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Abstract 

To realize a real-time structural Topology Optimization (TO) efficiently, it is important 

to make sufficient use of the information during the TO process. A step-by-step training 

method is proposed to improve the deep learning model prediction accuracy based on 

the topology optimization method of Solid Isotropic Material with Penalization (SIMP). 

By making use of the “depth” of one sample data, the training method can effectively 

improve the deep learning model prediction accuracy without increasing the sample set 

size. The step-by-step training method is the combination of several independent deep 

learning models (sub-models). The sub-models have familiar model structures, and they 

can be trained in parallelization. During the Deep Learning (DL) model training process, 

these features reduce the difficulties in adjusting sub-models’ parameters and the sub-

model training time cost. Meanwhile, this method is achieved by the local end-to-end 

training process. During the DL model predicting process, the increase of total 

prediction time cost can be ignored. The trained deep learning models can predict the 

optimized structures in real-time. Several numerical examples of dynamic optimization 

problems are used to verify the effectiveness of the proposed training method. The 

method proposed in this study provides a novel implementation technology for the real-

time TO of structures. 
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1. Introduction 

Topology Optimization (TO) is used to find the material distribution in the 

structural design domain to obtain optimized structural performances[1]. Numerous TO 

methods have been proposed, such as the Solid Isotropic Material with Penalization 

(SIMP) method[2], evolution structure optimization method[3], and moving morphable 

component method[4]. These methods have been predominately employed in 

multidisciplinary structural optimization problems[5]. Nevertheless, they usually require 

a large amount of repeated iterations of finite element analysis, hence the computational 

cost increases rapidly with an increased number of elements and problem dimensions. 

Deep Learning (DL) methods have been rapidly developed in recent years. During 

the training process, the DL model establishes a functional relationship between the 

input and output data. A well-trained DL model can provide optimized results with less 

computational overhead than the traditional TO methods and meet the requirements of 

real-time TO at the same time. 

This study proposes a step-by-step training method for the combination of the 

SIMP TO method and DL. By using this approach, the prediction accuracy of the DL 

model can be greatly improved compared to the traditional end-to-end training method. 

The problem description section describes relevant training methods based on offline 

and online DL models. Then in the numerical results section, several frequency 

optimization examples are used to verify the effectiveness of the proposed training 

method. Finally, a summary of this study is provided in the conclusion section. 

2. Problem description 

A number of investigations have been performed on applying DL to the TO method. 

For instance, Gorkem[6] used two DL models with different loss functions to accelerate 

the TO process, alleviating the problem of structural discontinuity prediction. Yu[7] used 

a Convolution Neural Network (CNN) and condition Generative Adversarial Network 

to convert the low-resolution TO result to high-resolution TO result. These two 

approaches are based on the offline training method, which allows well-trained models 

to obtain optimized results in real-time. The improvement of model prediction accuracy 

is usually achieved by changing loss function[6], sample set size[8], and model 

structures[9]. However, there is a lack of consideration for the validity of input data, and 

the intermediate process information of TO is rarely used. 

On the other hand, several online training methods have been assessed for the TO. 

Unlike its offline counterparts, online training methods directly integrate the DL model 

into the TO process to accelerate the whole calculation process. Chi[10] accelerated the 

TO process by using stage sensitivity as the training labels. Guo[11] replaced the 

calculation process of microstructure stiffness in traditional multi-scale optimization 

with the DL model to improve the optimization efficiency. Although the online training 

method is not dependent on the scale of sample set, information from the TO process 

has to be consecutive input, which limits the improvement of real-time TO efficiency. 

To solve the aforementioned problems of the offline and online methods, a step-

by-step training method that discretizes the optimization process is proposed. By 

extracting the information of key steps during the TO process, this method is able to 

improve prediction accuracy without increasing the sample set size. The fundamental 



eigenfrequency optimization problem is used to validate the proposed method. 

3. Numerical results 

To assess the performance of the proposed step-by-step training model, an 

academic structural model is employed and discretized by 221 × 31 finite elements. 

The constraint and loading condition of the structure is shown in Fig 1. The middle 

elements on the left and right boundary are fixed, and lumped masses are randomly 

placed in load domain (81 × 31). There are total 2511 samples, with 150 of them for 

validation. 

 
Fig.1 Schematic of structural constraint and loading condition. 

Table 1 presents five training results (differentiated by the random lumped mass 

distribution) of Model-1 and Model-2 based on the traditional end-to-end training 

method[6-8] and the step-by-step training method proposed in this study, respectively. 

The optimization results by the SIMP TO method are also listed in Table 1 for reference. 

The “Obj” column shows the fundamental eigenfrequency value for each structure. 

Expect for the training method, all other factors including sample set size and the 

structure of the DL model are kept the same.  

Comparing the prediction results of Model-1 and Model-2, it can be found that the 

Model-2 results have clearer structure boundaries and higher similarity with the SIMP 

optimization results. Comparison of the “Obj” values (such as row 1 in table1) suggests 

the “Obj” value of Model-2 is closer to the SIMP optimization result. Model-2 

decreases the relative error of “Obj” from 6.05% (Model-1) to 1.76%, indicating the 

step-by-step training method can effectively improve the prediction accuracy of the DL 

model without increasing the sample set size. In addition, the proposed training method 

reduces the number of intermediate density elements (i.e., element with density 

between 0.4 to 0.6), which affects the clarity of the DL prediction results, by 36.76% 

compared to the traditional method in the first example of Table 1 (row 1). By 

leveraging the information during the TO process, the training method proposed in this 

study can effectively reduce the intermediate density elements in the predicted results. 

Table 1 Comparison of the optimized structure between traditional offline training model, step-by-step 

training model and optimized results by SIMP. 

Model-1 Results  Model-2 Results  Results based on SIMP 

Predicted Structures Obj  Predicted Structures Obj  Optimized structures Obj 

 34.66   36.24   36.89 

 35.42   36.69   36.50 

 31.23   36.72   36.75 

 36.63   37.10   36.33 

 35.17   36.09   35.07 



4. Conclusion 

In this study, a novel step-by-step DL training method is proposed for real-time 

SIMP TO of structures. By scattering the TO process, information can be gathered from 

key steps to aid optimization. This training method can effectively improve the 

accuracy of model prediction without increasing the sample set size and alleviate the 

gray element problem in model prediction results. 
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