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Abstract. This paper presents a free vibration analysis of functionally graded material (FGM) plates that are partially 

submerged in an incompressible, inviscid fluid. The FGM plates with four gradient types of continuously varying 

material properties along the thickness direction, including the power law, exponential, sinusoidal and cosine forms, 

are studied to examine various distributions of material properties. The plate is modeled based on the Mindlin Plate 

Theory (MPT), and the fluid loading effect on the FGM plates is modeled using the method of added mass. The 

variational principle is applied to derive the governing equations of this fluid-plate interaction system. The differential 

quadrature (DQ) method is used to solve this problem by converting the governing equations into a system of linear 

equations. The fundamental frequency and the corresponding mode shape are obtained using an iterative procedure. 

Numerical results for several examples are obtained and presented to investigate the vibration characteristics of the 

submerged FGM plates in terms of the gradient index, gradient type, immersed depth, fluid density, aspect ratio and 

slenderness ratio. Results indicate that the larger aspect ratio and immersed depth increase the fundamental frequency 

of the FGM plate, while larger gradient index, fluid density and slenderness ratio decrease the fundamental frequency. 

Among four different material gradient types, the FGM plate with power law type gradient has the smallest 

fundamental frequency, while the one with sinusoidal form has the largest value. The mode shape in fluid deviates 

from that in vacuum and shows an unsymmetrical shape for CCCC and SSSS FGM plates. 
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1. Introduction 

Functionally graded materials (FGM), which are one of the most advanced inhomogeneous composites and have 

attracted broad engineering applications, are characterized by their mixture of continuously varying distributions of 

components with different distinct properties. FGMs are usually made from the metals-ceramics mixture, of which the 

material properties are allowed to vary continuously, such as Poisson’s ratio, mass density and elastic modulus 

described by the power law distribution, exponential distribution, etc. [1,2]. FGMs take advantage of the different 

materials to maintain structural integrity, such as metals with strong mechanical performance, ceramics with high 

thermal resistance, and so on [3]. With the increasing maturity of advanced material manufacturing technology, the 

FGMs have been extensively applied in various industrial sectors, such as aerospace, automobile, biomedical 

engineering, and civil engineering [4,5]. 

Plate structures have received wide engineering applications in many fields, such as architecture, aviation, 

shipbuilding and so on. Several plate theories [6–8] have been developed by researchers to model the mechanical 

behaviors of plates under various loading cases and boundary conditions. The Kirchhoff plate theory [8,9] is 

introduced to model the mechanical behaviors of thin plates with an assumption that straight lines normal to the 

middle surface remain straight and normal to the deformed middle surface during deformation, and thus only 

considering the bending deformation and stretching deformation. This thin plate theory often overestimates the natural 

frequencies of the moderately thick plates because the shear deformation effect is not negligible for thick plates. 

Consequently, considering the shear deformation effect is necessary in the modelling and analysis of moderately thick 

plates. The plate theories considering the shear deformation effect, such as the Mindlin plate theory [10] and the 

Reddy plate theory [11], were proposed to establish relatively precise models for moderately thick plates. 

Based on these plate theories, the mechanical behaviors, such as bending [12–14], vibration [15–18], buckling 

[19–22] and dynamic stability [23,24], of moderately thick plates have been well studied in many previous research 

works. For example, the vibration problems of FGM plates have been extensively investigated by many research 

works either theoretically or numerically [25–30]. An exact solution for the vibration of the rectangular FGM plates 

was derived by Hosseini-Hashemi et al. [31]. Kim et al. [32] presented a frequency analysis of FGM plates using the 

Ritz method and the ultraspherical polynomials as the shape functions. Wang and Shen [33] analyzed the vibration of 

FGM nanoplates with reinforced composites. Zhao et al. [34] performed the vibration analysis of FGM Mindlin plates 

using the kernel particle method and the Ritz method. These research works mentioned above only focused on the 

vibration behavior of FGM plate in vacuum, namely without any fluid loadings. Nevertheless, the study of FGM 

plates in fluids remains importance due to its broad engineering applications in shipbuilding, biomedical devices and 
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aerospace structures. Farsani et al. [35] analyzed the vibration behavior of functionally graded porous plates, only one 

side of which is contact with fluid, using the Ritz method. Thinh et al. [36] examined the vibration characteristics of a 

horizontal FGM rectangular plate in fluid using the Navier’s approach. 

Extensive analyses for the vibration of homogeneous plate structures in fluid environment have been carried out 

due to its wide applications in ocean engineering, biomedical engineering, and aerospace engineering. In these 

research works, different fluid properties including the compressible and incompressible fluid [37–40], viscid and 

inviscid fluid [41–44], are considered. Up to date, most studies on the plate-fluid coupling system mainly focused on 

the ideal fluid for the purpose of simplifying the theoretical analysis procedures. Canales and Mantari [45] presented 

the vibration analysis of Mindlin plates in fluid using the Ritz method and validated by 3D finite element method. The 

vibration of Kirchhoff plates contacted with water was studied by Zhou and Cheung [46]. Omiddezyani et al. [47] 

performed the vibration analysis of Mindlin microplates contacted with fluid. They studied both bulging modes and 

sloshing modes due to the existence of deformation effect and sloshing effect of fluid. Khorshidi et al. [48] 

theoretically and experimentally analyzed the vibration of a Kirchhoff plate in fluid using the Ritz method and the 

acoustic testing method, respectively. Using the digital laser vibrometer, Bochkarev et al. [49] experimentally measured 

the nature frequencies of rectangular plates vibrating in a fluid. Up to now, vibrations of FGM structures partially 

immersed in fluid have been rarely studied in the field of fluid-plate interaction. However, these analyses are 

necessary for the design of structures partially immersed in fluid, such as shipbuilding, sensors, bio-MEMS, etc. 

This paper analyzes the free vibration of rectangular Mindlin FGM plates interacted with fluid. The gradient 

variation of the FGM plate along the thickness direction is considered, and different gradient types of FGM plates are 

discussed. The fluid effect is modeled as an added mass to the vibrating plates. The linear governing equations of 

discretized form are obtained using the DQ method. An iterative procedure is applied to obtain the numerical solutions 

for the fundamental frequency and the mode shape. The fluid-loading influences in terms of the gradient index, 

gradient type, fluid density, slenderness ratio and aspect ratio on the vibration characteristics of FGM plates are 

studied using the present modelling method and discussed. 

 

2. Formulation 

In Fig. 1, a rectangular FGM plate with thickness h0, height Lx and width Ly is vertically and only partially 

immersed into a fluid with a depth L1. Fig. 1 shows a schematic diagram for the spatial geometry of this plate and its 

xOz section immersed in a fluid within the Cartesian coordinate system Oxyz. The FGM plate is made of a 

metal-ceramic mixture with 100% of metal and 100% of ceramic on the left and right surfaces, respectively. The 
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variation of material properties is continuous and smooth along the z-axis with four gradient types, namely the power 

law, exponential, sinusoidal and cosine forms. The FGM plates mainly analyzed by the power law form and other 

forms are given for comparison in the discussion. The Young’s modulus E(z), Poisson’s ratio (z) and mass density (z) 

of the power law form are computed as [50], 
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where n is the gradient index; subscripts a and b refer to the physical quantity of metal at z = −h0/2 and ceramic at z = 

h0/2, respectively. 

 

Fig. 1. An FGM plate Schematics in fluid. 

2.1 Hydrodynamic pressure 

In this fluid-plate coupling system, we assume an ideal fluid, which is irrotational, incompressible, and inviscid. 

Therefore, the damping effect and the sloshing effect of the fluid are ignored in this study. The velocity potential of 

fluid domain φ is satisfied the following Laplace’s equation [46] as, 
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where W1(x, y, t) = Y1(x, y)T(t) is the out-of-plane immersed deflection of FGM pates, and Y1(x, y) corresponds to its 

amplitude; t is the time. Eq. (5c) is the continuity condition of velocity at the fluid-plate interface. Using the method of 

separation of variables, the solution of φ induced by the vibration of rectangular plate is expressed as [46], 
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Using the Bernoulli’s equation [51,52] 
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the hydrodynamic pressure on any point P of the plate is solved. For FGM plates which contacted with fluid on one 

side, the resultant hydrodynamic pressure Pc projected on the z-axis is formulated as, 
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and for FGM plates which contacted with fluid on both sides, the hydrodynamic pressure Pc becomes, 
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Note, Θ1 (x, y) and Θ2 (x, y) are the effective added masses on rectangular plates that caused by the fluid pressure for 

FGM plates contacted with fluid on one and two sides, respectively. Herein, Θ1 (x, y) and Θ2 (x, y) are dependent on 

the fluid density, immersed depth, plate characteristic scale and its vibrational modal. 

 

2.2 Vibration of FGM plates 

With the Mindlin plate theory [12], the displacements of FGM plates along x-, y- and z- axes are expressed as, 

respectively, 
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t) and Ψy(x, y, t) are the cross-sectional rotations about the x- and y- axes of lines normal to the middle plane before 

deformation. The nonzero components of strain are expressed as, 
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The stresses are derived from the constitutive equation of stress-strain relationship 
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The stiffness components and inertia terms are defined as 
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where the shear correction factor of the FGM plate κ = 5/6. Indeed, for FGM plate, the shear correction factor is also 

function of z, and can be accurately expressed as 
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2 /12  is well accepted as 

the approximate value of the shear correction factor for FGM beams and plates with the rectangular cross section. 

Therefore, it is reasonable to used value 5/6. 

The potential energy ΠS of this plate-fluid coupling system is: 
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The kinetic energy ΠT is: 
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F(x, y, t) is the fluid-loading force, which is interacting with the resultant hydrodynamic pressure Pc(x, y, t) for 
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rectangular FGM plates. The work of fluid force ΠF is: 
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Θ(xi, y) is the added mass of FGM plates, which is replaced by Θ1(xi, y) and Θ2(xi, y) given by Eq. (10) for FGM plates 

contacted with fluid on one and two sides, respectively; x1[0, L1] and x2[L1, Lx] corresponds to the bottom and top 

sub-plate separated by the free surface of fluid, respectively.  

Applying the Hamilton’s principle,  
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the governing equations of the plate-fluid system are obtained using the method of integration by parts  
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where subscripts i = 1 and i = 2 represent the corresponding physical quantities on the bottom and top sub-plate 

separated by fluid free surface, respectively. The boundary conditions of FGM plates require 
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i yi xi xyi

yi yyi

U N V N

W Q Ψ M

Ψ M

= = = =

= = = =

= =

                    (27) 
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at 0 and yy y L= = ; 

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2

1 2 1 2

, ,  ,  

,  ,  ,

,   ,

,  ,   

x x y y x x

xx xx xy xy

xx xx xy xy

U U V V W W

Ψ Ψ Ψ Ψ Q Q

N N N N

M M M M

= = =
= = =

= =

= =

                           (28) 

at 
1 1.x L=  

The following non-dimensional parameters are introduced: 

0

1 2 1
1 2

1 1

( , , )
( , , ) ,  ( , ) ( , ),  

( , , ) , , ,  = ,

i i i
i i i xi yi xi yi

x x y

U V W
u v w ψ ψ Ψ Ψ

h

x x L x yζ ζ ζ ξ
L L L L L

= =

 −
=  − 

                     (29a) 

( )

1 1 1 1
1 2 0 1 2

0

11 12 66 1 1
11 12 66 1 2

110

( , , ) ( , )
( , , ) ,  ( , ) ,

( , , ) ( , )
, , ,  ( , ) ,

x x x

x

x

y

L L L L L L Lη η η g g
h L

A A A L L L
a a a λ λ

A L

− −
= =

−
= =

                (29b) 

( )

( )

11 12 66 1 2
11 12 66 1 2

110 0 10

11 12 66 10
11 12 66 2

110 0 110

( , , ) ( , )
, , ,   ( , ) ,

( , , )
, , ,  Ω ,

f f

x

B B B Θ Θ
b b b m m

A h I

D D D I
d d d ω L

A h A

= =

= =
                 (29c) 

( ) 3 1101 2
1 2 3 2

10 10 0 10 0 10

, , , , ,  ,
x

I AI I t
I I I τ

I I h I h L I

 
= = 
 

                      (29d) 

where I10 and A110 are equal to I1 and A11 of homogeneous plates, respectively; η0 defines the slenderness ratio; mf1 and 

mf2 are normalized added mass of FGM plates contacted with fluid on one and two sides, respectively; g1 represents 

the dimensionless immersed depth; ω corresponds to the dimensionless form of the angular frequency Ω. 

The dimensionless forms of Eqs. (21)-(25) are 

22 2 2

11 11 12 66 12 662 2

2 2 2 2
2 2 2

66 66 1 22 2 2 2

( ) ( )

,

yii xi i
i i

i i i i

i xi i xi
i i i

ψu ψ v
a b λ a a λ b b

ζ ζ ζ ξ ζ ξ

u ψ u ψλ a λ b g I I
ξ ξ τ τ

  
+ + + + +

     

    
+ + = +     

                    (30) 

22 2 2

66 66 12 66 12 662 2

2 22 2
2 2 2

11 11 1 22 2 2 2

( ) ( )

,

yii i xi
i i

i i i i

yi yii i
i i i

ψv u ψ
a b λ a a λ b b

ζ ζ ζ ξ ζ ξ

ψ ψv vλ a λ b g I I
ξ ξ τ τ

  
+ + + + +

     

   
+ + = + 

     

                    (31) 
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2 2 2
2 2

66 12 2 2
( , ) ,

yii xi i i
i i i i i f i

i i i i

ψw ψ w wκa η η λ λ g I m ζ ξ
ζ ζ ξ ξ τ

     + + + = +        
                 (32) 

22 2 2 2
2

11 11 12 66 12 66 662 2 2

2 2 2
2 2 2

66 66 2 32 2 2

( ) ( )

,

yii xi i i
i i i

i i i i

xi i i xi
i i xi i i

i

ψu ψ v u
b d λ b b λ d d λ b

ζ ζ ζ ξ ζ ξ ξ

ψ w u ψλ d κa η ψ η g I I
ξ ζ τ τ

   
+ + + + + +

      

      
+ − + = +        

               (33) 

       

22 2 2 2
2

66 66 12 66 12 66 112 2 2

2 22
2 2 2

11 66 2 32 2 2

( ) ( )

,

yii i xi i
i i i

i i i i

yi yii i
i i yi i i

ψv u ψ v
b d λ b b λ d d λ b

ζ ζ ζ ξ ζ ξ ξ

ψ ψw vλ d κa η ψ η g I I
ξ ξ τ τ

   
+ + + + + +

      

    + − + = +         

               (34) 

where i = 1 and 2; mf (ζi, ξ) = mf1 (ζi, ξ) and mf (ζi, ξ) = mf2 (ζi, ξ) refer to FGM plates contacted with fluid on one and 

both sides, respectively. The non-dimensional boundary conditions are: 

1 2= =0,  at  =0 and  =1,
i i i xi yi

u v w ψ ψ ζ ζ= = =                          (35a) 

= =0,  at  =0 and =1,
i i i xi yi

u v w ψ ψ ξ ξ= = =                            (35b) 

for a plate with all edges clamped (CCCC), and the boundary conditions are expressed as, 

11 11 12 12

1 2

= =0,

0,

 at  =0 and  =1,

i i i yi

yii xi i
i i

i i

u v w ψ
ψu ψ v

b d λb λ d
ζ ζ ξ ξ
ζ ζ

= =

  
+ + + =

   
                       (36a) 

12 12 11 11

= =0,

0,

 at  =0 and =1,

i i i xi

yii xi i
i i

i i

u v w ψ
ψu ψ v

b d λb λ d
ζ ζ ξ ξ
ξ ξ

= =

  
+ + + =

   
                       (36a) 

for a plate with all edges simply-supported (SSSS), and the boundary conditions are expressed as, 

1 1 1 1 1 1= =0,  at  =0,
x y

u v w ψ ψ ζ= = =                              (37a) 
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222 2
11 11 2 12 2 12

2 2

222 2
11 11 2 12 2 12

2 2

2 22 2
66 66 2 66 2 66

2 2

2 22 2
66 66 2 66 2 66

2 2

2
66 2 2

2

0,

0,

0,

0,

yx

yx

y x

y x

x

ψψu v
a b λ a λ b

ζ ζ ξ ξ
ψψu v

b d λ b λ d
ζ ζ ξ ξ

ψ ψv u
a b λ a λ b

ζ ζ ξ ξ
ψ ψv u

b d λ b λ d
ζ ζ ξ ξ

wκa η ψ
ζ

 
+ + + =

   
 

+ + + =
   

  
+ + + =

   
  

+ + + =
   


+
 10,  at  =1,ζ

 
= 

 

                     (37b) 

   

12 12 11 11

12 12 11 11

66 66 66 66

66 66 66 66

66

0,

0,

0,

0,

yii xi i
i i

i i

yii xi i
i i

i i

yii i xi
i i

i i

yii i xi
i i

i i

i
i yi i

ψu ψ v
a b λ a λb

ζ ζ ξ ξ
ψu ψ v

b d λb λ d
ζ ζ ξ ξ

ψv u ψ
a b λ a λb

ζ ζ ξ ξ
ψv u ψ

b d λb λ d
ζ ζ ξ ξ

wκa ηψ λ

  
+ + + =

   

  
+ + + =

   

  
+ + + =

   

  
+ + + =

   


+


0,  at =0 and =1,ξ ξ

ξ
  = 
 

                      (37c) 

for a cantilever plate (CFFF). At ζ1 = 1, the following conditions should be satisfied  

1 2 1 2 1 2 1 2 1 2,  ,  ,  ,  ,
x x y y

u u v v w w ψ ψ ψ ψ= = = = =                       (38a) 

1111 1 11 1
12 12

1 1 1 1

2211 2 11 2
12 12

2 2 2 2

,

yx

yx

ψψa u b v
a b

λ ζ λ ζ ξ ξ
ψψa u b v

a b
λ ζ λ ζ ξ ξ

 
+ + +

   
 

= + + +
   

                      (38b) 

1111 1 11 1
12 12

1 1 1 1

2211 2 11 2
12 12

2 2 2 2

,

yx

yx

ψψb u d v
b d

λ ζ λ ζ ξ ξ
ψψb u d v

b d
λ ζ λ ζ ξ ξ

 
+ + +

   
 

= + + +
   

                      (38c) 

166 66 11 1
66 66

1 1 1 1

266 66 22 2
66 66

2 2 2 2

,

y x

y x

ψa b ψv u
a b

λ ζ λ ζ ξ ξ
ψa b ψv u

a b
λ ζ λ ζ ξ ξ

  
+ + +

   
  

= + + +
   

                     (38d) 
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66 66 11 1 1
66 66

1 1 1 1

266 66 22 2
66 66

2 2 2 2

,

x

y x

b d ψv ψ u
b d

λ ζ λ ζ ξ ξ
ψb d ψv u

b d
λ ζ λ ζ ξ ξ

  
+ + +

   
  

= + + +
   

                    (38e) 

1 2
1 1 2 2

1 2

x x

w wηψ η ψ
ζ ζ
 

+ = +
 

.                           (38f) 

2.3 Solution method 

The differential quadrature (DQ) method is applied to simplify Eqs. (30)-(38) through discretizing unknown 

variables ui, vi, wi, ψxi, ψyi and their kth derivatives as, 

 

 
,, , , , , ,

1 1

, , , ,

( ) ( ) , , , , ,
i n m

i i i xi yi

N M

n i m i mn i mn i mn xi mn yi mn ζ ζ ξ ξ
n m

u v w ψ ψ

l ζ l ξ u v w ψ ψ = =
= =

=
              (39a) 

 

 

1 2

1 2

1 2

, ,

1 1

, , , ,

( ) ( ) , , , , ,
i n m

k k

i i i xi yik k

i

N M
k k

m n i imn imn imn ximn yimn ζ ζ ξ ξ
n m

u v w ψ ψ
ξ ζ

C ξ C ζ u v w ψ ψ = =
= =

 
 

=
                (39b) 

where N and M sampling points of each sub-plate along x and y axes, respectively. According to the 

Chebyshev–Gauss–Lobatto distribution [54], sampling points are formulated as 

1

1( 1)1
1 cos

2 1
ik

π kζ
N

 −  = −  −  
, k1 = 1, 2, …N,                         (40a) 

2

2( 1)1
1 cos

2 1
k

π kξ
M

 −  = −  −  
, k2 = 1, 2, …M,                         (40b) 

where 
1ikζ  and 

2kξ  are the values of k1th and k2th sampling points on the ζi- and ξ- axis, respectively; { uimn, vimn, 

wimn, ψximn, ψyimn }= {u(ζin, ξm, t), v(ζin, ξm, t), w(ζin, ξm, t), ψx(ζin, ξm, t), ψy(ζin, ξm, t)}; ln(ζi), lm(ξ), and 1 ( )
k

m
C ξ , 2 ( )

k

n i
C ζ  

respectively refer to the Lagrange interpolation polynomials and weighted coefficient obtained in Shu [54]. 

Then, Eqs. (30)-(34) are discretized as 

1 2 1 2 1 2

1 2 2 1

2 1 1 2 1 2

(2) (2) (1) (1)

11 11 12 66

1 1 1 1

(1) (1) 2 (2)

12 66 66

1 1 1

2 (2) 2

66 1 2

1

( )

( )

N N N M

k n ink k n xink i k n k m inm

n n n m

N M M

i k n k m yinm i k m ik m

n m m

M

i k m xik m i ik k xik k

m

a C u b C ψ λ a a C C v

λ b b C C ψ λ a C u

λ b C ψ g I u I ψ

= = = =

= = =

=

+ + +

+ + +

+ = +

  

 

 ,

                  (41) 
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1 2 1 2 1 2

1 2 2 1

2 1 1 2 1 2

(2) (2) (1) (1)

66 66 12 66

1 1 1 1

(1) (1) 2 (2)

12 66 11

1 1 1

2 (2) 2

11 1 2

1

( )

( )

N N N M

k n ink k n yink i k n k m inm

n n n m

N M M

i k n k m xinm i k m ik m

n m m

M

i k m yik m i ik k yik k

m

a C v b C ψ λ a a C C u

λ b b C C ψ λ a C v

λ b C ψ g I v I ψ

= = = =

= = =

=

+ + +

+ + +

+ = +

  

 

 ,

                  (42) 

1 2 1 2 2 1

2 1 1 2

(2) (1) (1)

66

1 1 1

2 (2) 2

1

1

( , ) ,

N N M

k n ink i k n xink i i k m yik m

n n m

M

i k m ik m i f i ik k

m

κa C w η C ψ η λ C ψ

λ C w g I m ζ ξ w

= = =

=


+ +


  + = +  

  


                           (43) 

1 2 1 2 1 2

1 2 2 1 2 1

1 2 1

(2) (2) (1) (1)

11 11 12 66

1 1 1 1

(1) (1) 2 (2) 2 (2)

12 66 66 66

1 1 1 1

2 (1)

66

( )

( )

N N N M

k n ink k n xink i k n k m inm

n n n m

N M M M

i k n k m yinm i k m ik m i k m xik m

n m m m

i xik k i k n in

b C u d C ψ λ b b C C v

λ d d C C ψ λ b C u λ d C ψ

κa η ψ η C w

= = = =

= = = =

+ + +

+ + + +

− +

  

  

2 1 2 1 2

2

2 3

1

,
N

k i ik k xik k

n

g I u I ψ
=

   = +    


               (44) 

1 2 1 2 1 2

1 2 2 1 2 1

1 2 2

(2) (2) (1) (1)

66 66 12 66

1 1 1 1

(1) (1) 2 (2) 2 (2)

12 66 11 11

1 1 1 1

2 (1)

66

( )

( )

N N N M

k n ink k n yink i k n k m inm

n n n m

N M M M

i k n k m xinm i k m ik m i k m yik m

n m m m

i yik k i i k m

b C v d C ψ λ b b C C u

λ d d C C ψ λ b C v λ d C ψ

κa η ψ η λ C w

= = = =

= = = =

+ + +

+ + + +

− +

  

  

1 1 2 1 2

2

2 3

1

,
M

ik m i ik k yik k

m

g I v I ψ
=

   = +    


               (45) 

where i = 1, 2. The dimensionless boundary conditions are given by, 

1 2 1 2 1 2 1 2 1 2

11 2 1

= =0,  

at  =0,  =1,   =0 and =1,

ik k ik k ik k xik k yik k

N M

u v w ψ ψ

ζ ζ ξ ξ

= = =
                         (46) 

for a CCCC plate, the dimensionless boundary conditions are expressed as, 

1 2 1 2 1 2 1 2

1 2 1 2 2 1

2 1

(1) (1) (1)

11 11 12

1 1 1

(1)

12 11 2

1

=0,  

+

=0  at  =0 and  =1,

ik k ik k ik k yik k

N N M

k n ink k n xink i k m ik m

n n m

M

i k m yik m N

m

u v w ψ

b C u d C ψ λb C v

λ d C ψ ζ ζ

= = =

=

= = =

+

+

  

 ，

                     (47a) 

1 2 1 2 1 2 1 2

1 2 1 2 2 1

2 1

(1) (1) (1)

12 12 11

1 1 1

(1)

11 1

1

=0,  

+

=0, at =0 and =1,

ik k ik k ik k xik k

N N M

k n ink k n xink i k m ik m

n n m

M

i k m yik m M

m

u v w ψ

b C u d C ψ λb C v

λ d C ψ ξ ξ

= = =

=

= = =

+

+

  



                      (47b) 

for a SSSS plate, the boundary conditions are, 
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2 2 2 2 211 11 11 11 11 11= =0,  at =0,
k k k x k y k

u v w ψ ψ ζ= = =                          (48a) 

   

2 2 2 1 2 1

2 2 2 1 2 1

2

(1) (1) (1) (1)

11 2 11 2 2 12 2 2 12 2

1 1 1 1

(1) (1) (1) (1)

11 2 11 2 2 12 2 2 12 2

1 1 1 1

(1)

66 2

1

+ + 0

+d + 0

+

N N M M

Nn Nk Nn x Nk k m x k m k m y k m

n n m m

N N M M

Nn Nk Nn x Nk k m x k m k m y k m

n n m m

N

Nn Nk

n

a C u b C ψ λ a C ψ λ b C ψ

b C u C ψ λ b C ψ λ d C ψ

a C v

= = = =

= = = =

=

+ =

+ =

   

   

 2 2 1 2 1

2 2 2 1 2 1

2 2

(1) (1) (1)

66 2 2 66 2 2 66 2

1 1 1

(1) (1) (1) (1)

66 2 66 2 2 66 2 2 66 2

1 1 1 1

(1)

66 2 2 2

1

+ 0,

+ + 0,

0,  a

N M M

Nn y Nk k m k m k m x k m

n m m

N N M M

Nn Nk Nn y Nk k m k m k m x k m

n n m m

N

x Nk Nn Nk

n

b C ψ λ a C u λ b C ψ

b C v d C ψ λ b C u λ d C ψ

κa η ψ C w

= = =

= = = =

=

+ =

+ =

 + = 
 

  

   

 2t =1,  
N

ζ

          (48b) 

   

1 2 1 2 2 1 2 1

1 2 1 2 2 1 2 1

1 2

(1) (1) (1) (1)

12 12 11 11

1 1 1 1

(1) (1) (1) (1)

12 12 11 11

1 1 1 1

(1)

66

+ =0,

+ =0,

N N M M

k n ink k n xink i k m ik m i k m yik m

n n m m

N N M M

k n ink k n xink i k m ik m i k m yik m

n n m m

k n ink

n

a C u b C ψ λ a C v λb C ψ

b C u d C ψ λb C v λ d C ψ

a C v

= = = =

= = = =

+ +

+ +

   

   

1 2 2 1 2 1

1 2 1 2 2 1 2 1

1 2 2 1

(1) (1) (1)

66 66 66

1 1 1 1

(1) (1) (1) (1)

66 66 66 66

1 1 1 1

(1)

66

1

0,

0,

N N M M

k n xink i k m ik m i k m yik m

n m m

N N M M

k n ink k n xink i k m ik m i k m yik m

n n m m

M

i yik k i k m ik m

m

b C ψ λ a C u λb C ψ

b C v d C ψ λb C u λ d C ψ

κa ηψ λ C w

= = = =

= = = =

=

+ + + =

+ + + =

+

   

   
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for a CFFF plate. At ζ1 = 1, the following conditions should be satisfied  
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The dimensionless form of unknown displacement vector b is 

          12 12 12 12 12

T
T T T T T

, , , ,  
ik ik ik xik yik

u v w ψ ψ=b ,                   (50) 

where ( )12 1 2 1 2 12 1,  2,   1 ,   1,  2,  , ,   1,  2,  , ,  1,  2,  , .i k M k k k N k M k N M= =  − + =  =  =     

The matrix expression of Eqs. (41)-(45) is, 

( + ) ,+ =fGb M M b 0                                  (51) 

where the added mass matrix Mf, the stiffness matrix G and the mass matrix M are all 10N10M matrices. The 

harmonic vibration are analyzed with the assumption of b=b
*eiωτ. Eq. (51) are rewritten as, 

2 *( + )ω − = fG M M b 0 .                                (52) 

For the fluid-plate interaction vibration problem, we need to solve the added mass matrix Mf caused by the fluid 

pressure for FGM plates contacted with fluid. Herein, the added mass is dependent on the unknown vibrational mode 

shape b* as shown in Eq. 10. Therefore, we use the iterative method to solve Eq. (52) by substituting the vibrational 

mode shape in vacuum as the initial value. 

Applying the following iterative procedure, the natural frequency, and the mode shape of FGM rectangular plates 

partially immersed in a fluid are computed. The computational steps are: 

(i) Solve ω and b* for the vibration of FGM plates in vacuum from Eq. (52) with assuming Mf = 0; 

(ii) Apply the solution b* obtained in step (i) to determine Mf, and the ω and b* in Eq. (52) are calculated and 

updated; 

(iii) Repeat step (ii) until the relative frequency error of two consecutive iterations is less than a prescribed tolerance, 

e.g., 10-5. 

 

3. Numerical results 

Several numerical examples for the free vibration analysis of FGM plates that are partially immersed in a fluid are 

studied in this work. The fundamental frequency and mode shape of FGM plates in a fluid with respect to different 
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parameters, such as gradient index, the immersed depth, gradient type, aspect ratio, fluid density, and slenderness ratio 

are obtained and analyzed in this section. The material properties of SUS304 on the left surface of plates are Ea = 

207.78 GPa, ρa = 8166 kg/m3, υa = 0.3177, whereas those for Si3N4 on the right surface are Eb = 322.27 GPa, ρb = 2370 

kg/m3, υb = 0.24. Unless otherwise stated, FGM rectangular plates contact with water on both sides, and the plate 

parameters are: length Lx = 0.1 m, width Ly = 0.1 m, thickness h0 = 0.01 m, and water density ρf  = 1000 kg/m3. The 

conversion f = Ω/2π is introduced for the computation of the fundamental frequency. 

 

3.1 Model validation 

The DQ method is used to solve the governing equations and obtain the fundamental frequency of FGM 

rectangular plates in a fluid. The convergence for the numerical procedure with respect to the use of different node 

numbers N, M, is testified and presented in Table 1. The numerical results for the fundamental frequency f of FGM 

plates in vacuum and that of half FGM plates immersed in water are obtained and listed in Table 1. For both two cases, 

the convergent results are achieved with the increase of N, and M = N = 12 is adopted in later computation and 

analysis. 

Table 1 Convergence for the fundamental frequency f (×103 Hz) of FGM rectangular plates in vacuum and water (Lx = 

0.1, Ly = 0.1, h0 = 0.01, n = 1). 

N Plate in vacuum  
Half of the plate immersed 

in water 

 C-C H-H C-F  C-C H-H C-F 

4 24.829 14.013 0.98356  16.074 9.1985 0.91497 

6 11.033 6.4207 1.1611  9.5818 5.5196 1.1477 

8 10.992 6.4565 1.1634  9.5813 5.5347 1.1495 

10 10.992 6.4559 1.1601  9.5767 5.5391 1.1473 

12 10.992 6.4559 1.1587  9.5757 5.5395 1.1465 

13 10.992 6.4559 1.1581  9.5753 5.5394 1.1465 

 

The numerical results of frequency parameter 
* 2

0= /
x b b

ω ΩL h ρ E  of SUS304/Si3N4 FGM rectangular plates in 

vacuum are obtained and presented in Table 2 for CCCC, SSSS and CFFF. The fundamental frequencies for CCCC, 

SSSS and CFFF FGM rectangular plates that were previously calculated by Zhao et al. [34] are used to verify the 

present results of FGM rectangular plates with different gradient variations. A good agreement between Zhao et al.’s 
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results and present solution is shown in Table 2. 

Table 2 Dimensionless fundamental frequency 
0= /

x b b
ω ΩL h ρ E


 comparison for SUS304/ Si3N4 FGM plates in 

air (Lx = Ly = 0.1, h0 = 0.01). 

BCs  n   
 

  

 
 0 1 2 5 8 10 

CCCC present 9.7351 5.9228 5.3178 4.8301 4.6683 4.6051 

 Zhao et al.[34] 9.6814 5.8902 5.2874 4.8005 4.6389 4.5767 

SSSS present 5.6809 3.4786 3.1321 2.8469 2.7498 2.7121 

 Zhao et al. [34] 5.6148 3.4242 3.0813 2.8058 2.7129 2.6768 

CFFF present 1.0280 0.6251 0.5623 0.5121 0.4950 0.4884 

 Zhao et al. [34] 1.0203 0.6199 0.5576 0.5077 0.4907 0.4841 

 

Table 3 lists the results for fundamental frequency 
* 2

Al Al=
y

ω ΩL ρ t D  of CCCC, SSSS and CCCF aluminum 

plates contacted water with one side. The plate parameters are Lx = Ly = 1, μ = ρf / ρAl = 0.125, tAl = h0 = 0.05, and 

3 2

Al 0 Al= 12(1 )D E h ν −  . The material properties of aluminum plates are EAl = 30 GPa, ρAl = 8000 kg/m3, υAl = 0.3. 

Zhou and Cheung [46] analyzed the variations of fundamental frequency of vertical rectangular Kirchhoff plates with 

respect to the increase of immersed depth using the Ritz method. The results of Zhou and Cheung [46] are used to 

verify the results obtained using present method. 

Table 3 Dimensionless fundamental frequency for rectangular FGM plates contacted with water on one side (n = 0, Lx 

= Ly = 1, h0 = 0.05). 

BCs  g1    

  0 0.2 0.4 0.6 

CCCC present 34.985 34.941 33.723 29.747 

 Zhou and Cheung [46] 36.007 35.968 34.216 31.273 

SSSS present 19.562 19.488 18.587 16.460 

 Zhou and Cheung [46] 19.739 19.666 18.451 16.854 

CCCF present 23.425 23.423 23.320 22.571 

 Zhou and Cheung [46] 24.035 24.033 23.873 23.294 
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3.2 Effect of different parameters on fundamental frequency 

Fig. 2 shows the variation trends for the fundamental frequency with respect to the gradient index n for the CCCC, 

SSSS and CFFF FGM rectangular plates partially immersed in water when Lx/Ly = 1 and Lx/h0 = 10. The frequency 

reduces with the increase of the immersed depth g1 for all three plates. Besides, an obvious decrease of fundamental 

frequency occurs at g1  [0.2, 1] for CCCC and SSSS plates, and g1  [0.5, 1] for CFFF plates. For immersed depth g1 

with a given value, the fundamental frequency decreases remarkably as the gradient index n increases for all three 

plates. 
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Fig. 2. The response of the fundamental frequency on the gradient index n for FGM rectangular plates in water when 

with Lx/Ly = 1 and Lx/h0 = 10: (a) CCCC plate; (b) SSSS plate and (c) CFFF plate. 

 

The change of fundamental frequency with different fluid media for CCCC, SSSS and CFFF FGM rectangular 

plates is illustrated in Fig. 3 when Lx/Ly = 1, n = 1 and Lx/h0 = 10. Herein, the numerical results with different fluid 

media of bromoform (2.82 g/cm3), water (1 g/cm3) and acetone (0.788 g/cm3) are obtained and discussed. The 

different fluid media have a neglected influence at the immersed depth g1  [0, 0.1] for CCCC and SSSS plates, and g1 

 [0, 0.3] for CFFF plates. Smaller fluid density ρf lead to larger fundamental frequency when g1  [0.3, 1]. 
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Fig. 3. The change of the fundamental frequency on the fluid media for FGM plates in water when Lx/Ly = 1, n = 1 and 

Lx/h0 = 10: (a) CCCC plate; (b) SSSS plate and (c) CFFF plate. 

Fig. 4 depicted the change of fundamental frequency with different aspect ratios Lx/Ly for CCCC, SSSS and CFFF 

FGM rectangular plates in water when n = 1 and Lx/h0 = 10. As shown in Fig. 4-(a) and (b), the fundamental frequency 

is quite sensitive to the aspect ratio and increases with the increasing of the aspect ratio of CCCC and SSSS plates. 

However, the change of fundamental frequency with different aspect ratios for CFFF FGM plates is very small. With 

the same parameters, CCCC and CFFF submerged plates have the largest and smallest fundamental frequency, 

respectively. 
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Fig. 4. The change of the fundamental frequency on the aspect ratio Lx/Ly for FGM plates in water when n = 1 and 

Lx/h0 = 10: (a) CCCC plate; (b) SSSS plate and (c) CFFF plate. 

 

Fig. 5 illustrates the effect of changing the slenderness ratio Lx/h0 on the fundamental frequency for CCCC, SSSS 

and CFFF FGM rectangular plates immersed in water when Lx/Ly = 1 and n = 1. For any given g1, the larger 

slenderness ratio Lx/h0 leads to the smaller fundamental frequency for all three FGM plates. 
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Fig. 5. The effect of the slenderness ratio Lx/h0 on the fundamental frequency for FGM plates in water when Lx/Ly = 1 

and n = 1: (a) CCCC plate; (b) SSSS plate and (c) CFFF plate. 
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Fig. 6. The fundamental frequency of the FGM plates contacted with water on one sides and two sides when Lx/Ly = 1, 

n = 1 and Lx/h0 = 10. 

Fig. 6 presents the fundamental frequencies of CCCC, SSSS and CFFF FGM rectangular plates contacted with 

water on one side when Lx/Ly = 1, n = 1 and Lx/h0 = 10. The results for the plates contacting with water on two sides 

are also given for the comparison purpose. For both CCCC and SSSS FGM plates, the difference of fundamental 

frequency is unobvious when g1  [0, 0.2]. However, in general, the fundamental frequency of FGM plates contacted 

with water on one side is larger than that of two sides. Larger difference between these two cases will occur when the 

immersed depth g1 is increasing from 0.2 to 1.0. For CFFF FGM plates, the fundamental frequencies for these two 

cases are almost identical. 

Fig. 7 shows the change of the fundamental mode shape on the immersed depth g1 for CCCC, SSSS and CFFF 

FGM plates in water when Lx/Ly = 1, n = 1, Lx/h0 = 10, and ξ = 0.5. The fundamental mode shape in air is symmetrical 

for CCCC and SSSS FGM plates. However, for CCCC and SSSS FGM plates, the mode shape in fluid deviates from 

that in air and shows an unsymmetrical shape. For CFFF FGM plates, the change of the mode shape on the immersed 

depth is unobvious. 
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Fig. 7. The change of the mode shape on the immersed depth g1 for FGM plates in water when Lx/Ly = 1, n = 1, Lx/h0 = 

10 and ξ = 0.5: (a) CCCC plate; (b) SSSS plate; (c) CFFF plate. 
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Fig. 8. The response of the mode shape on the gradient index n for FGM plates in air when Lx/Ly = 1, g1 = 0, Lx/h0 = 10 

and ξ = 0.5: (a) CCCC plate; (b) SSSS plate; (c) CFFF plate. 

 

Figs. 8-10 present the response of the fundamental mode shape of CCCC, SSSS and CFFF FGM plates with 

different gradient index n when Lx/Ly = 1, Lx/h0 = 10, and ξ = 0.5 for g1 = 0, g1 = 0.5 and g1 = 1, respectively. As shown 
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in Figs. 8 and 9, the change of the fundamental mode shape with respect to different gradient index n is insignificant 

for all three FGM plates either in air or in water. Fig. 10 indicates that with the decrease of gradient index n, the 

deviation of mode shape increases for CCCC and SSSS FGM rectangular plates in fluid with g1 = 0.5. However, the 

change of the mode shape on gradient index n is very sight for CFFF rectangular plates. The effect of other parameters 

is unobvious on the fundamental mode shape. 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0(a)

CCCC:

 n=0

 n=0.3

 n=1

 n=3



w

             

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0(b)

SSSS:

 n=0

 n=0.3

 n=1

 n=3


w

 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0(c)

CFFF:

 n=0

 n=0.3

 n=1

 n=3



w

 

Fig. 9. The response of the mode shape on the gradient index n for FGM plates in water when Lx/Ly = 1, g1 = 1, Lx/h0 = 

10 and ξ = 0.5: (a) CCCC plate; (b) SSSS plate; (c) CFFF plate. 
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Fig. 10. The response of the mode shape on the gradient index n for FGM plates in water when Lx/Ly = 1, g1 = 0.5, 

Lx/h0 = 10 and ξ = 0.5: (a) CCCC plate; (b) SSSS plate; (c) CFFF plate. 

 

3.3 Change of fundamental frequency and mode shape on gradient type 

The change of fundamental frequency of FGM plates with different material gradient types in contacting with 

water is analyzed in this sub-section. Four gradient types including the power law, sinusoidal, cosine and exponential 

forms, are proposed to describe the distribution of material properties. The change of the Young’s modulus versus 

thickness z/h0 for different gradient types is given in Fig. 11. For different gradient types, the materials of FGM plate 

are assumed as SUS304 and Si3N4 at z/h0 = −0.5 and z/h0 = 0.5, respectively. The Young’s modulus for four gradient 

types are continuously varied form z/h0 = −0.5 to z/h0 = 0.5. The expressions of different gradient types are listed 

below [46]:  

(a) Power law form is given in Eqs. (1)-(3) and n = 3 is used for comparison with other gradient types; 

(b) Exponential form for the variation of material parameters is formulated as: 

 1 0( / +0.5)

1( ) ,  ln( )
β z h

a b a
E z E e β E E= = ,                           (53a) 

2 0( / +0.5)

2( ) ,  ln( )
β z h

a b a
ρ z ρ e β ρ ρ= = ,                           (53b) 

 3 0( / +0.5)

3( ) ,  ln( )
β z h

a b a
ν z ν e β ν ν= = ,                           (53c) 

(c) Sinusoidal form is formulated as: 

0( / +0.5)
( ) ( )sin

2
b a a

π z h
E z E E E

 = − + 
 

,                       (54a) 

0( / +0.5)
( ) ( )sin

2
b a a

π z hρ z ρ ρ ρ = − + 
 

,                       (54b) 
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 0( / +0.5)
( ) ( )sin

2
b a a

π z hν z ν ν ν = − + 
 

,                        (54c) 

(d) Cosine form is formulated as: 

( )0

( ) ( )
( ) cos ( / +0.5)

2 2

b a b a
E E E E

E z π z h
+ −

= − ,                   (55a) 

( )0

( ) ( )
( ) cos ( / +0.5)

2 2

b a b a
ρ ρ ρ ρρ z π z h
+ −

= − ,                    (55b) 

 ( )0

( ) ( )
( ) cos ( / +0.5)

2 2

b a b a
ν ν ν νν z π z h
+ −

= − .                     (55c) 
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Fig. 11. The change of Young’s modulus versus thickness z/h0 for different gradient types. 

 

The change of fundamental frequency with respect to different material gradient types for FGM plates in water 

when Lx/Ly = 1 and Lx/h0 = 10 is illustrated in Fig. 12. Among four different gradient types, the power law type has the 

smallest fundamental frequency, and the sinusoidal form has the largest fundamental frequency. For the four different 

gradient types, the difference of fundamental frequency decreases with increasing of the immersed depth g1. 
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Fig. 12. The change of the fundamental frequency on different gradient types for FGM plates in water when Lx/Ly 

= 1 and Lx/h0 = 10: (a) CCCC plate; (b) SSSS plate and (c) CFFF plate. 

 

Fig. 13 shows the change of the mode shape on different material gradient types for CCCC, SSSS and CFFF FGM 

rectangular plates in water when Lx/Ly = 1, g1 = 0.5 and Lx/h0 = 10. The mode shape is not sensitive to the different 

gradient types for all three FGM rectangular plates. 
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Fig. 13. The change of the mode shape on different gradient types for FGM plates in water when Lx/Ly = 1, g1 = 0.5, 

Lx/h0 = 10 and ξ = 0.5: (a) CCCC plate; (b) SSSS plate and (c) CFFF plate. 
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4. Conclusions 

This paper focus on the study of free vibration of FGM Mindlin plates with rectangular cross-section contacted 

with an incompressible and inviscid fluid. The fluid loading is considered as an added mass to the vibration of plates. 

The governing equations and the boundary conditions are derived with discretized forms by the DQ method and the 

variational principle. Based on the discretized governing equations, the fundamental frequency and modal of 

plate-fluid coupling system are calculated using an iterative procedure. Numerical examples are performed to show 

the change of vibration characteristic on key parameters, such as gradient index, immersed depth, gradient type, fluid 

density, aspect ratio and slenderness ratio. Several important conclusive points are summarized as, 

(1) The fundamental frequency decreases with the increase of the material gradient index for all three FGM plates. 

(2) The larger fluid density and slenderness ratio lead to the smaller fundamental frequency for all three plates. 

(3) The fundamental frequency increases for CCCC and SSSS plates in fluid when the aspect ratio of the plates is 

increasing. 

(4) The fundamental frequency difference between the cases of one side and two sides contacting with fluid is 

increasing when the immersed depth is increased. 

(5) Among four different material gradient types, the FGM plate with power law type gradient has the smallest 

fundamental frequency, while the one with sinusoidal form has the largest value. 

(6) For CCCC and SSSS FGM plates, the mode shape in fluid deviates from that in vacuum, and show unsymmetrical 

mode shapes. 
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