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Abstract We present an experimental systematics study of
a polarimetric method for measuring the vacuum magnetic
birefringence based on a pair of rotating half-wave plates.
The presence of a systematic effect at the same frequency
as the sought for magneto-optical effect inhibits the use of
strictly constant magnetic fields. We characterise this sys-
tematic, discuss its origin and propose a viable workaround.

1 Physics background

Classical electrodynamics in vacuum is a linear theory in
which the superposition principle holds. In vacuum, in the
absence of sources, Maxwell’s equations allow wave propa-
gation with velocity c = 1/

√
ε0μ0. However, almost a cen-

tury ago the classical theory of radiation was radically modi-
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fied by Dirac’s relativistic wave equation of the electron [1],
which brought along an infinite number of states of nega-
tive energy. These states, according to Pauli’s principle, are
occupied by an infinite number of electrons forming an unde-
tectable background. An electron in a negative energy state
could absorb a quantum of light and manifest itself as a real
positive-energy electron, leaving behind a “hole” in the back-
ground; a hole that (before the discovery of the positron) was
recognised to play the role of an “anti-electron” [2]. It was
also noted that the energy conservation law could be violated
in the short-lived “intermediate state” before the annihilation
of the particle/anti-particle pair and the reappearance of the
quantum of light [3]: vacuum fluctuations were hence possi-
ble. In this picture it was no longer “possible to separate pro-
cesses in the vacuum from those involving matter since elec-
tromagnetic fields can create matter if they are strong enough.
Even if they are not strong enough to create matter they will,
due to the virtual possibility of creating matter, polarise the
vacuum and therefore change the Maxwell’s equations” [4].
“The light in its passage through the electromagnetic fields
will thus behave as if the vacuum took on a dielectric constant
that differs from unity as a result of the action of the fields”
[5]. It was also clear that the new Electrodynamics that was
being born had to be no longer linear: photon–photon inter-
action in vacuum was made possible mediated by electron–
positron pairs [6]. A lowest order correction to the classical
effective Lagrangian density of the electromagnetic field in
vacuum taking into account electron–positron pairs was then

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-022-10100-x&domain=pdf
http://orcid.org/0000-0002-6089-7185
http://orcid.org/0000-0002-4043-5178
http://orcid.org/0000-0003-1473-7890
http://orcid.org/0000-0002-8801-8816
http://orcid.org/0000-0002-2294-4980
http://orcid.org/0000-0002-4149-4532
http://orcid.org/0000-0001-8140-9382
http://orcid.org/0000-0002-3596-4307
http://orcid.org/0000-0003-2918-1311
mailto:guido.zavattini@unife.it
mailto:federico.dellavalle@unisi.it
mailto:alinamariana.soflau@edu.unife.it
mailto:lorenzo.formaggio@edu.unife.it
mailto:giacomo.crapulli@edu.unife.it
mailto:messineo@fe.infn.it
mailto:emilio.mariotti@unisi.it
mailto:stepan.kunc@tul.cz
mailto:EjlliA@cardiff.ac.uk
mailto:giuseppe.ruoso@lnl.infn.it
mailto:carmela.marinelli@unisi.it
mailto:mirco.andreotti@fe.infn.it


  159 Page 2 of 14 Eur. Phys. J. C           (2022) 82:159 

written for fields slowly varying in space and time [4,5,7,8]:

L = 1

2μ0

(
E2

c2 − B2
)

+ Ae

μ0

⎡
⎣

(
E2

c2 − B2
)2

+ 7

( �E
c

· �B
)2

⎤
⎦ , (1)

where the first term is the classical Lagrangian density of the
electromagnetic field and in the correction term the fourth
power of the fields appears, allowing light–light interaction.
In the correction amplitude

Ae = 2

45μ0

α2h̄3

m4
ec

5
= 1.32 × 10−24 T−2

the mass me of the electron, the reduced Planck’s constant h̄
and the fine structure constant α appear. One should note the
smallness of Ae making nonlinear effects hard to be detected
in a laboratory measurement. This correction has been con-
firmed in the framework of quantum electrodynamics (QED)
[9,10].

Quantum electrodynamics is one of the most tested the-
ories of physics [11,12], with experiments spanning from
atomic physics to high energy phenomena. At high energy
the ATLAS and CMS experiments have observed light-by-
light scattering in lead–lead peripheral collisions [13,14].
The same physics has been tackled also with pulsed lasers
[15–18]. However, one of the predictions of Eq. (1), the vac-
uum magnetic birefringence (VMB), has never been vali-
dated in a laboratory test at low energies, although a hint of
this effect from optical astrophysical data has been published
[19]. Birefringence is an optical property of anisotropic mate-
rials, consisting in the dependence of the index of refrac-
tion on the polarisation direction of light with respect to the
axes of the system. It is quite common in crystalline solids,
whereas in isotropic materials it can be induced by stress or
by electric or magnetic fields, with the field direction defining
the optical axis of the system.

In vacuum, from the Lagrangian of Eq. (1), constitutive
equations can be derived for �D and �H [5,7,8]:

�D = ∂L
∂ �E

= ε0

[
�E + 4Ae

(
E2

c2 − B2
)

�E + 14Ae

(�E · �B
) �B

]
,

μ0 �H = −μ0
∂L
∂ �B

= �B + 4Ae

(
E2

c2 − B2
)

�B − 14Ae

( �E
c

· �B
) �E

c
.

These equations describe a nonlinear anisotropic medium.
We are interested in the case in which a light wave travels
through an external magnetic field �Bext. Then the electric
field is the electric field of the light �E = �Eγ whereas the

magnetic field is the sum �B = �Bγ + �Bext. We also suppose
that Bext � Bγ = Eγ /c and that the propagation direction
of the wave is perpendicular to the external field. We are
interested in the dynamic fields; to first order in the fields of
the light the above equations become

�Dγ = ε0

[�Eγ − 4AeB
2
ext

�Eγ + 14Ae

(�Eγ · �Bext

) �Bext

]
,

μ0 �Hγ = �Bγ − 4AeB
2
ext

�Bγ − 8Ae

(�Bγ · �Bext

) �Bext.

We distinguish two cases: one in which �Eγ ‖ �Bext and the
second in which �Eγ ⊥ �Bext. The vacuum is then found to be
a birefringent uniaxial medium whose electric and magnetic
susceptibilities and indices of refraction are [20–26]

ε‖ = 1 + 10AeB
2
ext, ε⊥ = 1 − 4AeB

2
ext,

μ‖ = 1 + 4AeB
2
ext, μ⊥ = 1 + 12AeB

2
ext,

n‖ = 1 + 7AeB
2
ext, n⊥ = 1 + 4AeB

2
ext,

and

�nQED = n‖ − n⊥ = 3AeB
2
ext � 4 × 10−24B2

ext. (2)

This equation has the same structure as a magnetically
induced birefringence in condensed matter and gases [27],
suggesting again a picture of the quantum vacuum as a pecu-
liar material medium. Vacuum magnetic birefringence in
Eq. (2) is the dominant effect on the propagation of light
in a vacuum. A magnetic birefringence is also associated
to hitherto hypothetical axion-like and milli-charged parti-
cles [28,29]. In general both could also generate a magnetic
dichroism (dependence of the imaginary part of the complex
index of refraction on the polarisation direction of light),
detectable as a rotation of the polarisation direction.

Traversing a birefringent medium, the components of the
electric field of light along the birefringence axes acquire a
phase difference�ϕ. A linearly polarised light beam acquires
an ellipticity.1 It can be shown that, for small phase differ-
ences, the ellipticity is

ψ(φ) = sin 2φ

∫
π �n

λ
dz = ψ0 sin 2φ = �ϕ

2
sin 2φ (3)

where the integral is performed along the light path and φ is
the angle between the magnetic field direction and the ini-
tial polarisation. To measure an acquired ellipticity one has
then to measure the electric field of the light in the direc-
tion orthogonal to the initial polarisation. In the case of the
vacuum, the ellipticity values attainable in a laboratory mea-
surement are quite small. For λ = 1064 nm, Bext = 2.5 T and
a light path in the magnetic field LB = 1.64 m (parameters

1 Ratio (with sign) of the minor to the major axis of the ellipse described
by the electric vector of the light. The sign distinguishes between the
two rotation directions of the electric field around the ellipse.
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of the PVLAS experiment [30–32])

ψ
(PVLAS)
0 = π �nLB

λ
= 1.2 × 10−16.

An analyser set to maximum extinction (see Fig. 1a) would
transmit the power P⊥ = Pout ψ

2
0 sin2 2φ ≈ P‖ ψ2

0 sin2 2φ

where now the subscripts ⊥ and ‖ refer to the initial polarisa-
tion direction. In the case of vacuum magnetic birefringence
this intensity is far less than the extinguished power Poutσ

2 of
any existing pair of polarisers, imposing a more sophisticated
approach.

2 Polarimetric method

2.1 Modulation polarimetry

The modern history of the measurement of the vacuum mag-
netic birefringence in the optical range began in 1979 with
the seminal paper by Iacopini and Zavattini [33]. The pro-
posed method linearises the signal by modulating the effect
and summing to it a known modulated ellipticity, as seen
in Fig. 1b. In this scheme the signal is found in a Fourier
analysis of the extinguished power at the frequencies sum
and difference of the two modulation frequencies (hetero-
dyne detection). If one of the two ellipticities is static, one
has a homodyne detection. Following the guidelines of the
1979 paper, several experimental efforts have been set up in
the attempt to measure the tiny vacuum magnetic birefrin-
gence [30–32,34–45], without success. The modulation of
the effect can be obtained either by varying the magnetic field
intensity or its direction. To realise this second type of mod-
ulation, the PVLAS experiment [30–32,36–38,44] rotated

Fig. 1 Polarimetric schemes: PDE: extinction photodiode; PDT: trans-
mission photodiode; M1,2: cavity mirrors; λ/4: quarter-wave plate;
PEM: photo-elastic modulator; WP1,2: rotating half-wave plates. The
quarter-wave plate is inserted when rotation measurements are per-
formed

continuously the magnets at a frequency νB . In this case,
according to Eq. (3), the effect was modulated at a frequency
νψ = 2νB . Neglecting the polariser extinction σ 2, the power
in the extinguished beam is now

P⊥ = Pout [ψ(t) + η(t)]2 ≈ P‖
[
η2(t) + 2η(t)ψ(t)

]
, (4)

where η(t) is a known modulated ellipticity. In the PVLAS
experiment this modulation was obtained by employing a
photo-elastic modulator (PEM) (see Fig. 1b). In the follow-
ing we will assume that η(t) = η0 cos(2πνmt + φm), and
ψ(t) = ψ0 cos(2πνψ t +φψ). Therefore in the Fourier spec-
trum of the extinguished power the sought for ellipticity can
be extracted from the amplitude of the sidebands of the mod-
ulation frequency νm at νm±νψ . Using two lock-in amplifiers
to demodulate the extinguished power at the frequencies νm

and 2νm, the measured ellipticity ψ0 is given by [30–32]

ψ0 = ψ(ν = νψ) = Pνm (νψ)

P2νm (DC)

η0

4
. (5)

The same equation is used in a rotation measurement
(quarter-wave plate inserted). We note explicitly that the
above equation holds for any frequency ν of the demodu-
lated spectrum. In the following it will be used to study the
noise of the polarimeter in a wide frequency band.

A common point to all the experiments attempted so far
has been the presence of a light path amplifier, realised
in all but one case by employing a Fabry–Perot cavity
whose finesse the experiments strived to increase. Indeed the
PVLAS experiment [30–32] set the best limits on the VMB
employing a cavity with a finesse FPVLAS ≈ 7 × 105 and a
path-amplification factor NPVLAS = 2F/π ≈ 4.5×105 cou-
pled with two permanent dipole magnets that were rotated
to modulate the effect. The experiment ended in 2018 after
reaching a noise floor less than a factor ten from the pre-
dicted QED value, limited by the existence of an intrinsic
∼ 1/ f noise source due to the high reflectivity mirrors of
the Fabry–Perot cavity [31,46]. The measurements showed
that, for high finesse cavities, the signal-to-noise ratio did not
improve with the finesse, frustrating the rush for higher and
higher finesses and limiting the sensitivity.

In a polarimetric measurement the limit ellipticity noise
is the shot noise, whose peak spectral density is

S(shot)
ψ =

√
e

qPout
,

where e is the elementary charge and q is the quantum effi-
ciency of the extinction photodiode. This number determines
the minimum time Tmin required to reach a unitary signal-to-
noise ratio in the measurement of an ellipticity ψ0:

Tmin =
[
S(shot)
ψ

ψ0

]2

. (6)
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In the case of the PVLAS experiment, with S(shot)
ψ ≈ 5 ×

10−9/
√

Hz, this minimum time was [30–32]

Tmin =
[

S(shot)
ψ

NPVLAS ψ
(PVLAS)
0

]2

≈ 104 s.

Unfortunately, the observed PVLAS intrinsic mirror noise
was almost two orders of magnitude larger than the shot noise
at the attainable modulation frequency νψ ≈ 20 Hz [30–32].
With respect to the shot-noise-limited case the measurement
time was a factor ∼ 104 larger, making impossible the con-
tinuation of the experiment.

The only way to get around this issue is to increase the
magnetic field intensity and length, the relevant parameter
being the product B2

extLB . By employing a LHC main bend-
ing dipole [47] this parameter could reach almost 1200 T2m,
a factor 100 larger than in the PVLAS experiment. For light
with λ = 1064 nm, such a magnet would generate an ellip-
ticity

ψ
(CERN)
0 = 3π AeB2

extLB

λ
= 1.4 × 10−14. (7)

Unfortunately large superconducting magnets cannot be
rotated and can be modulated only at frequencies � 10 mHz
(see Sect. 4.2.3 below). In order to keep the original 1979
measurement scheme, a new polarisation modulation method
has been proposed [48,49] which could be the heart of a new
experiment [50,51]. The method allows the use of (quasi)
static magnetic fields with the ellipticity signal modulated
by a polarisation rotation resulting in νψ � 10 Hz. The next
section presents the method which is later discussed in the
light of the proof of principle tests that have been carried out.
We anticipate here that, as a result of the present experimen-
tal study, a low-frequency modulation of the magnetic field
will be needed.

2.2 Rotating polarisation

Given the practical difficulty of modulating either the cur-
rent or the direction of a large superconducting magnet, the
proposed polarimetric scheme envisages to make the polari-
sation rotate inside the magnet [48,49]. This can be obtained
by employing a pair of half-wave plates co-rotating at fre-
quency νP (see Fig. 1c). The use of a rotating half-wave
plate had been already proposed in the framework of the
OSQAR experiment [43]. However, in that proposal the wave
plate was outside the Fabry–Perot cavity and the polarisa-
tion would have been rotating also on the reflecting surface
of the dielectric mirrors of the cavity. It is well known that
these surfaces are birefringent with phase differences of order
10−6 rad/reflection [30,31,52–56]. This birefringence, mod-
ulated at the same frequency as the vacuum magnetic one
but many orders of magnitude larger, would show up in the

extinguished beam of Eq. (4) as by far the dominant signal.
In the newly proposed scheme, on the contrary, the polar-
isation does not rotate on the mirrors. The first wave plate
makes the polarisation rotate at a frequency 2νP inside the
magnetic region, whereas the second one stops the rotation.
The effect of the birefringence due to the magnetic field will
therefore be modulated at a frequency νψ = 4νP. The two
wave plates need not have their axes aligned: in this scheme
both mirrors can easily have their axes aligned to the local
polarisation direction, making the effect induced by the mir-
ror birefringence static and minimised. As we have not yet
tested the method with a Fabry–Perot cavity, we will not fur-
ther discuss the birefringence of the cavity mirrors. This sub-
ject has been thoroughly investigated with the PVLAS appa-
ratus [30–32]. We now want to study the spurious signals and
the sensitivity of this new method. As a first point, the phase
retardation of the half-wave plates WP1 and WP2 is expected
to slightly deviate from π by amounts α1, α2 ∼ mrad. It can
be shown then that to first order in α1, α2 and ψ0 the light
power detected by the photodiode PDE is given by [48,49]

P⊥ ≈ Pout

{
η2 + Nη

[
2ψ0 sin(4φP + 4φ1)

+ α1 sin(2φP+2φ1) + α2 sin(2φP+2φ1 − 2�φ)
]}

, (8)

where η = η(t) is the known modulated ellipticity, φP =
2πνPt is the phase of the rotation, �φ = φ2 −φ1 and φ1 and
φ2 are arbitrary phases of the angular azimuthal position of
the slow axis of the two plates. From this formula one can
see that the signal of the magnetic birefringence of vacuum
appears at a frequency νm ± 4νP, whereas the signals due to
imperfect wave plates should come at νm ±2νP. However, as
will be seen below, the α′s are not to be regarded as constant
quantities, as they depend on alignment and on optical and
geometrical properties of the wave plates, generating further
time dependencies in Eq. (8).

Before tackling the argument of the systematics, we want
to show that the method promises to give a signal-to-noise
ratio such that the measurement of the vacuum magnetic
birefringence can be carried out in a reasonable time. On
the signal side, we begin noticing that the presence of intra-
cavity optical elements limits the attainable finesse. In the
case we are discussing, this limit is given by the antireflec-
tive coating of the wave plates. The reflectivity of commercial
AR-coatings is RAR � 0.1%, but one may hope to obtain at
least a factor two better [57]. Identifying the cavity losses
with this residual reflectivity, taking into account the four
surfaces of the wave plates and neglecting the transmittance
of the mirrors, a conservative estimate for the amplification
factor NHWP is

NHWP = 2F

π
≈ 2

4RAR
= 500.
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Fig. 2 Geometry of a rotating wave plate traversed by a light beam.
The appropriate phase of the rotation has been chosen to have n̂1 in the
same plane as k̂ and ω̂; the dotted wave plate is drawn at �φ = π with
respect to the continuous line scheme

The experience of the PVLAS experiment reveals that the
shot noise has been reached in low finesse cavities [30–32].
Assuming that this will be true also in the present situation,
one can calculate the minimum laser power Pout,min needed to
maintain the integration time of Eq. (6) down to Tmin ≈ 105 s
(about one day):

Pout,min = e

q
[
NHWP ψ

(CERN)
0

]2
Tmin

≈ 50 mW,

a perfectly manageable value.
We note explicitly that Eq. (8) is written with the assump-

tion that Nα1,2 � 1, so as to have a well defined linear
polarisation between the cavity mirrors. In our case N ≈ 500,
hence α1,2 � 10−4. As this cannot be guaranteed by current
commercial wave plates (as will be verified in the follow-
ing), and given the temperature dependence of α [58], we are
developing a closed-loop temperature control system to keep
α within our requirements.

2.3 Systematics

2.3.1 The effect of angular alignment

Let us begin describing the rotation of a nominally flat
wave plate traversed by a laser beam. We consider a fixed
rotation axis not orthogonal to the plate and not coinciding
with the light beam. Referring to Fig. 2, we need to specify
three axes:

1. ω̂ is the rotation axis of the optical element; we assume
it time independent and defining the z axis, with origin
O on the first surface of the wave plate;

2. n̂1 and n̂2 are the local normals to the optical surfaces �1

and �2 of the wave plate at the positions where the light
beam intersects the two surfaces;

3. k̂ is along the incoming light beam forming a small con-
stant angle θk with ω̂.

We assume for now that k̂ intersects ω̂ on the first surface
of the wave plate in the (still) point O assumed as the origin
of the reference system. In this way one is only concerned
with the effect of angular misalignments. With the assump-
tions made, n̂1 precedes around the z axis forming with it the
constant angle θn1. Due to the rotation, the refracted and exit
directions k̂′ and k̂′′ oscillate; k̂′′ precedes around k̂ describ-
ing a truncated cone of semi-aperture approximately equal
to the wedge angle β of the plate; as the plates can be manu-
factured with β ≈ 1 µrad, in the present context this change
of direction is negligible and hence k̂ ‖ k̂′′ and n̂1 ‖ n̂2 ≡ n̂.

The components of the vectors above are:

ω̂ = (0, 0, 1),

k̂ = (sin θk, 0, cos θk),

n̂ = (sin θn cos φP, sin θn sin φP, cos θn),

where θn = θn1 and n̂ depends on time through φP(t). The
incidence angle θi is

cos θi = k̂ · n̂ = sin θk sin θn cos φP + cos θk cos θn .

The light path L inside the plate is written in terms of the
refracted angle θr :

L = D

cos θr
= D√

1 − sin2 θi

n2

≈ D

(
1 + sin2 θi

2n2

)
(9)

where D is the thickness of the wave plate. Note that for a non
perfect alignment the incidence angle θi depends on φP and
therefore Eq. (9) introduces further azimuthal dependences
in the extinguished intensity of Eq. (8). In fact, the above
expression has, besides a DC term, two Fourier components
at νP and 2νP of amplitude

LνP = D

4n2 sin 2θn sin 2θk,

L2νP = D

4n2 sin2 θn sin2 θk .

The small phase retardation errors of such a wave plate will
generate spurious signals in Eq. (8) given by

α = 2π

λ

∫
�n dz ± pπ = 2π�nL

λ
± pπ (10)

where the integral is performed along the light path inside the
wave plate, �nquartz ≈ 0.00874 at λ = 1064 nm [59] and p is
an appropriate odd integer. In our set-up the phase errors (10),
now containing frequency components at νP and 2νP, will
beat with the 2φP dependence of Eq. (8) to give components
at νP, 3νP and 4νP. This last component is indistinguishable
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from ψ0 and one must ensure that α2νP/4 � ψ0 or

π �n D

8n2λ
sin2 θn sin2 θk � ψ

(CERN)
0 ≈ 10−14,

where n ≈ 1.54 and we assume D ∼ 1 mm. The condition
above is then satisfied if θk, θn � 3 × 10−4 rad ≈ 1 arcmin,
which seems an easily reachable condition. With θn, θk ≈
3 × 10−4 rad, the ellipticity signals at νP and 3νP are instead
much larger, ≈ 5 × 10−7.

2.3.2 Intrinsic systematics

With the geometry described above one can study other spu-
rious effects. Let us note first that if the laser beam impinges
in O but the alignment is not perfect the beam describes on
�2 a minimal circumference �0 with radius r0

r0 ≈ D(sin θi − sin θr ) ≈ D

2
sin θi

n − 1

n

where θi varies during rotation between θk − θn and θk + θn .
With θn, θk ≈ 3 × 10−4 rad, r0 ≈ 5 × 10−8 m, an unmea-
surably small value. Hence, if the beam does not impinge on
the first surface exactly in O, the impact point of the beam
will describe a circle on the first as well as on the second
surface of the wave plate. Let us address the points of the
two curves with a transverse position vector �rφP rotating at
frequency νP. As both surfaces �1 and �2 suffer from slope
errors, the intrinsic thickness D in Eq. (9) becomes a func-
tion of the rotation angle φP: D = D(�rφP) and will contain
harmonics of φP. Furthermore, also �n will depend on �rφP .
The transverse gradient of �nD corresponds to the first φP

harmonic component given by

(�n D)νP
= �rφP · �∇(�n D)

= �rφP ·
[
D �∇(�n) + �β�n

]
, (11)

where �β = �∇D has amplitude the wedge angle of the plate.
A realistic estimate for the positioning error of the laser beam
with respect to the point O might be rφP ≈ 0.1 mm. Inserting
this value in the second term of the above Eq. (11) with D ≈
1 mm, �n = �nquartz = 0.00874 and β ≈ 10−5 one finds a
contribution to the variation of the optical path difference of
5 × 10−11 m, corresponding to an ανP ≈ 5 × 10−5 rad. This
first harmonic phase error will beat with the 2νP in Eq. (8)
generating harmonics in the ellipticity at νP and 3νP.

Higher order contributions can be envisaged according to
the (optical) symmetry of the surface encircled by the beam
path of radius rφP . The further the light beam moves away
from O, the larger is rφP , and hence the larger becomes the
first order contribution due to the global character of the term
�β�n; this is not necessarily the case for the higher order
terms.

In summary, the most general expression for the quantity
α of Eq. (10), which includes both what we referred to as

Fig. 3 Experimental set-ups: PDE: extinction photodiode; PDT: trans-
mission photodiode; λ/4: quarter-wave plate; PEM: photo-elastic mod-
ulator; ZWP: rotating zero-wave plate; HWP1,2: rotating half-wave
plates. The quarter-wave plate is inserted when rotation measurements
are performed

alignment and intrinsic effects, is

α(φP) = α0 + ανP cos φP1 + α2νP cos 2φP2 + · · · (12)

where, in order to allow for a different phase for each s-
component,

φPs = φP(t) + φs,0. (13)

In the expression (12) each term generates a spurious ellip-
ticity component corresponding to a well defined azimuthal
symmetry, with constant amplitude coefficients αsνP for fixed
θn , θk and rφP . However, below we will discuss a case in
which ανP is modulated at the frequency νP , thus mimicking
an extra second order component in α(φP). This is of par-
ticular interest because a second order dependence of α(φP)

produces a fourth harmonic when inserted in Eq. (8). This
component proves to be much larger than the one due to a
second order intrinsic defect of the wave plate.

3 Experimental set-up

The two experimental set-ups employed in the present
work are shown in Fig. 3. Both are simplified versions
(deprived of the cavity mirrors) of the original idea of a
polarimeter with two co-rotating half-wave plates [48,49]
depicted in Fig. 1c. The completion of the polarimetric
scheme with a Fabry–Perot cavity will be the object of a
future work. In the measurements we will present, the light
path will be either in air or in a controlled atmosphere
of a pure gas. The set-up makes use of the two identical
rotatable permanent magnet dipoles of the PVLAS exper-
iment [30–32]. Each of them generates a magnetic field
Bext = 2.5 T over a length LB = 0.82 m, with B2

extLB =
5.125 ± 0.040 T2m.

Panel (a) of Fig. 3 features a single nominally neutral rotat-
ing optical element (zero-wave plate). Two different zero-
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Fig. 4 A photograph of the rotation stage prototype. The optical ele-
ment is fastened at the near end of the device

wave plates have been used in turn: an uncoated glass plate
1 cm thick (GP) and an AR-coated optical assembly of two
crossed half-wave plates (CWP), 1.6 mm thick, with 6.5 λ

optical path difference per plate. Using these optical elements
no modulation of the magneto-optic effect takes place, the
set-up being apt to study the mere effects on the polarisation
due to the wave plate rotation and the relative systematics,
without the complications of the two co-rotating plates and of
the rotating polarisation. In this case, in fact, a static magnetic
field induces only a constant ellipticity.

In the (b) panel of the same figure two co-rotating half-
wave plates make the polarisation rotate inside the magnetic
region at a frequency 2νP. This modulates the ellipticity
induced by the magnetic birefringence of the gas inside the
magnets at a frequency νψ = 4νP. In this set-up the mag-
nets could be either still or rotating at a frequency νB . In this
latter case the frequency νψ of the effect is 4νP − 2νB or
4νP +2νB according to whether the magnet is rotating in the
same direction as the wave plates or in the opposite direction.

Note that in this configuration the defects of the two wave
plates accumulate and cannot be singularly identified. To
overcome this difficulty a frequency-doubled green laser is
planned to be implemented on the same light path as the
infrared one. To green light, in fact, a half-wave plate appears
as a full-wave plate, and only the deviations from the nomi-
nal retardation will count. By employing the green laser the
two wave plates can be rotated at different frequencies thus
allowing the characterisation of each optical element.

The home-made rotation stage employed in the present
work is shown in Fig. 4; two such devices have been realised.
The optical element is held at one end of a hollow cylindri-
cal shaft sustained by two self-aligning precision ball bear-
ings placed at a distance of ≈ 5 cm one from the other.
Each ball bearing is fastened to a 200 µm piezoelectric
xy linear translation stage (red-black “L” shapes in the fig-
ure) allowing dynamic fine adjustments of the rotation axis
both in translation and in tilt angle; maximum tilt angle is

±200 µm/5 cm ≈ ±4 mrad; the actual response of each
of the eight piezo channels has been dynamically calibrated
by optical means up to a few tens of hertz. The piezos are
supported by a xy θxθy positioning table equipped with five
independent long-travel M6 × 0.25 fine adjustment screws
(three vertical, two lateral). The table sits on the bottom of a
CF150 vacuum chamber.

The shaft of the rotation stage is driven by an 18-pole
brushless motor whose windings are visible in the figure:
the stator is fastened to the cage of one of the ball bearings
whereas the rotor is connected to the shaft. There is enough
play between the rotor and the stator for axis orientation.
The three phases of the motor are powered by three audio
current amplifiers driven by as many identical sine generators
at 120◦; in practice, most of the time only two of the three
channels were powered. Rotation frequencies of the plates
up to νP = 15 Hz have been used. Unlike commercial motor
drivers, no adjustment of the phase of the currents relative
to the instantaneous phase of the rotor is made. In this way
the system, although able to apply only a light torque on the
load, guarantees a long-term phase-locking of the rotation
with the waveform of the generators, all locked to a single
master clock. The same system was employed by the PVLAS
experiment to realise phase-controlled rotation runs lasting
longer than 106 s [30–32]. A 2.7 kg·cm2 copper fly-wheel,
visible in the picture, helps dampen the angular oscillations
of the load associated with the drive system thereby reducing
the instantaneous relative phase fluctuations of the two wave
plates. Unlike the case of the half-ton magnets, however,
these oscillations are not negligible and represent one of the
major issues of the set-up, heavily affecting the extinction,
as will be discussed below.

The light source is an NPRO 1064 nm Nd-YAG laser from
which a power P0 ≈ Pout ≈ P‖ ≈ 10 mW is extracted. The
polariser and the analyser are high quality Glan-Laser prisms
with extinction σ 2 � 10−7. The Photo-Elastic Modulator
adds to the beam polarisation a controlled ellipticity η0 ≈
10−2 modulated at νm ≈ 50 kHz. The extinguished power
P⊥ of Eq. (4) is collected by an InGaAs photodiode with
quantum efficiency q ≈ 0.7 A/W and is amplified with a
transimpedance G = 104 V/A.

The average relative phase of the two wave plates is easily
adjustable, allowing to reach extinction. Moreover, the abso-
lute position of the analyser has been chosen so as to min-
imise, at extinction, the sum of the two α0 terms of Eq. (12)
for the two wave plates. This operation had to be done only
once, as its result remains encoded in the position of the
analyser.

The alignment of the n̂ axis is obtained by probing a sur-
face of the rotating plates with a red laser diode (also visible in
Fig. 4), observing the movements of the ≈ 45◦ reflected beam
with a position sensitive photodiode and acting on the retain-
ing ring of the optical element which is able to slightly tilt
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Fig. 5 A typical demodulated ellipticity spectrum of the optical zero-
wave GP rotating at νP = 6.5 Hz. The black triangles mark the first four
harmonics of this frequency. A Hanning window and an 8 s integration
time have been used; effective time due to the windowing is 5.3 s

this axis; in this way the wobble of the reflected beam can be
reduced to about 1 mm at a distance of ≈ 1 m. The alignment
of the laser beam is obtained observing the back-reflection
from the surface of the plates and minimising the incidence
angle θi by fine adjusting the position of the whole assem-
bly of the rotator. Also in this case a precision of ≈ 1 mm
over 1 m was obtained. The two alignments are not accurate
enough for the future experiment at CERN, but do guaran-
tee that the spurious signals observed in the context of the
present work cannot be attributed to angular misalignments.

4 Results and discussion

4.1 Rotating zero-wave plates

Figure 5 shows a typical frequency spectrum of the elliptic-
ity given by Eq. (5), obtained demodulating the PDE signal
at the modulation frequency νm of the PEM. The spectrum
has been measured in the geometry of Fig. 3a with the GP
assembly constituting a zero-wave plate rotating at a fre-
quency νP = 6.5 Hz. The spectrum obtained using the CWP
assembly is much the same. All the features of the spec-
trum are unwanted spurious signals. Nonetheless, whereas
the appearance of the first three harmonics was expected, the
presence of the fourth harmonic is a serious threat for the pro-
posed polarimetric method. In the following we discuss all
the signals and propose a workaround solution to this threat.

4.1.1 The 2νP structures

The spectrum in Fig. 5 is dominated by the ψ2νP peak at the
frequency 2νP = 13 Hz, which is due to a small residual
static optical path difference of the nominally neutral plate
[α0 of Eq. (12) inserted into Eq. (8)]. From the ψ2νP value

one deduces the value of this optical path difference

�D =
∫

�n dz = λ

π
ψ2νP ≈ 0.5 nm.

This value approximately holds for both the rotating optical
elements employed: for the optical glass GP it corresponds
to a birefringence averaged over the 1 cm thickness of the
element of �nGP ≈ 5×10−8, whereas for the CWP assembly
it defines an effective thickness error of

�DCWP = λ

π�nquartz
ψ2νP ≈ 40 nm.

The value of ψ2νP ≈ 1.5 × 10−3 corresponds to an equiv-
alent α ≈ 3 × 10−3. Given a desired value of the cavity
amplification factor N ≈ 500 this results in a total elliptic-
ity � 1 and therefore an undefined polarisation between the
Fabry–Perot mirrors. For this reason the amplification with
the Fabry–Perot cavity is not included in this paper.

On the two sides of the 2νP peak, about hundred times
smaller than the central peak, two broad bumps can be seen
which do not originate from the optics, but instead from the
mechanics. As said before, the rotation is driven by a three-
phase fixed-frequency sinusoidal current. The angular posi-
tion of the rotor oscillates chaotically around the nominal
value φP(t) = 2πνPt . The two broad features are generated
by the modulation of the ellipticity at 2νP. The oscillation
spectrum is determined by the inertia of the load and the
stiffness due to the current intensity in the stator. By playing
with these two ingredients the position of the bumps can be
moved farther or closer to the central peak.

4.1.2 The νP and 3νP harmonics

As far as the νP and 3νP peaks are concerned, they are of
order 10−5 as discussed in Sect. 2.3.2. There we assumed
the two peaks derived from the beating of the νP component
of Eq. (9) and the 2νP dependence of Eq. (8); as a conse-
quence, the two side-bands should have the same amplitude,
which is clearly not the case. Moreover, the amplitude and
the ratio of the two peaks vary with the positioning of the
plate. We postulate therefore the existence of at least one
more effect synchronised with the rotating plate but not orig-
inating from the plate itself. This could be a modulation of
the direction of the beam emerging from the rotating plate,
coupled with a birefringence map inside the ellipticity mod-
ulator. This effect would sum vectorially (in amplitude and
phase) with the ellipticity component at νP, making it differ-
ent from the 3νP component. This would explain the differ-
ent amplitudes of the two peaks and their dependence on the
alignment.
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Fig. 6 Demodulated ellipticity spectra of the non-rotating 1 cm thick
optical zero-wave GP oscillating laterally by ±30 µm at νT = 23 Hz.
Two orthogonal directions of oscillations are shown, one of them giving
a minimum response at the modulation frequency

4.1.3 The 4νP signal

Let us now discuss the peak at 4νP in Fig. 5. We will show that
it originates from a transverse oscillation of the rotation axis
coupled with the gradient of the optical path difference of the
rotating plate: in this condition, the quantity ανP in Eq. (12)
acquires a time dependence at the rotation frequency.

Consider the ellipticity spectrum of Fig. 6 for which the
glass plate is non rotating and, instead, is oscillating transver-
sally at νT = 23 Hz with an amplitude rφ1,0 = 30 µm by
means of a synchronous displacement of the two parallel
piezo stages. In this way the impact point of the laser beam
on the surface of the plate moves back and forth. We note
explicitly that, as expected, a modulation of the incidence
angle θi without modulation of the impact point is found
to produce no apparent response in the ellipticity spectra.
Two spectra are shown in the figure: the first corresponds to
the direction of oscillation which minimises the ellipticity
response at the modulation frequency (black) and the sec-
ond to the orthogonal direction (red) generating an ellipticity
amplitude ψ(νT) ≈ 10−5. This latter is hence the direction
of the gradient of the optical path difference of Eq. (11) and
one can write
π

λ
�rφ1,0 · �∇(�n D) = ψ(νT) ≈ 10−5

where φ1,0 is the azimuthal phase of the gradient [see
Eq. (13)]. Hence∣∣∣ �∇(�n D)

∣∣∣ =
∣∣∣�β�n + D �∇(�n)

∣∣∣ ≈ 10−7. (14)

An identical behaviour and similar spectra have been
obtained for the CWP assembly. The interpretation of the
spectra is however slightly different in the two cases: for the
glass plate, with �nGP ≈ 5 × 10−8, the first term of the gra-
dient in Eq. (14) is too small to play a role in the observed
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Fig. 7 Demodulated ellipticity spectra of the zero-wave GP rotating
at νP = 6.5 Hz. The black triangles mark the first four harmonics of
this frequency. The spectrum with the highest fourth harmonics peak
has been recorded while modulating the transverse position of the plate
at the frequency νP by ±30 µm, with the right phase to maximise the
response. For the lowest peak spectrum the modulation has the opposite
phase and a 15 µm amplitude. The intermediate peak spectrum has no
modulation (see Fig. 5)

peak given that β ∼ 10−5 rad; from the second term one
finds a value for the transverse gradient of the birefringence,
averaged along the optical path of the light

| �∇(�nGP)| ≈ 10−5 m−1.

For the CWP assembly, instead, both terms in Eq. (14)
might contribute: the first term alone would give β ≈ 10−5,
whereas the second term alone would give | �∇(�nquartz)| ≈
6 × 10−5 m−1.

The combined effect of �∇(�n D) and an axis oscillation
during rotation is shown in Fig. 7. In this figure three elliptic-
ity spectra of the rotating zero-wave GP are shown. While the
plate rotates, its transverse position is modulated sinusoidally
at the frequency of rotation. From the figure it is apparent that
this modulation visibly affects only the fourth harmonic. The
phase and amplitude of the modulation can be chosen so as to
make the peak amplitude larger (green) or to cancel it (black).
This behaviour proves what we anticipated: the fourth har-
monic peak in Fig. 5 is due to a transverse oscillation of the
rotation axis synchronous with the wave plate rotation. We
attribute this modulation to ∼ 10 µm mechanical tolerance
of the ball bearings coupled with the transverse gradient of
the optical path difference through the optical element.

In Fig. 8 we report a calibration of the 4νP elliptic-
ity component generated by the axis transverse modula-
tion at the rotation frequency as a function of amplitude,
using the CWP assembly. The phase of the modulation is
chosen to be the phase φ1,0 of the wedge so as to max-
imise the induced ellipticity. A linear fit indicates a slope
of ψ4νP/rφ1,0 ≈ 2 × 10−8 µm−1. The same calculations on
the data of Fig. 7, considered linear, would give ψ4νP/rφ1,0 ≈
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Fig. 8 Induced ellipticity 4νP as a function of the modulation ampli-
tude of the rotation axis at νP = 6.5 Hz (with the phase φ1,0 set for
maximum ellipticity) for the zero-wave CWP assembly. Superimposed
is a linear fit indicating a slope ψ4νP /rφ1,0 ≈ 2 × 10−8 µm−1

10−7 µm−1. Therefore considering the value to be measured
in the expected conditions at CERN, reported in expression
(7), a requirement for the transverse oscillation of the rotation
axis ensues:

r (CERN)
φνP

� 10−12 m, (15)

an unreasonable value to control. The appearance of this spu-
rious signal represents a serious threat for the possibility of
measuring very small birefringences with the method pro-
posed in Refs. [48,49]. In the next section, where birefrin-
gence measurements are presented, a possible workaround
will be described.

We note explicitly that the same fourth harmonic could
be associated to the term α2νP of Eq. (12). However, unlike
the first order term, the second and higher order terms imply
the existence of a center of symmetry we never observed.
Moreover, higher order terms would not be able to produce
the behaviour shown in Fig. 7.

4.2 Two rotating half-wave plates

In this section we present the birefringence measurements
taken with the polarimeter of Fig. 3b. The new polarimetric
scheme has been tested with the Cotton–Mouton effect [27].
This effect is analogous to the vacuum magnetic birefrin-
gence described by Eq. (2), but is far more intense already
at low gas pressures. The birefringence generated in a gas at
pressure P by a magnetic field Bext is given by the expression

�nCM = �nuB
2
extP

where �nu is a unitary birefringence usually expressed in
tesla−2atmosphere−1.
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Fig. 9 Cotton–Mouton ellipticity spectrum of air obtained with the
rotating wave plates polarimeter. The two spectra have been recorded
with the magnetic fields of the two stationary dipole magnets oriented
parallel (red) and orthogonal (black) to each other. A uniform window
and 10 vector averages lasting 8 s each have been used

4.2.1 Measurements with a static magnetic field

In Fig. 9 two ellipticity spectra of air at atmospheric pres-
sure are shown, taken with the two PVLAS dipole magnets
kept stationary and oriented either parallel or orthogonal to
each other. In this second case the ellipticity acquired by the
polarisation inside one magnet is canceled by the effect of the
other, leaving at the frequency 4νP only the effect of the sys-
tematic. The vector difference (in amplitude and phase) of the
two 4νP signals is thus a measurement of the Cotton–Mouton
effect in air at 1 atm. The value obtained is compatible with
the known values of the Cotton–Mouton constants of nitro-
gen and oxygen and their stoichiometry. We conclude that
the method of Refs. [48,49] works in principle. However,
the coincidence in frequency of the Cotton–Mouton signal
with the above mentioned systematic effect makes the mea-
surement of Fig. 9 viable only for large signals, but certainly
not for the vacuum magnetic birefringence.

4.2.2 Measurements with a slowly modulated magnetic field

A possible workaround for the systematic described above
is shown in Fig. 10 where two Cotton–Mouton ellipticity
spectra are compared both obtained with one of the PVLAS
dipole magnets in rotation. In the first case (red plot) the half-
wave plates are rotating at νP = 6.5 Hz with the PVLAS
magnet rotating at ν

(red)
B = 0.5 Hz in the same direction. In

this case the Cotton–Mouton effect is found at the frequency
νψ = 4νP − 2ν

(red)
B = 25 Hz. In the second case (black plot)

the half-wave plates were stationary and the PVLAS magnet
was rotating at ν(black)

B = 1.0 Hz. In this second case the only
signal in the spectrum is the Cotton–Mouton effect at νψ =
2ν

(black)
B = 2 Hz. Note that the amplitude of the Cotton–
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Cotton-Mouton

Fig. 10 Cotton–Mouton ellipticity spectra of air at atmospheric pres-
sure. The two spectra have been recorded with one dipole magnet rotat-
ing. For the red spectrum the wave plates also rotate at νP = 6.5 Hz.
The black triangles mark the first four harmonics of this frequency. A
Hanning window and 10 vector averages lasting 8 s each have been
used; effective time due to the windowing is 5.3 s/average

Mouton signals is the same in the two spectra, indicating
that a modulation of the magnetic field effectively separates
the magnetic birefringence from the spurious signal. Also
notice the difference in the noise levels in the flat regions.
This is due to the relative angular fluctuations of the two
rotating half-wave plates and will be discussed in detail in
Sect. 4.2.4.

This new scheme (namely the one with slowly rotat-
ing magnets) was further tested by measuring the Cotton–
Mouton effect in pure nitrogen gas at T = 296 ± 1 K. The
measurements were preceded by an absolute calibration of
the polarimeter by measuring the polarisation rotation sig-
nals (hence with the quarter-wave plate of Fig. 3b inserted)
as a function of different input polarisation directions, mea-
sured by an encoder having about 1 µrad resolution. The
data were taken by spanning an input polarisation direction
range of 8 mrad. The measured values obtained by apply-
ing Eq. (5) were fitted with a linear function, resulting in a
0.9718±0.0024 slope with a χ2/d.o.f. = 21.3/19. We used
this slope value as a normalisation factor for the polarimet-
ric measurements; the slope differs from unity for several
reasons: uncertainty on the absolute Pout power, incomplete
light collection on the photodiode, uncertainty on the photo-
diode quantum efficiency, differences in the calibrations of
the νm and 2νm lock-in amplifiers, etc.

In the nitrogen Cotton–Mouton measurements, the two
wave plates were rotating at νP = 10.5 Hz and the two
magnets were rotating in the opposite direction with respect
to the wave plates at the frequencies νBα = 0.125 Hz and
νBβ = 0.5 Hz. This generates an ellipticity spectrum hav-
ing peaks at 4νP = 42 Hz, 4νP + 2νBα = 42.25 Hz and
4νP + 2νBβ = 43 Hz. The measurements taken at the pres-
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Fig. 11 Ellipticity spectra of the magnetic birefringence of six dif-
ferent pressures of nitrogen gas taken with the wave plates rotating
at νP = 10.5 Hz and the magnets rotating at νBα = 0.125 Hz and
νBβ = 0.5 Hz
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Fig. 12 Global linear fit of the 4νP + 2νBα and 4νP + 2νBβ ellipticity
data of Fig. 11 as a function of the gas pressure. Fit parameters are:
(3.555 ± 0.010) × 10−9/mbar slope, (10 ± 5) × 10−9 intercept and
χ2/d.o.f = 9.4/10. The statistical 1σ uncertainty for each data point
is σψ = 1.3 × 10−8

sures 25.0, 51.7, 100, 200, 500 and 1000 mbar can be seen
in Fig. 11, where the spectra of the different pressures are
superimposed with different colors. It is apparent that the
4νP peak does not depend on pressure, whereas the signals
at 4νP + 2νBα and 4νP + 2νBβ are identical to each other
and scale with pressure. Around the 43 Hz peak two side
bands can be seen at the higher pressures due to a slow
oscillation of the phase of the faster rotating magnet around
the central value φBβ(t) = νBβ t , due to the driving tech-
nique. The standard deviation of the integrated noise floor is
σψ = 1.3 × 10−8.

Figure 12 shows the global linear fit of the amplitudes of
the 4νP + 2νBα and 4νP + 2νBβ signals as a function of the
gas pressure resulting in (3.555±0.010)×10−9/mbar slope,
(10 ± 5) × 10−9 intercept and χ2/d.o.f = 0.94 (statistical).
All the points have been fitted by a single line. The slope of
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the line corresponds to

�nu =(2.380 ± 0.007(stat) ± 0.024(sys))×10−13 T−2atm−1

which is the most precise measurement of the unitary bire-
fringence of nitrogen [27,60–62]. The systematic uncertainty
dominates and is estimated as

σ (sys) =
√√√√[

2�T

T

]2

+
[
�(B2

extLB)

B2
extLB

]2

where T is the absolute nitrogen gas temperature and �nu ∝
T−2. Note that the fit gives a small 2σ intercept when one
would have expected it to be zero. At present we do not have
an explanation for it, but setting it to zero changes the slope
only by 4�.

4.2.3 Line shape of the spurious signal at 4νP

To consider the modulated field strategy as a possibility for
measuring the vacuum magnetic birefringence induced by
an LHC superconducting dipole magnet one has to guar-
antee that the noise at the frequency where the ellipticity
signal due to the field modulation appears as a side band
of the spurious 4νP peak is dominated by the shot noise.
One is led then to study the line shape of the 4νP spurious
signal. Unlike the PVLAS magnets, an LHC dipole cannot
be easily modulated. The simplest way is to ramp the cur-
rent up and down, which would generate two symmetrical
peaks around the spurious one. Given the inductance of an
LHC dipole of LLHC ≈ 100 mH, a maximum current of
ILHC = 13,000 A and a maximum power supply voltage of
about Vmax = 60 V [63] the maximum modulation frequency
will be about 7 mHz. If the tails of the spurious signal extend
beyond this value the sensitivity will be compromised. A
conclusion on this issue will only be possible at CERN with
the complete polarimeter. A preliminary measurement has
been done with the polarimeter of Fig. 3b (hence without
the Fabry–Perot) showing a SNR of ≈ 300 without apparent
structures above 0.12 mHz. This result is shown in Fig. 13.

4.2.4 Rotation measurements

We note that the noise level in the apparatus is at the moment
high and far from shot noise. In fact the dynamical angu-
lar position errors of the two stages limit the extinction and
hence the sensitivity of the apparatus. A measured value
for the extinction coefficient is P⊥/Pout ≈ 3.5 × 10−3,
dominant over the intrinsic extinction ratio of the polaris-
ers σ 2 � 10−7 and over η2

0/2 � 10−4. Given the Relative
Intensity Noise of the laser at the νm modulation frequency
RIN(νm) = 10−6/

√
Hz and η0 ≈ 10−2, the expected sensi-
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Fig. 13 Spurious ellipticity signal at 4νP = 42 Hz
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Fig. 14 Demodulated rotation spectrum obtained with the quarter-
wave plate inserted in the scheme of Fig. 3b and the half-wave plates
rotating at νP = 6.5 Hz. Integration time 8 s, Hanning window. The rms
rotation value is ≈ 5◦

tivity above ≈ 30 Hz is [31]

Sψ ≈ RIN(νm)
P⊥/Pout

η0
= 3.5 × 10−7/

√
Hz

in agreement with the integrated values in Fig. 10, red spec-
trum, of about Sψ/

√
53 s ≈ 5 × 10−8. From this figure it is

also apparent that the noise of the spectrum obtained with the
rotating wave plates is almost an order of magnitude higher
than the spectrum with still wave plates.

In Fig. 14 a rotation spectrum is presented measured
with the polarimeter of Fig. 3b. A pronounced broad fea-
ture peaking at about 0.05 rad is observed at a frequency
ν ≈ 3 Hz due to the angular oscillations of the two rotating
wave plates. It is apparent that this feature reproduces the
two broad side-bands appearing in Fig. 7. In fact, as Eq. (8)
shows, if the phases φ1 and φ2 of the two wave plates are
not constant, there will be a rotation noise in the polarisa-
tion. This rotation noise manifests itself as side bands struc-
tures of the 2νP peak in all of the ellipticity spectra shown
before, both of the zero-wave plate and of the two half-wave
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plates, with the structures depending on the rotational iner-
tia and on the current intensity in the motor windings. The
resulting rms value of the rotation noise Sϕ corresponds to

�ϕrms =
√∫ |Sϕ |2 dν ≈ 5◦ in agreement with the measured

extinction coefficient: �ϕ2
rms/2 ≈ P⊥/Pout.

5 Conclusions

We have tested a new polarimetric method we intend to use in
an apparatus to measure the vacuum magnetic birefringence
by employing the quasi static field generated by a LHC spare
steering magnet. The method is based on the 1979 design
by Iacopini and Zavattini [33] and modulates the ellipticity
signal by using two co-rotating half-wave plates we plan to
place inside a Fabry–Perot cavity [48,49].

The present study has put in evidence an unbeatable spu-
rious signal which imposes a modification of the original
scheme in order to measure the vacuum magnetic birefrin-
gence. A workaround has been devised and tested: the bire-
fringence effect should be modulated by slowly varying the
magnetic field. We have verified that in this way the spuri-
ous and the birefringence signals are separated. The method
has been validated with a high precision measurement of
the Cotton–Mouton effect in nitrogen gas. In the case of
the superconducting LHC dipole the modulation should be
obtained by slowly ramping the current.

A few issues remain to be clarified. If the current of a
LHC magnet can be ramped at a frequency νM ≈ 5 mHz,
one has to verify that the line shape of the spurious signal
has no structures beyond νM down to the level of the vacuum
birefringence. Since the line shape depends on the design,
the implementation and the mechanical stability of the rota-
tion stages, an improved rotation stage should result in a
smaller spurious signal. The polarimeter described in this
paper also suffers from the synchronisation errors of the two
rotation stages. In fact, the two stages rotate synchronously
only on average, whereas the rms error has been measured
to be ≈ 5◦. The extinguished power deviates from zero with
marked oscillations whose effective value correspond to an
extinction coefficient P⊥/Pout ≈ 3.5 × 10−3. In this condi-
tion the intensity noise of the laser largely prevails on shot
noise. Moreover, the possibility of rotation measurements is
heavily impaired.

To finalise the VMB@CERN apparatus we will have to
implement the Fabry–Perot cavity. To this end it is indispens-
able to control the phase retardation error of the wave plates.
This will be done by regulating the temperatures of the wave
plates.
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