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A B S T R A C T   

A new damage-healing model for self-healing cementitious materials is described. The model is formulated using 
results from a discrete ligament model and guided by the findings of a linked experimental study. Healing is 
simulated using the interaction of curing fronts propagating from opposing crack faces within a body of healing- 
agent. This approach accounts for the dependency of the healing response on the crack opening displacement 
(COD) and its rate. The new damage-healing cohesive-zone model is applied to an element with an embedded 
strong-discontinuity within a coupled finite-element code, which simulates healing-agent transport and me-
chanical behaviour. The model is validated using data from tests with different CODs and COD rates. The val-
idations show that the coupled model represents the mechanical and flow behaviour of an autonomic self-healing 
system with good accuracy for a range of cracking configurations and load paths.   

1. Introduction 

Biomimetic construction materials with the ability to self-heal are 
being developed so that future structures do not suffer from the 
cracking-related durability problems that have afflicted a significant 
proportion of our existing infrastructure (Gardner et al., 2018). The 
potential of these materials ‘to deliver major change, most noticeably in 
the built environment’ has been highlighted in a recent Royal Society 
report (The Royal Society, 2021). Numerical models can play an 
important role in the development of biomimetic materials because, 
once calibrated, they allow a larger parameter space to be investigated 
than is practicable with experimentation and they permit materials to be 
tailored to specific applications. In addition, the ability to simulate the 
cracking and healing behaviour of self-healing cementitious materials is 
important when designing structures formed from these materials (Jef-
ferson et al., 2018). Such simulations should address the size and 
disposition of cracks, healing time and healing efficiency, changes in 
permeability, and load–displacement responses, all of which are 
important considerations in the design of this type of cementitious 
structure. 

This work focusses on the simulation of autonomic self-healing 
cementitious materials (SHCMs) with embedded healing-agents (Van 
Tittelboom and De Belie, 2013; De Belie et al., 2018; Xue et al., 2019), 
but the processes studied and the new relationships developed in this 

work are relevant to a wide range of biomimetic materials and healing 
systems. 

Early self-healing (SH) material models considered only mechanical 
behaviour (Barbero et al., 2005; Schimmel and Remmers, 2006; Granger 
et al., 2007) and nearly all of these, as well as many more recent con-
tributions, were based on continuum damage mechanics (CDM) 
(Lemaitre and Desmorat, 2005). CDM is a natural choice for SH material 
models because the damage variables used in these formulations provide 
convenient measures of the material available for healing. The extended 
theory has been named ‘continuum damage healing mechanics’ (CDHM) 
and models based on this framework normally use a healing variable (or 
tensor) as a multiplier on the damaged portion of material (Darabi et al., 
2012; Pan et al., 2018). CDHM theories have also been applied in micro- 
mechanical formulations (Davies and Jefferson, 2017), which are 
particularly well-suited to the simulation of SHCMs containing micro- 
capsules (Han et al., 2021). 

Thermodynamic principles underpin most damage formulations, 
with constitutive relationships normally derived from thermodynamic 
free-energy potentials such that models always predict non-negative 
energy dissipation (Lemaitre and Desmorat, 2005). The same basic 
principles are used in CDHM except that thermodynamic potentials are 
expanded to incorporate one or more healing variable(s) (Barbero et al., 
2005; Voyiadjis et al., 2012; Alsheghri and Abu Al-Rub, 2015). An 
important thermodynamic aspect of the healing process is that, in 
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contrast to damage, it does not dissipate mechanical energy since 
healing-agents normally cure within cracks in a nominally stress-free 
state. This implies that under isothermal constant-strain conditions, 
the recovery of stiffness due to healing causes no change in either the 
stress or mechanical energy state within the surrounding continuum. 
Furthermore, when healing occurs under non-zero strain conditions, a 
permanent ‘healing’ strain develops that is associated with the hard-
ening of healing-agents in micro-cracks (Mergheim and Steinmann, 
2013; Davies and Jefferson, 2017; Jefferson et al., 2018). 

A range of approaches has been used for simulating time-dependent 
healing. Some models treat healing as a similar process to damage that 
develops according to a thermodynamic driving force (Barbero et al., 
2005; Voyiadjis et al., 2011). A number of investigators have employed 
rate dependent healing approaches (Voyiadjis et al., 2011; Darabi et al., 
2012), while others have developed time dependent exponential healing 
functions (Mergheim and Steinmann, 2013; Oucif et al., 2018). Wool 
and O’Connor (1981) introduced a recovery variable based on a 
convolution integral in their polymer healing model. Mergheim and 
Steinmann (2013) also derived a convolution integral from their expo-
nential healing function and developed a convenient two-level recursive 
scheme for evaluating healing variables in a transient analysis. These 
different approaches reflect variations in the host material, healing 
systems, healing-agents and the loading scenarios considered. 

CDHM is applicable to the formation and healing of micro-cracks and 
is well-suited to SH materials with embedded micro-capsules that 
contain healing-agents (White et al., 2001; De Belie et al., 2018). 
Alternative self-healing systems, with embedded hollow fibres (Dry, 
1994; Van Tittelboom and De Belie, 2013), brittle tubes (Joseph et al., 
2010; Van Belleghem et al., 2018) or interconnected vascular networks 
(Minnebo et al., 2017; De Nardi et al., 2020), are used for healing macro- 
cracks, since larger volumes of healing-agent are required to fill such 
cracks. The simulation of these SH material systems requires an 
approach that represents macro-cracks and their healing. Most SH 
models for discrete cracks use cohesive crack idealisations based on 
damage-healing formulations (Caggiano et al., 2017), which have a 
similar form to their CDHM counterparts. These models have been 
incorporated in finite element codes using discrete elements (Zhou et al., 
2017), elements with embedded strong discontinuities (Zhang and 
Zhuang, 2018; Freeman et al., 2020) and the extended finite element 
method (Gilabert et al., 2017a; Gilabert et al., 2017b). 

In all of the self-healing materials discussed above, the healing pro-
cess involves autonomic healing compounds being transported to crack 
sites and subsequently curing within micro- or macro-cracks. Relatively 
few attempts have been made to simulate the associated flow processes 
(Jefferson et al., 2018; Mauludin and Oucif, 2019), although Gilabert 
et al. (2017a) and Gilabert et al. (2017b) simulated the flow of a 
polyurethane-based healing-agent into a concrete crack using compu-
tational fluid dynamics and Gardner et al. (2014, 2017) used a modified 
Lucas-Washburn equation to model the flow of healing-agents in 

discrete cracks. 
In this paper, the only damage process considered is cracking due to 

mechanical loading, thus the terms damage and cracking are used 
synonymously. 

The primary purpose of this article is to present a new damage- 
healing model for simulating healing in both static cracks and in 
cracks with transient crack opening displacements (CODs). The paper 
describes how results from a one-dimensional ligament model were used 
to determine the governing relationships of a homogenised model that 
simulates the behaviour of a representative zone of material. The nov-
elty of the model lies in the way that, (i) homogenised damage and 
healing variables evolve to represent interspersed damaged and healed 
material, (ii) healing is simulated using the interaction between diffuse 
curing fronts emanating from opposing crack faces with a COD rate 
dependent factor, and (iii) generalised curing front variables are accu-
mulated and updated when re-damage and re-healing occur. The model 
simulates the strong dependency of healing on the COD and its rate, and 
places no restrictions on the timing or rate of cracking or healing. This is 
important because cracks are rarely inanimate during healing, and any 
movement of the crack boundaries affects the healing process. 
Furthermore, cracks in almost all applications vary greatly in their di-
mensions as well as the rate at which they open and close during healing. 
The degree of healing and rate of healing can change by orders of 
magnitude with the COD or COD rate. Thus, models that assume 
instantaneous healing or use a single healing rate function with no 
allowance for the COD or its rate can give very inaccurate results. In 
addition, models that assume that healing and cracking processes always 
occur over separate discrete time intervals are very restricted in the 
range of problems that they can simulate accurately (Jefferson et al., 
2018). 

The development of the new damage-healing cohesive zone model 
described herein formed part of a wider programme of work on the 
characterisation and modelling of SHCMs. This work included an 
experimental study on the transport and mechanical processes that 
govern the behaviour of SHCMs (Selvarajoo et al., 2020a; 2020b); the 
development of a computational transport model (Freeman and Jeffer-
son, 2020) (Appendix C) to describe the release, flow and curing of 
healing-agents in the cracked cementitious host material; and the deri-
vation and implementation a specialised finite element with an 
embedded strong-discontinuity (Freeman et al., 2020). It is noted that 
the constitutive model presented in outline in the latter article was a 
considerably simplified version of the model presented in this paper that 
did not fully account for COD or COD rate effects. The coupled finite 
element model formed from the components described in (Freeman and 
Jefferson, 2020) and (Freeman et al., 2020), along with the new 
damage-healing model described herein, was used for the simulations 
reported in this article. Although our models were developed using data 
from a specific SHCM, the modelling approach should be applicable to a 
wide range of self-healing systems and materials. 

Fig. 1. Experimental arrangement for (a) SF and SO test series, and (b) DT test series.  
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In the remainder of this paper, the autonomic system used in this 
study and the associated governing processes are described, along with 
other preliminary and background information (Section 2). The homo-
genised damage-healing model and its derivation from a set of one- 
dimensional discrete ligament model simulations is explained (Section 
3). An approach for computing the healing parameter from interacting 
curing fronts is presented (Section 4). An overall solution framework is 
described and details of the algorithm used to implement the damage- 
healing formulation in a cohesive zone model are given (Section 5). A 
set of examples is presented that evaluates the ability of the coupled 
model to represent the transport and mechanical behaviour of SHCM 
specimens for a range of transient loading conditions. The sensitivity of 
the predicted response to variations in the damage-healing model’s 
material properties is also shown (Section 6). The main conclusions from 
the work are then given (Section 7). A proof of the thermodynamic 
validity of the formulation and details of the transport model are pro-
vided in the Appendices. 

2. Preliminaries 

2.1. Autonomic healing system and experimental observations. 

We studied the processes that govern the behaviour of an autonomic 
cementitious self-healing system in a series of experiments (Selvarajoo 
et al., 2020a, 2020b). The system studied comprised a vascular network 
embedded in concrete specimens with PC20 cyanoacrylate (CA) as the 

healing-agent. CA was chosen because it is a relatively fast acting agent 
that allowed us to study simultaneous cracking–healing processes in 
tests of modest duration (i.e. 1–30 min). 

The experiments undertaken to study the mechanical behaviour 
(Selvarajoo et al., 2020a) of the system included notched beam tests (SF 
and SO series, see Fig. 1a) and direct tension tests on doubly notched 
cube specimens (DT1 and DT2 series, Fig. 1b). The experimental pro-
cedures for these tests are outlined in Section 6. The SF and DT series 
were designed so that healing took place under fixed crack conditions. 
By contrast, the COD increased at a constant rate in the SO series tests so 
that cracking and healing occurred simultaneously. A summary of the 
tests considered in Section 6 is given in Table 1. 

The experimental programme of tests used to study the transport and 
curing characteristics of the system (Selvarajoo et al., 2020b) considered 
the capillary flow behaviour of CA in static macro-cracks, the sorption of 
CA into concrete specimens through natural crack surfaces, the devel-
opment and progress of CA curing fronts adjacent to a concrete substrate 
and the dynamic flow characteristics of CA in capillary channels. These 
transport and curing experiments, as well as those undertaken by others 
(Ferrara et al., 2018), showed that healing-agent is released from supply 
channels, flows into the crack and surrounding micro-cracked zone, and 
then cures gradually. The experiments showed that a curing front de-
velops in the body of healing-agent adjacent to each crack wall, and then 
progresses towards the centre of the crack, with the curing front 
becoming more diffuse over time, as explained in Section 4. 

2.2. Flow and curing processes 

In Freeman and Jefferson (2020) we presented a transport and curing 
model for this healing system that was used for the simulations reported 
in Section 6. The transport component of the model is summarised in 
Appendix C. The curing model component simulates a polymerisation 
reaction which is initiated by hydroxide ions that are transported from 
the cementitious substrate into and through the body of CA via a 
diffusion process. The rate of progress of the polymerisation, or curing, 
front gradually slows as the cured material forms an increasingly 
impermeable barrier to the further migration of OH– ions (Tomlinson 
et al., 2006). We showed that the mean position of the curing front 
(zf (tc)) at curing time tc is well represented by the following equation: 

zf (tc) = zc0
(
1 − e− tc/τ) (1)  

where zc0 is the critical curing depth and τ is the curing time parameter. 
By solving an advection–diffusion equation for the degree of cure 

Table 1 
Summary of experiments considered with the model.  

Designation Type of specimen and 
loading 

Crack condition during healing period 

SF Notched beam under 3 
point loading (Fig. 1a) 

Tapering crack, fixed during the healing 
period 
CMOD = 0.15 mm and tf = 120 s see Notes 

SO Notched beam under 3 
point loading (Fig. 1a) 

Tapering crack opening during the 
healing period with CMOD rates of: 
Set 1: 0.0005 mm/s, 
Set 2: 0.001 mm/s, 
Set 3: 0.002 mm/s 

DT Notched cube loaded in 
direct tension (Fig. 1b) 

Nominally uniform crack fixed during 
the healing period with CODs and 
healing periods of: 
DT1: COD = 0.1 mm: tf = 60 s and 600 s 
DT2: COD = 0.2 mm: tf = 60 s and 1200 s 

Notes: tf = healing period: CMOD = Crack Mouth Opening Displacement. 

Fig. 2. (a) Comparison between Eq. (2) and experimental data. (b) Schematic showing symmetric curing fronts within a crack filled with healing-agent.  
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(ϕ), we showed that the distribution of ϕ across a crack may be simu-
lated with the following equation: 

ϕ
(
x, zf

)
=

1
2

(

1 − tanh

(
x − zf − zc2

zc2 +
̅̅̅̅̅̅̅̅̅̅̅̅
zf /zc1

√

))

(2)  

where x is defined in Fig. 2, zc1 is the curing front constant and zc2 is the 
wall factor. 

Fig. 2a shows a comparison between a predicted ϕ distribution ob-
tained using (2) and measured values obtained from the curing front 
experiments described in Selvarajoo et al. (2020b). The parameters used 
in the comparison shown in Fig. 2a and further background to the curing 
front function is provided in Appendix C. A schematic diagram illus-
trating diffuse curing fronts progressing from opposing crack faces is 
presented in Fig. 2b. Throughout this work we have assumed that, 
within a filled crack, opposing curing fronts are symmetric. 

2.3. Observed mechanical behaviour and applicability of damage 
mechanics 

Fig. 3 shows characteristic responses from the beam and direct ten-
sion tests in which cracks had fixed CODs during the healing period (DT 
and SF series), and from beam tests that maintained a constant CMOD 
rate during healing (SO series). The former (Fig. 3a and b) show that the 
re-cracking response of healed specimens has the same characteristic 
softening behaviour as that of the virgin material, although the plots also 
show that the peak strength and fracture energy of the virgin and healed 
material can be markedly different from each other. It is well-known 
that this type of fracture response can be replicated with a cohesive- 
zone damage model (Elices et al., 2002; De Borst et al., 2012). 

The responses of the SO specimens were very different from those of 
the fixed crack tests, as illustrated in Fig. 3c. In these specimens, 
cracking and healing progressed simultaneously and the material re- 
cracked and re-healed continuously throughout the experiments. This 
type of behaviour is far more challenging to represent, particularly when 
the healing dependency on the COD and COD rate is taken into account. 
A new cohesive zone damage-healing model to represent this behaviour 
is described in Sections 3 and 4. 

In the description of the model, parameters related to healed mate-
rial are designated with the subscript h. The model distinguishes be-
tween the first and subsequent occurrences of damage and healing, the 
former being designated ‘virgin’ events (subscript v) and the latter with 
the prefix ‘re-‘ (subscript r). 

2.4. Cohesive-zone crack-plane model 

The cohesive-zone model uses the concept of a ‘crack-plane’, which 
is defined as the mid surface of a narrow band that contains a macro- 
crack and/or a number of micro-cracks (Jefferson and Mihai, 2015). 
The crack-plane model relates the crack-plane tractions (σ̃) to the 
relative-displacements across the crack plane (ũ), with the three 

components of both the ̃σ and ̃u vectors coinciding with the directions r1 
to r3 (r1 being normal to the crack-plane mid-surface, and r2 & r3 
orthogonal in-plane directions). Prior to cracking, the relationship be-
tween σ̃ and ũ is defined by the following elastic constitutive 
relationship: 

σ̃ = k̃
e
ũe (3)  

where k̃
e 

is an elastic crack-plane constitutive matrix that depends on 
the elastic moduli of the cementitious material (Ec) and the assumed 
width of the cracking zone (hfpz) (Appendix A). ũe is the elastic relative- 
displacement vector. The inelastic component of ũ is obtained from 

u⌣ = ũ − ũe
= ũ − k̃

e− 1

σ̃ and the COD is taken as the first component of u⌣ 

i.e. u1
⌣ . u1

⌣ is assumed to be equal to a normal COD measured in an 
experiment (i.e. u1

⌣ = wc). The components of σ̃ are also equal to the 
normal and shear components of the transformed total stress tensor (i.e. 
σ̃ = [σ1′ 1′ σ1′ 2′ σ1′ 3′ ]

T) with 1′,2′ and 3′ corresponding to the crack plane 
directions r1,r2 to r3 respectively. 

This type of cohesive zone model may be applied to interface finite 
elements as well as to embedded discontinuities within finite elements 
(De Maio et al., 2021). Such models may also be applied to crack planes 
within finite elements using a smeared model, with the equivalent 
relative-displacements being computed from the transformed strains 
multiplied by an element characteristic length (Jefferson and Mihai, 
2015). 

3. Damage-healing model 

Our approach to developing a damage-healing model for use in our 
coupled finite element program was first to select a viable theoretical 
framework based on our experimental observations (see Section 2.3) 
and then to use a discrete ligament model to explore damage-healing 
characteristics over a representative area of crack. The results from a 
series of ligament model simulations were used to guide the develop-
ment of a homogenised crack-plane damage-healing model. 

The ligament and homogenised damage-healing models discussed in 
this section are independent of the COD and assume that cracks fill 
instantaneously with healing agent. Here, we concentrate on under-
standing the damage, re-damage, healing and re-healing processes over 
a representative area. COD and COD rate effects are addressed using the 
overlapping curing front model described in Section 4, along with the 
method used for relating the curing front variables to the homogenised 
healing variables. 

3.1. Damage and healing discrete ligament model 

Using the ideas from statistical damage theories (Krajcinovic, 1996), 
we assume that virgin and healed strengths of nominal ligaments (fv(ξ)
and fh(ξ) respectively) of a representative cracking-healing area (Ar) 
may be defined in terms of a relative area variable ξ ∈ [0, 1]. These 

Fig. 3. Typical load-CMOD responses from (a) DT, (b) SF and (c) SO series tests (Selvarajoo et al., 2020a).  
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strengths are arranged in order of increasing rupture strength (i.e. 
fv,h(ξ + dξ) ≥ fv,h(ξ)) and are related to the associated relative- 
displacement limits (ζξ(ξ) and ζξh(ξ)), as follows: 

fv(ξ) = k̃
e
1ζξ(ξ)andfh(ξ) = k̃

e
h1ζξh(ξ) (4)  

where k̃
e
1 and k̃

e
h1 are elastic normal stiffnesses (Appendix A) for virgin 

and healed material respectively, and Ar is nominally assumed to be 
~(5dagg)

2, where dagg is the coarse aggregate particle size (see Gitman 
et al. (2007) for a discussion on representative volumes). 

The proportion of damaged material is given by the damage variable 
ω(ζ) ∈ [0, 1], where ζ is the maximum effective relative-displacement 
(ζef (ũ, t)) experienced by an increment of material over the time inter-
val t0 to t. Furthermore, the value of the relative area variable ξ for ζ =

ζξ(ξ) is equal to the damage variable ω(ζ). This damage variable can be 
described as a cumulative probability function Pb(ζ) which gives the 
proportion of material that is likely to be damaged when the relative- 
displacement parameter is equal to ζ (Krajcinovic, 1996). The corre-
sponding damage variable for healed material is denoted ωh(ζh) and 
functions for ζef , ω and ωh are given in Appendix A. 

The link between ξ and the effective relative-displacement parame-
ters is illustrated in Fig. 4 for a particular damage-healing scenario that 
involves damage, healing, re-damage and re-healing. 

When an open fractured ligament heals, healing-agent fills and cures 
in the open space between the crack faces. This introduces a healing 
relative-displacement ũhξ(ξ, t) that is equal to ũ at the time of healing. 
This means that that there is no change in stress in a ligament due to 
healing alone, which is important from a thermodynamic point of view 
(Appendix B). Taking this healing relative-displacement into account, 
the traction vector (σ̃hξ(ξ, t)) on a healed material increment may be 
written as follows: 

σ̃hξ(ξ, t) = k̃
h
(

ũ(t) − ũhξ(ξ, t)
)

(5)  

where k̃
h 

is the elastic crack-plane constitutive matrix for the healed 
material. 

Considering infinitesimal ligaments (dξ) of undamaged and damage- 
healed material, the total traction vector by may be obtained by inte-
grating across the representative area, as follows: 

σ̃(t) =
∫1

0

(

(1 − Hω(ξ, t) )k̃
e
ũ(t) +Hω(ξ, t)Hh(ξ, t)k̃

h
(

ũ(t) − ũhξ(ξ, t)
))

dξ

(6) 

Fig. 4. Material states in terms the relative area variable (ξ), illustrated for the 
case in which the damage and re-damage evolution functions have the same 
material parameters. 

Fig. 5. (a) Schematic of ligament model. (b) Comparisons of ligament and homogenised model responses for cases 1 and 2. (c)-(e) Distribution of damaged and 
healed material from the case 1 ligament model solution at three separate displacements. 
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where Hω and Hh are Heaviside functions indicating damage and healing 
respectively, with Hω = 0 and Hh = 0 indicating undamaged and un-
healed ligaments respectively, and Hω = 1 and Hh = 1 denoting 
damaged and healed ligaments respectively; noting that an infinitesimal 

ligament (dξ) is damaged or re-damaged when ζef (ũ, t) or ζef

((

ũ −

ũhξ(ξ, t)
))

exceeds ζξ(ξ) or ζξh(ξ) respectively. Furthermore, Hh 

changing from 1 to 0 signifies a re-damage event. 
If ũ changes with time during the healing process, the stress and 

crack-healing displacement will vary across Ar. To explore this situation, 
the traction history across Ar has been evaluated over a time interval t0 
to tn at nt discrete times (ti) using the following discrete approximation of 
(6): 

σ̃(ti) =
∑nl

j=1
σ̃ξj Δξ =

∑nl

j=1

[
(
1 − Hωj

)
k̃

e
ũj +Hωj Hhj k̃

h
(

ũj − ũhξj

)]

Δξ (7)  

where nl is the number of discrete ligaments, Δξ = 1/nl, subscript j 
denotes the value of a variable at ξ = ξj and Δt = (tn − t0)/(nt − 1); the 
time subscript i has been dropped from the right-hand-side terms for 
clarity. 

The scenario chosen to illustrate the features of the damage-healing 
process is a band of cementitious material with the geometric and ma-
terial properties given in Table A1 (Appendix A). A schematic of the 
system with 10 ligaments is shown in Fig. 5a. A normal displacement 
(ũ1) is applied to all ligaments at a constant rate, from time 0 to tmax, 
until it reaches the maximum value ulim. This creates a state of uniaxial 
tension in the band and so only scalar stress and relative-displacement 
measures are considered. It is assumed that there is a fixed time inter-
val (Δth) between a ligament fracturing and re-healing (Table A1). Two 
cases are considered, which have the following maximum displacement 
and duration: case 1 ulim = 0.25 mm and tmax = 240 s: and case (ii) ulim =

0.25 mm and tmax = 60 s. 
The overall traction-relative-displacement response of the system is 

given for both cases in Fig. 5b. The proportions of material that are 
damaged and healed at three selected times for case 1 are shown in 
Fig. 5c–e. This figure also shows the value of a parameter ref (ξ, t) =
(

ζef

((

ũ − ũhξ), t
)/

ζhξ

)

, which provides a measure of how close a 

material increment is to the re-damage surface.ref = 1 indicates material 
that is on the re-damage surface andref = 0 is associated with unstressed 
material. A convergence study showed that nl = nt = 4000 gave trac-
tions results that were converged to within 1%, which was considered 
adequate for the present purposes. 

The behavioural characteristics exhibited by the ligament model in 
this solution, in ξ space, include;  

I. the healing front (hv) progresses from ξ = 0 towards ξ = 1, with 
damaged material becoming interspersed with healed material in 
the range 0 to hv as the applied displacement increases;  

II. it appears that discrete blocks of healed material (resembling 
waves) form within the range 0 to hv, and the number and size of 
these blocks tend to increase and decrease respectively as the 
damage-healing process proceeds; although the blocks would not 
necessarily manifest in this way in reality, since they artefacts of 
the increasing-strength representation in ξ space;  

III. ũhξ may vary in the range 0 to hv in an irregular manner;  
IV. ref may vary from 0 to 1 within a block of healed material, 

implying a considerable variation in the propensity of different 
ligaments to re-damage with further displacement. 

3.2. Damage and healing homogenised model 

The above characteristics, along with some experimental observa-

tions and theoretical considerations, led to a set of assumptions on which 
the homogenised model is based. These assumptions, the relevant 
characteristics determined from the discrete model (I-IV) and associated 
model components are now considered.  

(i) Assumption: a homogenised form of Eq. (6) exists that relates the 
averaged traction vector to the relative-displacement vector, and 
which depends on the scalar damage variable (ω) and a healing 
variable (h ∈ [0,ω]), as well as a homogenised healing relative- 
displacement vector ũh, as follows: 

σ̃(t) = (1 − ω(t) )k̃
e
ũ(t)+ h(t)k̃

h
(

ũ(t) − ũh(t)
)

(8)    

(ii) Characteristics I and II from the discrete model solution (Section 
3.1) suggest that the re-damaged material should be expressed as 
a proportion of hv and that this may be related to the homoge-
nised healing variable as follows: 

h = (1 − ωh(ζh))hv (9)  

where ζh is the homogenised effective healed relative-displacement. 
Remark: The total amount of material that is re-damaged at any one 

time can grow and diminish, which implies that ωh is not a conventional 
irreversible damage variable since it reduces when re-healing occurs.  

(iii) Assumption: a time-dependent healing function exists that gives 
the proportion of material that is healed at time t in the absence of 
any re-damage. The following exponential healing function, used 
by other investigators (Mergheim and Steinmann, 2013), is 
assumed for the purpose of comparing the responses computed 
from the homogenised and ligament models: 

hf (t, tco) = 1 − e− 〈t− tc0〉/τh (10)  

where 〈x〉 denotes Macauley brackets such that 〈x〉 = x if x ≥ 0 and = 0 if 
x < 0, tco is the time when curing begins and τh is the healing time 
parameter. 

Remarks: a linear homogenised healing model may be more consis-
tent with the fixed healing period used in the ligament model; however, 
the linear function is far less convenient than (10) because of the need to 
track the end of the healing period after each occurrence of re-damage. 
Also, it was found that the response from the linear model in the range t 
= 0 to τh (before the tracking is required) was very similar to that ob-
tained with (10) for the parameter ranges considered. A more accurate 
approach for computing healing, which accounts for COD and COD rate 
dependency, is presented in Section 4. 

(iv) The healing variable may be derived from the following convo-
lution integral (Mergheim and Steinmann, 2013): 

h(t) =
∫t

0

hf (t, s)
∂a(s)

∂s
ds (11)  

where a(s) represents the relative area of curing healing-agent within the 
crack at time s. 

Remarks: h and a change when re-damage occurs. (11) also applies to 
hv but this variable does not reduce with re-damage.  

(v) Characteristic III (Section 3.1) relates to the variation of ũhξ(ξ, t)
in the ξ range (0 to hv). A homogenised healing displacement 
vector (ũh) may be derived from (6), for a particular time t, as 
follows: 
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ũh =
1
h

∫hv

0

Hω(ξ)Hh(ξ)ũhξ(ξ)dξ (12) 

This expression is not convenient for the homogenised model since 
ũhξ(ξ, t) is not available. We therefore use the condition that a positive 
healing rate and zero damage rate should result in a zero stress rate. This 
condition ensures that no spurious strain energy is created when healing 
occurs (Appendix B) and may be expressed by the following rate 
equation: 
((

h + ḣ
)

k̃
h
(

ũ − ũh −
˙̃uh

))

− hk̃
h
(

ũ − ũh

)

= 0 (13)  

where the superior dot denotes a time derivative. 
An equation for the ũh rate may be derived from (13) by neglecting 

second order terms, as follows: 

˙̃uh =

ḣ
(

ũ − ũh

)

h
(14) 

and in the absence of re-damage, ũh =
∫ t

t0
˙̃uhdt. 

Remark: an equivalent expression may be derived for ũh by consid-
ering the contribution of each infinitesimal healing increment to its 

value (i.e. d ̃uh =
(

ḣũ(t)/h
)

dt). This results in a convolution integral for 

ũh, which is used for proving the thermodynamic validity of the model 
(Appendix B).  

(vi) Characteristic IV (Section 3.1) relates to the variation of ref across 
ξ and the implied variation of ζhξ. As with ̃uh, it is inconvenient to 
derive ζh from an integral expression involving an approximation 
of ζhξ across ξ. A more convenient, and consistent, approach is to 
derive a homogenised value for ζh using the following condition: 

Solve h − (1 − ωh(ζh) )hv = 0 for ζh (15)    

(vii) Assumption: healing-agent is supplied instantaneously to 
damaged or re-damaged material increments, which implies that 
all of the damaged material is undergoing curing i.e. a = ω. 

Remark: this assumption is not made in the coupled model described 
in Section 4, in which crack filling is simulated explicitly.  

(viii) Assumption: h reduces when re-damage occurs at the rate ḣ =

− ω̇hhv. 

In order to compare the response of the homogenised model (8) with 
that of the discrete model (7), an algorithm is needed to integrate (8) 
over a specified relative-displacement path for the same time period 
considered for the ligament model (Fig. 5). The algorithm employs the 
following standard recursive relationship for updating the healing var-
iables, which is based on the convolution integral (11) (Simo and 
Hughes, 1998; Mergheim and Steinmann, 2013): 

hi = hi− 1e− Δt/τh + ai
(
1 − e− Δt/τh

)
(16)  

hvi = hvi− 1 e− Δt/τh + ai
(
1 − e− Δt/τh

)
(17)  

where the value of a variable at time ti is denoted with subscript i. 
It is assumed that, within a time increment, damage and healing may 

be computed sequentially, provided that the time-step is converged. We 
assume that a response is time-step converged when the response at any 
time does not change by more than 0.1% when the time-step is halved. 

In the damage sub-step, ω and ωh may increase, whilst hv remains 
constant and h reduces in accordance with (9), with the adjusted value 
being denoted hp. In the healing sub-step, h and hv are updated, and ζh 

and the dependent ωh are computed using (16) and (17). 
The algorithm is presented in algorithm Box 1.  

Algorithm 1. Homogenised crack-plane damage-healing model algorithm for 
comparison with ligament model 

t = t0 Initialise ζ0, ζh0, hv0 and ũh0 

for i =1 to nstep 
ti = ti− 1 + Δt 
ũi = ũ(ti)
Damage sub-step 

ζi = max(ζi− 1, ζef (ũi)) and ζhi = max(ζhi− 1 , ζef (ũi − ũhi ))

hp =
(
1 − ωh

(
ζhi

) )
hvi− 1 

Healing sub-step 
ai = ω(ζi)

hi = hpe− Δt/τ + ai
(
1 − e− Δt/τh

)

hvi = hvi− 1 e− Δt/τ + ai
(
1 − e− Δt/τh

)

ũhi = ũhi− 1 +

(
hi − hp

)
(

ũ − ũh

)

hi 

Solve hi −
(
1 − ωh

(
ζhi

) )
hvi = 0 for ζhi 

σ̃i = (1 − ωi)k̃
e
ũi + hik̃

h
(

ũi − ũhi

)

End for loop  

Note: max(a,b) = larger of a or b. 

3.3. Comparison between discrete and homogenised models 

A comparison between the predicted responses from the ligament 
and homogenised models for cases 1 and 2 is shown in Fig. 5b. In both 
cases, the response of the homogenised model lies within the response 
envelope of the discrete model, which provides an indication that the 
assumptions used in to derive the homogenised model are reasonable. 
Matching the response of the ligament model is not an end within itself. 
The final arbiter of the accuracy of the model lies in its ability to 
reproduce a good range of experimental responses. Before these are 
considered in Section 6, the issue of the healing dependency on the COD 
and its rate is addressed. 

4. The computation of healing from interacting curing fronts 

As illustrated in Fig. 2, the degree of cure in an open crack varies 
across the body of healing-agent. Measurable mechanical healing com-
mences when a solid phase of material first percolates across the body of 
healing-agent. This occurs after the symmetrical curing fronts from 
opposing crack surfaces overlap, with the degree of cure at the centre of 
the crack being 2ϕm, where ϕm = ϕ(wc/2, zf ). If the degree of healing 
were determined using a classical Evans-Avrami phase-change model 
(Wool and O’Connor, 1981), hf = 1 − e− 2ϕm ; however, this function did 
not accurately represent the behaviour of our direct tension tests, as 
illustrated in Section 6. Rather, we found that once a threshold had been 
reached, the degree of healing is well-approximated using the assump-
tion that the degree of healing is equal to ϕm. Setting x = 0.5wc gives the 
following expression for the degree of healing in a stationary crack 
(hf stat): 

hf stat
(
wc, zf

)
= ϕm =

1
2

(

1 − tanh

(
0.5wc − zf − zc2

zc2 +
̅̅̅̅̅̅̅̅̅̅̅̅
zf /zc1

√

))

(18) 

Eq. (18) represents the degree of healing when the COD rate is zero 
throughout the healing period; however, when the COD changes, two 
important changes are required to capture COD rate effects. The first is 

to introduce a term (Θ
(

ẇc

)

) that accounts for the disruption in the 

propagation of the polymerisation reaction caused by significant 
movement in the body of healing-agent. The second is to replace zf by a 
generalised curing front variable z that is accumulated in the manner 
described below. 
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By considering the ẇc rates in all of the tests (Selvarajoo et al., 

2020a), we found that Θ
(

ẇc

)

was unity for nominally static cracks (i.e. 

ẇc was less than the threshold rate (wrt)) but approximately half this 
value when the rate exceeded the threshold. In the absence of detailed 
data around the threshold, we propose the following function that 
provides a smooth transition between the nominally static and dynamic 
crack rate domains: 

Θ
(

ẇc

)

=

(
fstat + fdyn

2

)

−

(
fstat − fdyn

2

)

tanh

(
ẇc − wrt

wrnom

)

(19)  

where the static and dynamic factors are fstat = 1 and fdyn = 0.45 
respectively, wrt = 10− 3ζm/τhmm/s andwrnom = wrt/10. 

Eq. (18) is then replaced by the function that gives an equivalent 
degree healing for a given value of z: 

hf (wc, z) =
Θ
(

ẇc

)

2

(

1 − tanh

(
0.5wc − z − zc2

zc2 +
̅̅̅̅̅̅̅̅̅̅
z/zc1

√

))

(20) 

The generalised front variable is described into terms of the 
following convolution integral: 

z =
∫tc

0

zc0
(
1 − e− 〈tc − s〉/τ) ∂a(s)

∂s
ds (21)  

where a(tc) = Ac(tc)/Acg is the relative area of a crack at a crack inte-
gration point that is undergoing curing, with Ac being the actual area 
undergoing curing and Acg being the area associated with a crack nu-
merical integration point or, in a general context, a representative crack 
area. 

a(tc) depends on the curing time, the level of damage (ω) and the 
proportion of area filled with healing-agent (rfill). Defining the relative 
fill area (afill = ωrfill) and making the assumption that an incremental 
component of healing-agent starts to cure immediately it is exposed to a 
new surface of crack wall, a accumulates as follows: 

a =

∫ t

t0

˙̇afilldt (22) 

As with (11), the convolution integral (21) may be solved over a 
finite time interval using the following recursive expression: 

zi = zi− 1e− Δt/τ + zc0ai
(
1 − e− Δt/τ) (23) 

The virgin generalised curing front variable zv, given in Eq. (24), is 
also required and this is used to compute the virgin healing front vari-
able (hv). 

zvi = zvi− 1 e− Δt/τ + zc0avi

(
1 − e− Δt/τ) (24) 

An increment of healing (Δh) is then computed using (20), as follows: 

Δh= hf (wci , zi) − hf (wci− 1 , zi− 1) (25) 

and, 

hi= hi− 1 +Δh (26)  

where hi now represents the accumulated degree of healing at time ti. 
(20) to (26) allow healing to be simulated for a crack with a time- 

varying fill-area, but further consideration is required to allow for re- 
cracking and re-healing. When re-cracking occurs, the accumulated 
curing front and healing variables must be reduced due to the loss of 
area (ared). This is achieved by first reducing h by ared to give hr, as shown 
in (27), and then equating (20) to hr to find the consistent value of z 
(denoted zr), as shown in (28), in which ch = atanh(2 hr

Θ(ẇc)
− 1). 

hr = hi− 1 − ared (27)  

zr = zfw(hr,wc) =

[
ch +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ch

2 + 2zc1(2zc2(ch − 1) + wc )
√ ]2

4zc1
(28) 

This results in (23) being replaced with Eq. (29), as follows: 

zi = zre− Δt/τ + zc0ai
(
1 − e− Δt/τ) (29) 

Furthermore, it is necessary to account for the healed material pre-
sent in the crack when re-damage and re-healing occur. This is accom-
plished by introducing the re-crack opening displacement (wr = wc − wh)

into the healing update (25), as calculated from the current total crack 
and healed crack displacements. 

The accumulated virgin healing variable (hv) and the current healing 
variable are then computed using the following expressions: 

hvi= hvi− 1 + Δhv (30)  

hj = hr +Δhrh +Δhv (31)  

where Δhv and Δhrh are the virgin and re-healing increments 
respectively. 

These steps form the basis of the damage-healing algorithm pre-
sented in Section 5.2. 

The consistent set of damage, curing front and healing variables 
described in Sections 3 and 4 are summarised in Table 2. 

5. Computational framework and solution algorithm 

5.1. Overall solution framework 

We use the finite element method to solve the nonlinear coupled 
transport solid-mechanics problem using a staggered solution method. 
The governing equations for discrete and continuum healing-agent flow 
are given in Appendix C, and we use a conventional virtual work 
approach to derive the governing solid-mechanics system of equations. 
The discretised form of these equations is derived in the standard 
manner (Zienkiewicz et al., 2014) and may be expressed by the 

Table 2 
Summary of damage, healing and curing front variables.  

Variable Description Calculated from 

ω Virgin damage variable 
that depends on the ζ 

ζ = max(ζprev ,ζef (ũ))

ωh Re-damage variable that 
depends on ζh 

At damage sub-step:ζh = max(ζhprev ,

ζef (ũi − ũhi ))

At healing sub-step: ζh is computed from 
h − (1 − ωh(ζh) )hv = 0 

z Generalised curing front 
variable 

Accumulated during a healing sub-step 
according to Eq. (29) 

zv Generalised virgin curing 
front variable 

Accumulated during a healing sub-step 
according to (24) 

zr Generalised curing front 
variable adjusted for re- 
damage 

Calculated at the end of a damage sub- 
step according to (28) 

hv Virgin healing variable Accumulated in increments computed 
from previous and current values of zv 

using (30) 
h Current healing variable After damage sub-step: h =

(1 − ωh(ζh) )hvprev 

During the healing sub-step: h is 
computed from (31), using zr and 
incremental healing changes resulting 
from changes in z 

ũh Healing relative- 
displacement 

Updated during the healing sub-step using 
an incremental form of (14) i.e. ũhi =

ũi

(
1 −

hr

hi

)

+ ũhi− 1 

Fixed during the damage sub-step.  
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following matrix equation for the nonlinear system: 

Kg
(
ug
)
ug = Fg (32)  

where ug is the global nodal displacement vector, Kg
(
ug
)

is the global 
nonlinear stiffness matrix and Fg is the global vector of nodal loads. 

Kg
(
ug
)

is assembled from the individual element stiffness matrices, 
which take either the standard form (Ke), for linear uncracked elements, 
or the special form with an embedded strong-discontinuity (Ksd) for 
cracked elements (Freeman et al., 2020). The nonlinear system of 
equations is solved using a standard Newton incremental iterative 
scheme (De Borst et al., 2012). This involves the nodal forces being 
applied in a set of time steps and then, at each time step, the out of 
balance force vector (Ψ) (33) being reduced in a series of iterations to a 
specified tolerance as measured by an L2 norm of Ψ.

Ψ(t) = Fλ(t) −
∑

Ass

∫

Ωe

BTσe(t) dΩe = 0 (33)  

where Fλ(t) is the global applied force vector at time t,
∑

ASS denotes the 
element assembly process and B is the strain–displacement matrix. 

The solution scheme for the coupled problem is given in Algorithm 
box 2, in which a sequential coupling procedure is employed that utilises 
sub-stepping for the transport problem (Freeman and Jefferson, 2020).  

Algorithm 2. Staggered solution algorithm for transport and solid-mechanics 
equation systems, showing damage and healing phases 

t = t0;Fλ(t0) = 0 Initialise all cumulative variables. 
for i = 1 to nstep Loop time steps. 

ti = ti− 1 + Δt; Read Fλ(ti) Set time variable and current loads. 
Extract χe & wce from previous 
stage 2 computations 

Extract crack path & widths from cracked 
elements.  

Transport computations. Stage 1 Stage 1: Solve coupled discrete-continuum 
transport problem. 

Solve for χmi
&Phi Solve the nonlinear transport equations 

(Appendix C), using sub steps if necessary.  

Mechanical computations. Stage 2, 
Phase 1. Damage 

Stage 2: Solve the mechanical equation 
system (32).  
Mech Phase 1: Equilibrium and damage 
computations. 

Ψ = Fλ(ti) − Fλ(ti− 1) Set out-of-balance force vector to current 
load increment. 

for it = 1 to nt Enter iteration loop. 

δug=
[∂Ψ
∂ug

]− 1
(− Ψ)

Solve for incremental displacements 

ug = ug +δug; compute ζi, ζhi, σj Update displacements, damage variables & 
stresses 

Ψ = Fλ(ti) −
∑

v
∫

Ωe
BTσe(ti) Compute out of balance forces 

Exit it loop when L2(Ψ)/Ψref ⩽tol Exit iteration loop if converged  

Mechanical calculations. Stage 2, 
Phase 2: Healing 

Mech Phase 2: Healing computations 

See Algorithm 3 (Section 3.2) for 
update of  
rfilli ,ared,areci ,afilli ai, zi, zvi ,hri ,hvi ,hi,

ũhi 

Compute fill, curing front and healing 
variables (Section 4) 

End for i End time step loop  

whereΨref = |Fλ(ti) | and χe & χm denote the convected coordinate of the 
healing agent meniscus in a discrete crack within an element and with 
reference to the supply channel respectively. 

5.2. Healing update algorithm 

The algorithm for updating the healing variables for the damage- 
healing model described in Sections 3 and 4 is presented in Algorithm 
Box 3.  

Algorithm 3. Healing variable update 

Stage 2, Phase 2: Healing: time ti 
Δa = Δωrfill + ai− 1Δrfill: ared = ωhi1 hvi− 1 : arec = aredrfill: avi = avi− 1 + Δa 
acr = avi − ared: ai = acr + arec: hr = hvi− 1 − ared: wr = wci − whi− 1 : zr = zfw(hr,wr)

zcr = zre− Δt/τ + zc0acr
(
1 − e− Δt/τ): zvi = zvi− 1 e− Δt/τ + zc0avi

(
1 − e− Δt/τ): zi =

zre− Δt/τ + zc0ai
(
1 − e− Δt/τ)

Δhv =
(
hf (wci , zvi ) − hf (wci− 1 , zvi− 1 )

)
: Δh = Δhv +

(
hf (wr, zcr) − hf (wr, zr)

)
: 

hvi= hvi− 1 + Δhv: hi= hr + Δh 
Solve hi −

(
1 − ωh

(
ζhi

) )
hvi = 0 for ζhi

ũhi = ũi

(

1 −
hr

hi

)

+ ũhi− 1  

6. Examples and the influence of healing material parameters 

We assess the predictive performance of the coupled model using test 
data from our own experiments (examples 1 and 2) (Selvarajoo et al., 
2020a), as well as data from a well-known concrete fracture test 
(example 3). The latter (Nooru-Mohamed, 1992) is re-imagined as a 
healing test in order to explore the healing response in a specimen with a 
more complex crack pattern than those that occur in examples 1 and 2. 

The experiments considered in examples 1 and 2 all used the same 
healing-agent (PC20) and design concrete mix, although it was found 
that there were natural variations in the concrete properties between 
batches. The mechanical material properties are given in Table 3 and the 
flow properties, which were kept the same for all of the analyses, are 
given in Appendix C. 

The results reported in example 1 were obtained using the crack- 
plane model alone and this example concentrates on basic damage- 
healing behaviour for different CODs and healing periods. The 
example also considers the sensitivity of the predicted responses to 
variations in the healing material parameters. The analyses reported in 
examples 2 and 3 were undertaken using the coupled finite element 
program developed for this work. All of the finite element analyses were 
two-dimensional and employed 4-noded bilinear isoparametric ele-
ments. The staggered incremental iterative Newton solution (Algorithm 
2) was used to solve the nonlinear coupled transport–mechanical 
equations and a convergence tolerance of 10–5 was used for L2 norms of 
the mass balance and residual force vectors. The number of time steps 
used for each analysis is given with each example and in every case a 
check was undertaken to ensure that the solutions were converged with 
respect to the time step size, using a tolerance 1% (based on changes in 
CMOD, reactions and meniscus flow position). 

6.1. Example 1. Direct tension tests with different crack openings and 
healing periods 

The direct tension (DT) experiments considered in this example used 
the doubly notched concrete cuboid specimens shown in Fig. 1b. In each 
test, the specimens were loaded until a crack opened to a pre-selected 
crack mouth opening displacement (CMOD) value (i.e. 0.1 mm for 
DT1 and 0.2 mm for DT2). The test was then paused for a specified 
‘healing period’ (tf) whilst healing-agent was fed into the crack via a set 

Table 3 
Mechanical material parameters used for the analyses.  

Example E, Eh kN/mm2 ν, νh ft N/mm2 fth N/mm2 ζm mm ζhm mm τ s zc0 mm zc1 mm wc_th mm 

1 30  0.2  3.5  3.4  0.2  0.2 60  0.1 25  0.05 
2 30  0.2  2.9  3.4  0.15  0.09 60  0.1 25  0.05 
3 30  0.2  2.5  3.4  0.18  0.09 60  0.1 25  0.02 

ν = Poisson’s ratio. 
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of supply tubes and healing took place. Once the healing period had 
elapsed, the healing-agent supply was stopped and loading recom-
menced until a designated CMOD value had been attained. Here, we 
consider DT1 specimens with healing periods of 60 s and 600 s, and DT2 
specimens with healing periods of 60 s and 1200 s. 

In the experiments it was observed that the healing-agent did not 
cure over the full crack area, and to account for this we have used an 
effective curing area of 70% and 60% of the unnotched ligament for the 
DT1 and DT2 analyses respectively. For all but the final set (DT2_1200 
secs), three tests were conducted with the same test parameters, in 
addition to a no-healing control test. Results from an example control 
test are included in the DT2_1200s graph. We have removed the results 
from those tests with known experimental problems (Selvarajoo et al., 
2020a). A relevant experimental observation was that uncured healing- 
agent was present in the crack after the supply was stopped for both of 

the 60 s healing period tests. This was simulated by assuming that the 
supply continued for 20 s after the supply tubes were clamped. This time 
corresponds approximately to when the outflow of healing-agent from 
the exit tubes was observed to cease. 

In some of the experiments, the response in the first phase of loading 
exhibited an unloading–reloading loop (see Fig. 6b). This, along with 
other characteristics of the pre-healed softening response, are discussed 
in Selvarajoo et al. (2020a). The form of the cohesive-zone model pre-
sented in this paper does not account for this type of non-linear unloa-
ding–reloading response, but it would be possible to enhance the model 
to include such behaviour using an approach developed by the first 
author (Jefferson, 2002: Jefferson and Mihai 2015). 

A comparison between the experimental and numerical responses is 
given in Fig. 6 along with predicted healing time-histories. The average 
stress in the graphs is defined as the applied load divided by the 

Fig. 6. Experimental and numerical responses for direct tension specimens for DT1 (a–c) and DT2 (d–f).  

Fig. 7. Parametric study using DT1_60s data, considering variations in (a)τ, (b)zc0 and (c)zc1.  
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unnotched area (i.e. FL/5000 N/mm2). Fig. 6 shows that the model is 
able to reproduce the major experimental trends with good accuracy; 
namely, (i) less healing occurs in a 0.2 mm crack than the 0.1 mm crack, 
and (ii) the tests with 60 s healing periods exhibit less healing than those 
with a tf of 600 s and 1200 s for DT1 and DT2 respectively. The 

numerical responses beyond the healing peak load are apparently less 
ductile than the experimental responses, particularly in the 60 s healing- 
period cases. These differences are attributed to a flux in the uncured 
healing-agent beyond the end of the effective supply time that was not 
simulated in these crack-plane analyses. 

Fig. 8. Finite element meshes used for example 2.  

Fig. 9. (a) Meniscus rise responses from SO and SF analyses. (b) Meniscus position and degree of saturation at t = 343 s for SO_0.001. (c) Degree of healing in crack at 
t = 244 s and 343 s for SO_0.001. 

Fig. 10. Experimental and numerical responses for (a) fixed healing period test (SF), and (b)-(d) variable crack opening tests at different CMOD rates (SO).  
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In addition, for the 60 s and 600 s DT1 cases, results from analyses 
undertaken using the Evans-Avrami (E-A) healing expression (Section 4) 
in place of (18) are presented. The results from these simulations, 
denoted ‘Numerical E-A’ in Fig. 6a and 6b, show that (18) provides a 
more accurate representation of the observed healing behaviour than 
the E-A equation for the partially cured 60 s case. As may be expected, 
there is less difference between the responses when the healing-agent is 
fully cured, as in the 600 s DT1 specimens. 

We now explore the effect of varying the healing parameters (zc0, τ 
and zc1) on the post-healing response. The DT1_60s case was selected 
because the healing-agent is partially cured at this time (60 s), which 
implies that the response should change with the healing parameters. 
Fig. 7 shows the effect on the average stress v CMOD response of halving 
and doubling the values of each of the parameters in turn, relative to 
those given in Table 3. The graphs show that the healing response is 
strongly dependent on τ and zc0 but that zc1 is of second order impor-
tance for the parameter range considered here. 

The study presented here is contrasted with that we presented in 
Freeman et al. (2020). The example in the latter gave results for a single 
healing period and concentrated on showing the ability of the strong 
discontinuity element to represent crack-healing behaviour using a 

simplified damage-healing constitutive model. Here, we have explored 
the effects of healing time, as well as the sensitivity of the computed 
response to changes in the material parameters, for the cohesive zone 
model alone. 

6.2. Example 2. Notched beam tests for a range of loading rates. 

The second example is based on two series of tests on notched con-
crete beam specimens with embedded channels that were loaded in 
three-point bending, as illustrated in Fig. 1a. The channels were con-
nected to healing-agent supply tubes that had the facility to be 
pressurised. 

The experiments considered in this example comprise a set of tests 
from the SF series and three sets of tests from the SO series. In the former 
(SF tests), each specimen was loaded until the CMOD reached 0.15 mm. 
The healing-agent supply was then activated and the specimen held at 
this CMOD for 120 s. Loading was then restarted at a CMOD rate of 
0.001 mm/s until the CMOD had reached 0.4 mm, at which point the 
specimen was unloaded. In the latter (SO tests), the healing-agent supply 
was activated from the start of the experiment and the load applied so as 
to maintain a constant CMOD rate once the primary crack had formed. 

Fig. 11. (a) Experimental arrangement for Nooru-Mohamed test 4b with imagined healing system. (b) FE mesh.  

Fig. 12. (a) Experimental and numerical responses. (b) Final experimental and numerical crack patterns. (c) Central part (in height) of the finite element mesh 
showing the degree of healing at un = 0.039 mm, Fn = 9.66kN. 
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The SO tests considered here are those with CMOD rates of 0.0005, 
0.001 and 0.002 mm/s. All of the SO tests were continued until the 
CMOD reached 0.3 mm after which the specimens were unloaded. A 
delivery pressure of 0.5 bar was used for the SO tests; no excess pressure 
was applied in the SF tests. 

The response of the specimens was simulated with the coupled finite 
element program using two meshes (see Fig. 8). The number of time- 
steps used for the SO and SF analyses was between 40 and 80, and the 
point load was applied using prescribed displacements that achieved the 
required CMOD rate once the primary crack had formed. A lower pre-
scribed displacement rate was used in the initial stages to allow the pre- 
peak response to be captured. The computed meniscus rise response and 
selected degree of healing results are presented in Fig. 9, and the 
experimental and numerical load-CMOD responses are given in Fig. 10. 

The computed mechanical response for the SF case matches the 
experimental response with good accuracy, as shown in Fig. 10a. The 
results from the computations with the two different meshes are suffi-
ciently close for the coarser mesh results to be considered mesh 
converged, and therefore only mesh 1 was used for the SO analyses. 

The SF computed meniscus rise response (Fig. 9a) is not compared 
directly with any experimental data but the numerical results do have 
the same characteristics as those reported in Gardner et al. (2014) for CA 
in tapering concrete openings of similar magnitude. For this test, the 
healing period covered the time interval 100 to 220 s and the meniscus 
reached a plateau at a height of 60 mm at approximately 112 s. This 
means that healing took place under static flow and displacement con-
ditions from 112 s to 220 s. The results show that this period was suf-
ficient for full healing to take place. This conclusion is supported by the 
results of the full SF experimental series which showed that the exper-
imental response did not change appreciably when the healing period 
was lengthened beyond 2 min (Selvarajoo et al., 2020a). 

The numerical predictions for the three SO specimens (Fig. 10b–d) 
also match the experimental results well and show that the model is able 
to reproduce the main rate effect in the healing response i.e. that the first 
healing peak becomes less pronounced and less abrupt as the CMOD rate 
increases. Fig. 9 shows that the degree of healing through the depth at 
different times indicates that there is greater healing in the narrower 
sections but that there are some fluctuations in h near the top of the areas 
filled with healing-agent resulting from the damage-healing history at 
these locations. The tendency of the SO responses to reach a load 
plateau, above that of the corresponding control test, suggests that 
damage and healing rates balance each other in the latter stages of these 
tests. 

The meniscus rise response (Fig. 9a) is relatively rapid in all cases. 
The upward movement of the meniscus, after the first plateau, reflects 
the extension of the primary crack as loading continues and the re- 
damage of previously healed material. The latter creates a flow path 
for healing-agent to reach newly cracked sections. 

6.3. Example 3. Nooru-Mohamed test 4B reimagined as a healing test 

We used experiment 4B (Ref 46–05) from the test series of Nooru- 
Mohamed (1992) as the basis for the final example. Nooru-Mohamed’s 
tests are well-known and have has been used by a number of in-
vestigators to validate their numerical models, e.g. (Cervera and Chiu-
menti, 2006). We first considered the original experiment with our 
numerical model to demonstrate its ability to reproduce the experi-
mentally observed behaviour. We then reimagined the experiment as a 
healing test by assuming that a healing-agent supply system had been 
introduced into the specimen. The testing arrangement and imagined 
healing system are given in Fig. 11a, and the finite element mesh, 
boundary conditions and load path used for the analysis are given in 
Fig. 11b. As shown, a shear load (Fs) of 10kN was first applied to the 
upper part of the specimen. Then, while this shear load was maintained 
at the same value, the upper plate was restrained and displaced in a 
vertical upward direction with the associated normal load (Fn) being 

recorded. In the healing tests, it was assumed that the healing-agent was 
supplied at no excess pressure and activated once the shear load reached 
10kN. A displacement rate of 2.7 × 10− 5 mm/s was assumed for the 
upper surface, which is based on that used in the original experiment 
and 350 load steps were used in the solution. 

The experimental and no-healing numerical responses are compared 
in Fig. 12a along with a comparison of the experimental and numerical 
crack patterns in Fig. 12b. The model is able to reproduce the experi-
mental behaviour with good accuracy, in terms of both the 
load–displacement response and the crack path. The contrasting 
response of the imagined self-healing specimen is shown in Fig. 12a. 
This shows similar behaviour to that seen in the SO-series notched 
beams tests, except that there are some minor undulations after the first 
post-healing peak. The computed degree of healing and the extent of 
crack filling are shown in Fig. 12c at the first healing peak. At this stage, 
healing-agent had reached approximately 40% of each crack and some 
healing has occurred throughout the filled regions. 

Although the computed healed response cannot be compared to 
experimental data, the example illustrates that the model works for 
multiple curved cracks and gives a credible solution. 

6.4. Discussion 

The examples show that the coupled model is able to reproduce the 
major trends observed in the experiments with good accuracy. In 
particular, the computed responses demonstrate that the new damage- 
healing model is able to capture the healing dependency on; (i) the 
COD, as evidenced by the contrasting numerical responses of specimens 
with different (nominally uniform) CODs (DT1 and DT2) and tapering 
cracks (SF); (ii) the healing time, which may be seen in the responses of 
the DT specimens with different healing periods; and (iii) the COD rate, 
as shown in the SO specimens tested at different displacement rates. The 
latter also illustrates the ability of the model to simulate the response of 
structural elements when damage and healing occur simultaneously 
over a sustained period of time. 

The model does not reproduce the multiple healing peaks evident in 
the experimental SO-series responses. We believe that statistical varia-
tions in material strengths across the specimen and a more detailed 
representation of tortuous crack paths would be required to capture this 
behaviour. 

The damage-healing model, which is the primary subject of this 
article, has been implemented in 3D although the overall simulations 
presented here are based on a two-dimensional idealisation. For full 3D 
simulations, a model that simulates healing-agent flow emanating from 
channels in curvilinear cracks is required. Such a model has been 
developed very recently by the authors and will be the subject of a 
forthcoming article; however, using the 3D flow model in the present 
examples makes negligible difference to the predicted response and the 
authors believe that including an account of this 3D flow model would 
detract from the main message of the paper. 

7. Conclusions 

Existing models built on continuum-damage-healing-mechanics 
principles are not able to simulate accurately simultaneous cracking- 
healing responses in systems that exhibit significant COD and COD- 
rate effects. 

A multi-ligament model of a representative tensile cracking zone, in 
which the ligament strengths are set according to an appropriate sta-
tistical function, can provide valuable insight into the interaction be-
tween damage and healing behaviour when healing takes place under 
continuous crack opening conditions. Simulations undertaken with such 
a ligament model, for a load case with a constant COD rate, show that 
discrete blocks of healed material may form over the representative 
crack area, with the number and size of these blocks tending to increase 
and decrease respectively as the damage-healing process proceeds. 
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A consistent set of homogenised damage-healing variables derived 
from the ligament model results are compatible with a cohesive zone 
formulation and capture the behavioural crack healing characteristics of 
a representative zone of SHCM. 

The curing of an autonomic healing agent within a discrete crack 
progresses in the form of two diffuse curing fronts emanating from 
opposing crack faces. These nonlinear curing fronts may be assumed to 
be symmetric, with each front progressing in time according to an 
exponential function. The degree of crack healing may be related to the 
degree of cure in the overlapping zone between the opposing curing 
fronts. 

A generalised curing front variable, expressed as a convolution in-
tegral and updated according to a two-level recursive scheme, is able to 
capture the curing characteristics within a crack during transient filling, 
healing, re-cracking and re-healing events. 

The application of the curing-front approach in a damage-healing 
cohesive zone formulation produces a new model that simulates 
cracking and healing, and naturally accounts for the healing dependency 
on the COD and its rate. 

The implementation of the new cohesive zone model in finite ele-
ments with embedded strong discontinuities provides an effective means 
of simulating the mechanical behaviour of structural components 
formed from SHCMs. 

Overall, the behaviour of autonomic self-healing cementitious ma-
terials is governed by a set of interacting mechanical and transport 
processes. These may be simulated by a coupled finite element model 

that uses a Navier-Stokes discrete crack-flow model coupled to a mass 
balance equation for simulating matrix flow, and a combination of the 
strong-discontinuity element and new damage-healing cohesive model 
for mechanical behaviour. 

A series of validation examples, based on recent experimental work 
undertaken by the authors’ group, as well as data from the literature, 
show that the coupled model is able to represent the characteristic flow 
and mechanical behaviour of a vascular self-healing system in a 
cementitious structural element with good accuracy over a wide range of 
crack–healing conditions. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

Financial support from the UKRI-EPSRC Grant EP/P02081X/1 
“Resilient materials for life (RM4L)” is gratefully acknowledged. 

All data created during this research, including Mathcad sheets, 
Fortran source code and example data files, are available from the 
Cardiff University data catalogue at (http://doi.org/10.17035/ 
d.2020.0082102087).  

Appendix A. Damage model functions and standard material properties 

The elastic crack-plane constitutive matrix (Section 2.4) is given by: 

k̃
e
=

⎡

⎢
⎢
⎢
⎣

k̃1 0 0
0 k̃2 0
0 0 k̃3

⎤

⎥
⎥
⎥
⎦

(A1)  

where k̃1 = Ec/hfpz, k̃2 = k̃3 = Gc/hfpz and Gc is the elastic shear modulus. 
The damage evolution and damage surface functions used in Section 3.1 and Section 3.2 are, respectively: 

ω(ζ) = 1 −
ζ0

ζ
e− c1

ζ− ζ0
ζm − ζ0 (A2)  
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ũ1
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√
√
√
√ (A3)  

where ζ0 is the damage initiation value of ζ, such that ζ0 = ft/k̃
e
1, with ft denoting the tensile strength and ̃k

e
1 the normal elastic stiffness of crack-plane 

band; ζm is the crack opening displacement at the effective end of the softening curve; ωh takes the same form as (A1) except that ζ0 and ζm are replaced 
with ζh0 and ζhm respectively; μζ = μσ

Ec
Gc
,γζ = γσ

Ec
Gc

, μσ = 0.8 and γσ = 1.25. The significance of the latter two parameters and the reason for choosing 
these values are given in Jefferson and Mihai (2015). 

Table A1 
Parameters used for ligament and homogenised model comparison (Sections 3.1 
and 3.2).  

hfpz (mm) Ec(GPa) ft (MPa) fth (MPa) τh (s) Δth(s) ζm(mm) 

50 40  2.0  1.5 60 τh/3.5  0.2  
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Appendix B. Thermodynamic considerations 

We here prove that the crack-plane model predicts non-negative mechanical energy dissipation (D ) for any loading cycle. This criterion may be 
expressed by the Clausius-Duhem inequality (Lemaitre and Desmorat, 2005), as follows: 

D = σ̃T ˙̃u − Ψ̇ ≥ 0 (B1)  

where the Helmholtz type energy potential (Ψ) is given by: 

Ψ =
1
2
(1 − ω(ζ))ũTk̃

e
ũ +

1
2

∫t

0

(ũ(t) − uhi(s))Tk̃
h
(ũ(t) − uhi(s))

dh(s)
ds

ds (B2)  

where uhi(t) = ũ(t) at the moment of healing and it is important to recognise that 

Ψ∕≡ 1
2 (1 − ω(ζ))ũTk̃

e
ũ+1

2 h
(

ũ − ũh

)T

k̃
h
(

ũ − ũh

)

because of the way ũh accumulates during healing. 

The elastic matrices k̃
e

& k̃
h 

are symmetric positive definite, such that the quadratic form yTk̃
e
y ≥ 0 for any real valued vector y (similarly for k̃

h
) 

and the damage surface function is convex in stress and relative-displacement space. 
Each nonlinear process (damage, re-damage, healing re-healing) is considered in turn and we thereby ensure that the model is valid for each 

individual process as well as for any combination of these processes. 
For virgin damage alone, ω̇ ≥ 0, | ˙̃u| ≥ 0, ḣ = 0 and u̇h = 0 and the dissipation reduces to: 

D dam = ω̇Ψe ≥ 0 (B3)  

where Ψe = 1
2ũTk̃

e
ũ ≥ 0. 

For an increment of virgin healing or re-healing ḣ ≥ 0,
⃒
⃒
⃒
⃒u̇h

⃒
⃒
⃒
⃒ ≥ 0, ω̇ = 0, ˙̃u = 0 and the dissipation, from (B1) and (B2), becomes: 

D heal(t) = − Ψ̇ =
1
2
ũ(t)Tk̃

h
ũ(t)+

1
2
uhi(t)Tk̃

h
uhi(t) −

2
2

ũ(t)Tk̃
h
uhi(t) (B4) 

since uhi(t) = ũ(t), D heal(t) = 0.

When only re-damage occurs, we set 
⃒
⃒
⃒ ˙̃u
⃒
⃒
⃒ ≥ 0, ω̇h ≥ 0, ḣv = ω̇ = 0, u̇h = 0 and make use of (9) to derive the following expression for the dissipation; 

D redam = ω̇hΨre ≥ 0 (B5)  

where Ψre = 1
2
∫t

0
(ũ(t) − uhi(s))Tk̃

h
(ũ(t) − uhi(s))ds ≥ 0. 

Appendix C. Transport and curing models with associated material parameters 

Transport model 

The governing equations for the discrete crack flow are as follows (Freeman and Jefferson, 2020): 

∂(ρχ̇)
∂t

+ χ̇∂(ρχ̇)
∂χ = −

∂Phcrk

∂χ − ηχ̇ − ρχ̇qcrk + ρgsin(ψ) in Ωcrk

∂(ρwc)

∂t
+

∂(ρwcχ̇)
∂χ + ρwcqcrk = 0 in Ωcrk

Phcrk = − Pc0(1 − βs) +
2βmχ̇m

wc
on Γm

Phcrk = Pa on Γd

(C1)  

where Ωcrk indicates the crack domain, Γm and Γd denote the meniscus and the part of the boundary where pressure is prescribed respectively; 
βm and βs are meniscus and stick slip material parameters, Phcrk is the healing-agent pressure in the crack, ψ is the crack inclination and ρ is the healing- 
agent density; the dependent functions are given in Table C1. 

The governing equations for the matrix flow are as follows: 

∂(ρh)

∂t
+∇ • Jh + ρqmtx = 0 in Ωmtx

n→• Jh = qc on ΓNf

(C2)  

where Ωmtx defines the cementitious domain, ΓNf is the part of the boundary where the flux is prescribed and n→ is a unit vector on the boundary; ρh =

ρnSh is the phase averaged density, Sh is the degree of CA saturation, and dependent functions and associated parameters are given in Table C1. 
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In the present study, stability of the crack flow model is ensured using a continuous interior penalty, whilst a quasi-mass lumped storage matrix 
approach is employed for the matrix flow model. The transport model parameters used in the simulations are given in Table C2. 
Further background to the curing model 

Eqs. (1) and (2) are applicable to the curing of a body of CA when the thickness is relatively thin (<1mm) and the spread dimensions are at least an 
order of magnitude greater than the thickness. For larger thicknesses of healing-agent, thermal convection can become significant (Li et al., 2017) and 
a modification may be required to both equations (1) and (2). Since, the thickness of the cracks considered in this work do not exceed 0.4 mm, 
equations (1) and (2) are considered appropriate for the examples presented in Section 6. However, the thickness of the layer of CA used in our curing 
characterisation experiments (Selvarajoo et al., 2020b) was 6 mm and thus thermal convection is likely to have had an influence on the curing 
response in these tests. We have allowed for this in an approximate way by using a larger value of zc0 for the comparison shown in Fig. 2a than that 
used for the Section 6 examples. The material parameters used for the theoretical curve in Fig. 2 were as follows: τ = 60 s, zc0 = 0.3 mm, zc1 = 25 mm, 
zc2 = 0.0001 mm. 
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Table C1 
Transport model constitutive relationships from (Freeman and Jefferson, 2020).  

Constitutive relationship description Mathematical relationship Parameters / dependent variables 

Meniscus contact angle θm(Ca) =

acos(cos(θm0) − (cos(θm0) + 1 )tanh(c1Ca
c2 ) )(C3) 

Ca = μχ̇m/γ = capillary number, γ = surface tension, c1 = 1.325 and c2 = 0.350. 
χ is the convected coordinate along the crack 

HA viscosity 
μ = μ0

( ϕg

ϕg − ϕ

)nv 

(C4) 
μ0 is the initial viscosity, ϕg is the degree of cure at the gel point and nv is an 
exponent 

Sink source term qcrk =
2
ρ nβcrk(Phcrk − Ph) = − qmtx (C5) βcrk = boundary transfer coefficient, ρ = CA density, n= matrix porosity, and Phcrk 

and Ph are the crack and matrix pressures respectively. 
Young-Laplace capillary pressure for 

HA in a discrete crack Pc0 =
2γcos(θm − ϑ)

wc 
(C6) 

γ is the surface tension 
ϑ is the inclination of the crack wall 

Effective viscosity η =
μ

k + 0.5μwcβwβwr 
(C7) k = wc

2/12; βw is a wall slip factor 
βwr = 1 −

(
φxc/φg

)nv 

φxc is the wall degree of cure 
Minimum crack opening that HA can 

enter a crack 
wcmin = APa +B (C8) A = − 0.014

mm
bar

;B = 0.015mm. 

HA pressure Ph = Pg − Pc (C9) Pg is the gas pressure (assumed to be atmospheric) 
HA flux in matrix Jh = − ρKeff (Sh)(∇Ph − ρg)(C10) Keff , effective diffusion (see C12) 
Matrix capillary pressure 

Pc0 = a
(

S
−

1
m

h − 1
)

1− m 

(C11) 

a and m are constants that depend on the medium (see Table C2). 

Effective diffusion coefficient & 
relative permeability 

Keff =
KintKhrel(Sh)

μ (C12) 

Khrel = Sλ
h

[
1 −

(
1 − S

1
m
h

)m ]2 
(C13) 

λ is the pore interaction factor (see Table C2) 

1HA = healing-agent. 

Table C2 
Transport model parameters.   

Parameter Value Parameter Value Parameter Value Parameter Value   

Kint(m2) 3 × 10− 17 a(N/m2) 1.86 × 107 φg(− ) 1 γ(N/m) 0.033   
n(− ) 0.12 m(− ) 0.44 nv(− ) 2.193 βm(Ns/m2) 0   
ρ(kg/m3) 1060 λ(− ) -3 βcrk(s/m) 1x10-11 βs(− ) 0   
μ(Ns/m2) 0.004 τm(s) 28.5 θm0(rad) 0.17543 βw(m3/Ns) 0.005   
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