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Abstract

Implicit neural rendering, especially Neural Radiance
Field (NeRF), has shown great potential in novel view syn-
thesis of a scene. However, current NeRF-based methods
cannot enable users to perform user-controlled shape de-
formation in the scene. While existing works have pro-
posed some approaches to modify the radiance field ac-
cording to the user’s constraints, the modification is limited
to color editing or object translation and rotation. In this
paper, we propose a method that allows users to perform
controllable shape deformation on the implicit representa-
tion of the scene, and synthesizes the novel view images of
the edited scene without re-training the network. Specifi-
cally, we establish a correspondence between the extracted
explicit mesh representation and the implicit neural repre-
sentation of the target scene. Users can first utilize well-
developed mesh-based deformation methods to deform the
mesh representation of the scene. Our method then utilizes
user edits from the mesh representation to bend the camera
rays by introducing a tetrahedra mesh as a proxy, obtaining
the rendering results of the edited scene. Extensive exper-
iments demonstrate that our framework can achieve ideal
editing results not only on synthetic data, but also on real
scenes captured by users.

1. Introduction

Novel view synthesis has been extensively studied in
computer vision and computer graphics. In particular, the
recently proposed neural radiance field (NeRF) [43] has in-
spired a large number of follow-up works aiming to achieve
better visual effects [36], faster rendering speed [18, 77],
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generalization to different scenes [78], relighting [4,60], ap-
plying to dynamic scenes [48], and reducing the number of
inputs [29]. However, as an implicit modeling method, the
neural radiance field is difficult for users to edit or modify
the scene objects, which is relatively easy with the explicit
representation. The mesh representation, as a kind of ex-
plicit representation, is commonly used in shape modeling
and rendering. There is a lot of research work on mesh de-
formation or editing [80]. However, it is difficult to obtain
an accurate explicit representation of a real-world scene.
From a sparse set of images, one can use some Multi-View
Stereo (MVS) method [52] to reconstruct the point cloud or
mesh representation of the scene, but the quality is gener-
ally poor. Rendering the reconstructed representation un-
der novel views will lead to unrealistic results. Therefore,
based on the promising novel view synthesis ability of im-
plicit representations, such as NeRFs, further studying how
to edit the implicit representation has become a new explo-
ration direction.

Some works have already studied how to edit NeRF. For
example, EditingNeRF [38] was the first to propose editing
on the implicit radiance field. They train on a set of syn-
thetic models from the same category, such as chairs and
tables from ShapeNet [5], and introduce shape code and
color code to represent the geometry and appearance of dif-
ferent models, respectively. The user selects a desired color
and draw a few coarse scribbles on an image of a specified
view to indicate what should be changed. Then local edits
are propagated to 3D regions through updating the network
based on the loss between the original image and the edited
image. This work is limited to color modification or the re-
moval of certain parts of the shape, and it is impossible to
make substantial modifications to the shape, such as shape
deformation. A recent work, ObjectNeRF [74], proposed to
learn a decompositional neural radiance field, which sepa-
rates the objects and the background. As such, it can dupli-



Figure 1. We propose a method to edit a static neural radiance field (NeRF). Users only need to capture multi-view images to build a
NeRF representation, and then they can explicitly and intuitively edit the implicit representation of the scene. Our method can perform
user-controlled shape deformation on the geometry of the scene, which contains multiple objects.

cate, move or rotate the objects for editable scene render-
ing. However, it does not support shape deformation either.
Meanwhile, some works [48, 67] consider using NeRF to
model dynamic scenes and using Multi-Layer Perceptron
(MLP) to predict scene changes. However, they either limit
the edits to human bodies [46,82], or can only learn motion
information from the recorded videos, and cannot perform
active editing [48].

In this paper, we propose a method for editing neural
radiance field that combines the advantage of explicit rep-
resentations for easy local editing and the advantage of im-
plicit representations for realistic rendering effects. Differ-
ent from the previous work [38, 74], we focus on the geo-
metric content of the scene, as shown in Fig. 1, supporting
users to edit the scene geometry, and can perform photo-
realistic rendering from novel views. As far as we know,
we are the first to perform user-controlled shape deforma-
tion on the NeRF of general scenes. To this end, we first
extract an explicit triangular mesh representation from the
trained NeRF. The explicit mesh representation is then in-
tuitively deformed by the user. Next, a tetrahedral mesh is
built from the triangular mesh representation, which wraps
around the triangular mesh. We use the deformation of the
triangular mesh to drive the deformation of the tetrahedral
mesh, which propagates the deformation of the scene geo-
metric surface to the spatial discrete deformation field. Fi-
nally, we use tetrahedral vertex interpolation to complete
the propagation from the discrete deformation field to the
continuous deformation field. The rays passing through the
tetrahedral mesh will be bent accordingly following the con-
tinuous deformation field, so that the final rendering result
conforms to the user’s edits. Our method is general, not
limited to specific shapes such as human bodies, and appli-

cable to arbitrary shapes such as animal models and general
man-made objects.

2. Related Work
Our NeRF editing framework provides a new paradigm

for novel view synthesis of an edited neural implicit scene
representation. Here, we summarize related work of novel
view synthesis and 3D deformation/editing methods.

Novel view synthesis. To infer the photo-realistic novel
view synthesis result from given input images, prior works
rely on explicit [6, 20, 21, 56] or implicit [19, 32, 62] ge-
ometry representation of the real world scene. Recently,
used both as a component in deep neural network pipelines
and as a standalone rendering pipeline, neural rendering
has achieved immense progress, which is comprehensively
summarized in [64, 65]. It adopts deep neural networks to
synthesize images, which can be employed on multiple rep-
resentations, such as voxels [39, 54], point clouds [1, 10],
meshes [7,50,51,66], multi-plane images (MPIs) [34,42,87]
and implicit fields [31, 55]. As one of the representative
works, Neural Radiance Field (NeRF) [43] has attracted a
lot of attention, which uses a multi-layer perceptron (MLP)
to model the geometry and appearance of a scene. NeRF
can achieve photo-realistic synthesis of novel view images
with view-dependent effects. However, NeRF still has
shortcomings and plenty of work has extended the original
NeRF, including better synthesis effects [36, 71, 83], appli-
cable to dynamic scenes [14, 33, 44–48, 67, 72, 82], faster
rendering speed [18, 22, 49, 77], generalization to differ-
ent scenes [8, 69], relighting [4, 60, 85], etc. NeRF-related
works have been summarized in [11]. In this work, we fo-
cus on geometry editing/deformation for NeRF. As men-
tioned before, EditingNeRF [38] proposes to edit on the



rendered image and uses network optimization to achieve
editing transfer to the entire image and novel view images.
However, the edits are limited to 2D images, which cannot
change the spatial position of the object, let alone change
the shape of the object. ObjectNeRF [74] has a decomposi-
tional network architecture, which can only duplicate, move
or rotate objects. Our framework, however, support editing
the geometric shape of the objects in NeRF, which can then
be used to synthesize photo-realistic novel view images for
visualization.

3D deformation and editing methods. Editing a 3D
model means deforming the shape of the model under some
controls given by the user. There has been much work
about the editing of explicit geometry representation [9,17],
which we refer readers to a recent survey [80]. Traditional
mesh deformation methods are based on Laplacian coordi-
nates [35, 57, 58], Poisson equation [79], and dual Lapla-
cian coordinates [2]. As a representative work among them,
ARAP (As-Rigid-As-Possible) deformation [59] is an in-
teractive mesh editing scheme, which preserves details dur-
ing the deformation by maintaining the rigidity of the local
transformations. Another approach to driving mesh defor-
mation is through a proxy, such as skeletons [27, 41] or
cages [53, 76, 86]. These methods need to calculate the
weights [13, 28, 81] between the proxy and the mesh ver-
tices, and propagate the transformation of the proxy to the
mesh. With the proliferation of geometric models [3], data-
driven deformation [15, 16, 61] becomes available which
analyzes the deformation prior of existing shapes in the
dataset and produces more realistic results. At the same
time, plenty of data also allows neural networks to be in-
troduced into 3D editing [37, 63, 73, 75]. In addition to the
explicit mesh representation, the implicit field can also be
edited in combination with a neural network. Deng et al.
proposed the deformed implicit field [12], which is capable
of modeling dense surface correspondence and shape edit-
ing based on the learned information from an object cate-
gory. Our work also aims to edit implicit representations,
in particular NeRFs. The difference is that we take advan-
tage of the intuitive and convenient characteristics of ex-
plicit mesh editing. By establishing a connection between
the explicit mesh representation and implicit neural repre-
sentation, well-developed mesh deformation methods are
used to edit the geometry of implicit representation.

3. Our Method
Our work is based on the neural radiance field

(NeRF) [43], which has promising performance in novel
view synthesis. As a result, our method enables users to
perform shape deformation on the content of the scene, and
can generate new images from arbitrary views after editing.
We will first briefly review NeRF pipeline (Sec. 3.1), and
then introduce how to extract the explicit triangular mesh

representation from the implicit representation of the scene
and enable users to edit the mesh representation (Sec. 3.2).
After the user edits the triangular mesh representation of the
scene, we need to transfer this deformation to the implicit
volume representation. We split the transfer into two steps.
The first step is to transfer the surface mesh deformation to
a volumetric mesh, where we build a tetrahedra mesh that
wraps around the surface mesh, and transfer user edits on
the surface mesh to discrete deformation fields on the tetra-
hedra mesh (Sec. 3.3). The next step is to transform the dis-
crete deformation field to a continuous deformation field in
the space volume, which is used to guide the bending of the
rays to render images conforming to user edits (Sec. 3.4).
We will later show that directly transferring the deforma-
tion from surface mesh to the implicit volume by interpola-
tion will lead to obvious artifacts compared to our two step
strategy in Sec. 4.3. Our method establishes the connection
between the explicit mesh representation and the implicit
radiance field, enabling users to modify the geometry of ra-
diance field through intuitive edits. The pipeline is shown
in Fig. 2.

3.1. Neural Radiance Fields

Neural Radiance Field or NeRF [43] proposes to use a
multi-layer perceptron (MLP) network to model the geom-
etry and appearance of the scene from a sparse set of im-
ages. Given the known camera parameters, the image pixels
can be transformed to the world coordinate system and con-
nected with the camera position to generate the light rays
that are directed toward the scene. NeRF samples points on
the ray and uses volume rendering [30] to obtain the color of
each ray. The spatial coordinates p = (x, y, z) of each sam-
pled point and the ray direction d = (θ, φ) will go through
positional encoding ζ(·), and then input into the fully con-
nected network to predict the volume density σ and RGB
value c: FΘ : (ζ(p), ζ(d)) → (σ, c), where Θ represents
the network weights. The predicted density value σ can be
interpreted as the differentiable probability of the ray termi-
nated at the sampled point, and the color Ĉ(r) of the im-
age pixel corresponding to the ray r(t) can be calculated
through discrete integration:

Ĉ(r) =

N∑
i=1

exp(−
i−1∑
j=1

σjδj)(1− exp(−σiδi))ci, (1)

where δi = ti+1 − ti is the distance between adjacent sam-
ples. The network is supervised by the RGB loss function,
which is calculated between the generated color Ĉ(r) and
the ground truth color C(r) of the ray.

3.2. Editing of Explicit Surface Mesh Representa-
tion

After the NeRF network is trained, an explicit triangular
mesh representation can be extracted directly from the neu-
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Figure 2. The pipeline of our NeRF editing framework. The user edits the reconstructed mesh and a continuous deformation field is built
to bend the rays accordingly.

ral radiance fields using Marching Cubes [40]. However,
the mesh extracted from the original NeRF network is often
with rough surface. In order to obtain a satisfactory edit-
ing representation, we adopt the reconstruction method pro-
posed in NeuS [68], which takes a bias-free volume render-
ing manner to learn the geometry as a neural signed distance
function (SDF) representation. The mesh representation
extracted from the zero-level set of SDF will serve as the
user’s editing object, allowing users to edit the scene con-
tent intuitively. In this paper, we use the classic ARAP (as-
rigid-as-possible) deformation method [59] to enable users
to interactively deform the mesh. It should be noted that any
other mesh deformation method can be used here, including
skeleton-based and cage-based methods.

The extracted triangular mesh is denoted as S, and N(i)
represents the index set of vertices adjacent to vertex i. We
further denote vi ∈ R3 as the position of the vertex i on the
mesh S. After the user’s edits, the mesh S is transformed
to the deformed mesh S′ with the same connectivity and
different vertex positions v′i, treating user editing as bound-
ary conditions. The overall ARAP deformation energy is to
measure the rigidity of the entire mesh and is the sum of
the distortion energies of each deformation cell, including
vertex i and its 1-ring neighbors, shown in Eq. 2.

E(S′) =

n∑
i=1

∑
j∈N(i)

wij‖(v′i − v′j)−Ri(vi − vj)‖
2
. (2)

Here, wij = 1
2 (cotαij + cotβij) is the cotangent weight,

and αij , βij are the angles opposite to the mesh edge (i, j).
Ri is the local rotation at vertex i. The deformed shape S′

is obtained by minimizing the ARAP energy, which can be
efficiently solved by alternately optimizing local rotations
Ri and deformed positions v′i. We refer the readers to [59]
for the specific optimization process.

3.3. Deformation Transfer to Discrete Volume

After the user edits the triangular mesh representation
of the scene, the deformation needs to be transferred to the
implicit volume representation. As introduced before, we
split the transfer into two steps. In the first step, we build

User
Edits

Volume
ARAP

Deformation Constraints

TetWild

Extracted Mesh

Deformed Mesh

Bounding Cage Tet Mesh

Deformed Tet

Ray
Bending

Figure 3. We use discrete deformations specified by users to bend
the rays.

a tetrahedral mesh (a discrete volumetric representation) to
cover the extracted triangular mesh. Starting from the ex-
tracted triangular mesh S, we first calculate a cage mesh
that wraps the mesh S. This can be achieved by enlarg-
ing the triangular mesh by making a certain distance offset
from the mesh surface in the normal direction. We set the
default value to 5% of the averaged distance from the cam-
era position to object center. The internal space of the cage
mesh can be regarded as the “effective space” of the im-
plicit volume, because the area near real geometry surface
of the scene is enclosed by this cage mesh. When editing
larger scenes with multiple objects, this design also ensures
other objects not being edited are not affected. We use the
tetrahedralization method, TetWild [25], to tetrahedronize
the cage mesh to obtain a tetrahedral mesh representation
T . It should be noted that the extracted triangular mesh S is
also wrapped in the tetrahedral mesh T . We visualize some
extracted triangular mesh S and the corresponding tetrahe-
dral mesh T in the supplementary material. We use the dis-
placement of the triangular mesh vertices vi to drive the
deformation of the tetrahedral mesh T , which transfers the
surface deformation to the tetrahedral mesh. The deformed
tetrahedral mesh is denoted as T ′, and tk and t′k denote the
vertices of the tetrahedral mesh before and after deforma-
tion respectively, where k is the vertex index. Here, we also
use the ARAP deformation method to deform the tetrahe-
dral mesh T under the constraints of the surface mesh de-



formation. Eq. 2 can be extended from the triangular mesh
to the tetrahedral mesh straightforwardly. The only differ-
ence is that the constraints are changed from user-specified
control points to the triangular mesh vertices. We can find
which tetrahedron each triangular mesh vertex is located in,
and calculate its barycentric coordinates relative to the four
vertices of the tetrahedron. Then, the optimization problem
is,

minE(T ′), subject to At′ = v′, (3)

where A is the barycentric weight matrix. This optimiza-
tion problem can be converted into linear equations using
the Lagrangian multiplier method. Please refer to the sup-
plementary material for the specific derivation.

3.4. Ray Bending

After transferring the surface deformation to the tetrahe-
dral mesh, we can obtain the discrete deformation field of
the “effective space”. We now utilize these discrete trans-
formations to bend the casting rays. To generate an image of
the deformed radiance field, we cast rays to the space con-
taining the deformed tetrahedral mesh. For each sampled
point on the ray, we find which tetrahedron of the deformed
tetrahedral mesh T ′ it is located in. Using the correspon-
dence between T and T ′, the displacement from the ver-
tices after deformation to the vertices before deformation
can be obtained. Through barycentric interpolation of the
displacements of the four vertices of the tetrahedron where
the sampled point is located, the displacement of the sam-
pled point back to the original “effective space” ∆p can be
obtained. We add the displacement ∆p to the input coor-
dinate of the sampled point to predict the density and RGB
values.

(ζ(p + ∆p), ζ(d))→ (σ, c). (4)

The density and RGB values of the sampled points along the
ray are used to calculate the corresponding pixel color using
Eq. 1. It should be noted that the sampled points that are not
within the tetrahedral mesh T ′ will not be moved, i.e., the
part of the ray outside the tetrahedral mesh will not be bent.
The process of building deformation field is illustrated in
Fig. 3.

4. Experiments and Evaluations
In this section, we conduct several qualitative and quan-

titative experiments, including showing editing results on
both synthetic data and captured real scenes, comparisons
with baseline methods, and ablation study.

4.1. Datasets and metrics

We demonstrate our method on several public synthetic
data, including some characters in the mixamo [26], the
Lego bulldozer and chair from NeRF [43]. Moreover, we
also test our method on a real captured horse statue from
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Figure 4. We show the editing results (row “After”) compared
with NeRF rendering results (row “Before”) on synthetic data un-
der different views, including a Lego bulldozer and a chair, which
illustrate that our method can edit the NeRF of general models.
Different columns show different views.
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Figure 5. Results of our NeRF editing framework (rows “Edit1”,
“Edit2”, “Edit3”) compared with original NeRF results (row “Be-
fore”) on a real captured giraffe soft toy. Different columns show
different views. We can edit the object into different poses and
render it under different views. “Edit Op.” denotes “ Edit Opera-
tion”.

FVS dataset [50] and several real scenes captured by our-
selves. The characters in the mixamo are rendered by our-
selves. We generate 100 random views from the upper
hemisphere with Blender for training. For the data from
NeRF datasets, we use the default training setting of the
datasets. For the real scenes captured by ourselves, we leave
one image for validation, and the other images are used for



training. More information about self-captured dataset is
included in supplementary document.

It needs to be noted that different from dynamic NeRF
methods [48], it is difficult to obtain the ground truths of the
novel view synthesis results after user editing, especially on
real scenes, as such edited scenes do not physically exist. So
we mainly evaluate our approach quantitatively and qualita-
tively on the characters in the mixamo. Specifically, we rig
the mixamo character model, render the deformed charac-
ters as the ground truths and compare them with the outputs
of our NeRF editing method. We use Structural Similar-
ity Index Measure (SSIM) [70], Learned Perceptual Image
Patch Similarity (LPIPS) [84] and Peak Signal-to-Noise Ra-
tio (PSNR) as the metrics to evaluate the performance of
our approach. We also evaluate the Fréchet Inception Dis-
tance [23] (FID) score on real scenes to measure the sim-
ilarity between the results before editing and after editing,
since the ground truths are not indispensable.

4.2. Editing Results

Shape editing results under different views. We first
show NeRF editing results rendered from different views in
Figs. 4- 6 for synthetic data and real captured objects. For
comparison, we also show the results under the same views
before editing. In Fig. 4, the first set is a Lego bulldozer
from the NeRF dataset. We put down its shovel and achieve
the editing of complex synthetic data. The second set is a
synthetic chair from the NeRF dataset. We stretch the back
and legs of the chair, which demonstrates that our method
can edit the local parts of man-made objects. In Fig. 5, we
present the editing results on a giraffe soft toy captured by
ourselves. It can be seen that users can edit the giraffe to
different poses, as well as scale local areas, which demon-
strates the usability of our method. In Fig. 6, we show four
more sets of results from real scenes to illustrate that our
method can be applied to different objects. The wings of
the toy dragon are deformed to make them spread out. This
can further realize the animation of the dragon flapping its
wings while viewing it from different directions. We also
show an example of a horse statue from the FVS dataset,
where we can deform the horse’s head and raise its hoof.
On the example of a laptop, we can rotate its panel to be at
different angles. For the real captured chair, we bend the
legs of the chair to present another design style, and at the
same time enlarge the backrest, which make the chair more
comfortable to sit on. These results show that our approach
is able to deform static neural radiance fields according to
the user’s editing. In Fig. 1, we show an example of shape
deformation for multiple objects in a scene. We first split
the mesh of the horse statue from the scene, then copy it
into multiple ones, place them in different locations, and
deform them differently.

Deformation transfer results. In addition to user-
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Figure 6. Results of our NeRF editing framework (row “After”)
compared with original NeRF results (row “Before”) on multiple
real captured data. Different columns show different views. We
edit the static neural radiance fields and exhibit the deformed re-
sults under different views.

controlled shape deformation, we can also use deformation
transfer methods to transfer the deformations from the exist-
ing deformation sequence to the real captured objects. This
can achieve some interesting applications. For example, we
can transfer the movements of a human face from a video
clip to a head sculpture. We show some example results in
supplementary material.

4.3. Comparisons

As we are the first to perform general geometric shape
deformation on NeRF, we propose three baseline methods
for comparisons. For the first baseline, we adopt a naive
way to build the correspondence between the extracted tri-
angular mesh and continuous volume space. We no longer
construct a tetrahedral mesh and use it as a proxy, but in-
stead directly find the closest point of the sampled point on



Method SSIM ↑ LPIPS ↓ PSNR ↑ FID (real) ↓
Closest Point 0.928 0.055 22.38 300.8
3NN 0.941 0.042 24.30 291.7
Ours 0.975 0.024 29.62 253.7

Table 1. Quantitative comparison with the “Closest Point” and
“3NN” baselines. It can be seen that our framework achieves better
results. Note that the first three metrics are calculated on mixamo
synthetic data, while the last FID is calculated on real data.

the extracted triangular mesh surface, and use the displace-
ment of the closest point as the displacement of the sampled
point. We denote the first one as “Closest Point”. The sec-
ond baseline is similar to the first one. The difference is
that we linearly interpolate the displacements of three near-
est triangular mesh vertices, with the coefficients inversely
related to distances, to obtain the displacement of the sam-
pled point. We denote this one as “3NN”. The last baseline
is mesh rendering. The extracted triangular mesh is with
vertex color information, which can be directly rendered af-
ter user-controlled shape deformation or deformation trans-
fer.

We compare our method with the “Closest Point” and
“3NN” baselines on the synthetic data mixamo which has
ground truth edited results. The visual comparison results
are shown in Fig. 7, and the quantitative comparison is
shown in Table 1. We also show a visual comparison on
a real captured scene in the last row of Fig. 7. Due to the
absence of ground truth, we visualize the NeRF rendering
result before deformation and corresponding deformation
results. It can be seen that the “Closest Point” and “3NN”
baselines may cause discontinuities, so the rendering results
have obvious artifacts, while our method adopts two-step
deformation transfer, and the results are more visually sat-
isfactory and has quantitative advantages.

GT Closest Point 3NN Ours

Figure 7. Visual comparisons with the “Closest Point” and “3NN”
baselines. The “Closest Point” and “3NN” baselines may cause
discontinuities, so the resulting rendering results have obvious ar-
tifacts. Note that the last row is a real captured toy giraffe, so
ground truth does not exist and we instead visualize the NeRF ren-
dering results before deformation for reference.

Then we compare our method with mesh rendering base-

line on the Lego data from NeRF. It should be noted that
although our method uses an explicit triangular mesh rep-
resentation for interactive editing, it has a certain degree
of error tolerance in terms of the mesh reconstruction, and
the reconstructed triangular mesh does not need to be per-
fect. This is because the mesh is only used as an interme-
diate representation and our final images are still obtained
through volume rendering. The direct mesh rendering re-
quires a high quality mesh, and all artifacts on the mesh will
appear in the rendered images. As shown in Fig. 8, the re-
constructed mesh in the lego is not of good quality, and the
result of mesh rendering is not ideal, while our method can
still perform editing, and with the help of volume rendering,
desired results can still be obtained.

Mesh Render NeRF Edited Mesh Our Editing

Figure 8. Comparisons with mesh rendering on the synthetic data.
Mesh rendering has obvious artifacts when the mesh quality is not
good, while this does not affect our editing and image synthesis.

4.4. Ablation Study

We conduct ablation studies on the synthetic data with
respect to the novel view synthesis results after editing.
First, as we introduce a tetrahedral mesh in our method as a
proxy between the triangular mesh and the continuous vol-
ume, we compare the results of editing on the triangular
mesh and editing on the tetrahedral mesh, and verify the
necessity of editing on the triangular mesh and transferring
deformation by our method. Second, in order to evaluate
the influence of the reconstructed triangular mesh on our
results, we compare the results of the triangular mesh ex-
tracted by the original NeRF and that extracted by NeuS
which improves the quality of reconstruction. Tables 2 and
3 summarize the quantitative results of the ablation studies.

Necessity of edit on triangular mesh. Table 2 shows the
quantitative comparisons between editing on the tetrahedral
mesh and triangular mesh, which indicates that editing on
triangular mesh performs better. The qualitative results are
presented in Fig. 9. The results of editing on tetrahedral
mesh have obvious artifacts due to poor tetrahedral mesh
quality.

Impact of mesh quality. Table 3 evaluates the influence
of the reconstructed mesh quality to our method. It can be
seen that the result of using the mesh from NeuS is better
than that of NeRF, but the difference is small. The visual
comparisons are shown in Fig. 10, where the results of using
the mesh from NeRF have some artifacts in detail, but the



Method SSIM ↑ LPIPS ↓ PSNR ↑
Edit on tetrahedral mesh 0.934 0.049 24.37
Edit on triangular mesh 0.975 0.024 29.62

Table 2. Evaluation on the necessity of editing on the triangular
mesh. Editing on the triangular mesh leads to better results than
directly editing on the tetrahedral mesh.

overall result is not bad. This illustrates that mesh quality
has little effect on our results.

GT Tetrahedral Triangular

Figure 9. Ablation study of editing on the tetrahedral mesh or
triangular mesh. It can be seen that editing on the tetrahedral mesh
will bring in artifacts in rendered results.

GT NeRF NeuS

Figure 10. Ablation study of mesh quality. The reconstructed
mesh from NeRF is worse than that of NeuS, leading to some arti-
facts in the rendered results. We visualize the rendered results (first
row) and the mesh colored with vertex normals (second row).

Method SSIM ↑ LPIPS ↓ PSNR ↑
NeRF 0.969 0.027 28.95
NeuS 0.975 0.024 29.62

Table 3. Evaluation on the impact of the extracted mesh quality.
The reconstructed mesh from NeuS is better than that from NeRF,
leading to better editing results.

4.5. Limitations

Our method is the first step for geometric shape defor-
mation on NeRFs and still has several limitations. First of
all, the biggest limitation is that we cannot modify the color
and also the light and shadow based on the editing results.
If an object part that is in the shadow during capturing is
deformed to face the light, its color will still be dim in-
stead of bright, as shown in Fig. 11. This could be dealt

with by incorporating some recent NeRF-based relighting
work [4, 85] to achieve correct color rendering by decou-
pling lighting. Second, our method cannot support real-time
editing by users. The user can only select a viewing angle
for image synthesis after editing the mesh representation.
At present, the main time bottleneck is still in the render-
ing part of NeRF. Recently, there are some works on the
acceleration of NeRF rendering [18, 22, 77]. The combina-
tion with these methods will help with real-time rendering
of interactive editing results.

Training1 Training2 Deformed

Figure 11. Failure case. Our approach does not edit the appear-
ance along with geometry deformation. In this example, since the
underarm is occluded from the light in the T-pose during training,
it will always be gloomy even when the woman raises her arm,
which is implausible.

5. Conclusion

In this paper, we propose the first method to support user-
controlled shape deformation to the geometry of neural ra-
diance field network. By establishing a correspondence be-
tween the explicit mesh representation and the implicit vol-
ume representation, our method can use the well-developed
triangular mesh deformation method to deform the implicit
representation. With the novel view synthesis capability of
NeRF, users can visualize the editing results from arbitrary
views. Our method is suitable for general real scenes which
can edit scene objects including human bodies, animals,
man-made models, etc. Compared with the previous edit-
ing methods for NeRF, our method has a higher degree of
freedom and can support the editing of details. In the fu-
ture, we will further explore the combination of relighting
methods. After editing the scene geometry, the correspond-
ing colors can be modified to make the light and shadow in
the rendering results more natural. In future work, we will
implement our proposed approach in Jittor [24], which is a
fully just-in-time (JIT) compiled deep learning framework.
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