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Abstract   

In the present research, the dynamic responses of the multilayer functionally graded graphene 

platelets reinforced composite (FG-GPLRC) spherical panels under blast loading are studied. 

Three-dimensional elasticity theory is employed to derive the governing equations. The 

distribution of graphene platelets (GPLs) in each layer is uniform and random with a constant 

weight fraction. GPLs concentration across the panel thickness may be uniform or graded. The 

layerwise-differential quadrature method (LW-DQM) together with a non-uniform rational B-

spline based multi-step time integration scheme is used to discretize the motion equations. The 

convergence behavior of the method is examined numerically. Further, to assure its accuracy, the 

results in the limit cases are compared with those available in the literature. Finally, through the 

parametric studies, the effects of material and geometrical parameters such as GPLs distribution 

patterns, GPLs weight fraction and dimension ratios on the transient responses of the FG-GPLRC 

spherical panels subjected to blast loading are investigated. 
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1. Introduction 

Spherical panels are important and useful structural elements in many different practical 

engineering fields such as aerospace crafts, naval vehicles, petroleum and nuclear engineering. 

These applications of spherical panels in different industries demand that the heterogeneity of the 

materials should be considered in the response analysis of the panels.  Hence, research on high 

performance materials to improve their structural behavior, chemical protection against corrosion 

and wear, fatigue life, and their other physical properties is an essential task. The importance of 

the subject is the main motivation for detailed investigation of this study. 

Graphene platelets reinforced composites (GPLRCs) are a relatively new class of composite 

materials with many different exceptional properties1,2. In this type of materials, usually an 

isotropic polymer matrix is reinforced with uniformly distributed, randomly oriented and 

rectangular shaped graphene platelets (GPLs). The main advantages of GPLs over the 

conventional reinforcement materials are their lighter weight and higher strength and stiffness 1,2. 

In order to use the GPLs efficiently, it is preferred to scatter them in the polymer matrix with a 

graded distribution. Due to practical limitation in continuously changing their volume fraction, a 

layerwise approach has been suggested 3-5. Accordingly, the discrete GPLRC layers are bonded 

together to construct nanocomposites with the desired properties. In this approach, the GPLs are 

assumed to be uniformly distributed in each layer with random orientation. To ensure that the 

nanocomposite material properties have no abrupt change in the thickness direction, the volume 

fractions of GPLs in two adjacent layers have no obvious difference. These functionally graded 

GPLRC (FG-GPLRC) materials have recently gained considerable research attention in the 

engineering community 6. As an important step in the design and manufacturing operations of 
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FG-GPLRC spherical panels, it is crucial to investigate their transient response under blast 

loading. 

In the recent years, there has been an increasing amount of literature on the dynamic and static 

analyses of isotropic, functionally graded and laminated composite shells and plates; see for 

example Refs. 7-26.  Many studies have been focused on the free vibration behaviors, dynamic and 

thermoelastic analyses of different FG-GPLRC structures such as beams, plates, panels, 

cylindrical and conical shells in recent years 27-44. However, to the best of our knowledge, less 

attention is devoted to the mechanical and thermo-mechanical behavior of FG- GPLRC spherical 

panels 41-48. In addition, the nonlinear vibration of shell-type structures and the buckling of 

microbeams and microtubes under different conditions have been investigated by some 

researchers in recent years; see for example Refs. 49-55. 

Heydarpour et al. 41 studied the transient thermoelastic behaviors of complete FG-GPLRC 

spherical shells under thermo-mechanical loadings based on the Lord-Shulman thermoelasticity 

theory. Eyvazian et al. 42 analyzed the free vibration characteristics of FG-GPLRC spherical 

shells on elastic foundation in the context of the first-order shear deformation theory (FSDT) of 

shells. They utilized the generalized differential quadrature method (GDQM) to discretize the 

governing equations. The bending and free vibration behaviors of FG-GPLRC cylindrical and 

spherical panels were investigated by Do and Lee 43 using the higher-order shear deformation 

theory (HSDT) of shells. Their numerical model was developed based on the isogeometric 

analysis (IGA). Liu et al. 44 examined the three-dimensional free vibration and bending behaviors 

of FG-GPLRC spherical shells analytically. In addition, some researchers investigated the 

vibrational behaviors of FG-GPLRC doubly curved panels. Wang et al. 45 studied the free 

vibration and static bending of the simply supported FG-GPLRC doubly-curved shallow shells in 

accordance with the HSDT of shells. Bidzard et al. 46 developed an FSDT based finite element 
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model for the free vibration of FG-GPLRC toroidal panels. Wang et al. 47 investigated the 

nonlinear transient response of FG-GPLRC doubly curved shallow shells subjected to blast loads 

considering thermal effects. They derived the motion equations based on the HSDT of shells 

under von Kármán geometric nonlinear assumptions. The influences of thermal environment and 

internal pressure on the nonlinear vibrational behaviors of multilayer FG-GPLRC toroidal panels 

were studied numerically by Bidzard et al. 48. They analyzed the panels on a nonlinear elastic 

foundation with elastic restraints against rotation edges using the finite element method.  

The literature survey reveals that the three-dimensional dynamic response of multilayer FG-

GPLRC spherical panels subjected to blast loading has not been investigated yet. This research is 

essential for an accurate evaluation of their structural behaviors and is likely to fill a gap in the 

state of the art of this problem. The spherical panels under consideration are composed of several 

GPLs reinforced composite layers. Each of the individual layers is made of an isotropic polymer 

matrix reinforced with uniformly distributed and randomly oriented GPLs. The numerical 

solution method is developed using the layerwise differential quadrature method 39,41,56-58 in 

conjunction with the NURBS based multi-step time integration technique 59,60. The approach is 

validated by showing its good convergence rate and performing comparison studies with relevant 

cases available in the literature. This research work is completed by illustrating the influences of 

the distribution patterns, weight fraction and geometric parameters of GPLs, and the geometric 

parameters of the multilayer FG-GPLRC spherical panels on their dynamic behaviors. 

2. Governing equations  

Fig. 1 (a) shows a typical multilayer FG-GPLRC spherical panel with thickness h, inner radius 

Ri, outer radius Ro, circumferential and meridian opening angles 0 and 0 , respectively. The 

material points of the panel in the undeformed configuration are identified by using a spherical 
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coordinate system with coordinate variables ( ) ,,r  (see Fig. 1 (a)). As depicted in Fig. 1 (b), 

the spherical panel is composed of NL perfectly bonded concentric GPLRC spherical panel layers. 

The basic formulation and solution procedure are presented in the following sections.   

2.1 GPLRC spherical panel material properties 

In producing the multilayer FG-GPLRC shells, the GPLRC shell layers with slightly different 

GPLs weight fractions are bonded together. Each of the individual spherical panel layers is 

composed of an isotropic polymer as the matrix phase and rectangular shaped GPLs as the 

nanofillers reinforcement. The randomly oriented GPLs are uniformly dispersed in the matrix 

phase of the panel layers. In this approach, the desired functionally graded material properties 

across the shell thickness are achieved by suitably arranging the GPLRC shell layers. The 

equivalent Young’s moduli of GPLRC panel layers are estimated using the modified Halpin-Tsai 

micromechanical model. Accordingly, the effective Young’s modulus of the eth layer ( )eE  is 

obtained as 3-5 
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where Em and e

GPLV are the matrix Young’s modulus and the GPLs volume fraction of the eth 

layer, respectively. The scaling parameters L , T , L and T depend on the dimensions and 

material properties of the GPLs, respectively, and are given as            
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where GPLa , GPLb , GPLt  and EGPL are, respectively, the length, width, thickness and Young’s 

modulus of GPLs. Also, the indices GPL and m correspond to the GPLs and matrix materials, 
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respectively. The effective mass density
e and Poisson’s ratio 

e  of the eth panel layer are 

determined according to the rule of mixture 5 as follows: 

e
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where the GPLs and matrix volume fractions are obtained from the following equations, 
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and e

GPLw is the GPLs weight fraction of the eth GPLRC spherical panel layer.  

 The four different GPLs distribution patterns along the thickness have usually been considered 

in the literature for the FG-GPLRC structural elements such as beams, plates and shells. In the 

simplest one, the GPLs weight fractions are the same in all the GPLRC shell layers, and the result 

is a nanocomposite with uniformly distributed (UD) GPLs through the spherical panel thickness. 

In two other cases, the GPLRC panel layers are so arranged that the GPLs have nonuniform 

distribution through the shell thickness but mid-plane symmetry. In one of these two cases, both 

the outer and inner surfaces are GPLs rich (FG-X type) whereas in the other case, the middle 

surface is GPLs rich (FG-O type). In the fourth case, the inner surface is GPLs-rich, whereas the 

outer surface is GPLs free (FG-V type). The weight fractions of GPLs in the eth GPLRC panel 

layer of these four configurations are as follows 41  
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where GPLW  is the total GPLs weight fraction.  
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2.2 Transient thermoelastic analysis  

  As the polymer matrix is isotropic and the reinforcement GPLs are uniformly distributed and 

randomly orientated, the elastic properties of the eth layer of the FG-GPLRC spherical panel are 

isotropic and the effective Young’s modulus and Poison’s ratio can be determined using the 

formulas given in the above section.  The three-dimensional constitutive relation of the eth layer is 

given as 
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where 
e

ij ( ), , ,i j r  =  and e

ij ( ) ,,, rji = are the stress and strain tensor components at an 

arbitrary material point of the eth layer; also,  6,54, ,3 ,2 ,1, =jiC e

ij
are the material elastic 

coefficients of the eth layer of FG-GPLRC spherical panel. According to the three-dimensional 

linear elasticity theory, the strain-displacement relations for the eth spherical layer are expressed 

as  
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where ( )eu , ( )ev  and ( )ew  are, respectively, the displacement components along the r ,   and  -

directions of an arbitrary material point of the eth layer. Also, the material elastic 
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coefficients e

ij
C of the eth spherical layer are related to its effective Young’s modulus ( )eE and 

Poisson’s ratio ( )e  as 
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The motion of the eth layer of FG-GPLRC spherical panel based on the three-dimensional 

elasticity theory is governed by the following differential equations 61 
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where e=1,2,…,NL and t is the time. 

The multilayer FG-GPLRC spherical panel is subjected to a blast loading at its inner surface 
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is loading free. Thus, the corresponding boundary 

conditions become  
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In Eq. (13a), )(tq  is the internal pressure due to blast loading. Also, the external boundary 

conditions at the edges of the FG-GPLRC spherical panel are classified as  
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Either 0=ev    or    0=e
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The geometric and natural compatibility conditions at the interface of two adjacent GPLRC 

layers “e” and “e+1” of the multilayer FG-GPLRC panel require 
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where e=1, 2,…, NL-1.  

 It is assumed that the shell is at rest when it is subjected to blast loading, which leads to the 

following initial conditions  
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3. Solution technique  

 It is obviously not an easy task to obtain closed form analytical solutions for the governing 

differential equations and to satisfy all the boundary, compatibility and initial conditions. 

Usually, a suitable accurate approximate method is employed to solve them. In this work, the 

differential quadrature method (DQM) and a NURBS based multi-step method are applied to 

discretize the governing equations in the spatial and temporal domains, respectively.   
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 According to the DQM, the eth FG-GPLRC spherical panel layer is discretized into a set of Nr , 

N and N  discrete points along the r,   and  -directions, respectively. To do this, the Gauss–

Lobatto–Chebyshev grid generation rule is employed in this study 39,41. Also, the Lagrange 

polynomials are considered as the test function to determine the DQ weighting coefficients 39,41. 

According to the DQM, the motion equations (i.e. the governing differential equations) are 

discretized at the domain grid points and are transformed to a system of ordinary differential 

equations in the temporal domain. Meanwhile, the boundary and compatibility conditions are 

converted to a system of algebraic equations at the layers boundary grid points.  

The differential quadrature (DQ) discretized forms of the motion equations (10)-(12) and the 

strain-displacement relations (8) for the eth layer are respectively as follows,  
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        (26a-f) 

where i=1,2,.., rN ; j=1,2,.., N ; k=1,2,.., N ; 

ijA and N are the weighting coefficients and 

numbers of grid point along the  -direction (  ,r= and ) . By using the constitutive relation 

(7), the discretized motion equations (23)-(25) are expressed in terms of the displacement 

components of the DQ grid points. In a similar manner, the DQ discretized forms of the external 

boundary conditions, the geometric and natural compatibility conditions at the interface of two 

adjacent GPLRC layers are obtained.  After imposing the boundary conditions, the results 

become a system of ordinary differential equations (ODEs) in temporal domain, which can be 

rearranged in the matrix form as  

        ( ) tfDKD
dt

d
M =+

2

2

                                                                                         (27) 

where  M ,  K  and f  are the mass matrix, stiffness matrix and load vector, respectively. Also, 

{D} refers to displacement components vector of grid points. Based on the element arrangement 

of this vector, the elements of the coefficient matrices [M], [K] and the load vector {f} are 

determined from the discretized form of the governing differential equations and the related 

boundary and compatibility conditions.  

 Different time integration techniques can be used to solve the system of the ordinary 

differential equations (27). A comparatively new one is a multi-step method introduced using the 

NURBS curves 59,60. In this study, this new multi-step method is employed to solve the system of 

differential Eq. (27) subjected to the related initial conditions, as a system of initial value 

problems. In the first step of this scheme, the system of the second-order ODEs is decomposed 

into two sets of first-order ones as 
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   

        









=+

=

)(12

21

tfK
dt

d
M

dt

d





                                                                                  

(28a,b) 

where    D=1 and    D
dt

d
=2 . Different multi-step approaches can be developed by using 

different orders of NURBS curves and also by varying their weighting coefficients ( iw ). In the 

present work, a four-step scheme 60 is adopted with the weighting coefficients 

,10 3

1

−=w ,10 3

2

−=w 23 =w  and 34 =w . According to this scheme, the discretized forms of Eqs. 

(28a,b)  are converted to, respectively,  

         (
22

5

122111 10827.250005291.050002585.1Δ
−

−

−+
+−+=

nnnnn
t    

  )
32

6102.1
−

−−
n

                                                                                            (29)                        

         (   )3

6

2

5

1212
ˆ102.1ˆ10827.2ˆ50005291.0ˆ50002585.1Δ −

−

−

−

−+
−+−+= nnnnnn

t   (30) 

where t is the time step and 

        ( ))(ˆ
1

1
tfKM +−=

−
                                                                                       (31) 

 As can be seen from the above equations, to start the iteration procedure, the values of the 

unknown field variables at the first four points must be available. These data at the first point are 

obtained via the initial conditions. At the next three points, they are determined using the multi-

step formulation of the scheme 60. At the end of iterations, one achieves a system of linear 

algebraic equations. After performing the multi-step technique, the partial differential governing 

equations were converted into a set of linear algebraic equations. Consequently, the values of the 

unknown field variables are evaluated by solving the system of linear algebraic equations at the 

end of each time step. As can be expected, the results at the end of each iteration are considered 

as the initial conditions for the next iteration. The outputs of this procedure are the time histories 
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of the displacement components and the stress components at the DQ grid points of the FG-

GPLRC spherical panels.  

4. Numerical results 

 At this stage, firstly, the formulation and solution procedure are validated. After that, the 

effects of different material and geometric parameters on the transient responses of the FG-

GPLRC spherical panels are investigated through the parametric studies. If other values are not 

specified, a length of ( ),μm5.2=GPLa
 
a width of ( )μm5.1=GPLb

 
and a thickness of 

( )nm5.1=GPLt are adopted for the GPLs 39. Also, the material properties of epoxy (the matrix 

phase) and GPLs (the reinforcement phase) are presented in Table 1. In the solved examples, 

eleven GPLRC spherical layers (i.e., 11=LN ) are used to generate the desired GPLs distribution 

along the panel thickness. In addition, unless other values are given, the inner and outer radii of 

the panel are assumed to be ( )m 9.0=iR  and ( )m 1.1o =R , respectively. To simplify the 

interpretation of the results of the FG-GPLRC spherical panels, the following non-dimensional 

parameters are defined 

0

2
PR

huE
U

m

GPL= ,  ,
o i

i

RR

Rr

−

−
=

  
,

0


 =

    
,

0


 =

0P

ij

ij


=

 

with  ,,, rji =                        (32a-g)  

where ( )o5.0 RRR im +=
 
is the mean radius of the FG-GPLRC panel and 0P is the maximum 

internal pressure. The transient internal pressure on the inner surface of the panel due to blast 

loading is simulated as   

( )tHePtq t−= 0)(                                                                                                                            (33) 

where ( )tH  is the Heavyside step function and
 

( )1s 330 −=  62.   
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The superiority of the novel NURBS based multi-step scheme over the Newmark algorithm is 

shown numerically in Table 2. In this table, the convergence rates and the CPU times of both 

schemes in determining the transient radial displacement of a multilayer FG-GPLRC spherical 

panel under blast loading are compared. It is observed that the converged results of the two 

approaches are in close agreement, however, it is obvious that the CPU time requirement of the 

NURBS based multi-step technique is considerably less than that of the Newmark one. In 

addition, the results of the multi-step scheme converge with a limited number of time steps ( tN ).  

In Figs. 2 and 3, the convergence behaviors of the non-dimensional results of the transient 

analyses of FG-GPLRC spherical panels with X-type distribution of the GPLs under blast loading 

against the DQ number of grid points along the r, and   and  directions are illustrated, 

respectively. The numerical stability and the fast convergence rate of results are observable. It 

can also be seen that five grid points in the radial direction (i.e, 5=rN ) and seven grid points 

along the two other directions (i.e, 7==  NN ) are sufficient to obtain the acceptable results, 

respectively. 

In order to verify the accuracy of the method, the transient thermoelastic responses of a FG 

hollow sphere in thermal environment subjected to a suddenly applied internal pressure are 

determined. Eslami et al. 63 analyzed this problem analytically. They assumed that the material 

properties of the FG sphere, except the Poisson’s ratio, vary according to the following rule 63 

nr0 =                                                                                                                                      (34) 

where 0  represents the corresponding material property at the outer FG shell surface and n is 

the non-homogeneity index. They used the following material properties, non-dimensional 

parameters and boundary conditions for the FG hollow sphere, respectively 63  
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3.0= , ( )GPa2000 =E , 







= −

C

1
102.1

o

6

0 ; 
( )iRT

T
T =ˆ ,

iR

u
u =ˆ ,

( )irr

jj

jj
R


 =ˆ  with ;,rj =         

( ) ( )C10, =tRT i
, ( ) ( )C0,o

=tRT , ( ) ( )MPa50, −=tRirr , ( ) 0,o =tRrr                            (35a-h) 

where  , E0 and 0  are, respectively, the Poisson’s ratio, Young’s modulus and thermal 

expansion coefficient of sphere material. Also, T is the temperature at an arbitrary material point 

of the FG hollow sphere. 

 The non-dimensional temperature, radial displacement and stress components of both 

approaches are compared in Fig. 4. The results in this figure indicate close agreement between 

the present solution and the exact solution of Ref. 63 for different values of the non-homogeneity 

index (n).  

As another comparative study, the free vibration of a truncated spherical shell with both edges 

clamped is investigated here. This example is adopted from the work of Qu et al. 64. They 

employed an analytical method to solve formulation based on the FSDT. They considered the 

shell material properties as follows 64,  

,GPa168=E ,3.0= ( )3kg/m5700=  

The first frequencies corresponding to the first six circumferential modes are tabulated with those 

obtained by Qu et al. 64 in Table 3. For the different values of the circumferential wave number 

(m), good agreement between the two approaches is quite obvious. 

After demonstrating the computational efficiency and accuracy of the present approach, some 

parametric studies are carried out to investigate the transient behaviors of the multilayer FG-

GPLRC spherical panels subjected to blast loading. To generate the numerical results, 400 time 

steps are used.   
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The effects of the GPLs distribution patterns on the time histories of the displacement and 

stress components of multilayer FG-GPLRC spherical panels under blast loading are illustrated in 

Fig. 5.  As can be seen, the GPLs distribution patterns have important influences on the radial 

displacement and stress components of the FG-GPLRC spherical panels and their effects cannot 

be  ignored. This figure indicates that the maximum radial displacements of the panels with O-

type and V-type GPLs distribution patterns are almost the same and greater than those of the 

panels with uniform and X-type ones. However, the differences between the radial displacement 

components of the FG-GPLRC panels with different GPLs distribution patterns increase 

gradually with time. Based on the results in Fig. 5, a longer oscillatory response of the FG-

GPLRC panels is noticed for the O-type GPLs distribution pattern, compared to other types of 

responses. Moreover, it is found that the largest stress components are belong to the FG-GPLRC 

panels with the O-type GPLs distribution pattern, which has the maximum radial displacement 

component too. 

The effects of the GPLs weight fraction on the time histories of the non-dimensional field 

variables of FG-GPLRC spherical panels under blast loading are presented in Fig. 6. The FG-

GPLRC panels with the X-type distribution of GPLs are analyzed in this example. The results 

show that adding a small amount of GPLs to the polymer matrix can significantly change the 

non-dimensional radial displacement and stress components of the FG-GPLRC spherical panels. 

Fig. 6 illustrates that for the different values of GPLs weight fraction, the differences of the radial 

displacements vary between 81% and 197%. The addition of GPLs to the matrix decreases the 

radial displacements of the panels, which indicates the increase of the overall panel stiffness. In 

addition, the transient stress components of the panels decrease with the increase of the WGPL  

value.  As can be expected, the period of oscillatory portions of the results decreases with the 

increase of the GPLs weight fraction. 
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In Fig. 7, the effects of the length-to-width ratio of GPLs on the transient responses of GPLRC 

spherical panels with O-distribution of GPLs are investigated. The results indicate that the effects 

of the length-to-width ratio of GPLs on the non-dimensional radial displacement and stress 

components of FG-GPLRC panels are not significant, especially at the beginning of impact 

loading. In contrast to the effects of the length-to-width ratio, the results in Fig. 8 show that the 

width-to-thickness ratio of GPLs has significant impact on the time histories of the non-

dimensional mechanical field variables of the FG-GPLRC spherical panels. In this figure, the 

results of the FG-GPLRC spherical panels with the O-type GPLs distribution pattern and three 

different values of the width-to-thickness ratio of GPLs are compared. It is observed that by 

increasing the width-to-thickness ratio of GPLs, the non-dimensional radial displacement 

decreases. This suggests that the increase of the width-to-thickness ratio of the GPLs increases 

the stiffness of the FG-GPLRC panels. The increase in the panel stiffness is due to the fact that 

with the same amounts of GPLs, the load transfer will increase when larger surface contact areas 

between the GPLs and the polymer matrix are developed. Therefore, it can be concluded that the 

GPLs surface areas play an important role in improving the stiffness of the GPLRC panels; and 

with the same amounts of GPLs, those with larger surface areas are better reinforcement 

nanofillers than their counterparts with small surface areas. 

Fig. 9 illustrates the effects of the opening angles ( )00 ,  on the time histories of the results 

for the FG-GPLRC spherical panels with the V-type GPLs distribution pattern. The important 

impacts of these geometric parameters on the transient responses of the panels are evident. It can 

be easily realized that the increase of these angles decreases the overall stiffness of the FG-

GPLRC panels. Consequently, and as proved by the presented results, the non-dimensional radial 

displacement of the structure must increase.   Fig. 9 further demonstrates that the period of 



 18 

oscillatory portions of the response increases with increasing 0  and 0 . Moreover, the results 

reveal that increasing  0  and 0  leads to increases of the non-dimensional stress components of 

the FG-GPLRC spherical panels.  

5. Conclusion 

A three-dimensional numerical investigation of the dynamic responses of the multilayer FG-

GPLRC spherical panels under blast loading was provided. The layerwise-differential quadrature 

method in combination with a non-uniform rational B-spline based multi-step time integration 

scheme was employed to discretize the motion equations. The convergence behavior and 

accuracy of the method were demonstrated. After that, the influences of the GPLs distribution 

patterns, GPLs weight fraction and dimension ratios, and the panel opening angles on the blast 

loading dynamic responses of the FG-GPLRC spherical panels were investigated. The results 

reveal that  

1. The response time histories of the FG-GPLRC panels significantly depend on the GPLs 

distribution patterns. 

2. The addition of a small amount of GPLs to polymer matrix can significantly enhance the 

stiffness of the resulting nanocomposites and reduce the time histories of the responses of 

the FG-GPLRC panels. 

3. The GPLs distribution patterns have significant influences on the dynamic behaviors of 

FG- 

PLRC panels. For example, the X-type and uniform distributions of the GPLs provide the 

greatest stiffness, while the O-type and V-type GPLs distributions yield the minimum 

stiffness, respectively.   
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4. The increase of the width-to-thickness ratio of the GPLs increases the overall stiffness of 

the FG-GPLRC panels and consequently reduces the stress components generated by 

dynamic loading. 

5. The increase of the GPLs width-to-thickness ratio decreases the period of oscillatory 

portions of the responses, whereas the GPLs length-to-width ratio has negligible influence 

on the time responses of the FG-GPLRC panel. 

6. The increase of the opening angles reduces the overall panel stiffness of the FG-GPLRC 

panels, increases the period of oscillatory portions of the responses and increases the 

induced stress components generated by blast loading.  
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Table 1. Material properties of the epoxy and GPLs 37. 

Material Epoxy GPLs 

E (GPa) 3  1010 

  0.34 0.186 

( )3kg/m
 

1200 1062.5 

 

Table 2. Comparison between the obtained results of U-GPLRC 

spherical panels using NURBS based multi-step technique and the 

Newmark’s scheme  %,1=GPLW ,5.0===  , o

00 60== , 

5=rN , 7==  NN , ),MPa(1000 =P  )s(003.0=t .  

 

  
  NURBS-based scheme   Newmark’s scheme  

tN  U CPU time (s) U CPU time (s) 

10 1.5037 0.002034 0.7009 5.703471 

20 0.8371 0.032786 0.9254 13.095610 

50 0.9516 0.036091 0.9584 19.031749 

100 0.9673 0.047834 0.9738 37.882056 

150 0.9725 0.059034 0.9762 53.385991 

200 0.9763 0.067201 0.9771 81.044821 

300 0.9775 0.103871 0.9774 134.39031 

400 0.9779 0.229106 0.9774 273.80063 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.  Accuracy of the frequency parameters 

1m ( )






−= ERm /1 2

1  for a clamped 

truncated spherical shell ( ,05.0/ =Rh ,8/0  =  

)2/1  = . 

m  Present Qu et al. 64 

0 0.9789 0.98710 

1 1.0143 1.02639 

2 0.9969 1.00292 

3 0.9851 0.99803 

4 1.0254 1.04274 

5 1.0948 1.12623 

6 1.2095 1.24578 
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(a) 

 

 

 

(b) 

Fig. 1: The geometry of multilayer FG-GPLRC spherical panels. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figs. 2 (a)-(e): Convergence of the dynamic field variables along the radial direction for the 

clamped X-GPLRC spherical panels  %,1=GPLW ,5.0===  , o

00 60== , 

7==  NN , )MPa(1000 =P .  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figs. 3 (a)-(e): Convergence of the dynamic field variables along the   and   directions for the 

clamped X-GPLRC spherical panels  %,1=GPLW ,5.0===  , o

00 60== , 

5=rN , ,2.0o =F  )MPa(1000 =P . 
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(a)  

 
(b) 

 
(c) 

 
(d)   

Figs. 4 (a)-(d): Comparison of results across the thickness of a FG hollow sphere subjected to 

internal pressure in thermal environment ( ) ,m1i =R ( ) m2.1o =R . 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figs. 5 (a)-(e): The effects of GPLs distribution pattern on the time histories of the results for 

FG-GPLRC clamped spherical panels  %,3.0=GPLW ,5.0===  , o

00 60== , 

7==  NN , 5=rN , )MPa(500 =P . 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figs. 6 (a)-(e): The effects of GPLs weight fraction on the time histories of the results for the 

FG-GPLRC clamped spherical panels with the X-type GPLs distribution pattern 

 ,5.0===  , o

00 60== , 7==  NN , 5=rN , )MPa(1000 =P . 
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Figs. 7 (a)-(e): The effects of length-to-width thickness ratio of GPLs on the on the time histories 

of the dynamic field variables of the O-GPLRC clamped spherical panels with O-type GPLs 

distribution pattern  %,1=GPLW ,5.0===  , o

00 60== , 7==  NN , 5=rN , 

)MPa(1000 =P . 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figs. 8 (a)-(e): The effects of width-to-thickness ratios of GPLs on the time histories of the 

dynamic field variables of the O-GPLRC clamped spherical panels 
 %,1=GPLW ,5.0===  , o

00 60== , 7==  NN , 5=rN , )MPa(1000 =P . 
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(a)  

 
(b) 

 
(c) 

 
(d)   

 
(e)   

Figs. 9 (a)-(d): The effect of opening angles ( )00 ,  on the time histories of the results for the 

FG-GPLRC spherical panels with V-type GPLs distribution pattern  %,1=GPLW ,5.0===   

7==  NN , 5=rN , )MPa(1000 =P . 

 


