* 20.8*

Figure 2.  Schematic diagram of the Transwell diffusion model indicating colistin diffusion through artificial 
sputum medium ± OligoG and antimicrobial activity against cystic fibrosis clinical isolate P. aeruginosa 
NH57388A.
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Antimicrobial activity of colistin against P. aeruginosa NH57388A biofilms. Effective diffusion 
of colistin through the model was also corroborated by analysis of direct antimicrobial effects on the bacterial 
biofilm in the lower chamber. Confocal laser scanning microscopy (CLSM) of LIVE/DEAD stained P. aeruginosa 
NH57388A biofilms grown in the lower chamber of the Transwell model for 48 h demonstrated well-defined 
homogeneous growth in the untreated control ± Transwell insert (Fig. 4a). CLSM images and COMSTAT analy-
sis showed a concentration-dependent biofilm disruption, following 24 h treatment with colistin ± 1% OligoG. 
Although colistin alone (40 and 60 µg/ml) significantly disrupted the P. aeruginosa NH57388A biofilm structure, 
addition of 1% OligoG on the colistin-containing AS medium surface, caused a substantial reduction of biofilm 
thickness (observed in the cross-sectional views of CLSM images) that was associated with a significantly larger 
increase (p < 0.05) in bacterial cell death, compared to untreated control (Fig. 4b).

Analysis of microbial growth of P. aeruginosa NH57388A in the Transwell diffusion 
model. Effective diffusion of colistin through the model was also confirmed by direct effects on bacterial 
cell density (growth) in the lower chamber. Antibacterial activity was concentration-dependent with a signifi-
cant decrease (p < 0.05) in bacterial cell density (both planktonic and biofilm; Fig. 5) demonstrated at 60 µg/ml 
colistin, which was augmented by the addition of OligoG (p < 0.05). At colistin concentrations (≥ 40 µg/ml) ± 1% 
OligoG (surface treatment) a marked reduction in bacterial cell density (both planktonic and biofilm cells) was 
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Figure 3.  Cell viability (showing ATP production using the CellTiter-Glo assay) of 24 h P. aeruginosa 
NH57388A biofilms, following 24 h treatment with colistin ± OligoG (0.5, 1 and 2% w/v) added either directly 
to the artificial sputum (AS) medium surface or pre-incubated with AS medium for 4 h (± SD; n = 2). (a) 
Planktonic bacteria from the biofilm supernatant. (b) Planktonic bacteria after biofilm washing. (c) Total 
planktonic bacteria (a + b). (d) Attached biofilm bacterial population. Significant difference is indicated by *, 
where *p < 0.05 compared to untreated control.
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observed, compared to the untreated control, however, this was not significant for any of the treatment groups. 
Colistin at 20 µg/ml ± 1% OligoG, or OligoG alone, had no apparent effect on bacterial growth.
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Figure 4.  (a) Biofilm disruption assay in Transwell plates showing LIVE/DEAD (green/red, respectively) 
stained confocal laser scanning microscopy (CLSM) images (aerial and cross sectional views, scale bar, 30 μm) 
of 24 h P. aeruginosa NH57388A biofilms, following 24 h treatment with colistin ± 1% OligoG added onto 
the artificial sputum medium surface. (b) COMSTAT image analysis of the CLSM images (± SEM; n = 15). 
Significant difference is indicated by *, where *p < 0.05 compared to untreated control.
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Discussion
In the CF airway, biofilms are embedded within the complex mucin-rich respiratory mucus that represents an 
additional challenge for antibiotic delivery via inhalation therapy. Previous studies have shown that respiratory 
mucins can alter the structural assembly and growth of bacterial biofilms in this environment, affecting both 
susceptibility and tolerance to antibiotic  treatments5,31. Here, the composition of AS medium was adapted from 
previous  studies32,33 and modified to represent a clinically-relevant diffusion model of the CF lung. Although the 
use of CF patient sputum in the Transwell diffusion model would be considered ideal, it is difficult to standardize 
due to its high inherent variability in composition and viscoelastic properties, while the presence of antibiotics 
and other therapeutics would present additional challenges in data  interpretation22. The optimal concentration 
of mucin to use in AS medium to mimic the composition of the CF lung is unclear; previous studies have used 
a wide range including 5 mg/ml32, 10 mg/ml34, 20 mg/ml35, 30 mg/ml36 and 40 mg/ml37–39. In a clinical setting, 
a dramatic increase in mucin levels during pulmonary exacerbations has been reported in CF  patients40 and 
therefore, in this study, a higher content of mucin (40 mg/ml) was chosen to study colistin diffusion.
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Figure 5.  Analysis of planktonic (supernatant) and biofilm growing cells of 24 h P. aeruginosa NH57388A, 
following 24 h treatment with colistin ± 1% OligoG added onto the artificial sputum medium surface (± SD; 
n = 5). (a) Planktonic bacteria from the biofilm supernatant. (b) Planktonic bacteria after biofilm washing. (c) 
Total planktonic bacteria (a + b). (d) Attached biofilm bacterial population. Significant difference is indicated by 
*, where *p < 0.05 compared to untreated control and #p < 0.05 between two groups as indicated by horizontal 
bar.
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As expected, colistin diffusion through AS medium was highly impaired as only 5.6% of the original dose was 
detected in the lower Transwell compartment after 48 h. The in vivo pore diameter of the CF sputum network 
has been reported to range from 0.1 to 0.4 µm41, which might limit the penetration of antibiotics. Accordingly, 
Transwell inserts with a 0.4 µm pore size were selected to provide a clinically-relevant permeability barrier 
while preventing leakage of AS components through the pores. Due to interactions with respiratory  mucins21, 
OligoG was predicted to remain predominantly within the three-dimensional mucin network on the top of the 
membrane in the upper Transwell well, which proved to be the case.

Colistin diffusion in PBS through AS medium was practically unimpeded, with almost 95% of the initial dose 
detected in the lower Transwell compartment. In contrast, permeation of colistin in AS medium was limited by 
mucin entanglement, likely due to colistin-binding to specific components of the AS medium, depending on 
mucin content and charge interactions. Indeed, the efficacy of nanoparticle diffusion through CF sputum has 
been shown to be strongly influenced by mucin concentration, being significantly reduced at 25, 30 and 50 mg/
ml (to ~ 82%, ~ 72% and ~ 55% respectively), with no effect observed with mucin ≤ 10 mg/ml36. A significant 
inhibition in diffusion rate of β-lactam antibiotics through mucin (40 mg/ml) has also been  demonstrated42. 
Furthermore, at very high concentrations of porcine mucin (125 mg/ml), extremely low levels of free polymyxin 
antibiotics (15% of colistin and 16% of polymyxin B) have been  reported10, which further supports the results 
observed in this study and suggests strong interactions between mucins and colistin.

Mucin concentration in CF sputum is reported to vary between patients, from 8 to 47 mg/ml43 and is highly 
dependent on mucus concentration (% of solids)44. The high variability observed in pre-clinical planktonic 
assay systems may in part, explain the often, poor responses observed in human studies and problems with 
antibiotic dosing in vivo. Previous studies have shown the ability of OligoG to significantly modify the three-
dimensional mucin network in CF sputum by inducing morphological changes and increasing porosity within 
the mucin structure in a dose-dependent  manner22. This was also evident in the present study, as pre-treatment 
of AS medium with increasing concentrations of OligoG caused markedly higher and sustained diffusion of 
colistin over 48 h, reaching up to 21% of the initial applied dose. OligoG also binds to mucins, altering its sur-
face  charge22. Since the charge distribution of the mucin network has been shown to be critically important for 
diffusion through mucin  barriers8, this may also explain the observed increase in colistin diffusion in OligoG-
treated AS medium.

Inhaled antimicrobials such as colistin, tobramycin and aztreonam lysine are the most commonly used 
antibiotics for the treatment of chronic P. aeruginosa infection in CF  patients45. Inhalation therapy offers many 
advantages over systemically administered drugs, as high drug concentrations can be delivered directly to the 
airways, thereby improving efficacy and minimising systemic absorption and toxicity. This is especially impor-
tant for antibiotics such as the polymyxins, as concentration-dependent nephrotoxicity has been reported after 
systemic  administration46 which can compromise effective dosing in CF patients. Whilst colistin concentration 
in epithelial lining fluid may vary substantially (9.5–1137 µg/ml) between critically ill  patients47, the colistin 
concentration range employed here (20–60 µg/ml) was intended to reflect current antibiotic dosing delivered via 
 inhalation16,48. Substantial (concentration-dependent) biofilm disruption was noted following treatment with the 
colistin and OligoG combination in this model. Previously, OligoG has been shown to potentiate the efficacy of 
colistin against P. aeruginosa biofilms in vitro and in vivo but had no apparent effect on the planktonic  growth49. 
As expected, addition of OligoG induced greater colistin diffusion, that correlated with a significantly higher 
biofilm Dead/Live cell ratio. Poor penetration of fluorescently-labelled colistin (12–19% of initial dose) into the 
P. aeruginosa biofilm matrix in an ex vivo porcine lung model has also been  reported50, suggesting that high doses 
of antibiotic are required to combat chronic pulmonary infections. The maximum reported sputum concentration 
for inhaled colistin is ~ 40 µg/ml16. Although the highest dose tested here (60 µg/ml colistin) could not completely 
eradicate P. aeruginosa biofilms, combination with OligoG substantially improved the efficacy of colistin, as 
confirmed by the significantly lower bacterial cell densities and reduced cell viability (ATP production).

Previous studies have also shown concentration-dependent binding of tobramycin to mucin and DNA. It 
was suggested that a change in dosing regimen from twice daily to taking the combined dose once a day could 
overcome problems associated with antibiotic binding to these components of CF sputum and may result in 
more effective treatment of highly resistant P. aeruginosa  strains51. This has proved to be the case in practice, 
with increased tobramycin dosing leading to higher levels of free drug detected in CF  sputum52. Similar changes 
in dosing might also be effective for colistin, as diffusion is markedly impeded by the mucin barrier, allowing 
substantially higher peak sputum levels to be achieved. Combination therapy with OligoG may further potenti-
ate the efficacy of colistin.

Colistin exhibits poor UV absorbance and is not inherently fluorescent, so its quantification in biological flu-
ids can be extremely challenging. Here, detection of colistin in the lower Transwell compartment was performed 
using HPLC-FLD with colistin derivatization to a fluorescent  derivative53 and inclusion of an internal  standard54 
for increased sensitivity and accuracy. The intra-day and inter-day precisions for colistin A and colistin B have 
been reported to be below 9.9% and 4.5% relative standard deviations, respectively and accuracy between 100.2 
and 118.4%54. Polymyxin B was chosen as the internal standard due to its structural similarity to colistin and 
the presence of amino groups suitable for efficient derivatization. Indeed, no interference or peak overlap was 
observed, allowing a clear separation of colistin (colistin B and A), polymyxin B (polymyxin B2 and B1) and 
sample impurities. Thus, HPLC-FLD provided a reliable method for colistin detection and quantification in 
complex culture medium.

Despite the reproducible results presented here, it should be noted that optimization of the Transwell model 
system and colistin quantification in the lower well took considerable effort. A variety of other techniques have 
been employed to characterise the mucin polymer matrix in CF sputum, including atomic force, scanning 
electron or confocal imaging  microscopy55, fluorescence recovery after  photobleaching56, rheology (to measure 
viscoelastic properties)57 and multiple particle tracking (MPT; to assess the microstructure of mucus and matrix 
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pore size using nanoparticle diffusion)58. Recently, MPT was used to characterize the mechanical robustness of 
Gram-negative and -positive bacterial biofilms and quantify the diffusion coefficient of nanoparticles through 
a polymer matrix, following polymyxin B  treatment59. In contrast to MPT, which requires considerable special-
ized data analysis, the Transwell diffusion model offers a simple and fast method to analyze antibiotic diffusion.

Conclusions
The mucin component in AS medium has a significant effect on polypeptide antibiotic diffusion and thus, 
antimicrobial activity. OligoG, in combination with colistin, markedly improved antibiotic penetration in this 
model, which correlated with increased antimicrobial efficacy against the P. aeruginosa CF isolate NH57388A.

Materials and methods
Materials. Alginate oligosaccharide, OligoG CF-5/20 was provided by AlgiPharma AS (Sandvika, Nor-
way). 9-Fluorenylmethyl chloroformate (FMOC-Cl; purity ≥ 99.0%), trifluoroacetic acid (TFA; purity ≥ 99.0%), 
acetone (ACE; purity ≥ 99.5%), tetrahydrofuran (THF; purity ≥ 99.5%), boric acid (BA; purity ≥ 99.5%), sodium 
bicarbonate (SB; purity > 99.5%), colistin sulphate and polymyxin B were from Sigma-Aldrich (Poole, UK). Ace-
tonitrile (ACN; purity ≥ 99.8%) was from Acros Organics (Geel, Belgium) and methanol (MeOH; purity ≥ 99.9%) 
from Fisher Scientific (Loughborough, UK). The LIVE/DEAD Baclight Bacterial Viability kit was from Invitro-
gen Molecular Probes (Paisley, UK) and BacTiter-Glo microbial cell viability kit from Promega (Southampton, 
UK). Sterile Transwell plates (0.4 μm pore polycarbonate membrane) were from Corning Inc. (New York, USA) 
and 24-well flat glass bottom black plates were from Greiner Bio-One (Stonehouse, UK). All chemicals and 
reagents were of analytical grade and used without any further purification. Highly purified Milli-Q water (MQ 
 H2O) was produced using a PURELAB water purification equipment (Elga, High Wycombe, UK) and used in 
the preparation of all solutions (unless stated).

Bacterial culture. All culture media was from LabM (Bury, UK). CF clinical isolate, P. aeruginosa 
 NH57388A60 was subcultured on blood agar plates supplemented with 5% v/v defibrinated horse blood. Over-
night cultures were grown in tryptone soy broth (TSB), and Mueller–Hinton broth (MHB) was used for biofilm 
growth.

Artificial sputum (AS) medium. All constituents were obtained from Sigma-Aldrich (Poole, UK). Mucin 
(II) from porcine stomach (4% w/v) and DNA from salmon fish sperm (0.4% w/v) were dissolved in distilled 
water  (dH2O) by stirring overnight at 4 °C. The remaining components: RPMI 1640 medium (2% v/v), egg yolk 
emulsion (0.5% v/v), sodium chloride (0.5% w/v), potassium chloride (0.22% w/v) and diethylenetriamine-
pentaacetic acid (0.0006% w/v) were then added with mixing until dissolved and the pH adjusted to 7.0 by drop-
wise addition of sodium hydroxide (1 M). The AS medium was sterilized by γ-irradiation (26 Gy) and checked 
for sterility before use.

The transwell diffusion model. The Transwell diffusion model consists of upper (donor) and lower 
(acceptor) compartments separated by a 0.4 µm pore microporous polycarbonate membrane. The model was 
developed to measure penetration of the antibiotic colistin through OligoG-treated AS medium and evaluate its 
effects on disruption of the P. aeruginosa NH57388A biofilm in the lower Transwell well.

Firstly, 90 µl of AS medium (untreated or pre-incubated with OligoG at 0.5, 1 and 2% w/v for 4 h) was added 
to the 6.5 mm Transwell upper donor well, while 600 µl of phosphate-buffered saline (PBS) was placed into the 
lower acceptor well. After 15 min, 10 µl of colistin (40 µg/ml in total system volume) was added to the upper 
donor well containing pre-treated AS. For surface treated samples, 10 µl of colistin (40 µg/ml) ± 1% w/v OligoG 
was added on the surface of the untreated AS medium. The plate was incubated statically at 37 °C for 48 h. Sam-
ples were collected from the lower acceptor well (at 2, 4, 6, 24 and 48 h) and stored at − 20 °C prior to analysis.

Transwell sample pre‑treatment for colistin quantification. The  colistin detection method was 
adapted from previous  studies54 but originally developed by Li et al.61,62. Colistin standards (0.25, 0.5, 1, 2 and 
4 µg/ml in PBS) or samples collected from the Transwell diffusion model (15 µl) were mixed with 135 µl of inter-
nal standard (IS) solution (polymyxin B; 4 µg/ml in PBS) and precipitated by the addition of 150 µl ACN con-
taining 0.1% v/v TFA, vortex-mixed for 10 s and centrifuged at 10,000 × g for 10 min. The supernatants (250 µl) 
were transferred to new polypropylene tubes and subjected to derivatization.

Solid phase extraction (SPE) derivatization. SPE derivatization of colistin with fluorescent FMOC-Cl 
was performed on a 12-port vacuum manifold from Phenomenex (Macclesfield, UK). Briefly, the SPE C18-E 
cartridges (1 ml, 100 mg, 55 µm particle size, 70 Å pore size; Phenomenex, Macclesfield, UK) were conditioned 
sequentially with 1 ml ACE, MeOH and 1% w/w carbonate buffer (pH 10). After loading 200 µl of pre-treated 
sample, the cartridges were washed with 1 ml of 1% w/w carbonate buffer (pH 10) and then dried. FMOC-Cl 
(50 µl, 100 mM in ACN) was added to the top of the packed bed materials and allowed to react for 10 min. Then, 
the cartridges were dried under pressure for 5 min and washed with 1 ml of 95% v/v MeOH. Reaction deriva-
tives were eluted using 900 µl ACE. To this, 600 µl of 0.2 M BA followed by 500 µl of ACN were added. The final 
solutions were filtered through a 0.45 µm polytetrafluoroethylene filter (13 mm in diameter, Millex; Millipore, 
Watford, UK) and stored at − 20 °C prior to analysis.
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High‑performance liquid chromatography‑fluorescence detection (HPLC‑FLD). Chroma-
tographic analysis was performed using a Dionex ICS-3000 ion chromatography system (Thermo Scientific, 
Gloucester, UK) equipped with a Dionex RF-2000 fluorescence detector and a Dionex AS autosampler. Data 
was collected and processed using Chromeleon 6.8 software. Separation was achieved on an XSelect CSH C18 
column (130 Å, 3.5 µm, 3.0 × 150 mm) connected to an XSelect guard column (130 Å, 3.5 µm, 2.1 × 5 mm) held 
at 30 °C with a flow rate of 0.8 ml/min (Waters; Wilmslow, UK). Samples were kept in the autosampler at 4 °C 
and eluted (30 µl) using a mixture of ACN, THF and MQ  H2O (82:2:16 v/v/v) as a mobile phase over 20 min. 
The eluted peaks were recorded at excitation and emission wavelengths of 260 nm and 315 nm, respectively, with 
the gain set at 16 and response at 0.5. Colistin concentration in the lower Transwell compartment after diffusion 
through AS medium for 48 h was calculated as follows and expressed as mean ± SD (n = 3):

where A = analyte, IS = internal standard, Cr = slope of the calibration curve, I = area under the curve and 
Q = quantity of IS in the sample.

A colistin calibration curve was generated using a linear regression method, by plotting the ratio of colistin 
(B and A) to IS (B2 and B1) using their summed areas under the curve versus the concentration ratio of colistin 
to IS (µg/ml).

The P. aeruginosa NH57388A transwell biofilm diffusion model. Overnight cultures of P. aerugi-
nosa NH57388A were adjusted to  107 colony forming units (CFU)/ml in MHB. Then, 600 µl of inoculum was 
added to each of the wells of a 24-well microtitre plate and incubated statically at 37 °C for 24 h to allow biofilm 
growth. The biofilms were then rinsed once with PBS (600 µl) and the aqueous phase replaced with fresh MHB 
(600 µl). The 6.5 mm Transwell inserts were placed in each well and 90 µl of AS medium was added to the upper 
donor wells. After 15 min, 10 µl of colistin at 20, 40 and 60 µg/ml (in total system volume) ± 1% w/v OligoG was 
added to the donor wells and incubated statically at 37 °C for 24 h.

P. aeruginosa NH57388A cell viability in the transwell biofilm diffusion model. Biofilms were 
grown in the Transwell model as described above. AS medium was subjected to OligoG (1% w/v) as a surface 
treatment or pre-incubated with OligoG (at 0.5, 1 and 2% w/v) for 4 h alongside appropriate  dH2O controls. 
Transwell inserts were then carefully removed from the plate and the biofilm supernatants (containing plank-
tonic cells) were collected before and after washing with PBS (600 µl). The remaining biofilm cells on the bottom 
of the 24-well plate were submerged in 600 µl of PBS and sonicated for 30 min to dislodge the attached biofilm 
cells. An ATP (luminescence) assay was then performed using a BacTiter-Glo microbial cell viability kit (accord-
ing to the manufacturer’s instructions) to determine cell viability, measured on a Fluostar Omega microplate 
reader. The results were presented as percentage cell viability compared to untreated control cells and expressed 
as mean ± standard deviation (SD; n = 2).

Biofilm disruption assay using the Transwell biofilm diffusion model. An adjusted P. aeruginosa 
NH57388A inoculum (50 µl) was placed in a Greiner glass-bottom 24-well black plate and allowed to adhere for 
1 h. Then, 550 µl of MHB was added to the wells and biofilms were grown as described above. Transwell inserts 
and supernatants were carefully removed from the plate and then biofilms were incubated with 200 µl of LIVE/
DEAD stain (0.8% v/v in PBS) in the dark for 20 min. Wells were rinsed once with PBS (600 µl), before addi-
tion of PBS (200 µl) to prevent dehydration prior to imaging. CLSM was performed using a Leica SP5 confocal 
microscope with × 63 magnification (under oil) and a step size of 0.79 µm. Dead/Live cell ratio was quantified 
using COMSTAT image analysis  software63 and results were expressed as mean ± standard error of the mean 
(SEM; n = 15).

Cell density of P. aeruginosa NH57388A in a transwell diffusion model. Biofilms were grown in 
the Transwell model as described above. Changes in cell density (absorbance at 600 nm) were recorded 24 h after 
addition of colistin ± 1% w/v OligoG onto the AS medium surface. Results were expressed as mean ± SD (n = 5).

Statistical analysis. GraphPad Prism (version 9.2.0, 2021; San Diego, CA, USA) was used for statistical 
analysis. Statistical significance was indicated by *, where *p < 0.05. Analysis of variance (ANOVA) and Dunnett’s 
post hoc test were used to evaluate multiple group comparisons. Student’s unpaired t-test was used to determine 
the significance between the two independent groups.
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