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Abstract

In this paper, we develop a novel unfitted multiscale framework that combines two separate scales represented by only
ne single computational mesh. Our framework relies on a mixed zooming technique where we zoom at regions of interest to
apture microscale properties and then mix the micro and macroscale properties in a transition region. Furthermore, we use
omogenization techniques to derive macro model material properties. The microscale features are discretized using CutFEM.
he transition region between the micro and macroscale is represented by a smooth blending function. To address the issues with

ll-conditioning of the multiscale system matrix due to the arbitrary intersections in cut elements and the transition region, we
dd stabilization terms acting on the jumps of the normal gradient (ghost-penalty stabilization). We show that our multiscale
ramework is stable and is capable to reproduce mechanical responses for heterogeneous structures in a mesh-independent
anner. The efficiency of our methodology is exemplified by 2D and 3D numerical simulations of linear elasticity problems.
2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

http://creativecommons.org/licenses/by-nc-nd/4.0/).

eywords: Concurrent multiscale; CutFEM; Unfitted mesh; Partition of models; Level sets

1. Introduction

Many porous materials in biology and engineering, such as bones and composites, have inherently complex inner
tructures. These complex inner structures yield highly oscillatory irregular numerical solution fields. And hence
n accurate finite element solution requires a discretization that is able to capture the heterogeneities (i.e., pores)
ithin acceptable precision. While resolving the entire structure with extremely high-resolution meshes may result in

ccurate simulations, the computational cost is also adversely affected and may not be affordable for large structures.
ne feasible approach for a numerically tractable description of these media is to locally refine the mesh inside

he region of interest and coarsen the mesh outside. However, this approach is more applicable when the errors
orresponding to the discretization and mechanical behavior in the coarse mesh region remain negligible [1,2].

To improve the approximation of the coarse scale region a multiscale system can be constructed to incorporate
icroscale features (such as micro-pores and inclusions) in macroscale solutions. This can be carried out either
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over the entire structure or only inside regions of interest. These two approaches can be classified as hierarchical
and partitioned-domain concurrent multiscale methods [3], respectively, at which both scale solutions are computed
simultaneously. In the hierarchical approach, micro and macroscale solutions are addressed at the same time and
positions, while for the partitioned-domain approach, a particular part of the domain is resolved with microscale
governing equations and the rest of the medium with macroscale governing equations. The hierarchical approach,
also known as computational homogenization, was proposed in a simplified version based on the effective medium
by [4,5] to homogenize heterogeneities in terms of volume fractions, and then developed with fewer restrictions
and for a broad range of problems; such as first and second order computational homogenization methods (see for
instance [6–8]). These approaches rely on the assumption of the existence of scale separation. When this assumption
is violated, mainly in critical regions with local defects such as crack tips, damages, and holes, the partitioned domain
approaches can be employed instead to alleviate this issue by directly modeling the critical regions with microscale
governing equations. Partitioned domain approaches can be used to link either same or different mathematical
models (in terms of physics and/or scales), such as continuum-to-continuum problems [9,10], continuum models
coupled with molecular dynamic simulations [11–14] and coupled atomic-to-continuum models [15–19]. Belytschko
et al. [20] proposed another class of partitioned-domain approaches for aggregation of discontinuities across
different scales, which mainly treats material instabilities at critical regions. See [21] and the references therein
for recent advances of partitioned-domain approaches based on machine learning. We can use both hierarchical and
partitioned-domain methods in a problem simultaneously [22,23].

There are numerous coupling techniques available in the literature extending the FEM-based mono-models for the
artitioned-domain multiscale approaches. The examples of these methods are overlapping domain decomposition
ethods [24,25] such as the Arlequin method [26,27] and non-overlapping domain decomposition methods [28,29]

ike the s-method [9] and the mortar method [30], which all rely on superimposing local models with a fine
esh to the lowermost coarse mesh global model. These methods aim at reconstructing a multi-mesh framework

sing gluing conditions for the common interface between meshes. The interface conditions are implemented in
framework of coupling operators, such as the Lagrange multiplier approach [31] that is extensively used in the
rlequin method [32,33] and the Nitsche approach [34,35] which imposes interface conditions weakly. In contrast

o the mentioned coupling techniques that are all intrusive, Gendre et al. [29,36] introduced a non-intrusive strategy
or the coupling of global and local models; where the local model does not modify the global model, and all
omputations are performed with standard FEM. This approach is computationally efficient for large-scale problems
ith nonlinear phenomena that occur in small portions of the total domain.
From a computational standpoint, classical FEM is not sufficiently flexible for complex and time-dependent

eometries, which are prevalent features in microscale phenomena. Mesh refinement and regeneration are obvious
emedies to preserve the accuracy but these are very costly for large scale problems. In an alternative approach, the
utFEM technique [37–39] as a variation of XFEM [40,41], aims to facilitate the computations of complex and
volving geometries. In this method, the geometry is decoupled from the finite element mesh and the boundary of
he computational domain is represented by a level set function or a given surface mesh over a fixed background

esh. The computation and update of the geometry are done in the discretized formulation, reducing the pre-
rocessing computational cost of meshing. Aside from the robust geometry description, the method ensures the
tability of the discretization by introducing ghost penalty regularization terms in cut elements [42,43]. This leads
o improved conditioning of the resulting system matrix, which is a challenge in unfitted FEM approaches (see
or instance [44,45]). The CutFEM technique has been applied for a range of single-scale problems, such as
nilateral contact [46], multiphase phenomena [47,48] and fiber-reinforced composites [49]. It has also been recently
eveloped for modeling multi-component structures using different meshes for each component. In this multi-mesh
ramework proposed by [50,51], multiple meshes can overlap in an arbitrary manner and intersected elements are
egularized using ghost penalty regularization.

In this paper, we use the fact that CutFEM allows us to decouple the geometry from the finite element mesh
background mesh). We use CutFEM to capture the fine-scale geometry, which is expressed either in terms of an
nalytical distance function or in terms of a given surface mesh. Then, we project this fine-scale geometry description
nto a background mesh which is fine in areas of interest and coarse elsewhere.

We demonstrate that a straightforward projection of the geometry description onto an adapted background mesh
s insufficient and consequently, we develop a multiscale CutFEM framework. The straightforward projection is

nsufficient because the piecewise linear signed distance function approximation, in a mesh with the combination of

2
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fine resolution in areas of interest and very coarse mesh elements elsewhere, gives rise to the random appearance
of geometrical artifacts in the coarse mesh region, yielding stress singularities. In order to alleviate this issue, we
replace the signed distance function description in the coarse mesh domain with a homogenized domain. To couple
the fine scale region or “zoom region” with the coarse scale region, we develop a smooth mixing approach of
the homogenized material and the fine scale “CutFEM” region. This approach belongs to the class of smoothened
domain coupling methods, such as Arlequin or the Bridging Domain Method referenced previously. As such, we
avoid the difficulty of meshing the coupling interface in a way that is compatible with the microscale description,
which is known to create numerical issues [2]. Moreover, we do not have to choose coupling conditions within the
usual dictionary of possible interface gluing strategies. Instead, the gluing is performed “naturally”, using a decaying
weighted average of the two models within a smooth interface. Then, we demonstrate the efficiency, robustness and
accuracy of the smooth mixing approach between homogenized macroscale and CutFEM microscale region.

In our multiscale framework, the smooth mixing technique is inspired by the Arlequin method. However, in
contrary to the Arlequin mixing strategy, we do not cross and glue a high-resolution mesh to the underlying mesh
but use a level set function over a single background mesh to define a transition region. We then mix the scales
in the elements inside the transition region. This implicit level-set-based description of geometrical and mixing
properties (i.e. macro and microscale domains, zooming location and transition region) yields a highly versatile
mesh-independent multiscale framework. In this framework, we can modify the geometrical and mixing properties
by only changing the level set functions, leading to less computational pre-processing cost in comparison to the
previous methods.

The outline of the paper is as follows. In Section 2, we present the continuous formulation of the multiscale
framework, in strong and weak forms. Then, in Section 3, we discretize the formulations using CutFEM and
introduce the transition area for mixing purposes. In Section 4, we first test the idea of taking the functional
description of microscale and projecting it onto a adaptive mesh background. Then we corroborate the efficiency
of the proposed smooth mixed multiscale framework with 2D and 3D elasticity problems. In the 2D examples, we
study a heterogeneous structure where the micro-pores are either distributed locally or uniformly. In the 3D case, we
simulate a trabecular bone with complex micro-structure derived directly from micro-CT image data (also available
in [52,53]).

2. Governing equations of the mixed multiscale problem

In this Section, the formulation for the mixed elasticity problem is presented. First, we will introduce definitions
and notations related to the domain partitioning of the method and then present the strong and weak formulation for
the concurrent multiscale elasticity problem. Finally, we will present the discretization of the governing equations.

2.1. Domain partitioning

Let Ω be the computational domain of a micro-porous heterogeneous medium comprised of a matrix subdomain
Ω1 and a pore subdomain Ω2, as illustrated in Fig. 1(a) and

Ωi ⊂ Rd , i = 1, 2, d = 2, 3, (1)

where the interface between Ω1 and Ω2 is determined by a continuous level set function φ1 defined as follows

φ1(x) =

⎧⎪⎨⎪⎩
>0 x ∈ Ω2,

= 0 x ∈ Γ1,

<0 x ∈ Ω1.

(2)

he normal vector in x ∈ Γ1, pointing from Ω1 to Ω2, is given by

n1 =
∇φ1(x)

∥∇φ1(x)∥
. (3)

In the previous definition, ∥x∥ denotes the Euclidean norm ∥x∥ =
√

x · x .
3
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Fig. 1. Domain partitioning for the mixed multiscale method, (a) micro-porous domain Ω partitioned into matrix subdomain Ω1 and pore
subdomain Ω2 (Ω = Ω1 ∪ Ω2) with interface Γ1 and (b) partition of the computational domain Ω into macro subdomain Ω̂M and micro
subdomain Ω̂z (Ω = Ω̂M ∪ Ω̂z). Here, Ω̂m = Ω̂z \ Ω2 denotes the porous micro-domain.

Next, we define the microscale zoom region Ω̂z for our multiscale analysis by a continuous level set function φ2
given by

φ2(x) =

{ >0 x ∈ Ω̂M,

= 0 x ∈ Γ2,

<0 x ∈ Ω̂z,

(4)

whose zero iso-line defines the boundary of the zoom. The macro-domain, denoted by Ω̂M, is the domain outside
of the zoom. For an illustration see Fig. 1b, with Ω̂z shown as the shaded area. Furthermore, the normal vector on
he interface Γ2 pointing from Ω̂z to Ω̂M is given by

n2 =
∇φ2(x)

∥∇φ2(x)∥
. (5)

Furthermore, let Ω̂m = Ω̂z \Ω2 = Ω̂z ∩Ω1, denote the microscale region without the pores. The porous microscale
omain can be expressed by a combination of the two level set functions

Ω̂m = {x ∈ Ω : φ1(x) < 0 and φ2(x) < 0}. (6)

2.2. Field equations of the multiscale elasticity problem

Let us consider linear elastic behavior for the macro-domain Ω̂M and the porous micro-domain Ω̂m . In our
multi-model, we are seeking the deformation field u : Ω̂M × Ω̂m → Rd

× Rd which satisfies

div σM + fM = 0 in Ω̂M, (7a)

div σm + fm = 0 in Ω̂m, (7b)

where

σM(u) := DM : ∇su (8a)

σm(u) := Dm : ∇su (8b)

The boundary of the background domain Ω is partitioned into ∂Ωu and ∂Ωt (∂Ω = ∂Ωt ∪ ∂Ωu), where ∂Ωu is
he part where the body is clamped and ∂Ωt is the part where traction t is applied with ∂Ωt ∩ ∂Ωu = ∅.

In the expressions above, fM and fm are volume source terms, ∇s . =
1
2 (∇. + (∇.)T ) is the symmetric gradient

operator, and D ∈ (Rd )4 is the fourth order Hooke tensor of isotropic linear elastic material given by

D : ∇ . = λTr(∇ .)I + 2µ∇ . (9)
s s s

4
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Fig. 2. Transition domain in the mixed multiscale method (a) and the distance dependent weight function, α, in the transition domain (b).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

where Tr is the tensor trace operator, λ =
Eν

(1+ν)(1−2ν) , µ =
E

2(1+ν) are the Lam é parameters expressed by the Young’s
odule E and the Poisson’s ratio ν.
On the zooming interface, Γ2, between micro and macro model, the traction is required to satisfy the following

oupling condition

σm · n2 = −σM · n2 on Γ2. (10)

Integrating governing Eqs. (7)(a)-(7)(b) over the given domains, i.e. macro-domain Ω̂M and micro-domain Ω̂m ,
he weak form of the multiscale elasticity problem is given as follows. We seek a displacement field u : Ω̂M×Ω̂m →

d
× Rd , u ∈ H 1(ΩM) × H 1(Ωm), satisfying∫

Ω̂M

σM(∇su) : ∇sδu dx +

∫
Ω̂m

σm(∇su) : ∇sδu dx =

∫
Ω̂M

fM ·δu dx +

∫
Ω̂m

fm ·δu dx +

∫
∂Ωt

t ·δu dx , (11)

or all test functions δu : Ω̂M× Ω̂m → Rd
×Rd , δu ∈ H 1

0 (ΩM)× H 1
0 (Ωm) which satisfy the homogeneous Dirichlet

oundary condition

δu = 0 on ∂Ωu . (12)

. Discretization for mixed multiscale problems

In this Section, we introduce a CutFEM-based approximation scheme of the multiscale elasticity problem
roposed in Section 2 using a novel mixed cut finite element approach. The arbitrary intersection of the porous
omain by the sharp zooming interface, Γ2, can result in bad conditioning for the assembled system matrix. To
lleviate this problem, we introduce a mixing strategy between the macroscale and microscale regions. In this
ixed approach, we create an overlap between the two models. We refer to the overlapping domain as “transition

omain”, as highlighted in Fig. 2a in yellow.
For mixing purposes, we extend the macro and micro domains defined in the previous Section into the transition

egion. First we extend the macro domain by ΩM := Ω̂M ∪ ΩT . Then we extend the micro domain inside zoom
o Ωm := Ω̂m ∪ ΩT , where ΩT is the transition domain. In this framework, ΩM and Ωm are overlapping in the
ransition domain. The transition domain is determined by the level set function φ2, which is the signed distance
unction to Γ2. We set the width of the transition region to 2ϵ, which is given by the signed distance from −ϵ
o +ϵ.

5
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We define a smooth weight function α for the mixing, as shown in Fig. 2b, and express it in terms of φ2 by

α(x) =

{ 0 if φ2(x) ≤ −ϵ,

S if − ϵ < φ2(x) < ϵ,

1 if φ2(x) ≥ ϵ.

(13)

In the previous expression, S is a smooth function varying from 0 to 1 inside the transition zone, and as shown
in Fig. 2b, −ϵ and +ϵ are the lower and upper bounds of ΩT inside micro and macro domains, respectively. We
will blend and mix the macro and micro-model using the weights α and 1 − α, i.e.

α aM(u, v) + (1 − α) am(uh, v) = α lM(v) + (1 − α) lm(v). (14)

3.1. Multiscale finite element space

Here we discretize the weak form (11) of the multiscale model, which locally modifies a global problem by using
only one mesh, unlike other similar methods such as the Arlequin method [32] and multi-mesh CutFEM [51] that
superimpose a high resolution mesh onto a coarse background mesh. In our framework, we introduce triangulation
T for the background domain Ω and then define the corresponding finite element space of continuous linear function
as

Qh := {w ∈ C0(Ω ) : w|K ∈ P1(K ) , ∀K ∈ T }, (15)

where the corresponding mixed multiscale model physical domains, Ω h
M and Ω h

m are approximated as

Ω h
M = {x ∈ Ω |φh

2 (x) ≥ −ϵ}, (16)

Ω h
m = {x ∈ Ω |φh

1 (x) ≤ 0 and φh
2 (x) ≤ ϵ}. (17)

Furthermore, we approximate the transition domain Ω h
T as

Ω h
T = {x ∈ Ω | − ϵ ≤ φh

2 (x) ≤ ϵ}. (18)

In (16) and (17), φh
1 (x) ∈ Qh is the linear approximation of the level set function φ1 and φh

2 (x) ∈ Qh is the linear
approximation of level set function φ2. By using these level set functions, we define the position of the microscale
features and pores over a single fixed mesh arbitrarily (in a nonconforming manner). Now we can present the
approximate interface Γ h

1

Γ h
1 = {x ∈ Ω h

M | φh
1 (x) = 0}. (19)

The pores with arbitrary geometries can have non-zero intersection with either macro or micro domains, where
all the elements of T intersected by Γ h

1 will be grouped in set

T h
1 := {K ∈ T : K ∩ Γ h

1 ̸= ∅}, (20)

where the corresponding domain is defined as T H
1 =

⋃
K∈T h

1
K .

Furthermore, let T H
p denote the set of all elements, which are fully inside the pores, i.e. φh

1 > 0 in all vertices
of the element.

3.2. Fictitious domain

First, we define a set of all elements in the background mesh T which have a non-zero intersection with Ω h
M

or Ω h
m

Th := {K ∈ T : K ∩ (Ω h
M ∪ Ω h

m) ̸= ∅}. (21)

Note that, this fictitious domain mesh consists of all elements in the background mesh except for the elements fully
inside the pores outside of the transition region (elements shown in white in Fig. 3). The domain associated with
this set of elements is called fictitious domain and is denoted by ΩT :=

⋃
K∈(Ωh

M∪Ωh
m ) K .

Notably, all elements inside the pores in the transition region are contained in the fictitious domain mesh. These

elements are not integrated over in the micro-domain and therefore yield a zero contribution in the system matrix.

6



E. Mikaeili, S. Claus and P. Kerfriden Computer Methods in Applied Mechanics and Engineering 393 (2022) 114807

a
i
c
o

w
a

c
l

w

3

t

f
o

Fig. 3. Schematic presentation of the discretized domain for the mixed multiscale method.

Therefore, these elements rely mainly on the stiffness of the macro-domain. However, if almost the full weight is
on the micro-domain, i.e. α ≈ 0, in the transition region there is very little contribution from the macro-domain
inside the pores and this yields ill-conditioning.

In addition to this source of ill-conditioning, we can obtain ill-conditioned matrix entries through the integration
of elements which lie almost entirely in the pores in the micro-region and therefore contain very little material from
the micro-domain.

We address these two sources of ill-conditioning by introducing two ghost penalty regularization terms. The first
one is used for the elements intersected by Γ h

1 in the microscale region Ω h
m , and is applied to the elements edges

(shown in red in Fig. 3) given by

FG := {F = K ∩ K ′
: K ∈ Th and K ′

∈ Th, F ∩ T H
1 ̸= ∅}. (22)

The second ghost penalty regularization term is applied to the edges of elements in the transition region Ω h
T that

re intersected by Γ h
1 or are inside the pores. These ghost penalty terms extend the solution of the micro-domain

nto the pores. It gives the elements in the pores a stiffness, which alleviates ill-conditioning, while maintaining the
onsistency and accuracy of the solution (i.e. terms vanish with optimal rate with mesh refinement and continuity
f the solution). The corresponding edges are shown schematically in Fig. 3 in purple and are defined as

FGT := {F = K ∩ K ′
: K ∈ Th and K ′

∈ Th, F ∩ (T H
1 ∪ T H

2 ) ̸= ∅}, (23)

here T H
2 is the domain related to the set of all elements of T intersected by pores in the transition domain defined

s T H
2 =

⋃
K∈T h

2
K , where the set of elements T h

2 is given by,

T h
2 := {K ∈ T : K ∩ Ω h

T ̸= ∅ and (K ∈ T H
1 or K ∈ T H

p )}. (24)

In this paper, since we use one adapted background mesh for the multiscale problem, the displacement field is
ontinuous throughout the whole domain. For its discretization, we choose the vector-valued continuous piecewise
inear space

Uh := {u ∈ C0(ΩT ) : u|K ∈ Pd,1(K ) ∀K ∈ Th}, (25)

here d denotes the spatial dimension, d = 2, 3.

.3. Stabilized mixed finite element formulation

The mixed finite element formulation for the proposed multiscale method is the following: find uh ∈ Uh , such
hat

αh aM(uh, v) + (1 − αh) am(uh, v) = αhlM(v) + (1 − αh) lm(v) (26)

or any vh ∈ Uh satisfying homogeneous Dirichlet boundary conditions. The bilinear form aM and linear form lM
f the macro model are given by

aM(uh, v) =

∫
h

DM∇suh∇sv dx, (27)

ΩM

7
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Fig. 4. Schematic presentation of 2D rectangular domain with a quasi-uniform distribution of micro-pores.

lM(v) =

∫
Ωh
M

fM · v dx +

∫
∂Ωh

t

td · v ds. (28)

In the previous problem statement, the regularized bilinear form am is defined for the micro scale model as

am(uh, v) =

∫
Ωh

m

Dm∇suh∇svh dx +

∑
F∈FG

(∫
F

βh
Em

[[Dm∇suh]][[Dm∇svh]] d S
)

. (29)

Here, the second term, called ghost-penalty, ensures a uniformly bounded condition number for the system matrix
and [[x]] denotes the normal jump of quantity x over the facet F , and β denotes the ghost penalty stabilization
parameter that needs to be large enough to guarantee the coerciveness of bilinear form am [34,38] on the fictitious
domain. The linear form of the microscale model is given by

lm(v) =

∫
Ωh

m

fm · v dx . (30)

4. Numerical results

In this Section, we first test the projection of an analytical signed distance function over an adaptive background
mesh using the CutFEM technique. Next, we investigate the performance of the proposed smooth mixing approach
in a simplified multiscale problem. Eventually, we adopt a homogenized medium in the coarse domain of the
mixed multiscale model and demonstrate the efficacy and robustness for 2D and 3D elasticity problems. In our
2D simulations, we use an analytical signed distance function to define the geometry. In contrast, in our 3D case
study, we use a mesh surface derived from micro-CT image data to describe the geometry of a trabecular bone
with a complex microstructure. All the numerical results are produced by the CutFEM library [38] developed in
FEniCS [54].

4.1. Adaptive CutFEM technique

Let us consider the heterogeneous structure shown in Fig. 4, comprised of a matrix and pores which are distributed
all over the domain. The matrix domain is defined as Ω1 = Ω\Ω2, where Ω = [0, 12] × [0, 10] is the rectangular
background domain and Ω2 are the pores. We restrict the displacement at the bottom edge and prescribe the force
f = (0, −0.01) along the top edge of the domain. We assume the corresponding mechanical properties as follows:
E = 1 and ν = 0.3.

Here, we define the geometry by a piecewise linear signed distance function over two types of background
meshes. As depicted in Fig. 5a,b, the first background mesh is uniform and fine everywhere; however, the second
background mesh is fine only in regions of interest and coarse elsewhere, and the corresponding adaptive mesh
8
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r

g

Fig. 5. CutFEM method with (a) high-resolution uniform mesh hmin = 0.054 and (b) CutFEM method with adaptive background mesh
hmin = 0.054 and hmin/hmax = 0.015.

Fig. 6. Displacement component u y for (a) uniformly refined background mesh and (b) adaptive background mesh.

efinement scale is s = 1/4. The zero level set function Γ h
1 represents the pore interfaces which intersect the

background mesh arbitrarily. For both mesh configurations, the mesh size is defined as h = hx = h y with
hmin = 0.005 and the regularization parameter is set to β = 0.005.

We perform a mechanical compression test and consider the model with the uniform fine mesh as a reference.
As shown in Fig. 5b, using the signed distance function in the coarse domain leads to the random appearance
of geometrical artifacts. The comparison of the displacement field component u y in Fig. 6 shows the response in
the fine mesh region of CutFEM is precise; however, in the coarse mesh region, the geometrical artifacts impose
unrealistic additional stiffness. To address this limitation of the CutFEM technique for very coarse meshes, we will
employ our mixed multiscale framework in Section 4.3, whereby instead of using a coarse signed distance function
in the coarse domain, we replace it with a homogenized medium.

4.2. Smooth mixing approach adopted for a 2D locally porous medium

Here, we investigate the performance of the proposed smooth mixing approach in a 2D locally porous medium,
shown schematically in Fig. 7. This structure is a simple case for multiscale modeling, as homogenization is not
essential in the coarse domain due to the local distribution of micro-pores.

We define the rectangular domain as Ω = [0, 12] × [0, 10], comprised of matrix domain Ω1 = Ω\Ω2 and pore
domain Ω2. We block the displacement at the bottom edge and insert displacement u = (0, −0.1) along the top edge
of the domain. Then, we set the macro and microscale mechanical properties to EM = Em = 1 and νM = νm = 0.3.

We test three structured background meshes consisting of one uniform and two adaptively refined meshes
enerated independently of the pore and zoom interfaces. We employ linear Lagrangian elements, with a uniform
9
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Fig. 7. Schematic presentation of 2D rectangular domain with locally distributed pores.

Fig. 8. Computational mesh for the physical domain of the 2D model with locally distributed pores (a) uniform meshing, (b) adaptive
meshing type-1, (c) adaptive meshing type-2. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

background mesh size h = hx = h y and the regularization parameter set to β = 0.005. The corresponding
discretizations of the physical domain Ω1 are shown in Fig. 8. The zero level set functions of Γ h

1 (shown as black
lines) and Γ h

2 (shown as red line) represent the micro-pore and the zooming regions, respectively. The corresponding
discretized domains in Fig. 8 show the arbitrary intersection of the interfaces with the elements, where the zooming
interface determines the middle of the transition region ΩT and the mesh is refined inside the zoom.

In this study, we choose the following smooth weight function to mix the two models inside transition
region Ω T ,

S =
1
2

(1 + sin(
π

2ϵ
ξ (x))). (31)

Fig. 9 illustrates how the scalar function αh is distributed in the discretized physical domain with different
ixing lengths. Note that our multiscale mixing approach operates over a single mesh, and its mixing length

s defined in a mesh-independent manner. The displacement field component u y for two smooth mixing lengths
ϵ = 0.1, 1 and the finest adaptive mesh with hmin = 0.2 are shown in Fig. 10c, d. We choose standard FEM and
nfitted CutFEM as reference models and present the corresponding u y in Fig. 10a, b. As expected, we find that our
utFEM displacement field converges to the FEM displacement field, verifying our single-scale unfitted method.
or the mixed multiscale model, u y inside the zoom is similar to the corresponding references and exhibits smooth
ehavior in the transition domain Ω .
T

10
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Fig. 9. Smoothing weight function α contour over finest adaptive mesh, (a) ϵ = 0.1, (b) ϵ = 0.4 and c) ϵ = 1.

Fig. 10. Displacement component u y contours for different methods: (a) FEM, (b) CutFEM, (c) mixed multiscale model with 2ϵ = 0.1,
(d) mixed multiscale model with 2ϵ = 1.

The energy distribution inside ΩT is the average of the FEM macroscale and the CutFEM microscale model.
Next, we will investigate how the mixing approach via the weight function (31) impacts the stress field in the
physical and the fictitious domains. The stress field is given by

σmix(x) =

{ σm in Ωm\ΩT ,

σM in ΩM\ΩT , (32)

(1 − αh)σm + αhσM in ΩT .

11
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Fig. 11. Stress component σyy contours, (a) FEM model, (b) CutFEM model, (c) mixed multiscale model in physical domain with 2ϵ = 0.1,
(d) mixed multiscale model in physical domain with 2ϵ = 1, (e) mixed multiscale model in fictitious domain with 2ϵ = 0.1, (f) mixed

ultiscale model in fictitious domain with 2ϵ = 1.

As shown in Fig. 11a, b, the stress component σyy in CutFEM converges to its FEM counterpart. We compute
mix given in (32) for two smoothing lengths over the physical and fictitious domains in Figs. 11c-11f. Our results
how that σmix in ΩT is smooth and without oscillations.

To enhance the stability of our multiscale framework, in the microscale model, we regularize the elements inside
he porous domain in addition to the intersected elements by Γ h

1 . Then we compute the condition number of the
ultiscale system matrix to investigate the stability by using SLEPc [55] which finds the ratio of the maximum to

he minimum eigenvalue of the system matrix (i.e. λmax/λmin). We use a sequence of uniform and adaptive meshes
ith different mixing lengths and then compare them with the CutFEM reference model. In Fig. 12a, we find that

he behavior of our mixed approach with different mixing lengths is well conditioned and similar to the standard
utFEM approach. In Fig. 12b, we investigate the impact of extending the ghost-penalty regularization to the inside
f the pores (in addition to the cut elements by the pore interfaces) on the condition number of the multiscale system
12
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t
b

Fig. 12. The condition number of the system matrix versus mesh size, for different mixing lengths: (a) ghost penalty regularization is applied
o cut elements only, (b) ghost penalty regularization is applied to every element inside the porous domain in addition to cut elements. In
oth cases, the regularization parameter is chosen as β = 0.005.

matrix. As expected, this technique improves the condition number effectively. Also, we find that the corresponding
behavior with respect to mesh refinement for our mixed approach is proportional to h−2 for both regularization
approaches, which are very close to the “pure” CutFEM results.

4.3. The mixed multiscale method for a 2D quasi-uniform porous medium

In this Section, we consider the quasi-uniform porous domain given in Fig. 4 for our mixed multiscale analysis.
As discussed in Section 4.1, structures with uniform heterogeneity require homogenization in the coarse domain
to avoid geometrical artifacts which yield unrealistic stiffness and stress singularities. Hence, here, we replace the
signed distance function in the coarse domain with a homogenized domain and use the smooth mixing approach to
couple the fine and coarse-scale domains.

In our mixed multiscale framework, we construct the homogenized model by using the Modified Mori Tanaka
(MMT) approach [56] to reproduce the effects of micropores in the homogenized macro model. Employing the
MMT homogenization approach for ΩM with n circular pores of different radii, the effective Young’s modulus will
be computed as follows.

E i
M = (1 − φ̄i )E i−1

M (φ̄i L i + (1 − φ̄i )I )−1, i = 1, . . . , n, (33)

where E i
M and E i−1

M are the homogenized Young’s modulus with inclusion of i th and (i − 1)th circular pores,
respectively, and φ̄i is the instantaneous porosity parameter defined as

φ̄i = V i
v /Vt , (34)

where V i
v is the void volume with i number of pores and Vt is the total volume. L i is the Eshelby parameter

given for circular inclusions in [57]. To calculate the effective elastic modulus of a domain with n pores, we add
the inclusions one by one, and in each step number i; we update Eq. (33). For more details regarding the MMT
approach, see [56].

4.3.1. The mixed multiscale method with one arbitrary zoom
Here, we use the mixed multiscale framework with one zoom and compare it with the equivalent adaptive

CutFEM approach discussed in Section 4.1. The zooming interface is projected over the background mesh and
shown with a red line in Fig. 13. The material properties and boundary conditions are the same as in the adaptive
CutFEM model from Section 4.1. To compute the homogenized material properties, we consider the pores in the
entire domain Ω . We use Eq. (33) for this purpose and then calculate the corresponding effective Young’s modulus

as EM = 0.78.

13
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Fig. 13. Background mesh with projected pores and zooming interfaces of the mixed multiscale method.

Fig. 14. Displacement component u y for (a) mixed multiscale, 2ϵ = 0.2, and (b) mixed multiscale, 2ϵ = 0.8.

We test two length sizes for the transition region, 2ϵ = 0.2, 0.8. The displacement field component u y for both
is shown in Fig. 14. When compared to the full microscale model as a reference, shown in Fig. 6a, the mixed
ultiscale method with homogenization is much closer to the reference solution in comparison to the adaptive
utFEM approach, shown in Fig. 6b. Therefore, using homogenized models in the coarse domains is necessary
hen the signed distance functions fail to detect the microstructure precisely.

.3.2. The mixed multiscale method with two arbitrary zooms
Next, we investigate the efficiency of our mixed multiscale approach for the same quasi-uniform porous domain

see Fig. 4) using two separate zooms. The displacement at the bottom edge is blocked and u = (0, −0.1) is
pplied along the top edge of the domain. We consider the following microscale material properties: Em = 1 and
m = 0.3, while for the macro scale, we derive effective material properties by using homogenization Eq. (33). Like
n the previous Section, we compute the effective Young’s modulus based on the pores in the entire domain Ω as
EM = 0.78.

For this example, we employ the same background meshes as for the locally porous domain (Fig. 7) and show
he corresponding discretized domain and generated interfaces in Fig. 15. The smooth indicator function with three
engths is computed for the finest adaptive mesh in Fig. 16. In Figs. 15 and 16, we observe the independency of the

icrostructure, zooming geometry and mixing length to the computational mesh, which creates a straightforward
reprocessing pipeline and saves mesh regeneration costs.

We compute displacement field component u y for two smoothing lengths 2ϵ = {0.1, 1}, and show the
orresponding results over the physical and the fictitious domains in Fig. 17c-f. The results prove a high relevance of

he multiscale framework in the microscale domain to the corresponding reference models (depicted in Fig. 17a,b).

14
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(
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Fig. 15. Computational mesh for physical domain of 2D model with quasi-uniform distributed pores, (a) uniform meshing, (b) adaptive
meshing type 1, (c) adaptive meshing type 2.

Fig. 16. Smooth weight function field αh over finest adaptive mesh with (a) ϵ = 0.1 (b) ϵ = 0.4 (c) ϵ = 1.

In the transition regions, u y as a global response is smooth for both mixing lengths and outside the zooms
homogenized domain) the trend is similar to the references.

Next, we inspect the distribution of the mixed stress field for two zooming problems. The results obtained for
tress field component σyy for two smoothing lengths and over physical and fictitious domains are given in Fig. 18.
The comparison with the full fine-scale reference models (see Fig. 18) shows that the stress does not suffer from

15



E. Mikaeili, S. Claus and P. Kerfriden Computer Methods in Applied Mechanics and Engineering 393 (2022) 114807

m

a
t
a

a
a
t

4

W
i
i
i
U
s
r
s

m
h

Fig. 17. Displacement field component u y , (a) FEM model, (b) CutFEM model, (c) mixed multiscale model with ϵ = 0.1, (d) mixed
ultiscale model with ϵ = 1.

ny oscillations neither in cut elements nor in the transition area. The ghost penalty regularization, which extends
he solution from the physical domain to the fictitious domain alleviates the oscillations successfully while ensuring
n accurate stress solution.

The condition number of the multiscale system matrix for different mesh configurations and smoothing lengths
re compared with the counterpart CutFEM microscale model in Fig. 19a. The comparison shows that our multiscale
ssembled matrix is well-conditioned under various smoothing lengths and mesh sizes and converges proportional
o h−2 that is similar to the CutFEM convergence.

.4. 3D mixed multiscale modeling of trabecular bone

This numerical example illustrates the efficacy of the proposed mixed multiscale framework in 3D simulations.
e use a 3D bone sample with a trabecular microstructure which is transferred directly from a micro-CT medical

mage. The corresponding 3D reconstructed micro-CT image is presented in Fig. 20(a). We use the 3D reconstructed
mage to compute a surface mesh (STL mesh data) which will be converted into a level set function. For more
nformation on the digital pipeline that we have used to convert STL mesh data into a level set function, see [49].
sing our proposed zooming technique, we select the zoom region and apply the mixing scheme to the bone as

hown in Fig. 20(b). The red and black lines represent the zoom surface and the upper/lower bounds of the mixing
egions, respectively. The bone microstructure is defined by the zero level set function Γ h

1 and the corresponding
urface meshing and the CutFEM cell subtesselation are depicted in Figs. 21(a) and 21(b), respectively.

We employ the MMT homogenization approach to compute the macroscale effective material properties. The
ixing approach uses the level-set-based indicator function αh , defined in Eq. (31), as shown in Eq. (31). For the
omogenization, we obtain the volume fractions of trabecular bone from [52], where the bone volume fraction is
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Fig. 18. Stress component σyy contours, a) FEM model, (b) CutFEM model, (c) physical domain for the mixed multiscale model with
= 0.1, (d) physical domain for the mixed multiscale model with ϵ = 1, (e) fictitious domain for the mixed multiscale model with ϵ = 0.1

nd (f) fictitious domain for the mixed multiscale model with ϵ = 1.

eported as Bv = 0.192. Assuming the microscale properties as Em = 1 and νm = 0.3, we derive the homogenized
roperties as EM = 0.15 and νM = 0.3.

We perform a compression test for a full microscale FEM (as reference) and the mixed multiscale method with
ne zooming region in an arbitrary location. The displacement field component u y of these computations is shown in
ig. 23. For the mixed multiscale approach, the 3D simulations are carried out for two different smoothing lengths
2ϵ = 0.01, 0.1) to study the mixing technique’s stability for both sharp and wide transition regions (see Fig. 22).
he comparison between full microscale and multiscale results shows that our level-set-based multiscale method
17
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Fig. 19. Condition numbers for CutFEM model and mixed multiscale method for different smoothing lengths and mesh configurations. The
regularization parameter is chosen as β = 0.005.

Fig. 20. 3D trabecular bone with zoom: (a) Micro-CT image 3D reconstruction, (b) CutFEM interface. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

can be successfully applied for 3D complex problems, in a mesh independent manner, and the mixing technique is
stable for both types of transition regions.

To further investigate the accuracy of numerical results, we show the variation of stress component σyy for two
moothing lengths in Fig. 24. The results show that the response inside the zoom is consistent with the corresponding
EM reference model.

We also study the condition number of the 3D mixed multiscale system matrix for different smoothing lengths
nd element sizes. The results in Fig. 25 show that the condition numbers stay stable for various smoothing lengths
nd mesh sizes.

. Conclusions

A framework was proposed to construct an unfitted concurrent multiscale model for heterogeneous structures.

n our multiscale framework, we developed a mixing approach over a single background mesh to couple micro
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Fig. 21. 3-D trabecular bone mesh with zoom: (a) surface mesh of micro-CT image, (b) CutFEM surface subtesselation for h = 0.036.

Fig. 22. Smoothing weight function αh used for the 3D bone example with (a) 2ϵ = 0.01 and (b) 2ϵ = 0.1.

nd macroscale models. Therefore, unlike domain decomposition methods where an interface condition is required
etween macro and microscale models, the interface constraint is not needed in our mixing approach.

We demonstrated the validity of our mixed multiscale framework for linear elasticity in 2D and 3D. We first tested
he idea of a functional description of the whole heterogeneous structure by projecting it onto a background mesh
hich is fine in areas of interest and coarse outside. This projection of the functional description onto an adapted
ackground mesh was done successfully by CutFEM, in which the geometry was approximated by a piecewise
inear signed distance function in each background mesh element. We showed that the accuracy of results in the
ne regions is good; however, the very coarse mesh cells outside of the regions of interest give rise to the random
ppearance of geometrical artifacts in the coarse region, yielding stress singularities. Next, we tested the same
roblem within the mixed multiscale framework where an equivalent homogenized domain was adopted in the coarse
egion. The results showed that employing the multiscale approach improves the results in the coarse domain. Next,
e extended the application of our multiscale framework to 3D elasticity problems. Here, we employed a given
urface mesh of trabecular bone to define the microscale geometry. The obtained results show a good agreement with
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Fig. 23. 3D and 2D representations of FEM and mixed multiscale displacement field component u y , (a) 3D FEM reference model, (b)
2ϵ = 0.1, (c) 2ϵ = 0.01, (d) 2ϵ = 0.1 and (e) 2ϵ = 0.01.

the corresponding reference model in terms of global and local responses, where the corresponding multiscale system
matrix remains well-conditioned under different mixing lengths. The numerical results in 2D and 3D simulations
demonstrated the accuracy and robustness of our unfitted multiscale framework in modeling highly heterogeneous
structures where the geometry and zoom location can be defined arbitrarily.
20
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Fig. 24. Stress component σyy , (a) FEM with h = 0.036, (b) mixed multiscale model-A with hmin = 0.036, ϵ = 0.01 and only cut elements
egularized, and (c) mixed multiscale model-B with hmin = 0.036, ϵ = 0.01, cut and porous elements are regularized.

Fig. 25. Condition numbers for mixed multiscale models with various mesh sizes and smoothing lengths.

We intend to extend the current mixed multiscale framework for damage mechanics problems in the future.
hile in the current study, we define the zooming size and location arbitrarily, showing that the bridging scale
orks efficiently, the zoom region for the damage problems will be adaptively updated, keeping the damage/crack
nside the zoom.
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