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Abstract: This paper analysed operational CO:2 emissions from electricity grid interaction in photo-
voltaic prosumer dwellings in South Wales, UK. Operational CO2 emissions were quantified in four
prosumer dwellings aiming to analyse (1) the differences in the result when time-varying data and
static emission factors are used, and (2) the association of load-matching indicators to the results.
Electricity balance data were obtained through monitoring (April 2020 to March 2021), and three
sources for the grid’s CO: intensity were considered: (1) UK nationwide average time-varying val-
ues (UK), (2) South Wales (SW) average time-varying values and (3) the UK Government’s official
CO:2 emissions factor (EF) for the study period. UK and SW grid CO: intensity were obtained as
dynamic data flows in a 30 min resolution, whereas EF was a year constant. Gross CO:z emissions
calculated using SW data reached the highest emissions results: between 67.5% and 69.3% higher
than the results obtained using the UK time-varying data, and between 41.1% and 45.1% higher
than using the EF. The differences between the obtained yearly net emissions using dynamic data
and the EF in each studied dwelling ranged between 6.2% and 294%. Results also show that the
definition of geographic boundaries for location-based approach calculations can significantly affect
the obtained emissions values.

Keywords: net emissions; operational CO:z emissions; on-grid PV; prosumer dwelling; South Wales;
demand-side management; CO: intensity; monitoring data

1. Introduction

Residential buildings were reported to account for 22% of worldwide final energy
use and 17% of all emissions in 2021 [1]. Along with several other measures to reduce
these figures, the International Energy Agency (IEA) has highlighted that in order to reach
a net zero emissions scenario by 2050, an average annual photovoltaic (PV) generation
growth of 24% is expected worldwide [2]. Due to substantial decreases in production and
installation costs [3], on-grid PV panel systems have become a mainstream measure to
reduce operational CO:z emissions in existing buildings, particularly in developed nations
but also increasingly in the developing world [1,2]. Residential PV systems have been
adopted with varying degrees of success in European countries, mainly thanks to subsi-
dies and incentives such as Feed-in Tariffs [4], to turn existing households into “prosum-
ers” and potentially into nearly zero or zero Net Zero Energy Buildings.

In the case of the UK, on-site fuel switching, through measures such as rooftop PV
generation, is taken as one more among a series of proposed strategies to reach the com-
mitment of fully decarbonising the country’s economy by 2035 [5]. Nevertheless, assess-
ment methods to verify the environmental performance of residential PV prosumer
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dwellings during its operational stage and track its actual contribution to this goal remain
a contested field [6].

1.1. Electricity Prosumer Dwellings

Prosumer dwellings are understood as those that consume and inject electricity to
the grid due to on-site generation technologies [7], hence acting alternately as producers
or consumers. Despite the much-needed worldwide push for the deployment of PV and
renewable energies in general, concerns have been raised regarding the effectiveness of
pursuing the massification of on-site PV systems as a policy goal [8], with specific criti-
cisms falling on the potential unfairness of Feed-in Tariff schemes [9-12]. Concerns have
also been raised regarding aspects such as behaviour-induced rebound effects [13-15]
and, more broadly, geo-sociotechnically induced rebound effects [16], in an approach that
recognises that the dynamics of prosumerism are much more intricate than those of direct
energy efficiency [17].

Recent discussions regarding emissions from residential electricity demand have
stressed that user-led energy demand management can be a significant driver for in-
creased emissions reductions in prosuming dwellings [18,19], particularly through active
engagement in demand management actions such as demand time-shifting [20-22]. How-
ever, the measurement or assessment of the effectiveness of this type of actions is not an
easy task.

1.2. CO: Emissions Assessment of Prosuming Dwellings Operation

Despite a lack of standard definitions and procedures [23], the Net Zero Energy
Building scholarship provides extensive debates on aspects such as the definition, assess-
ment, and communication of prosumer buildings’ energy performance [24-27]. The schol-
arship in this field has highlighted the importance of load-matching indicators such as the
self-consumption ratio to appropriately understand buildings’ interaction with the
broader electricity grid [28-32]. The analysis of these approaches brings into evidence the
relevance of temporality for the assessment of prosuming buildings. Moreover, it evi-
dences that focusing solely on the achievement of net zero energy balances over long-term
periods is not enough to adequately assess the performance of a building, particularly
when both energy and emissions are analysed [33-35].

Questions have been raised regarding the variable capacity of residential PV systems
as a measure to avoid CO:z emissions due to the varying levels of CO2 emissions intensity of
the electricity grid [36] and the geographic dependency of the systems” CO: emissions re-
duction potentials [37,38]. In this regard, Sartori [25] also discussed the problem of defining
and choosing appropriate conversion factors for emissions calculations, stressing that their
adoption usually involves technical and non-technical criteria. Moreover, Asdrubali et al.
[39] highlighted that the use of static emission factors to calculate operational emissions as
part of Life-Cycle Assessments (LCAs) can be misleading and that the adoption of dynamic
approaches was advisable.

1.3. Search for Consensus in of CO2 Emissions Reporting

Recent discussions in the field of LCAs have stressed the necessity to search for a
consensus in the terminology and methodological approaches to carbon accountancy of
the operational stage to avoid problems such as double accountancy of emissions reduc-
tions and greenwashing [6,33]. Liitzkendorf and Frischknecht [33] introduced an initial
framework for categorising approaches to net balance calculations, which distinguishes
the approach based on the source of the emission compensation and how they are re-
ported, as shown in Table 1.
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Table 1. Synthesis of the classification of operational net carbon emissions calculation approaches
proposed by Liitzkendorf and Frischknecht [33] (Adapted from Liitzkendorf and Frischknecht
[33]).

Could Absolute Could Net

. What Accounts for How is it Could Net Zero R
Type Mechanism Negative Emissions? Accounted for? be Reached? (Gross) Zero be Negative be
& ’ ’ ’ Reached? Reached? *
Emissions avoided off- _ . . .
. . Emissions from on-site re-
site due to on-site-gen- .. .
newables injected into the ™
A.a erated renewable en- . Yes No Yes
.. grid are deducted from
ergy injected to the ..
orid gross emissions
Net balance —
Benefit is assumed to be
“outside the system
Ason A.a, B and C, po- .
Ab . . P boundaries and declared Yes No Yes **
tentially combined . .
as additional infor-
mation” [6]
Economic com Emissions offset credits Off-site emission offsets
B . from off-site activi- are deducted from on-site Yes No Yes **
pensation R o .
ties/certificates gross emissions
.. Emissions sequestrated
. Sequestrated emissions .
Technical Re- . . over the period are de-
C . through technical or bi- . Yes No Yes
ductions . ducted from on-site gross
ological means .
emissions
. Only gross emissions are
D Absolute zero Nothing v No Yes No

reported

* Criteria not included in the framework by [33], but reachable under the same considerations. **

Despite the fact that this could be reached, methodological frameworks usually cap the offsets
allowance at the value of the gross emissions (see Section 1.4). Hence, this makes net zero a best-
case scenario even if more energy is delivered to the grid or more offset credits are purchased.

Despite its clarity, some aspects are not fully covered in this framework. Particularly,
in approach “A.a”, the avoided emissions are considered as emissions displaced off-site
due to injections to the grid, but no consideration is made for emissions potentially
avoided on-site due to direct demand. In this regard, it could also be recognised that
avoided emissions can be accounted for as the result of on-site “saved” emissions due to
avoided imports. These imports can be quantified as the difference in emissions between
the functional equivalent (a building without PV, total site demand used for emissions
calculations) and the actual building (a building with PV, only imports used for emissions
calculations). This recognition could help put the framework in line with existing stand-
ards such as the GHG Protocol, which identifies “avoided” emissions as those not occur-
ring on-site, as a result of implementing an action, using a reference or baseline as com-
parison [40]. However, it must be kept in mind that such an approach can be questioned
in the same way that Liitzkendorf and Frischknecht [33] recognise that an off-site avoided
emission approach is questionable, basically, since it attributes negative emissions to an
energy source that is evidently not sequestrating CO: from the environment.

Subsequently, after an extensive review of current methodological approaches to cal-
culating and reporting (net) zero greenhouse gas emissions, Satola et al. [6] built over
multiple previous contributions to introduce a typology of assessment approaches. In
their framework, the approaches were given nomenclature based on the consideration of
the stage of the LCA they cover (numbers 1.1 to 2), the weighting factor adopted (either
energy, COz, or wider GHG emissions, classified with letters A-C, respectively), and the
type of calculation approach adopted (net zero or absolute zero). Table 2 presents this
framework.
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Table 2. Framework of different options for an energy or emissions balance (Adapted from [6]). Text
in bold represents approach B.1-1.1-b, adopted in the methodology of this study.

A B.1 B.2

Energy use (specified by en-
ergy carriers) representing
use of natural resources (MJ

COzemissions representing GHG emissions representing
impacts to global environ-  impacts on global environ-

primary energy, non ren.) ment (kg COz) ment (kg CO2eq.)

11 Operational part of energy (a) absolute zero (a) absolute zero (a) absolute zero
consumption and GHG emissions (b) net zero (b) net zero (b) net zero

Embodied part of energy (a) absolute zero (a) absolute zero (a) absolute zero
consumption and GHG emissions (b) net zero (b) net zero (b) net zero

2 Balance, considering full life cycle (a) absolute zero (a) absolute zero (a) absolute zero
(b) net zero (b) net zero (b) net zero

This paper focuses on B.1-1.1, particularly looking at the verification of emissions balances during
the operational stage of buildings.

1.4. Frameworks for the Calculation of In-Use Prosuming Operational Emissions

Existing frameworks for the calculation of COz and greenhouse gas (GHG) emissions
present a wide range of approaches to the accountancy of emissions from electricity
prosuming, often leaving room for interpretation [6,33]. Two significant differences can
be highlighted across these frameworks. Firstly, they can focus on either ex ante (estima-
tions before emissions happened, such as design stage LCA), ex post (verification of emis-
sions during in-use stage), or both. This paper is concerned with the ex post verification
of operational emissions. Secondly, frameworks can also differ significatively in the han-
dling of on-site generated renewable energy for carbon accountancy purposes [33].

The widely accepted GHG Protocol [40,41] considers the classification of calculated
emissions produced by activities in three scopes. “Scope 1”: direct emissions from project
activities; “scope 2”, indirect emissions from project activities that are under direct control;
and “scope 3”, indirect emissions from project activities that are not under direct control.
The Royal Institution of Chartered Surveyors (RICS), (London, UK) defines that in the
built environment sector, scopes 1 and 2 correspond to operational emissions, while scope
3 corresponds to embodied emissions [42]. Concerning PV prosuming, the GHG Protocol
guidance states that on-site renewable generation should be accounted as a zero-emission
scope 1 activity. In contrast, gross emissions from grid imports should be accounted for
as a result of scope 2 activities. Therefore, in this framework, scope 2 emissions cannot be
reduced through grid exports.

However, the GHG Protocol framework considers the possibility of reporting com-
parative savings as complementary information. This is performed by calculating baseline
scenarios (such as functional equivalents) against which to estimate the comparative sav-
ings (also called reductions) achieved through each project activity or measure (such as
the generation of PV energy). The calculation methodology specifies that the reported re-
ductions correspond to the difference between the situation with and without the emis-
sions reduction measure in place, and that this difference shall not be greater than the
gross emissions. Therefore, under this method, net emissions can be reported only as com-
parative savings but capped at the equivalent of net zero.

A substantially different approach is suggested by the UK’s Department for Environ-
ment, Food and Rural Affairs (DEFRA) ‘Guidance to measure and reporting GHG emis-
sions’ [43]. This framework offers the possibility of reducing scope 2 emissions based on
the assumption that the renewable energy produced on-site injected into the grid dis-
places (or offsets) an amount of emissions calculated using the grid’s average emissions
factor. It also caps the reduction to equal the gross emissions, making a building opera-
tional net zero in a best-case scenario, and requires the complementary reporting of net
and gross emissions.
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In 2020, the UK’s Government Property Agency issued a ‘net zero sustainability de-
sign guide/net-zero annex’ [44], which follows a similar requirement to that of DEFRA’s
guidance but also offers the possibility to use excess negative operational emissions to
offset the embodied emissions of buildings, whereas a more recent instrument, the UK’s
Green Building Council (UKGBC) ‘Renewable Energy Procurement & Carbon Offsetting
Guidance for net zero carbon buildings’ [45], establishes that offsets produced by export-
ing renewable energy can only be discounted from the operational emissions.

This does not pretend to be a comprehensive review of all the available instruments
and standards but allows one to recognise the diversity of existing approaches and how
the attribution of emissions to the energy exported to the grid can differ. Particularly, it is
possible to bring to attention the fact that depending on (1) the emission intensity used to
calculate displacements resulting from exported energy and (2) the adoption of an im-
port/export balance or comparative savings calculation method, the number of options to
reach an emissions balance result can differ widely, as represented in Table 3.

Table 3. Range of possible calculation approaches to operational emissions and their possible vari-
ations based on the emission intensity attributed to electricity.

Emission Intensity
Attributed to Injected PV
Electricity *

Emission Intensity
Attributed to Imported Electricity *

Static (e.g., Year ~ Time-varying

Z Stati Time-varyi
Emission Factor) (e.g., data flow) ero ate ime-varying

Import Export

Balance

Gross emissions
X X X

(Emissions from imports)

Net emissions

(Emissions from imports minus X X X X
emissions from injections)

Capped Net emissions
(Emissions from imports minus
emissions from injections; total not

lower than 0)

Possible calculation procedures

Savings

Comparative gross savings
(Emissions from functional equiva- X X X
lent minus gross emissions)

Comparative net savings
Comparative (Emissions from functional equiva- X X X X
lent minus net emissions balance)

Capped comparative Net savings
(Emissions from functional equiva-
lent minus net emissions balance;
total not lower than 0)

* This table does not account for the fact that emission factors and dynamic grid emission intensity
averages can be further classified based on its underlying type (marginal or average), approach
(market-based or location-based), its obtention method (ex ante estimation or ex post calculation),
its calculation period (yearly, quarterly, daily, hourly, etc.), and its geographical boundary (na-
tional, regional, local, etc.). * The emission factor refers to a figure compressing a year’s grid emis-
sion intensity into a single value. Therefore, in more granular resolutions, “emission factor” and
“grid emission intensity” might be used interchangeably.

1.5. Considerations Regarding the Grid’s Emission Intensity Factors

Other aspects also need to be taken into consideration regarding the emission factors
or grid emission intensity values adopted for the calculations. Firstly, the fact that a dy-
namic approach to the grid’s carbon intensity can consider either average or marginal
abatement CO:z intensity values must be accounted for. Satola et al. [6] highlight the role
that this selection of emissions factors tends to be significant, and research in the UK has
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suggested that both approaches can produce differences of up to 50% in calculated emis-
sions [46]. In general terms, an average calculation refers to the use of an average emis-
sions intensity factor for the whole of the evaluated period (a year, a month, a day, an
hour, etc.) over the whole geographical boundary defined for the grid (a city, a region, a
country, etc.). In contrast, a marginal calculation recognises the carbon intensity of the last
power generation plant or source brought into operation to inject power into the grid
within a certain geographical boundary [47]. Therefore, if at any point the average inten-
sity of a grid is 100 g CO2/kWh but the last power generation plant brought into operation
has an intensity of 500 g CO2/kWh, a marginal approach would recognise this higher value
as the emission factor, with the reasoning being that through the reduction in demand,
the need for part of the power supplied by that plant’s operation could be avoided.

Secondly, the adopted emission factor can differ based on its obtention method,
mainly the difference of accepting or not that energy can be sold directly from a specific
renewable supplier to a specific buyer using special contracts such as renewable energy
attributes [48] or Renewable Energy Guarantees of Origins certificates (REGOs) [45]. This
can be exemplified through the GHG Protocol requirement of reporting both a “location-
based” and a “market-based” method to obtain final emissions [40,49]. A location-based
approach uses the average intensity of the electricity grid where the activity or prosuming
is occurring, while a market-based approach uses the generation emission factor of the
companies from which the energy is being obtained. In this way, if a company or building
is located in a region with a high-intensity electricity grid but obtains its energy from a
renewable source off-site, both calculations will obtain significantly different results.
However, the use of a market-based approach adds significant complications to the cal-
culation method, since the power assigned through a direct contract using REGOs but
distributed through the national grid needs to be subtracted from the national grid’s in-
tensity in order to obtain a corrected location-based average intensity. The resulting value
is the residual fuel-mix emission factor [50]. According to instruments such as the UKGBC
guideline [45], that is the type of emission factor that should be used to calculate location-
based emissions.

Thirdly, emission factors might be simulated ex ante, calculated ex post in a short
period based on the grid’s fuel mix status, or compiled ex post after a long period, such as
in government agencies’ official yearly emission factors.

Fourthly, it must be recognised that there is temporality in the adopted emission fac-
tor. Official emission factors are usually calculated based on a whole-year average, but
other methods also allow for the obtention of factors in shorter periods such as quarterly,
monthly, daily, hourly, or sub-hourly [51,52]. Therefore, yearly values can be called
“static” if compared to the higher resolution “dynamic” or “time-varying” values.

Fifth and finally, emission factors recognise the emission intensity of a specific por-
tion of today’s highly interconnected electricity grids. Despite the fact that the values are
commonly reported at a national level, there is also the possibility to obtain them with
greater granularity, such as applying regional boundaries [53].

In this paper, DEFRA’s official national yearly ex post location-based average grid
emission factor [54] (hereon simplified as the EF), national ex post half-hourly location-
based average emission intensity [52] (hereon simplified as UK) and regional ex post half-
hourly location-based average emission intensity [53] (hereon simplified as the SW) were
used for the calculations.

1.6. Aim and Contribution of the Study

After their extensive review of (net) assessment methods, Satola et al. [6] highlighted
the relevance of the in-use verification of the calculations, concluding that: “The perfor-
mance of net zero GHG emissions buildings for the operational aspect during the use stage should
be mandatorily verified during building operation by an on-site energy monitoring system com-
bined with the use of dynamic hourly GHG emission factors” [6].
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The methodology adopted in this paper responds to the suggestion of Satola et al. [6]
by presenting an example of emissions reductions performance evaluation during the op-
erational stage of residential buildings under different calculation assumptions. High-res-
olution empirical data obtained through direct electricity monitoring was used to calcu-
late operational carbon emissions using half-hourly time-varying emission intensity data.
A dynamic approach to calculation was adopted. To the best of the authors” knowledge,
this is the first time that this type of analysis has been published in the context of residen-
tial prosumers in Wales. It is also one of a few published studies that compared the results
of using different emission factors for the in-use operational emissions calculation of
prosumer dwellings. In this way, this paper aims to contribute to the debate about the
efficacy of PV prosuming as a measure to reduce operational emissions by exploring two
specific aspects relevant to an informed discussion: (1) to what extent can the calculated
CO: emissions values be affected by the grid’s CO: intensity data source selection? (2) To
what extent do the calculated CO: emissions correlate to a dwelling’s observed load-
matching indicators? These aspects were explored through a small study focused on four
dwellings in the UK.

1.7. Paper Structure

The structure of this paper is as follows: Section 2. Methodology introduces the main
materials, metrics, and calculation techniques used for the analysis in four main parts: (a)
primary data, (b) secondary data, (c) carbon emissions calculations, (d) load-matching in-
dicators. Then, Section 3. Results presents the results in four parts: (a) calculated opera-
tional carbon emissions, (b) comparative analysis of the obtained results, (c) calculated
load-interaction indicators, and (d) analysis of associations between grid interaction indi-
cators and operational emissions. Section 4 discusses the results with a reflection on im-
plications and further work, and Section 5 presents the conclusions.

2. Methodology

This research collected monitoring data for one year in four dwellings located in
South Wales (Primary data, Section 2.1). These data were analysed in relation to CO: in-
tensity data (Section 2.2) from the following sources: (1) UK average time-varying values,
(2) SW regional average time-varying values, and 3) the Government’s Department for
Environment, Food and Rural Affairs (DEFRA) CO: yearly emissions factor (EF). This ap-
proach was adopted in order to identify and quantify the variation of operational CO2
emissions from electricity when different data sources are used for the calculations and
explore how the results can support the use of load-matching indicators to improve the
way COz intensity is depicted in the domestic sector.

2.1. Primary Data: Monitoring Studies
2.1.1. Case Studies

The analysis presented in this paper is based on a year-long monitoring study that
involved four dwellings in or near Cardiff, South Wales, UK (SW). All dwellings were two
storeys, either semi-detached or terraced buildings, and possessed an on-grid PV system
of between 2 kWp and 4 kWp. All of the systems had been installed between 5 and 10
years before the start of the data collection. All houses were in urban areas, owner-occu-
pied, and presented Energy Performance Certificates (EPC) level C or D. Two of the dwell-
ings were inhabited by three or more residents (case studies 1 and 2), and two were in-
habited by single residents (case studies 3 and 4).

2.1.2. Data Collection

The open-energy monitors model Emon TX v2 and current clamp sensors were used
to record (1) imports from the grid, I, in kW; (2) exports to the grid, E, in kW; (3) PV gen-
eration G, in kW; and 4) total electricity demand, D, in kW. The data were collected using
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two sensors per dwelling, following the hardware setup suggested by the manufacturer
[55], which was used to calculate the set of electricity balance variables using standard
calculations methods found in the literature [25,31,56,57]. Figure 1 presents a diagram of
the electricity flows considered for the analysis, and Figure 2 presents a conceptual graph
of the different balance scenarios derived from the dwellings’ electricity balance.

7 N e N
Generation .|Geneneration
(PV system) | meter
N J . J
G |
Y Iy |'mport| . CE@)
( ) ( i Grid
. Dii)[ Consumer meter i~ g
Dwelling |, )
demand . F’”"‘ JC'
(distribution) A S E— >
) ’ ) ~ Eo CDq)

Figure 1. Electricity balance monitoring framework for the studied dwellings, where G (i), I (i), E (i),
and D (i) correspond to the logged parameters in kWh during sampling intervals i. Three sources
for grid carbon intensity C (i) were used (UK, SW and EF), to obtain carbon emissions (CEs) (i) and
carbon emissions displacements (CDs) (7).

Generation Ga Demand Da

/?W A~

A B C

S
?

t

Figure 2. Conceptual graph of the variation of demand D (i) and generation G (i) in a prosumer
dwelling during a day. Three possible situations are recognised. (A) G =0, all electricity comes from
the grid; (B) G > D, demanded energy comes from the on-site system and excess are feed into the
grid; (C) D > G, all site generation is consumed on-site plus a surplus from the grid.

2.1.3. Sampling and Analysis Intervals

Data were obtained using 10 s sampling intervals. More than 12 million data points
were collected across the four houses, which were subsequently aggregated into 5 min
intervals for postprocessing if required, and into 30 min intervals for the carbon emissions
analysis. Figure 3 presents the daily and annual electricity demand and generation pro-
files of the dwellings.
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Figure 3. Yearly variation of weekly average daily totals (a) and average daily variation of hourly
totals (b) of total electricity demand “D” (kW) and generation “G” (kW) for the 4 case studies. Dwell-
ings 1 and 2 correspond to multiple occupancy, whereas 3 and 4 correspond to single residents. The
aggregation period T is daily at the left-side diagrams and hourly at the right-side diagrams.

2.1.4. Data Verification and Preparation

Whenever the data collection was interrupted, the whole day was discarded. This
operation resulted in 89 discarded days out of a total of 1460 days of monitoring. Dis-
carded dates were repopulated with the month’s average half-hourly values for that
dwelling to prevent voids in the dataset. In one case, more than three consecutive weeks
were missing in one dwelling, in which case the data were completed using the seasonal
half-hourly averages.

Monthly readings from the utility meters were taken during the monitoring period
to track possible mismatches, and minor corrections were applied where necessary.
Monthly average differences between the monitored data and the utility meters data after
the corrections were of 1.85% (+/-1.16%) for the generation and 0.18% (+/-2.72) for the
import from the grid. Checks could not be performed for generation in one dwelling, since
it did not possess a generation meter. The internal consistency of the data was checked
using the energy balance assumptions that total generation plus total imports equal total
exports plus total consumption, while at the same time, total self-consumption should
equal generation minus exports and total consumption minus imports. No errors greater
than 0.3% were found.

2.2. Secondary Data: Grid Carbon Intensity Data

Three different sources for the grid’s carbon intensity C ) were considered: UK aver-
age national time-varying data, SW regional time-varying data [52,53], and DEFRA’s offi-
cial emission factor (EF) [54]. Time-varying data were obtained from the national grid’s
carbon intensity Application Programming Interface (API) on a 30 min resolution. Elec-
tricity EFs were taken as constants for each calendar year. Variations of the intensity val-
ues of each source of data are plotted in Figure 4.
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Figure 4. Yearly variation of weekly average daily totals (a) and average daily variation of hourly
totals (b) of the grid’s carbon emission intensity C (i) in g/kWh for the three consulted data sources.

The grid’s carbon intensity API service uses CO2g/kWh as its only metric and does
not consider more comprehensive units such as COzeq [52,53]. For this reason, all calcu-
lations in this study were performed using kg of CO: as the target unit. DEFRA’s EF of
231.04 g/kWh for 2020 and 210.16 g/kWh for 2021 [54] were considered as constants for
the calculations.

2.3. Carbon Emissions Variables

A dynamic approach was taken for the calculations, on which emissions were ob-
tained considering the dwellings” grid interaction situation (import/export) and multiply-
ing it by the grid intensity levels at each time interval (7). In this way, electricity carbon
emissions metrics (1)—(4) were calculated following the energy balance formulas proposed
by Salom et al. [31,32]. For aggregations, index i was replaced by the period T, as presented
in (5). The considered carbon emissions variables are:

1. Gross carbon emissions (emissions produced off-site due to on-site grid imports):

CEw = 1y % Cwy M)
2. Displaced carbon emission (emissions avoided off-site due to injections to the grid):
CDw = Eq X Cey @)
3. Referential emissions (or “functional equivalent emissions”):
REq = Dey % Cay ®)
4. Net emissions (or “emissions balance”):
NetCE(l-) = CE(L-) - CD(i) (4)

Equation (5) shows the calculation used for aggregations. A period T was defined to
represent the timespan of the aggregation: 30 min, 1 h, 1 day, 1 month, or 1 year. Then,
considering that N = T/i, the aggregated value of an expression x, such as CE, at the dwell-
ing over a period was calculated as:

i+N

Xr = Z X)) )

n=i
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The same aggregation method was applied to all of the carbon emissions variables
introduced between Equations (1) and (4).

2.4. Load-matching Indicators

Four load-matching indicators were calculated to analyse whether their variations
were associated with the variations in final carbon emissions. Two were associated with
self-consumption, and two with daytime consumption.

Self-consumption “SC” is the energy produced on-site that is directly demanded on-
site [28,31,57]. To calculate this, a logic conditioner needs to be taken into account, de-
pending on the balance situation of the dwelling energy system, which can be one of three
different situations, as shown in Figure 2. Then, self-consumption (kWh) is calculated as:

G(l) =0 - SC(l) = null
G > Dy = SCw = Doy ©)
G <D = SCw = Gy

Self-consumption is usually represented as a ratio, but as McKenna et al. [57] point
out, the ratio needs to be calculated from the aggregated values of self-consumption “SC”
and generation “G ())” during the evaluation period T. Otherwise, if it is obtained as the
average of ratios, significant errors might occur. Therefore, the self-consumption ratio
“SCR” can be assessed as an instant measurement obtained with instant values at any
given sampling interval i, or as a ratio over a longer period, ideally a year, to account for
seasonal variations [57], as shown in (7). Then, self-consumption ratio “SCR”, during an
evaluation period T, such as a day, a month, or the whole year is calculated as follows:

TN SCqy x 100
SCRT = ZH_T
i (O]

The second indicator is the daytime consumption. McKenna previously proposed
this measure [29] as the ratio of the total daily consumption that occurs between 10 am
and 4 pm. This is an approximate calculation of the part of a day’s energy consumption
that happens between the daytime peaks of carbon emissions, considering the year aver-
age values (see Figure 3, right side). However, it is not an exact measure of consumption
happening during daylight hours. McKenna's research has shown that daytime consump-
tion can work as a predictor for self-consumption levels [29].

Here, we proposed to calculate it as two different indicators: daytime consumption, as
proposed by McKenna (8), and daylight-time consumption (9), which was considered as the
part of the daily energy consumption that happened during daylight hours. Since daylight
hours are variable across the year, they were identified as the hours during which the PV pan-
els generation is above 0. Then, the daytime consumption ratio “DCR” is calculated as:

Ty D X 100
%™ Dy
where the index (a) identifies all the intervals that occurred between peak hours, e.g., be-

tween 10 am and 4 pm, during an evaluation period (1 day, month, year). Additionally,
the daylight time consumption ratio “LCR” is calculated as:

i Dy X 100
%" Dy
where the index (di) identifies all the intervals that occurred while G > 0. Similarly, as with self-

consumption, ratios were calculated in relation to the demand over the evaluated period.

@)

DCRy = ®)

LCRy = )
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2.5. Software

The integrations of the datasets, aggregations, and carbon calculations were per-
formed using Tableau Prep 2021 and Tableau Desktop 2021. Tableau is a data manage-
ment and visualisation software specialised for the analysis of multidimensional datasets.
Graphs and final data tabulations were performed either in Microsoft Excel or Tableau
Desktop.

3. Results
3.1. Reference, Gross and Net Carbon Emissions

Year total results are presented in Figure 5. The columns in black represent each
dwelling’s yearly total gross emissions “CE”, in kg, calculated using each of the three data
sources for grid emissions intensity. The columns in yellow represent the results of net
emissions “NetCE”, in kg over the same year-long period. Finally, referential emissions
“RE”, in kg are also provided, which are the emissions that each dwelling would have
produced without the PV panels.

B Gross emissions “CE” Ref. emi. “RE” Net emi. “NetCE”

1170

758
851
702

504

50
I 533
106
I 375
493
I 620
309
I 522
287
Il 208
317
I 147
230
I 123
189
I 296
Il 204
362
177
303

R w
~
) r’?) t’?"
UK SW EF UK SW EF UK SW EF UK
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Figure 5. Total calculated carbon emissions (kg) during the year period for the four dwellings (1-4),
using the three available sources of the grid’s carbon intensity (SW: South Wales time-varying av-
erage, EF: emission factor, and UK: national time-varying average) and two calculation methods
(gross emissions and net emissions). Referential emissions values are also provided, which are the
emissions that each dwelling would have produced without the PV panels, obtained as presented
in Equation (3).

3.2. Differences in Carbon Emissions Totals Across Data Sources

Table 4 shows the values obtained using each dataset for each dwelling. Percentual
differences of each result if compared with the result obtained using the constant EF are
provided.
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Table 4. Year total emissions displacements and gross and net emissions in kg.
Emissions, Year Totals
Dwelling  CO:Data DIS,P l:-iced Difference G-ro-s S Difference to Ne.t Difference to
ID Source Emissions o Emissions o Emissions o
“CD” (kg/y) to EF (%) “CE” (kgfy) EF (%) “NetCE” (kg/y) EF (%)
SW 702.4 22.3 899.6 441 197.2 294.0
1 EF 574.3 0.0 624.4 0.0 50.0 0.0
UK 427.5 -25.6 533.2 -14.6 105.7 111.2
SW 382.2 22.8 875.2 411 492.9 59.5
2 EF 311.2 0.0 620.3 0.0 309.1 0.0
UK 234.3 -24.7 521.7 -15.9 287.4 -7.0
SW 487.3 23.6 208.2 41.4 -279.1 13.0
3 EF 394.1 0.0 147.2 0.0 -246.9 0.0
UK 295.6 -25.0 123.0 -16.4 -172.6 -30.1
SW 673.6 20.4 295.9 45.1 -377.7 6.2
4 EF 559.6 0.0 203.9 0.0 -355.7 0.0
UK 404.8 -27.7 176.7 -13.4 -228.1 -35.9

Regarding gross emissions “CE”, the SW dataset produced the highest results across
the four dwellings. The opposite happened with the UK dataset, which produced the low-
est values across all dwellings. Variation across datasets was almost proportional regard-
ing the gross emissions, with SW achieving between 41.1% and 45.1% more than EF in all
cases, and the UK dataset achieving between -13.4% and -16.4%, respectively.

A similar trend was found in the net emissions “NetCE” calculations. Again, SW pro-
duced the higher results in all cases, while the lower results were produced by the UK
dataset in three out of four dwellings. However, no consistency was found in the magni-
tude of the variations from EF in the “NetCE” calculation. The exception is case 1, where
EF produced the lower results, and the variation rose to as high as 294% between the cal-
culations performed with the SW and the EF datasets.

3.3. Differences in Comparative CO2 Emissions Savings Across Data Sources

Comparative COz emissions savings were understood as the difference between the
actual situation and the baseline situation. This can be observed in Figure 5, where the
calculated emissions are plotted along with the baseline referential emissions “RE” value.
RE corresponds to the emissions that the dwelling would have obtained if it did not have
the PV system, i.e., the sum of emissions calculated using the total consumption at each
given interval. Thus, comparative gross saved emissions (or reduced emissions) are de-
fined here as the difference between the grey and the black columns of Figure 5 (the emis-
sions which were avoided on-site due to the on-site direct consumption of PV generated
electricity), whereas comparative net saved emissions are defined as the span between the
grey and the yellow columns of Figure 5 (comparative gross saved emissions plus the
emissions which were avoided off-site due to the energy injected to the grid). One inter-
esting aspect of this graph is that in cases 2, 3, and 4, the comparative net saved emissions
increased significantly with the more carbon-intensive datasets (SW and EF), despite the
higher gross emissions. Another aspect is that dwelling 1 obtained markedly lower net
emissions than dwelling 2, despite overall similar gross and reference emissions in both
cases. To the best of the understanding of the authors, this difference is due to the bigger
PV system size of dwelling 1, which implied larger amounts of energy being exported,
and thus CO:z being displaced off-site during idle hours.

Table 5 introduces the obtained values for net and comparative gross saved emis-
sions using each dataset. It is highlighted that in all cases, SW produced the higher values
of comparative gross saved emissions, whereas EF produced the higher percentual values
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of comparative net saved emissions. In all cases, comparative net savings were more than
twice comparative gross savings, with a maximum difference registered in dwelling 4 us-
ing the EF dataset, where comparative net savings achieved a value almost six times
higher.

Table 5. Year total comparative emissions savings in kg.

Dwelling CO: Data Comparativ'e Gross Comparati.ve Net

D Source CO2Savings CO:zSavings

(kgly) (%) (kgly) (%)

SW 369.4 29.1 1071.8 84.5

1 EF 284.9 313 859.3 94.5

UK 224.6 29.6 652.1 86.1

SW 294.7 25.2 677.0 57.9

2 EF 230.3 27.1 541.5 63.7

UK 180.3 25.7 4145 59.1

SW 108.5 34.3 595.7 188.2

3 EF 829 36.0 477.0 207.3

UK 66.1 35.0 361.7 191.2

SW 207.6 41.2 881.2 175.0

4 EF 157.9 43.6 717.5 198.3

UK 125.9 41.6 530.7 175.4

* Highest values for each case have been highlighted in bold.

The variation of net emissions obtained by each of the dwellings is presented in a set
of carpet plots in Figure 6. Each of these plots shows the totality of the year for each dwell-
ing using each of the carbon intensity sources. The most significant differences between
datasets occurred in dwellings 1 and 2. Despite the fact that this was not statistically ver-
ified, it is possible to infer that these differences might be associated with (a) higher rates
of the households’ peak demand matching the peak intensity hours of the grid and (b)
differences in the rate of energy exported to the grid due to the dwellings’ different system
sizes.

A trend that can be qualitatively recognised in Figure 6 is that the emissions displace-
ments and thus comparative emissions savings were generally lower in the UK dataset
case if compared to both SW and EF, which can be noticed in the lighter shade of greens
showed during midday hours in the UK dataset plots. This is possibly because the “val-
ley” in the grid carbon intensity between 10 am and 4 pm (see Figure 4, right) had a much
lower energy intensity in the UK dataset. Therefore, renewable sources generated high
proportions of the grid’s electricity at some points in the summer, consequently making
grid intensity during the valley hours become even lower than the year average. As a
result, the exported energy became less carbon-intensive precisely in the moments of
higher generation, displacing less carbon emissions. This raises questions regarding
whether carbon displacements might become negligible in the near future once grid in-
tensity approaches net zero carbon standards in the summer months.
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Figure 6. Carpet plots of calculated net carbon emissions in each of the considered situations. In the
distribution of plots rows are grid intensity data sources (UK, SW, and EF), and columns are case-
study dwellings (1-4). In each plot, columns represent the progression of a day, hour-by-hour, while
rows represent the progression of the year, week-by-week. Each cell represents the average net car-
bon emissions value for an hour of the day during each week of the year.

3.4. Load-Matching Indicators Results

The rationale behind exploring the possible implications of load-matching indicators
is that, on the contrary to the grid carbon intensity, these are values that are affected by
the occupants’ activities. Therefore, they are subject to change with the householders’ de-
mand management and lifestyle choices. Table 6 shows the main results of the considered
load-matching indicators for each participant dwelling.

Table 6. Load-matching parameters, yearly results.

Self-Cons. Ratio Daytime Cons. Ratio ~ Daylight-Time Cons. Ratio

1D “SCR” (%) “DCR” (%) “LCR” (%)
1 33.1% 31.1% 53.8%
2 42.4% 32.4% 55.1%
3 17.5% 28.9% 46.8%
4 22.1% 34.3% 62.1%
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The annual self-consumption ratio observed in dwellings 1 and 2 were reasonably
close to the average range found by McKenna, Pless, and Darby [57] in a UK nationwide
study (37.3% + 1.5%.) Nevertheless, the same variable in dwellings 3 and 4 were signifi-
cantly below the national average, probably due to the single-resident composition of
these households. All of the DCR values were above the reference band identified by [57]
(between 25 and 28% for non prosuming dwellings), which means that the participants
concentrated their energy demand during the midday off-peak hours to a greater extent
than the UK average. It cannot be substantiated here whether this is due to a higher en-
gagement of householders in energy demand management practices, but it could be the
case. This observation is in line with the finding of McKenna, Pless, and Darby [57] that a
larger proportion of PV users in the UK fell into this category and the fact that having PV
systems might be a factor for demanding a higher amount of their total electricity con-
sumption during the midday, or daytime, hours. The analysis of daylight-time consump-
tion (LCR) shows different figures but a similar rank order across dwellings, with the no-
table exception of dwelling 4.

3.5. Association of Load-Matching and Emissions

Associations between the load-matching indicators (SCR, DCR, and LCR) and net
emissions were studied using simple scatterplots and trend lines displayed in Figure 7.
Grid intensity values from the SW dataset were used for the following calculation since,
to the best understanding of the authors, this dataset should be considered the most accu-
rate among the three consulted.

Dwelling ID 1. 2 3 4
R-squared by ID R-squared by ID
; g 1: 0.009 g 1: 0.382
8 5K 8 5K 2:0.038 & 5K 2:0.561
3 2 30013 8 3:0416
= = 4:0.107 = 4:0.599
n 7] 7
2 2 2
7 K - £ 0K
£ E £
v "3 v [P
o1 ¢ X R-squared by ID ] & B
& ‘% 1:0.673 = ; =
= 3 20535 = =
< = <
2 sk 3:0.654 2 5K 2 5K
4:0.576
20 40 60 80 100 20 40 60 0 50
Daily Selt-consumption ratio SCR (%) Daily daytime cons. ratio DCR (%) Daily light time cons. ratio LCR (%)

Figure 7. Associations between normalised daily load-matching parameters (x-axis) and net emis-
sions (y-axis). Each point represents a day, and colours represent dwellings.

Daily net emissions were found to be related to the self-consumption ratio (SCR) but
in a rather unexpected way. Since the SCR is a variable that has already been normalised
by generation, a higher percentage of the SCR does not necessarily mean a higher figure
of total self-consumed kWh. This implies that the days with higher self-consumption ra-
tios are usually those with a lower level of generation, which is mostly self-consumed, so
that the ratio is high, but the total self-consumed electricity in kWh is low. On the other
hand, days with the highest generation achieve higher amounts of self-consumption in
kWh but low levels of SCR. As a result, the relation found between SCR and daily net
emissions was positive in all cases (Figure 7, left), which means that higher self-consump-
tion was associated with days when the generation was not enough to cover the dwell-
ing’s base demand.
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The ratio of the total energy consumed between peaks, identified as the daytime con-
sumption ratio (DCR), has been previously reported to be an important predictor for self-
consumption in prosumer households [29,57]. Nevertheless, it was found that it had a low
value as a predictor of final net emissions in the studied sample (Figure 7, centre). On the
other hand, the daylight-time consumption ratio (LCR) was found to be inversely related
to net emissions in a much more direct way than the daytime ratio (DCR) (Figure 7, right).

3.6. Association of Grid Intensity and Emissions

Finally, to better understand the relation between grid intensity and average emis-
sions, the paper explored the average emissions (g/h) achieved across all dwellings for
each level of grid intensity (g/kWh).

Results are plotted in Figure 8 considering the average results obtained when using
each of the emission calculation methods: gross carbon emissions “CE”, reference emis-
sions “RE”, and net emissions “NefCE”. In the graph, it is possible to observe that the
average values of net emissions were highly volatile across most of the spectrum of grid
intensity. Reference emissions and gross emissions averages became increasingly higher
with higher intensities. Above 350 g/kWh in the SW case, or 250 g/kWh in the UK case,
the trend also became apparent for net emissions.
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Figure 8. Average emissions across the 4 dwellings for each emission intensity value of the grid,
calculated over hourly periods. Lines represent average of reference emissions (RE), net emissions
(NetCE), and gross emissions (CE); bars present the frequency of occurrence of each grid intensity,
counted in hours. Left side represents the SW dataset; right side represents the UK dataset.

This suggests that the grid’s carbon intensity values affect dwellings” overall carbon
emissions, despite the PV systems being in place, particularly when the grid intensity goes
beyond a certain level (approx. 350 with SW and 250 with the UK data). This threshold,
however, might be conditioned by the fact that the grid’s intensity goes up during peak
demand times, mainly during the evening peak (4 to 9 PM, see Figure 4), while in the
dwellings, the generation rate is usually low or null during these hours.

In both cases shown in Figure 8, SW and UK, the higher gross emissions (in orange)
and net emissions (in turquoise) averages were concentrated in hours of higher intensity.
However, net emissions reached considerably lower values when using the SW data. The
study did not statistically test this, but to the best of the authors” understanding, the dif-
ferences are associated with the fact that most displacements were produced during mid-
day hours, when the dwellings typically registered high generation and low consumption
levels. This is exploratorily plotted in Figure 9.
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Figure 9. Average daily variation of net emissions and export (kWh) per dwelling. It can be seen
how emissions displacements (negative net emissions) become considerably higher during peak
generation times. The higher overall grid intensity levels of the SW dataset mean that it achieves
both higher minimum (midday) and maximum (evenings) levels.

Since the UK dataset displayed lower intensities than the SW dataset during midday
periods, both displacements and peak emissions calculated using the UK dataset were
always lower. This is translated in daily emission curves that directly resemble the famous
California “duck curve” identified by the US’s National Renewable Energy Laboratory
(ENRL) [58,59]. The duck curve highlights the rapid need for power in order to transit
from a grid demand majorly covered by solar generation during midday hours towards a
high demand peak intensity during early evenings. Whereas ENRL’s observation is made
in relation to state-wide values, it is possible to observe here how the same issue affects
prosumer buildings individually in their transition from a majorly self-consumer and net-
exporter role during midday hours towards a majorly net-importer during the evenings.
Whereas the duck curve’s multiple lines represent the variation in demand intensity
throughout the years, in Figure 9, the lines represent differences in emissions produced
by the different intensities of each of the sources of grid intensity values. From this obser-
vation, it becomes possible to suggest that if the grid carbon intensity becomes lower due
to the higher penetration of solar generation in future years, operational net emissions of
prosuming dwellings could tend to become higher due to an expectable reduction in the
displaced emissions during midday hours.

4. Discussion

Four main aspects can be discussed from the results obtained by this study:

4.1. Relevance of the Hourly Variation of Intensity for the Final Emissions

The results showed that across the sample, the most significant part of the emissions
came from demand occurring during high-grid-intensity hours, mainly during evening
peaks (see Figure 9), and that to a greater extent, those evening emissions were compen-
sated by the displacements produced by exports to the grid during midday idle periods
(see Figure 6). As a result, net emissions show a value that is considerably lower than the
actual gross emissions of the observed dwellings (see Table 4).

From this observation, it can be suggested that future grid scenarios with lower midday
energy intensity, such as those aimed to be achieved by current decarbonisation policies and



Energies 2022, 15, 2349

19 of 26

goals [5], may significantly affect the carbon emissions reduction potential of prosuming
dwellings. This is particularly due to the possibility of net emissions becoming unbalanced
if no demand management measures are implemented to match demand and generation
times. In practical terms, if the average or sub-hourly emission factor (EF) reaches close-to-
zero emissions levels during midday hours, the energy injected at that time will have mini-
mum emissions displacement value. Despite being different in scope, similar observations
regarding the impact of emission factors over emissions balance in future grids have already
been suggested by Satola et al. [6], Parkin et al. [37], Noris et al. [60], and Schram et al. [38].

The implications of this observation might prove relevant not only for the management
of carbon emissions in prosumer dwellings but also for the exploration of the impacts of
electricity demand management for carbon emissions in the domestic sector as a whole, as
suggested by Cozzi and Goodson [18], given that every dwelling is subject to the same
hourly variations of the grid’s intensity of carbon emissions. The results from this study
suggest that demand management could have a great impact if appropriately performed,
which would be trying to shift demand from peak carbon intensity hours, which is when
most of the emissions were produced (see Figure 8). However, as Egert et al. [19] suggest,
given the volatile dynamics of the grid intensity, organising demand at the household level
might only be possible with accessible communication of the grid CO: intensity information
to final users.

Further lines of enquiry in this regard could relate to the quantification of the potential
operational carbon emissions reductions that could be achieved by the implementation of
demand-side management measures using expected future EFs of the electricity grid, com-
paring prosumer and non-prosumer dwellings scenarios. Similarly, comparing the poten-
tial emissions reductions to the embodied carbon emissions of on-site PV systems under
future grid scenarios is another relevant research question.

4.2. Source of the Grid CO: Intensity Data Affects the Operational Emissions Values

The comparison between total net emissions values obtained using the different
sources of grid intensity also showed that the use of the EF always produced higher per-
centual comparative savings (see Table 5). Differences of up to 290% in the resulting net
emissions figures were found when the results obtained using the time-varying data were
compared to the same calculations made using the EF (see Table 4, Case 1). On the other
hand, the South Wales (SW) data always produced higher gross and net emissions totals.
This leads us to consider two aspects.

Firstly, the outcome exemplifies the high variability of values that can be obtained de-
pending on the EF data sources (mainly if time-varying vs. yearly EFs are considered) and
calculation methodologies (gross emissions vs. net emissions). These results provide an em-
pirical observation to support Satola et al. [6], Fawcett and Topouzi [35], and Liitzkendorf
and Frischknecht [33], who call for the necessity of standardising calculation and reporting
methods. The results suggest that the standardisation could be extended to account for the
type of data being used for the calculations.

Secondly, the fact that the geographical specificity of the data source produced differ-
ences in the emissions values of each dwelling raises some concerns, particularly since cur-
rent operational emissions evaluation standards such as the widely used GHG protocol [40]
call for the use of the most locally available data (i.e., the SW grid intensity data in this
study). It has been observed that such an approach can create asymmetries for places
where non-renewable high-power plants are located, such as South Wales, that still have
plenty of gas-powered stations. Therefore, it was observed here that the final outcome of
a building’s operational emission from electricity could depend more on its location than
on its green credentials (efficiency rating, SAP, etc.) or the demand management practices
of its users. This observation regarding the high relevance of location for final emissions
aligns to those reached by the studies of Parkin et al. [6] and Schram et al. [38].
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It is argued here that this situation is problematic since exactly the same buildings
with exactly the same energy efficiency, generation, and use profiles would obtain differ-
ent results simply because of the regional electric infrastructure, which creates an unjust
situation. If such an approach to calculation became mandatory for building’s performance
assessments, it would be “easier” to demonstrate low gross operational emissions in some
places. This might not be too relevant under the current scenario, but if a higher portion of
power demand becomes electrified (i.e., the wider deployment of EV and heat pumps), it
could create significant differences in the yearly operational emissions only because of loca-
tion. If such an approach were to be used for access to grants, certifications, or the definition
of market desirability for buildings, the problem would become even more significant.

Further enquiry could focus on the analysis of the differences that would be obtained
by using the different regional data sources provided by the UK’s National Grid to a single
reference prosumer dwelling, to identify the geographical asymmetries and the linkages
of this problem with the energy justice framework.

4.3. Relation between Operational CO2 Emissions and Load-Matching Indicators Needs Further
Investigation

The study explored the association between load-matching indicators and net emis-
sions. An overall positive association of net emissions with self-consumption and a negative
association with the daylight-time consumption ratio were found (see Figure 7, left and
right). Nevertheless, none of them demonstrated a strong relationship. No clear relation was
found between net emissions and daytime consumption ratio (see Figure 7, centre).

Further explorations and regression analysis based on larger datasets could help to
clarify these trends. More detailed consideration might lead to identifying other factors or a
combination of variables that could prove relevant as predictors of the final calculated
emissions levels.

4.4. Metrics and Communication

This study also highlights the relevance of the reporting of emissions totals in associa-
tion with other indicators, such as the use of both gross and net emissions, to provide a
better representation of the dwellings” CO: emissions intensity. It was observed that gross
and net emissions could differ widely (see Table 4). Therefore, aligning to Bordass [34], who
calls to move beyond single metrics assessments, it is proposed that both indicators are cru-
cial to communicating buildings” COz emissions performance appropriately. By providing
the gross emissions value, it is possible to understand the overall intensity of the operation
and to what extent the electricity exports compensate that intensity. This is an intensity that
becomes otherwise hidden if only net emissions are reported (see Appendix A).

Comparative saved emissions (on-site avoided emissions due to the direct demand of
on-site generated electricity) were calculated using both gross and net emissions. Compar-
ative net savings reached values twice or more times larger than comparative gross savings
(see Table 5). These results allow us to argue that comparative gross and net savings ap-
proaches, even if declared as additional information, can be misleading and should be
avoided.

Further work in this regard could explore the best ways to communicate and eventu-
ally reach combined gross and net operational emissions indexes for its use in scalable
standards. The possibility of using dynamic methods such as the one presented in this paper
to verify operational emissions obtained through ex-ante LCAs, also opens a relevant line
of enquiry.

4.5. Limitations

A number of limitations need to be mentioned. Firstly, the fact that conclusions are
drawn based on a sample of only four dwellings and that it only involved owner-occupied
households needs to be taken into account. Secondly, the data collection period coincided
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with the first year of COVID-19 pandemic-related lockdowns, which might have affected
the overall energy consumption routines of the studied households. Thirdly, the study
only looked at the operational emissions during a year period and did not put these in
relation to embodied emissions of the PV systems installation, nor in relation to the emis-
sions of the complete operational stage of the systems. Similarly, other sources of CO:
emissions produced during the period, such as gas consumption, are not accounted for.
Fourth and lastly, the study used grid average emissions instead of marginal emissions to
quantify the displacements and comparative savings due to limitations of the available
data flows. The same calculations performed using marginal emission factors would ar-
guably produce considerably higher total emissions and comparative savings results.

5. Conclusions

Operational COzemissions from electricity balances in PV prosumer dwellings were
calculated using empirical monitoring data and the electricity grid’s time-varying average
COz intensity values. Two time-varying sources of the grid’s COz intensity were compared
to the results obtained using the official yearly national average EF, all of which were valid
for the location and timeframe analysed. Vast differences in the obtained operational CO:
emissions values were found as a result of the used intensity data. Four different ap-
proaches to the calculation of emissions were adopted: gross emissions, net emissions,
comparative emissions savings and comparative net emissions savings. In this regard, the
results allow to question the usefulness of comparative savings and net saving approaches
and highlight the relevance of considering the gross emissions for accurate communication
of the building emission intensity. Three main recommendations arise from this study.

Firstly, given the variability of results obtained from the use of static and time-varying
CO: intensity data sources, it is suggested that the use of time-varying data should be pro-
moted to improve the precision of operational emissions accountancy, particularly in in-use
verifications of buildings performance. However, the outcomes of this study also showed
that the geographical boundaries of the intensity data can have a high impact on the results.
It is suggested that the use of national time-varying averages should be preferred instead of
regional ones, particularly in the definition of assessment frameworks and regulations, to
avoid the generation of unjust situations concerning inequalities in the access to energy as a
result of geographical conditions.

Secondly, the results highlight the relevance of promoting demand management poli-
cies and performance metrics that target reductions in buildings’ effective operational CO-
emissions, instead of exclusively focusing on energy consumption and export balances. As
it has been observed, net balances or reductions in energy consumption might not neces-
sarily reflect the levels of reduction in gross CO2 emissions when hourly fluctuations in the
grid intensity are considered. However, it is acknowledged that such an approach would be
conditioned to the rollout of smart meters or other on-site logging devices in participating
buildings and the implementation of country-wide official information systems (user-acces-
sible time-varying grid intensity data).

Finally, due to the evidenced high variation in results produced by the grid intensity
data source, incorporating this criterion into standardisation efforts such as the “frame-
work of different options for an energy or emissions balance” [6] is recommended. It is
proposed that descriptors of the data source should consider at least the emission intensity
data type (marginal or average), approach (location-based or market-based), the period
covered by the factor (yearly ‘static’ factor, monthly, daily, hourly, etc.), and its geograph-
ical boundary (local, regional, or national).
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Nomenclature

Abbreviations

API Application Programming Interface

CO2 Carbon dioxide

DEFRA Department for Environment, Food and Rural Affairs

- Emission factor, used in the paper to refer to the UK’s official elec-
tricity emission factor

ENRL United States” National Renewable Energy laboratory

EPC Energy Performance Certificates

GHG Greenhouse gases

IEA International Energy Agency

LCA Life-Cycle Assessments

PV Photovoltaic

SW South Wales, used in the paper to refer to the local time-varying
grid intensity dataset

UK United Kingdom, used in the paper to refer to the nationwide time-
varying grid intensity dataset

UKGBC United Kingdom Green Building Council

Monitored Variables

Carbon intensity per interval (g/kWh), according to UK, SW or EF

Co datasets

D Demand per interval (kWh)

E o Exports per interval (kWh)

G Generation per interval (kWh)

1 §0) Import per interval (kWh)

Calculated Variables

CD @ Carbon displacements per interval (g, kg), calculated as E ¢ x C ¢

CE @ Gross carbon emissions per interval (g, kg), calculated as I o x C ¢

NetCE ) Net carbon emissions per interval (g, kg), calculated as CE ¢~ CD ¢

RE Referential carbon emissions per interval (g, kg), calculated as D )
Ca)

SCa Self-consumption per interval (kWh), as in Equation (6)

SCR) Self-Consumption ratio per period (%), as in Equation (7)

DCR) Daytime consumption ratio per period (%), as in Equation (8)

LCR) Daylight-time consumption ratio per period (%), as in Equation (9)
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Figure A1. Graphs plotting aggregated results: total displaced emissions (y-axis) and total gross emissions (x-axis) for the full dataset. Upper row presents aggre-
gations by year totals, lower row represents aggregation by day totals. Colours represent case study IDs, values in the upper row represent net emissions (gross
emissions—displaced emissions). * Net zero lines divide the graph into net emission-reducing situations (upper left) and net emission situations (bottom right).

Original data plotted following chart introduced by Liitzkendorf and Frischknecht [33].
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