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Figure 1. We propose a high-resolution (1024×1024) face swapping method by disentangling the latent semantics of a pre-trained GAN
model. Compared with the existing high-resolution method MegaFS [55], our model can preserve target attributes (e.g., skin color and
illumination), meanwhile transferring local details and identity from source faces.

Abstract

We present a novel high-resolution face swapping method
using the inherent prior knowledge of a pre-trained GAN
model. Although previous research can leverage generative
priors to produce high-resolution results, their quality can
suffer from the entangled semantics of the latent space. We
explicitly disentangle the latent semantics by utilizing the
progressive nature of the generator, deriving structure at-
tributes from the shallow layers and appearance attributes
from the deeper ones. Identity and pose information within
the structure attributes are further separated by introducing
a landmark-driven structure transfer latent direction. The
disentangled latent code produces rich generative features
that incorporate feature blending to produce a plausible
swapping result. We further extend our method to video face
swapping by enforcing two spatio-temporal constraints on
the latent space and the image space. Extensive experiments
demonstrate that the proposed method outperforms state-
of-the-art image/video face swapping methods in terms of
hallucination quality and consistency. Code can be found at:
https://github.com/cnnlstm/FSLSD_HiRes.

*Corresponding author (hesfe@scut.edu.cn).

1. Introduction

Face swapping aims at transferring the identity from a
source face image to a target face image, while preserving
attributes in the target image such as facial expression, head
pose, illumination and background. It has received extensive
attention in the computer vision and graphics community due
to its wide range of potential applications, such as computer
games, special effects and privacy protection [13, 22, 41, 42].

The main challenge for face swapping is to identify the
highly entangled target facial attributes and source identity
information for a natural-looking swapping. Early works
such as [8] replace the pixels of face regions and rely on
similarities between the source and the target in pose and
illumination. 3D-based approaches [14,28,37] fit a 3D model
to the faces and can handle large pose variation, although the
fitting can be largely influenced by the environment and thus
unstable. Other works introduce the generative adversarial
networks (GANs) for hallucinating target attributes [24, 26,
35] due to its strong generative capability.

Though much progress has been made, many existing
GAN-based approaches do not work well on high-resolution
faces, due to the compressed representation of end-to-end
frameworks [7, 26, 34], the instability of adversarial train-
ing [5], and the limitation in GPU memory size. Recently,
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Zhu et al. [55] utilize the inherent prior knowledge of a pre-
trained high-resolution GAN model and propose MegaFS for
high-resolution face swapping in the latent space of Style-
GAN [20, 21]. It learns to assemble the inverted latent codes
of the source and target images, and directly feed the fused
code to a StyleGAN generator to produce the swapped result.
However, since the identity and attributes are highly entan-
gled in the latent space, assembling two latent codes without
explicit guidance cannot guarantee the transfer of source
identity and the preservation of target attributes simultane-
ously. Moreover, fine details embedded in the latent codes
are easily diluted after the assembly, hence, their swapped
face tends to have a blurred appearance with some loss of
fine details (see Fig. 1c and Fig. 1f for examples). To obtain
disentangled semantics in the latent space, we argue that
face features should be transferred in a class-specific manner.
Intuitively, the structure attributes of a face, such as the facial
shape, pose, and expression, should be treated differently
than the appearance attributes such as illumination and skin
tones. The swapped face should retain the source identity
while hallucinating the appearance attributes of the target
image. Such separate treatments would require proper disen-
tanglement between the structure and appearance features.

In this paper, we delve into the latent semantics of Style-
GAN. StyleGAN is a noise-to-image, coarse-to-fine gen-
eration process, and we leverage its progressive nature to
disentangle key factors in swapping such as pose, expression,
and appearance. Given the inverted source latent code, we
decouple the structure (pose and expression) attributes from
identity by deriving a structure transfer latent direction. The
direction is determined by source and target landmarks, and
serves as a latent space operation that transfers the structure.
On the other hand, the appearance attributes are controlled
in the deeper layers. Therefore, we regroup the target’s ap-
pearance codes with the structure-transferred source code
in the deep layers. In this way, the integrated latent code
retains the identity attribute from the source, while having
the appearance and structure of the target. This disentangled
latent code is fed to the StyleGAN generator to produce
generative features. This rich prior knowledge is aggregated
with the target features in all scales, effectively eliminating
the noticeable blending artifacts.

Furthermore, we extend our model to video face swap-
ping, where we generate a swapped face video from a source
face image and a target face video. Since directly applying
our model to each video frame can lead to incoherence ar-
tifacts, we enforce two spatio-temporal constraints on the
disentangled structure and appearance semantics. First, we
require the inter-frame structural changes of the swapped
faces to be consistent with those in the target faces. This
is achieved by enforcing similarity between the swapped
and target faces in terms of the latent offsets in the shallow
layers (representing structural changes). Secondly, we adopt

a linear assumption for the changes of image content be-
tween neighboring frames in the output video. These two
constraints effectively ensure inter-frame coherence. Exten-
sive experiments on several benchmarks for face swapping
methods demonstrate superior performance against state-of-
the-arts. As far as we are aware, this is the first feasible
solution for high-resolution video face swapping.

In summary, our contributions are three-fold:
• We propose a novel framework for high-resolution face

swapping. We disentangle the latent semantics of a pre-
trained StyleGAN, enabling the transfer of source identity
while preserving the appearance and structure of the target.

• We tailor two novel constraints to enforce the coherence of
swapped face videos, including a code trajectory constraint
that limits the offset between the latent codes of neighbor-
ing frames, and a flow trajectory constraint that works in
the RGB space to guarantee the video smoothness.

• Experiments on several datasets demonstrate state-of-the-
art results from our method, which can potentially serve as
new high-resolution test cases for face forgery detection.

2. Related Work
Face Swapping. Face swapping has been an active re-
search topic. Early works such as [8] can only handle sub-
jects of the same pose. 3D-based approaches fit a 3D tem-
plate to the source and target faces, to better handle large
pose variations [14, 28, 37]. Face2Face [45] fits a bilin-
ear face model to the source and target faces to transfer
the expression, with additional steps to synthesize realis-
tic mouth appearance. However, 3D-based methods cannot
handle appearance attributes like illumination and style. Re-
cently, many works introduce GANs for face swapping. RS-
GAN [35] handles face and hair regions in the latent spaces,
and conducts swapping by replacing latent representations.
Similarly, FSNet [34] encodes the face region and the non-
face region to different latent codes. FSGAN [36] performs
face reenactment and swapping simultaneously. Recently,
Faceshifter [26] encodes the source identity and target at-
tributes separately. However, none of them can swap face at
the high resolution due to the unstable adversarial training,
or the compressed representation of end-to-end frameworks.
Recently, Naruniec et al. [33] swap faces at high resolutions
but their model is subject-specific. MegaFS [55] utilizes
the prior knowledge of pre-trained StyleGAN [20, 21]. It
inverts both source and target faces to the latent space, then
designs a face transfer block to assemble the latent codes.
However, the identity and attributes are entangled in the la-
tent space, and assembling two latent codes without explicit
guidance is insufficient. On the contrary, we propose to
transfer attributes in a class-specific manner.

Generative Prior. Generative models show great potential
in synthesizing high-quality images [10, 16, 19–21]. It has
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Figure 2. The pipeline of our disentangled high-resolution face swapping. We transfer different levels of attributes by three modules. We
first invert both the source and target faces to the W+ latent space of the pre-trained StyleGAN G by the pSp encoder, then learn a structure
transfer direction by encoding the source and target landmarks. The appearance attributes are transferred by swapping the latter part of two
latent codes. To eliminate the blending boundary, target features are aggregated with the generative features in a multi-scale manner.

been shown that the latent space of a pre-trained GAN en-
codes rich semantic information. As a result, many works
utilize the prior knowledge hidden in the generative model
for semantic editing, image translation, super-resolution, and
so on [4, 17, 39, 40, 50, 52]. In particular, Gu et al. [17] pro-
pose a GAN inversion approach for image colorization and
semantic editing, while some other works [11, 31, 54] use
the pre-trained StyleGAN for image super-resolution. Re-
cently, generative prior has also been introduced for face
swapping. Besides MegaFS [55], Nitzan et al. [38] transfer
attributes from one face to another in the latent space by a
fully-connected network. Different from those works, we
transfer the target attributes to the source in a more elabo-
rated way. We decompose the attributes into structure at-
tributes and appearance attributes, and take full usage of
disentanglement and editability of the generative model.

3. Method

3.1. Overview

Given two high-resolution face images, we aim to con-
struct a face image with the identity of the source face xs
and the attributes of the target face xt such as the pose, ex-
pression, illumination and background. To do so, we first
construct a side-output swapped face using a StyleGAN gen-
erator, by blending the structure attributes of the source and
the target in the latent space while reusing the appearance
attributes of the target (Sec. 3.2). To further transfer the

background of the target face, we use an encoder to generate
multi-resolution features from the target image, and blend
them with the corresponding features from the upsampling
blocks of the StyleGAN generator. The blended features
are fed into a decoder to synthesis the final swapped face
image (Sec. 3.3). An overview of our pipeline is provided in
Fig. 2. The networks are trained using a set of loss functions
that enforce desirable properties such as the preservation of
source identity and target appearance (Sec. 3.4). We also ex-
tend our approach to video face swapping, using additional
spatio-temporal constraints to enforce coherence (Sec. 3.5).

3.2. Class-Specific Attributes Transfer

A face image typically contains different classes of at-
tributes. For example, the pose and expression are related to
the face structure, while the lighting and colors are related to
the appearance. Previous face swapping techniques, such as
FaceShifter [26] and MegaFS [55], do not explicitly distin-
guish different classes of attributes when transferring them
to the output image. We instead argue that it is beneficial to
transfer structure and appearance attributes separately: the
structure attributes of the output can be jointly determined
from their counterparts in the source and target images, to
obtain the same pose and expression as the target face while
retaining the identity of the source face. Meanwhile, the
appearance attributes of the target face can be directly reused
to achieve similar facial appearance in the output.

To this end, we note that StyleGAN [20, 21], a state-of-



the-art generative model, provides a suitable representation
for such separate treatments. In particular, to use the Style-
GAN generator, it is common practice to encode an image in
an extended latent space W+ where a latent code consists
of multiple high-dimensional vectors, one for each input
layer of StyleGAN [3, 40]. As noted in [40, 51], different
input layers of StyleGAN correspond to different levels of
details. Thus we treat the first K vectors of the latent code,
which correspond to the shallow layers, as the encoding for
the structure attributes. The remaining vectors, which cor-
respond to the deeper layers, are used for appearance. For
1024× 1024 images, the latent code consists of 18 different
512-dimensional vectors, and we follow [40] and choose the
first 7 vectors as the structure part. With such disentangle-
ment, the structure part and the appearance part of the latent
code can be transferred separately. Specifically, we first use
the pre-trained pSp encoder [40] to invert the source face
xs and the target face xt to obtain their W+ latent codes
ws = (gs, hs) and wt = (gt, ht) respectively, where gs, gt
are the structure parts and hs, ht are the appearance parts.
To construct the structure attributes of a swapped face that
has the same identity of the source with the pose and expres-
sion of the target, we note that they should be derived from
the source structure attributes with modifications that take
into account the pose and expression difference between the
source and the target. Therefore, we compute the structure
part ĝs of the latent code for a swapped face by applying a
structure transfer latent direction −→n that is derived from the
source and target structures:

ĝs = gs +−→n . (1)

To derive −→n , we note that the face structure can be in-
dicated by the facial landmarks. Thus we train a landmark
encoder Ele(·, ·) that generates −→n from the heat-map encod-
ings of the source landmarks ls and the target landmarks
lt:

−→n = Ele(ls, lt).

To transfer the appearance attributes from the target face
to the swapped face, we directly reuse the appearance part
ht of the target latent code. It is then re-integrated with ĝs to
form a latent code for the swapped face:

ŵs = Cat(ĝs, ht), (2)

where Cat(·, ·) denotes the concatenation operator. The
code is fed into a pre-trained StyleGAN generator to obtain
a side-output swapped face ys.

3.3. Background Transfer

For face swapping applications, the background of the
target face also needs to be retained in the output image.
This often cannot be guaranteed for the swapped face ys

computed in Sec. 3.2. A common solution is to apply Pois-
son Blending as the post-process that blends the swapped
inner-face with the target image. However, this can lead to
unnatural appearance around the boundary of the inner-face.

To address this issue, we discard the side-output face ys,
but retain the features Fs = {f0s , f1s , ...fNs } produced by
each upsampling block of the StyleGAN generator from the
latent code ŵs in Eq. (2). We note that Fs can be regarded as
a representation for different levels of details from the side-
output face image. Accordingly, we apply an encoder Et to
the target face xt such that its layers generate correspond-
ing features Ft = {f0t , f1s , ...fNs }, where f it is of the same
dimension as f is and represent the details of the target face
image at the same resolution. We then aggregate each pair of
corresponding features (f is, f

i
t ) by replacing the components

of f it for the inner-face region with their counterparts in f is.
All aggregated features are fed into a decoder to produce the
final face image yf , which can be written as:

yf = Dec(Ft, Fs,mt),

where Dec(·, ·, ·) denotes the decoder, and mt is the inner-
face mask for the target face image. In this way, the decoder
transfers the background in multi-level features, which not
only eliminates the need for explicit background blending
but also enables the code ŵs to focus on the facial region
and facilitates attributes transfer.

3.4. Loss Functions

We tailor several losses that are applied on the side-output
swapped face ys or the final face yf for efficient attributes
transfer, as explained in the following. We also introduce a
style-preservation loss on the final output to narrow the style
gaps between the swapped one and the target.
Adversarial loss. We utilize an adversarial loss for the
distribution alignment between the final swapped faces and
the real faces. In particular, we align the final face yf with
the target face with the following loss:

Ladv = E
yf∼PYf

[− log(Df (yf ))],

where PYf
denotes the distribution of the final faces. The

discriminator Df that distinguishes the final face from the
real target face xt is trained with a loss

LDf
= E

yf∼PYf

[− log(1−Df (yf )]+ E
xt∼PXt

[− log(Df (xt)],

where PXt
denote the distribution of real faces.

Identity-preservation loss. To preserve the identity of the
source face, we introduce an identity-preservation loss for
the final face yf with the source face xs:

Lid = 1− cos(Φid(yf ),Φid(xs)),

where Φid(·) is the pre-trained ArcFace network for face
recognition [15], and cos(·, ·) denotes the cosine similarity.



Landmark-alignment Loss. Since we use facial land-
marks to represent structure attributes, we introduce the
following loss to align the landmarks of the side-output
swapped face ys, the final face yf , and the target face xt:

Llmk = ‖Elmk(ys)−Elmk(xt)‖2+‖Elmk(yf )−Elmk(xt)‖2,

where Elmk(·) is a pre-trained landmark estimator [47] and
‖ · ‖2 denotes the `2-norm.

Reconstruction Loss. Intuitively, if the source face xs and
the target face xt are the same image, the network should
reconstruct this image for both the side-output swapped face
ys and the final face yf . Hence, we follow pSp [40] and
use pixel-wise similarity and perceptual similarity to define
a reconstruction loss that penalize the deviation between
ys, yf and xt when xs = xt:

Lrec =
‖yf − xt‖2 + α‖F (yf )− F (xt)‖2
+ ‖ys − xt‖2 + α‖F (ys)− F (xt)‖2, if xs = xt,

0, otherwise,

where F (·) is the perceptual feature extractor, and α is a
weight that balances the pixel-wise similarity and perceptual
similarity terms. We set α = 0.8 in our experiment.

Style-transfer Loss. As mentioned in Sec. 3.2, we transfer
the appearance attributes in the latent space. However, if the
difference between the styles of the source and target faces is
too large, simple latent code replacement may not reduce the
style difference effectively. Inspired by BeautyGAN [27], we
create a guidance face image HM(yf , xt) through histogram
mapping, and align the final face yf with the guidance face
via the following loss:

Lst = ‖yf −HM(yf , xt)‖2.

Compared to simple latent code replacement, this provides a
stronger guidance for the appearance attributes transfer.

Final Objective. The final loss function for training our
model is a weighted combination of above losses:

Ltotal = λ1Ladv+λ2Lid+λ3Llmk+λ4Lrec+λ5Lst, (3)

where λ1, λ2, λ3, λ4, λ5 are weights for the loss terms.

3.5. Video Face Swapping

Our method can be extended to video face swapping.
Given a source face xs and a sequence of target faces withM
consecutive frames St = {x0t , x1t , ..., xM−1t }, we would like
to obtain a swapped face sequence Y = {y0, y1, ..., yM−1}.
Most of the existing works apply the image-based face swap-
ping methods to each video frame separately, which can lead
to incoherent results between neighboring frames and cause

artifacts such as flickering. Such artifacts are particularly
noticeable in high resolutions. To address this issue, we
need to enforce consistency between neighboring frames in
terms of both the structure and the appearance, such that
these attributes vary smoothly across the frames. Existing
temporal consistency works [9, 25] only take the appearance
consistency into account and cannot be used directly for face
swapping. We propose two spatio-temporal constraints for
the latent space and the image space respectively, to achieve
consistency in both the structure and the appearance.

Code Trajectory Constraint. Since the structure at-
tributes of the target frames vary smoothly, we can enforce
structure consistency for the swapped face frames by requir-
ing them to have similar changes in structure attributes as
the target. To this end, we note that the offset between the
structure parts of the latent codes in two neighboring frames
can be can be regarded as an indication of the change in the
structure attributes. Therefore, we use the following loss to
enforce similar trajectories of the structure codes between
the target video and the output video in the latent space:

Lct =
∑M

k=1

∥∥(ĝks − ĝk−1s )− (gkt − gk−1t )
∥∥
2
,

where gkt denotes the structure part of the latent code for the
target frame xkt , and ĝks denotes the structure code of the
swapped face obtained from xs and xkt using Eq. (1).

Flow Trajectory Constraint. For appearance consistency,
we follow the local linear model [30, 32] that assumes uni-
form changes between neighboring frames 1. Specifically,
we denote the optical flow from the frame yif to a nearby
frame yjf in the swapped face sequence as:

fi⇒j = Φ(yif , y
j
f ),

where Φ(·, ·) is the pre-trained PWC-Net [44] for the flow
prediction. From the local linear assumption, the dense corre-
spondence between two neighboring frames in the swapped
face sequence can be approximated by interpolating the for-
ward flow and backward flow across the two frames, which
leads to the following loss:

Lft =
∑

k
‖(fk⇒k+2 + fk+2⇒k)/2− fk⇒k+1‖2.

We note that Lft is effectively the `1/`2 norm for the tempo-
ral Laplacians of the optical flows. This promotes sequences
that have small Laplacians at most frames while allowing
for large Laplacians at some frames [6], which allows for
motion sequences that are piecewise smooth temporally.

1Here we follow the local linear assumption for simplicity, we can also
follow the acceleration-aware assumption [29, 49] for better approximating
real-world scene motion.
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Figure 3. Qualitative comparison of face swapping on the resolution of 1024×1024. We can see that MegaFS always present the blurry
faces with a distinct boundary with the background. Besides, they cannot preserve the source identity effectively during the swapping
process. Meanwhile, when the appearance attributes between source and target are huge, they cannot transfer the target to the output. In
opposite, our method can transfer the structure and appearance attributes as desired with identity-preserving. Zoomed in for the best view.

4. Experiments

4.1. Implementation Details

We utilize the StyleGAN2 generator [21] pre-trained on
the FFHQ dataset [20] with the resolution of 1024× 1024.
The pSp encoder is also pre-trained on this dataset. We
use a modification of pSp as our landmark (more details of
the structure can be seen in the supplementary materials).
We use the Adam optimizer [23] to train the model with a
learning rate of 1 × 10−4, and the exponential decay rates
for the 1st and 2nd moment estimate being β1 = 0.9 and
β2 = 0.999 respectively, and ε = 1× 10−8. The batch size
is set to be 8 and the model is trained with 500,000 iterations.
We empirically set the weights in Eq. (3) as λ1 = 1, λ2 = 2,
λ3 = 0.1, λ4 = 2 and λ5 = 0.2. We implement our method
in Pytorch with four Tesla V100 GPUs. It takes about two
days to train the whole model.

4.2. Datasets
Datasets. We evaluate our model on three datasets:
• CelebA-HQ contains 30,000 celebrities faces with a reso-

lution of 1024×1024 [19]. Due to its high quality, it has
been widely used in many face editing works.

• FaceForensics++ consists of 1,000 original talking videos
downloaded from YouTube and manipulated with 5 face
swapping methods [42]. This dataset serves as a bench-
mark in many face swapping works.

Evaluation Metrics. We use several metrics in our quan-
titative experiments. The ID retrieval rate, measured by
the top-1 identity matching rate based on the cosine simi-
larity, indicates the identity preservation ability. For some
experiments, we follow MegaFS [55] and compute the ID
similarity instead, which is the cosine similarity between
swapped faces and their corresponding sources using Cos-
Face [46], to reduce the computational cost. The pose error
and the expression error are the `2 distance between the pose
and expression feature vectors respectively using pre-trained
estimators [12,43] on the swapped and target faces, which in-
dicates the ability to transfer structure attributes. The Fréchet
Inception Distance (FID) [18] computes the Wasserstein-2
distance between the distribution of real faces and swapped
images, which measures the image quality of swapped faces.

4.3. Comparison on CelebA-HQ Dataset
Qualitative Comparison. We first conduct experiments
on the high-resolution CelebA-HQ dataset [19]. We com-
pare our method with MegaFS [55] that swaps faces at
1024×1024 resolution, with qualitative comparison results
shown in Fig. 3. We can see the faces produced by MegaFS
tend to have a blurry appearance without vivid details. This
is because they perform face swapping solely on the low-
dimensional latent codes without the explicit disentangle-
ment, which easily dilutes the latent encoding of details.

Besides, there is a notable boundary between facial re-
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Figure 4. Qualitative comparison with MegaFS and other low-
resolution non-GAN priors face swapping methods.

gions and the background in their results. In comparison,
our approach utilizes multi-resolution spatial features from
the StyleGAN generator and aggregates them with the back-
ground features from the target decoder, which helps to
retain high-quality facial details. Moreover, MegaFS does
not transfer the target attributes to the output effectively,
especially when there is a large semantic gap between the
source and the target. For example, in the second row of
Fig. 3, MegaFS cannot transfer the illumination or styles
from targets, due to the large difference between the source
and the target in these attributes. In comparison, thanks to
our disentangled attributes transfer, our results maintain the
target attributes more effectively. For the results on the left
of the fourth row in Fig. 3, we can also see that MegaFS does
not preserve the source identity, where it wrongly enlarges
the eyes compared to the source. This is because the identity
and the attributes are highly entangled in the latent space,
and the lack of explicitly disentanglement in MegaFS can
lead to unsatisfactory results. On the contrary, we trans-
fer different levels of attributes separately, which helps to
maintain the source identity and the target attributes.

Quantitative Comparison. We also perform quantitative
comparison on the CelebA-HQ dataset. We follow MegaFS
and conduct a comparison on 300,000 swapped faces for a
fair comparison. Tab. 1 shows the average values of evalu-
ation metrics for each method. Our method has a stronger
ability both on identity preservation and attributes transfer.
Furthermore, our result has a lower FID, which indicates that
our swapped faces are more realistic than those of MegaFS.

4.4. Comparison on FaceForensics++ Dataset

To allow comparing with other face swapping methods
that can be only applied to low-resolution images, we further
evaluate our method on the Face-Forensics++ dataset. Fig. 4
presents qualitative comparison results against MegaFS as
well as three non-GAN prior based and low-resolution meth-
ods: FaceSwap [2], Deepfakes [1], and FaceShifter [26].
We can see that FaceSwap and MegaFS can lead to notice-

Table 1. Quantitative evaluation of face swapping on CelebA-HQ
dataset with four metrics. ↓ denotes the lower the better and vice
versa, the best results are marked in bold.

Methods ID Simi.↑ Pose Err.↓ Exp. Err.↓ FID↓
MegaFS [55] 0.5214 3.498 2.95 11.645

Ours 0.5688 2.997 2.74 9.987

Table 2. Quantitative evaluation of face swapping on FaceForen-
sics++ dataset with four metrics. ↓ denotes the lower the better and
the better and vice versa, the best results are marked in bold.

Methods ID Retri.(%)↑ Pose Err.↓ Exp. Err.↓
FaceSwap [2] 72.69 2.58 2.89
Deepfakes [1] 88.39 4.64 3.33

FaceShifter [26] 90.68 2.55 2.82
MegaFS [55] 90.83 2.64 2.92

Ours 90.05 2.46 2.79

able blending boundaries or artifacts, while our method can
eliminate them due to our background transfer. However,
the quality of our swapped results is not that high as high-
resolution face swapping in the Fig. 3. This is potentially due
to domain gap: the styleGAN generator and the pSp encoder
used in our method are both pre-trained on high-resolution
data, while the majority of the data from FaceForensics++
are of lower resolutions. The large domain gap between
low- and high-resolution datasets can potentially decrease
the performance of our method.

We also perform quantitative evaluation on this dataset.
In particular, we follow MegaFS [55] that samples 10 frames
from each video evenly then processed by MTCNN [53]. Af-
ter filtering the repeated identities, we obtain 885 videos with
88500 frames in total. Tab. 2 shows the average values of
evaluation metrics for different methods. We can see that our
method preserves the target poses and expressions more ef-
fectively, thanks to our structure attributes transfer that takes
the landmarks as input and provides a strong guidance signal
to the final swapped faces. Meanwhile, our model is outper-
formed by FaceShifter and MegaFS on ID retrieval rate. We
conjecture that this is due to the domain gap between the
low- and high-resolution images as mentioned above, which
makes our inversion model less effective in preserving the
identity information from low-resolution images.

4.5. Ablation Study

In this section, we perform ablation study and use the
CelebA-HQ dataset to evaluate the effectiveness of our dis-
entangled approach in transferring the attributes. We use
MegaFS as a baseline, since they swap faces solely on two
latent codes without disentanglement between attributes. We
further include three variants of our approach with modifi-
cations on the modules and the loss functions. For the first
variant (Var.1), we keep the appearance part of source code
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Figure 5. Qualitative comparison of different variants. Each variant
cannot transfer the target attributes effectively due to the entangled
semantic transfer.

ws unchanged for producing the side-output face and discard
the style-transfer loss and the latent code swapping opera-
tion for appearances transfer, i.e., there is no explicit transfer
guidance that contributes to the appearance attributes. For
the second variant (Var.2), we discard our background trans-
fer module and directly blend the side-output face with the
target face image as the final output. The qualitative compar-
ison between different variants and the baseline is shown in
Fig. 5. We can see that the MegaFS baseline leads to blurry
faces and sharp boundaries. As mentioned previously, this
is due to the highly entangled identity and attributes in the
latent code, which can lead to information loss during the
transfer. The first variant presents the unnatural styles, which
verifies the necessity of our appearance attributes transfer
that provides explicit appearance guidance in the swapping
process. The second variant presents a notable blending
boundary between the swapped face region and the back-
ground (see the 2nd and 3rd samples), due to the lack of the
background transfer module which fuses multi-resolution
features from the source and the target for a natural blending.
Meanwhile, our target encoder-decoder structure also can
tolerance the structure difference between source and targets,
and produce the final plausible results. Thanks to our disen-
tangled attributes transfer, our final swapped faces present
the successful semantic transfer from the targets, with the
source identity well preserved.

4.6. Face Swapping on High-resolution Videos

Fig. 6 shows qualitative results of our method on high-
resolution videos. Applying our method individually to each
frame leads to incoherence between neighboring frames,
while our code and flow trajectory constraints improve the
coherence and visual quality considerably.

5. Conclusion and Discussions
We present a novel high-resolution face swapping based

on the inherent prior knowledge of pre-trained StyleGAN.
We categorize the attributes into structure and appearance

source

Target
Im

age
FS

V
ideo

FS

Figure 6. Examples of video face swapping. The figure in the
red box is the source face, and the top row shows the target video
frames. Applying face swapping on each frame individually leads
to the incoherent structure and appearance (middle row), while our
trajectory constraints inhibit such incoherence (bottom row).

ones, and transfer them separately in the disentangled latent
space. We propose a landmark encoder that predicts a latent
direction for the structure attributes transfer. The StyleGAN
generative features resulting from the transferred latent code
are aggregated with the multi-resolution features from a
target image encoder to transfer the background information
and generate a high-quality result. We further extend the
method to video face swapping by enforcing two spatio-
temporal constraints. Extensive experiments demonstrate
the superiority of our disentangled attributes transfer in terms
of hallucination quality and consistency.

Limitations. Since we transfer the attributes in the latent
space of StyleGAN, the quality of the result relies heavily
on the GAN inversion method. In particular, if the inversion
does not produce faithful latent codes for the source and tar-
get faces, the result is not guaranteed to preserve the identity
of the source. Our method transfers all the target appearance
attributes to the result image and does not support selective
transfer of appearance from both the source and the target.
Such fine-grained control can be beneficial for some appli-
cations such as content creation, but would require further
disentanglement between different categories of appearance
attributes. This can be an avenue for further research.

Potential Negative Impact. Although not the purpose of
this work, realistic face swapping can potentially be misused
for deepfakes-related applications. The risk can be mitigated
by gated release of the model and by forgery detection meth-
ods that are able to spot CNN-generated images [48]. In
addition, our method can be potentially used to generate
new high-resolution test cases for benchmarking and further
developing forgery detection techniques [42].
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