
FLEX: A Platform for Scalable Service Placement in Multi-Fog
and Multi-Cloud Environments

Pedram Farzin

University of Kurdistan

Sanandaj, Iran

p.farzin@eng.uok.ac.ir

Sadoon Azizi

University of Kurdistan

Sanandaj, Iran

s.azizi@uok.ac.ir

Mohammad Shojafar

6GIC/University of Surrey

Guildford, UK

m.shojafar@surrey.ac.uk

Omer Rana

Cardiff University

Cardiff, UK

RanaOF@cardiff.ac.uk

Mukesh Singhal

University of California-Merced

Merced, USA

msinghal@ucmerced.edu

ABSTRACT
With the recent development in the Internet of Things (IoT), big

data, and machine learning, the number of services has dramati-

cally increased. These services are heterogeneous in terms of the

amount of resources and quality of service (QoS) requirements. To

cope with the limitations of Cloud infrastructure providers (CIPs)

for latency-sensitive services, many Fog infrastructure providers

(FIPs) have recently emerged and their numbers are increasing con-

tinually. Due to difficulties such as the different requirements of

services, location of end-users, and profile cost of IPs, distributing

services across multiple FIPs and CIPs has become a fundamental

challenge. Motivated by this, a flexible and scalable platform, FLEX,

is proposed in this work for the service placement problem (SPP)

in multi-Fog and multi-Cloud computing. For each service, FLEX

broadcasts the service’s requirements to the resource managers

(RMs) of all providers and then based on the RMs’ responses, it

selects the most suitable provider for that service. The proposed

platform is flexible and scalable as it leaves it up to the RMs to have

their own policy for service placement. The problem is formulated

as an optimization problem and an efficient heuristic algorithm is

proposed to solve it. Our simulation results show that the proposed

algorithm can meet the requirements of services.

KEYWORDS
Internet of Things (IoT), Fog Computing, Cloud Computing, Multi-

Fog and Multi-Cloud, Service Placement, Flexible and Scalable Plat-

form, Quality of Service (QoS).

ACM Reference Format:
Pedram Farzin, Sadoon Azizi, Mohammad Shojafar, Omer Rana, andMukesh

Singhal. 2022. FLEX: A Platform for Scalable Service Placement in Multi-Fog

and Multi-Cloud Environments. In Australasian Computer Science Week 2022
(ACSW 2022), February 14–18, 2022, Brisbane, Australia. ACM, New York,

NY, USA, 9 pages. https://doi.org/10.1145/3511616.3513105

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ACSW 2022, February 14–18, 2022, Brisbane, Australia
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9606-6/22/02. . . $15.00

https://doi.org/10.1145/3511616.3513105

1 INTRODUCTION
With the recent advances in the Internet of Things (IoT) technolo-

gies such as sensors, actuators, RFID, and wireless communications,

the number of connected devices has increased exponentially [1].

These devices generate a huge amount of data that needs to be

stored, processed, analyzed, and represented to extract valuable

information from it. To achieve these goals, many applications and

services in the areas of IoT, big data, and machine learning have

recently emerged [13, 14, 36]. The characteristics and requirements

of these services are different in terms of the amount of resources

and quality of service (QoS) they need. For example, services such

as healthcare systems [27], virtual reality [3], and autonomous

and connected cars [22] are time-sensitive while big data analysis

[33], pollution monitoring [8], and scientific computations [15] are

delay-tolerant.

Cloud computing is a pay-as-you-go model that provides a ubiq-

uitous computing environment for a wide variety of applications

and services. Cloud infrastructure providers (CIPs) bring many ad-

vantages to their users, such as low monetary cost and virtually

unlimited computing and storage resources. However, the central-

ized nature of CIPs can lead to high communication latency and

network bandwidth consumption [17, 21]. This is in contradiction

with the decentralized nature of IoT devices. To overcomewith these

limitations, Fog computing was introduced as a promising comple-

ment to the Cloud [6]. The main purpose of the Fog is extending the

Cloud resources and services at the edge of the network. With the

development of Fog computing, more and more Fog infrastructure

providers (FIPs) are expected to deploy their own infrastructures.

Although FIPs provide great benefits to latency-sensitive and band-

width hungry services, their computing and storage resources are

very limited compared with CIPs. Moreover, Fog nodes (FNs) are

usually expensive to operate and maintain, which will cost more for

end users [30]. Therefore, the combination of FIPs and CIPs, called

multi-Fog and multi-Cloud, is becoming a common environment

for deploying the emerging services [16].

Application and service placement across Fog and Cloud comput-

ing has recently attracted significant attention from both academia

and industry [19, 25]. Difficulties such as the different requirements

of services, location of end-users, and monetary cost of IPs, make

the service placement problem (SPP) a complex task. Unfortunately,

this is becoming even more challenging issue as the number of

services and IPs is growing day by day. Hence, there is a need for

106

https://doi.org/10.1145/3511616.3513105
https://doi.org/10.1145/3511616.3513105


ACSW 2022, February 14–18, 2022, Brisbane, Australia Farzin, Azizi and Shojafar, et al.

a scalable and flexible platform to select an appropriate IP among

the existing FIPs and CIPs for each service.

In recent years, many solutions have been proposed for the SPP

in Fog and Cloud computing systems [5, 10, 11, 18, 23, 26, 28, 32].

However, some of them have focused only on the Fog or Cloud en-

vironment and do not consider both together [5, 11, 26]. There exist

some works that are based on the integrated Fog and Cloud comput-

ing platform provided by a specific IP such as Amazon, Microsoft

and Google [4, 18, 20]. As time-sensitive services require the low

communication latency and computation-intensive services prefer

the low monetary cost, a vast majority of the proposed solutions

do not take into account the desired delay and cost requirements

of service providers [10, 28]. To address these issues, we pose the

following research questions: i) how can we design and implement

an efficient platform to cope with the SPP in joint multi-Fog and

multi-Cloud environments? ii) as existing and future IPs prefer to

implement their own resource scheduling policies, how the pro-

posed platform deals with this matter?, and iii) how the desired

QoS and monetary cost requirements of each service are met using

the proposed platform’s placement algorithm?

In this work, we propose FLEX, a flexible and scalable platform

for the problem of service placement in environments with multiple

Fog and Cloud IPs. FLEX takes different approach from the previous

solutions. For each service request, FLEX selects the most appropri-

ate IP from the available ones based on the service’s requirements

and delegates the resource management to the IP. Pushing the

resource management to IPs has two important benefits. First, it

allows IPs to implement their own service placement policy, and

evolve their policy independently, i.e., the flexibility feature of FLEX.

Second, it keeps FLEX simple and makes it easier to support new

IPs, i.e., the scalability feature of FLEX. To the best of authors’

knowledge, this the first platform for the SPP in multi-Fog and

multi-Cloud environments.

Taking into account the aforementioned issues, we propose FLEX

as a flexible and scalable platform service placement in multi-fog

and multi-cloud computing environments. The major contributions

of this work are as follows:

• We propose FLEX, which is a flexible and scalable platform

for the service placement problem in multi-Fog and multi-

Cloud environments.

• We formulate the problem as an integer linear programming

(ILP) model and propose a heuristic algorithm to efficiently

solve it.

• Using extensive simulations, we evaluate the performance

of the proposed algorithm and show its effectiveness under

different experiments.

The remainder of the paper is organized as follows. Section 2

reviews and discusses the related work. The proposed platform

including its high-level and detail architecture is described in Sec-

tion 3. In Section 4, the ILP model of the SPP is presented. The

proposed heuristic algorithm for solving the model is given in Sec-

tion 5. Section 6 evaluates the proposed platform in various cases.

Finally, Section 7 concludes the paper, followed by future research

directions.

2 RELATEDWORK
In this section, we review and discuss some related works that

have focused on the service placement problem and frameworks

proposed to this problem.

Grozev and Buyya in [11] study the service deployment across

multiple Clouds. They propose an approach that considers differ-

ent aspects including cloud data center selection, load distribution,

and auto-scaling that minimizes the overall cost and delay for end-

susers. In [26], Omer et al. have focused on the IoT service place-

ment in Cloud data centers. The authors model each service as a

set of interdependent virtual machines and formulate the problem

as a mixed integer linear programming (MILP) model with the aim

of minimizing the energy consumption, resource wastage and net-

work consumption of a Cloud data center. To efficiently solve the

model, the propose a priority-aware heuristic algorithm.

Skarlat et al. [29] propose a fog computing framework based on

the concept of Fog colony. A Fog colony consists of sensors and

actuator devices, Fog cells and Fog nodes. Within each fog colony,

there is a fog orchestration control node that manages Fog cells

and Fog nodes. If there are insufficient resources to support an IoT

application, the fog orchestration control node sends the application

to another colony or cloud. As an extension of this work, the authors

in [28] propose FogFrame which provides a decentralized approach

to manage applications within a Fog landscape.

Yousefpour et al. [35] introduce FOGPLAN as a dynamic frame-

work for IoT service provisioning in a Fog computing environment.

The main goal of FOGPLAN is minimizing the delay violations and

total cost. To achieve these goals, two efficient greedy algorithms

are proposed by the authors. In [31], the authors investigate the

provisioning of heavily stateful low latency services (LLAs) over the

Fog environment. They develop FogSpot which exploits the spot

pricing mechanism [2] to allocate cloudlets’ computing resources

to end-users based on their services’ demand. Ghaemi et . al in

[9] introduce ChainFaaS a blockchain-based serverless platform

to use the personal computers’ computational capacity to deliver

internet-based computing services to end-users. The main aim of

ChainFaaS is reducing the cost of users and providing a transparent

and reliable platform.

Furthermore, Mahmud et al. [18] propose an Edge affinity based

approach to place applications in a Fog-Cloud computing envi-

ronment in order to meet the QoS requirements of users. Their

approach includes three phases. At the first phase, applications are

classified according to their main characteristics, i.e., user-defined

deadline, amount of data per input, and frequency rate of IoT de-

vices. Then, the allowable number of applications are selected to

be hosted on a Fog cluster. Finally, the selected applications are

placed on the Fog cluster with the aim of minimizing the service

delivery time. In [12], Hassan et al. propose an efficient policy for

the placement of IoT services on Fog-Cloud systems. To provide

high QoS for IoT users and low energy consumption for FIPs, the

authors classify services into critical and normal ones. They pro-

pose MinRes algorithm for critical services to minimize response

time and MinEng algorithm to reduce the energy consumption of

the Fog environment.

In [34], authors first present an ILP model for the SPP and then

propose a PageRank-based algorithm to rank applications according

107



FLEX: A Platform for Scalable Service Placement in Multi-Fog and Multi-Cloud Environments ACSW 2022, February 14–18, 2022, Brisbane, Australia

to their popularity. The main goal of this work is reducing the la-

tency of popular applications. Natesha and Guddeti in [24] design a

two-level framework for resource provisioning in a Fog computing

environment. The authors formulate the service placement problem

as a multi-objective optimization with the objectives of minimiz-

ing the service time, consumed of energy and cost. The problem

is solved by an elitism-based genetic algorithm (EGA). Cao et al.

[7] propose Edge federation, an integrated resource provisioning

model to host latency-critical services in the multiple Edge infras-

tructure providers (EIPs). The provisioning process is formulated

as an linear programming (LP) with the aim of guaranteeing the

service latency and minimizing the resource cost. The authors also

present a dynamic service provisioning solution for their model in

the Edge federation environment.

Although the above-mentioned works have taken valuable steps

towards service placement in Fog and Cloud computing systems,

none of them have focused on the service placement on the joint

multi-Fog and multi-Cloud environments. Also, none of them pay

attention to the flexibility and scalability features.

IoT 

Devices

FRM1 FRMM

. . . .

Fog 

Layer

Cloud 

Layer

Gateways

. . . .

CIPN
CIP1

CRMN

FIP1 FIPM

CRM1

Low 

Latency

Low 

Cost

Proposed Platform

(FLEX)

Figure 1: FLEX architecture.

3 FLEX PLATFORM
In this section, we first provide the high-level architecture of the

FLEX platform and discuss how FLEX achieves flexibility and scal-

ability. We then describe the components of FLEX.

3.1 High-level Architecture
Fig. 1 depicts the overall view of the multi-Fog and multi-Cloud

computing environment. We augment the architectural pattern of

IoT-Fog-Cloud with one additional layer, i.e., the proposed plat-

form. The environment consists of five parts, namely, IoT devices,
gateways, FIPs, CIPs, and the proposed platform, each of which are

explained below.

• IoT devices: This part includes different end-point devices,
such as sensors, actuators, RFIDs, smart home appliances,

wearables, smartphones, cameras, smart meters, and indus-

try devices. These devices are geographically distributed

worldwide and connected to the Internet through gateways

using different wireless technologies such as Wi-Fi, Blue-

tooth, ZigBee, and 3G/4G/5G. Since most IoT devices are

resource-limited in terms of processing, storage, and battery

power, they cannot host latency-sensitive and computation-

intensive services.

• Gateways: IoT gateways are edge devices, such as Wi-Fi ac-

cess points, cellular base stations, and home switches, which

are located in close proximity to IoT devices.

• FIPs: A multi-Fog environment consists of several FIPs in

which each FIP provides its computing, storage, and net-

working resources. The devices in the Fog layer are known

as FNs and usually are richer in resources than edge devices.

FNs can be Raspberry Pies, routers, switches, personal com-

puters, servers, cloudlets, and micro data centers. Each FIP

dedicates a specialized node, named Fog resource manager

(FRM) [18], to manage its resources and establish a persis-

tent communication with the FLEX platform. These nodes

could host applications and services in the form of virtual

machines or containers.

• CIPs: In the top layer of the vertical dimension, CIPs are

located, where they provide a lot of services through their

large-scale and robust data centers. A cloud data center con-

sists of a pool of virtualized computational and storage re-

sources. CIPs manage their resources and communicate with

FLEX through their Cloud resource manager (CRM) node,

similar to FIPs. CIPs usually are far from IoT devices, which

makes them inappropriate for time-sensitive services. How-

ever, they usually are more cost-effective than FIPs.

• Proposed platform (FLEX): The main design philosophy

of FLEX is to provide a flexible and scalable platform for

multi-Fog and multi-Cloud environments to distribute appli-

cations and services among FIPs and CIPs efficiently. FLEX

receives services and predefined requirements from different

service providers and end-users and then performs service

placement. When a service or a batch of services are sub-

mitted to the FLEX, it broadcasts the service’s requirements

and users’ location to the resource managers (RMs) of all

FIPs and CIPs. Then, based on the communication delay and

monetary cost offered by IPs, FLEX selects the most appro-

priate provider for each service. It is worth mentioning that

FLEX leaves it up to the RM of IPs to place the service on

available nodes based on their placement policy.

3.2 Detailed Architecture
The components of the FLEX are shown in Fig. 2. FLEX has four

main components: Service Receiver, Service Analyzer, Admission
Control, and Provider Selector. The functionality of each component

is explained below.

• Service Receiver: This component provides an interface for

service providers to submit their services. At this step, the re-

quirement of each service, i.e., the service profile, including

the amount of computing, storage, and bandwidth resources,

108



ACSW 2022, February 14–18, 2022, Brisbane, Australia Farzin, Azizi and Shojafar, et al.

Service Reciever

Service Analyzer

Provider SelectorAdmission Control

PX PY PZ

PX

PY

PZ

?

1

2

43

Figure 2: The details of FLEX architecture.

a priority of delay and cost, and security and privacy con-

cerns, is specified. For example, a latency-sensitive service

must give much higher weight to delay in comparison with

cost.

• Service Analyzer: This component analyzes each service and

stores it into the service database based on the profile of

services. Service analyzer should classify and sort services

based on some essential aspects such as the degree of latency-

sensitivity, security and privacy sensitivity level, and amount

of resource requirements.

• Admission Control: The admission control receives service re-

quests from the service analyzer and broadcasts the services

to the FRM and CRM of all FIPs and CIPs. This step is called

matchmaking process. Within each IP, for each service, the

RM checks to see if it can meet the requirements of that

service. If yes, then it estimates the communication delay

from the user location to the considered node for hosting

the service and calculates the cost. Then it responds to the

admission control and includes information about the delay

and cost. After receiving the responses from all providers,

admission control sends the list of providers that can host

the service with relevant information to the next component,

i.e., provider selector.

• Provider Selector: Based on the admission control’s list, the

provider selector selects the most suitable IP to host each

service. The provider selection process can be done using

different multi-criteria decision-making (MCDM) methods.

In Section V, we propose an efficient heuristic algorithm to

be applied in this component. After an IP is selected, both

the service user(s) and the IP are informed. Then, the address

of the hosted node is stored in the corresponding gateway(s)

to redirect the service requests to the relevant hosted node.

Note that the cross-IP interactions between the admission con-

trol and Fog and Cloud RMs happen only once, immediately after

the service placement request. After the end-user(s) is served, the

communication between the end-user and selected IP will be direct.

4 ADDRESSING SERVICE PLACEMENT IN
FLEX

In this section, we formulate the service placement problem as an

integer linear programming model.

4.1 Sets
Let S = {S1,S2, . . . ,Sn } be the set of n services where each i-
th service Si has some specific characteristics. The resource re-

quirement of service Si can be represented as Sri where r can

belong to R={CPU, memory, bandwidth, storage}. Also, we use

Ssi to denote the size (in terms of the number of million instruc-

tions – MI) of the service Si . For each service Si , a coefficient

α ∈ [0, 1] shows the importance of delay and cost for that service.

Let F = {F1,F2, . . . ,FM } be the set ofM FIPs where each FIP Fj
has |Fj | FNs. The notation F

r
j,l is used to denote the resource capac-

ity of the l-the FN of the FIP Fj along different r ∈ R dimensions.

Similarly, let C = {C1,C2, . . . ,CN } be the set of N CIPs where

each CIP Ck has |Ck | cloud nodes (CNs). We use Crk,l to denote the

resource capacity of the l-the CN of the CIP Ck along each of r
dimensions. We use c(F r

j ) and c(C
r
k ) to define the resource cost of

the FIP Fj and CIP Ck , respectively, along each dimension.

4.2 Decision Variables
Our model has two main decision variables, i.e., x ij,l andy

i
k,l , which

are defined as follows.

x ij,l =

{
1 if service Si is hosted on the Fj,l

0 otherwise

(1)

and

yik,l =

{
1 if service Si is hosted on the Ck,l

0 otherwise

(2)

4.3 Delay
Here we present a formulation of the delay of service placement

strategy in our system model. To obtain the delay of a request for

the i-th service Si , denoted by Di , we should take into account the

following delay factors in the model.

• Communication time (ci ): This is the time it takes for a

request to reach from an IoT device Iz to the computational

node that the i-th service Si is hosted on it.

ci =
M∑
j=1

N∑
k=1

max(|Fj |, |Ck |)∑
l=1

[
D

(
Iz → Fj,l

)
× x ij,l+

D
(
Iz → Ck,l

)
× yik,l

]
, ∀i ∈ S

(3)

where D
(
Iz → Fj,l

)
and D

(
Iz → Ck,l

)
are the communi-

cation delay from IoT device Iz to the l-the FN of the FIP Fj
and l-the CN of the CIP Ck , respectively.

• Execution time (ei ): This is the time needed to process the

service request. Thus, we have

ei =
Ssi

SCPUi
, ∀i ∈ S (4)

where SCPUi is the CPU requirement of the i-th service Si
(in unit of million instruction per second - MIPS). Hence, the

109



FLEX: A Platform for Scalable Service Placement in Multi-Fog and Multi-Cloud Environments ACSW 2022, February 14–18, 2022, Brisbane, Australia

delay is achieved using the following constraint.

Di = 2 × ci + ei , ∀i ∈ S (5)

Therefore, we use the following equation to have the total weighted

delay of a service placement strategy.

D =

n∑
i=1

αi × Di (6)

4.4 Cost
Depending on the selected provider for the i-th service Si , the cost
for that service can be calculated as follows.

Ci =
M∑
j=1

N∑
k=1

∑
∀r ∈R

[
c (Frj ) × x

i
j,l + c (C

r
k ) × y

i
k,l

]
, ∀i ∈ S (7)

Therefore, the total weighted cost for all of n services can be

given as the below.

C =

n∑
i=1

(1 − αi ) × Ci (8)

4.5 The Objective Function
Themain goal of the FLEX is to solve the service placement problem

to minimize the total weighted delay and cost of the services simul-

taneously. Hence, our final objective function can be represented

as follows. Let S = {1, 2, . . . ,max(|Fj |, |Ck |)}

min (C + D) (9)

Subject to the following constraints:

n∑
i=1

x ij,l + y
i
k,l = 1, ∀j ∈ F, ∀k ∈ C, ∀l ∈ S (10)

n∑
i=1
Sri × x

i
j,l ≤ F

r
j,l , ∀j ∈ F, ∀r ∈ R, ∀l ∈ {1, 2, . . . , |Fj | } (11)

n∑
i=1
Sri × y

i
k,l ≤ C

r
k,l , ∀k ∈ C, ∀r ∈ R, ∀l ∈ {1, 2, . . . , |Ck | } (12)

x ij,l ∈ {0, 1}, y
i
k,l ∈ {0, 1} (13)

where equality (10) is service constraint and ensures that each ser-

vice can be assigned only on one computing node. Constraints (11)

and (12) guarantee that resource demand of all services must not

exceed from capacity of fog nodes and cloud nodes, respectively.

Finally, constraint (13) specifies the problem’s variable domains

(binary).

Theorem 4.1. SPP in multi-Fog and multi-Cloud environments is
in the class of NP-hard problems.

Proof.

5 FLEX’S HEURISTIC ALGORITHM
In this section, we describe our proposed heuristic algorithm to

solve the service placement problem efficiently. The main goal of

the proposed algorithm is jointly minimizing the cost and delay for

each service. To achieve this goal, it ranks providers based on the

service’s preferences in terms of cost and delay. So, we name the

proposed algorithm as the minimum cost and delay first (MCD1).
A provider which offers the minimum weighted cost and delay is

selected. The detail of the proposed algorithm is as follows.

Assume a list of n services is submitted to FLEX to find a suitable

provider for each of them. First of all, FLEX sorts services based

on their delay sensitivity, i.e., it tries to give higher priority to

the services with the higher α value. Then, as we discussed in

subsection 3.2, for a given service, the admission control broadcasts

the service’s requirements and its user’s location to all FIPs and

CIPs. After that, it waits until all contacted FRMs and CRMs respond

to the admission control. For each service, the response of the FRMs

and CRMs includes three values: (i) A Boolean value to indicate

whether the provider can serve the service; (ii) The amount of

monetary cost for the service, and, (iii) An estimation of the delay

from the user’s gateway to the candidate node for hosting the

service.

Based on the Boolean value, the admission control sends the list

of candidate providers to the provider selector component for each

service. After receiving the list of candidate providers, the provider

selector executes the MCD1 algorithm to select the most suitable

provider for each service.

Algorithm 1 shows the pseudocode of the proposed MCD1 al-

gorithm. The algorithm receives the service Si , P is the list of

candidate FIPs and CIPs, C is the monetary cost vector for service

Si andD as the delay vector for service Si , and introduces the most

suitable provider based on the preferences of service Si . Let Ci j
and Di j are the monetary cost and delay of provider Pj for service
Si , respectively (see lines 1 and 2). In lines 3 and 4, the algorithm

respectively finds the provider with the maximum cost and delay.

The goal of the loop, i.e., lines 5 to 9, is to score providers based
on their reported cost and delay and service preferences of service

Si . To this end, we first normalize their cost and delay (lines 6 and

7) and then calculate the objective function for each provider based

on the predefined weighted of service Si assigned to delay and

cost. Next, the objective function vector is created (line 10). Finally,

line 11 finds the provider with the minimum objective function

and selects it at the destination provider for hosting the service Si
(lines 12 and 13).

Algorithm 1 MCD1 Algorithm

INPUT: Si , P:list of candidate FIPs and CIPs, C: monetary cost vector for Si ,
D:delay vector for Si

OUTPUT: Selecting the most suitable provider for Si

1: Let Ci j ∈ C is the monetary cost of provider Pj for Si ;
2: Let Di j ∈ D is the delay of provider Pj for Si ;
3: Cmax

j ← find maximum Ci j ∈ C;
4: Dmax

j ← find maximum Di j ∈ D;
5: for each Pj ∈ P do
6: Cnorm

i j ← Ci j /Cmax
i j ;

7: Dnorm
i j ← Di j /Dmax

i j ;

8: Fi j ← αi ×Cnorm
i j + (1 − αi ) × Dnorm

i j ;

9: end for
10: Let F is objective function vector for Si ;

11: Fmin
j ← find minimum Fi j ∈ F;

12: Let Pindex is the provider with the value of Fmin
j ;

13: return Pindex as the destination provider for hosting Si ;

The time complexity analysis of our proposed algorithm is as

follows. The worst-case complexity of lines 3 and 4 is O(M + N ),

where M and N are the number of FIPs and CIPs, respectively.

Note that |P|= M + N . The normalization step, i.e., lines 5-9, also

requires O(M + N ). Again, the worst-case time complexity of line

110



ACSW 2022, February 14–18, 2022, Brisbane, Australia Farzin, Azizi and Shojafar, et al.

11 is O(M + N ). Therefore, the overall time complexity of MCD1

for one service is O(|P|), i.e., O(M + N ).

6 PERFORMANCE EVALUATION
This section presents comprehensive experiments to evaluate the

FLEX platform’s performance. To this end, we have implemented

FLEX using a custom simulation environment written in Java pro-

gramming language. All the experiments were carried out on a PC

with Intel Core i7-4790 CPU 3.6 GHz (4 processors), 8 GB RAM and

windows 10 OS.

6.1 Simulation settings
To fully understand the advantages of our proposed platform and

its heuristic algorithm, we tacked into account four experiments

to show the impact of different scenarios (Table 1). For each exper-

iment, we considered two different values for the rate of latency-

sensitive services to all services and the rate of FIPs to all providers,

i.e., 25% and 75%. The latency-sensitive services put a lot of empha-

sis on delay, e.g., α ≥ 0.9.

Table 1: Experiments settings. Rate of latency-sensitivity:= R(s ); Rate of
FIPs:= F(f ).

Experiments Services Providers R(s) F (f )

1 100 8 (25%, 75%) (25%, 75%)

2 100 20 (25%, 75%) (25%, 75%)

3 500 8 (25%, 75%) (25%, 75%)

4 500 20 (25%, 75%) (25%, 75%)

Since the real dataset is not available for simulating the environ-

ment, including services and FIPs and CIPs, we used a synthetic

dataset in our experiments Table 2 and Table 3 show the attributes

of services and Fog, Cloud nodes, respectively. We considered the

limited value for the number of Fog nodes of each FIP, i.e., [6,12].

However, for CIPs, such a restriction is not imposed.

Table 2: Attributes of Services.

Parameter Value Unit
CPU requirements [300, 800] (MIPS)

Memory requirements [0.5,2] (GB)

Number of instructions [400, 1500] (MI)

Table 3: Attributes of Fog/Cloud nodes.

Parameter Fog Cloud Unit
Processing power [600,2000] [4000,10000] (MIPS)

Memory capacity [4,8] [16,32] (GB)

CPU usage cost [0.3,0.7] [0.2,0.4] (G$ per MIPS)

Memory usage cost [0.05,0.08] [0.03,0.06] (G$ per MB)

Communications delay [5,15] [50,1250] (ms)

6.2 Simulation metrics
To evaluate the performance of the FLEX’s heuristic algorithm, the

following metrics are used in the experiments.

• Average Weighted Delay (AWD): We use the following

equation to measure the delay provided by a service place-

ment strategy to host n services on a multi-Fog and multi-

Cloud environment.

AWD =

1

n
×

n∑
i=1

αi × Di (14)

• Average Weighted Cost (AWC): This metric is used to

evaluate the performance of a service placement strategy in

term of cost.

AWC =

1

n
×

n∑
i=1

(1 − αi ) × Ci (15)

• Objective Function (OF): It is minimum values of cost and

delay simultaneously point to the performance of a service

placement strategy in both of delay and cost perspective.

OF =

1

n
×

(
n∑
i=1

αi ×
Di

Dmax
i

+ (1 − αi ) ×
Ci

Cmax
i

)
(16)

whereDmax
i and Cmax

i denote the maximum possible delay

and cost which can respectively provided for i-th service

Si . It is worth mentioning that the decreased value of this

metric represents the enhanced performance of a placement

policy in terms of both delay and cost.

6.3 Baseline Algorithms
The performance of the proposed FLEX’s heuristic algorithm, i.e.,

MCD1, is compared with the following baselines.

• Random (RND): This strategy selects a random provider

for each service.

• The Most Cost-effective Provider First (MC1): For each
service placement request, MC1 selects the provider which

offers the minimum cost for that service.

• The Minimum Delay Provider First (MD1): This algo-
rithm selects the provider with the minimum delay for each

service.

6.4 Results
In this subsection, we discuss the results of the four considered

experiments.

6.4.1 Experiment one. Fig. 3 and Fig. 4 show the simulation re-

sults for experiment one. Generally speaking, as the rate of FIPs

increases from f = 25% (Fig. 3) to f = 75% (Fig. 4), the AWD of all

policies significantly decreases. However, this is vice-versa for the

AWC. This is expected since FIPs usually provide lower delay but a

higher cost in comparison with CIPs. Also, by increasing the rate

of latency-sensitive services, i.e., s , the proposed MCD1 places a

higher percentage of services on FIPs to satisfy the QoS’s end-user

requirement. Thus, its AWD is decreased while its AWC is increased.

The other important point is that MC1 (MD1) gives the minimum

AWC (AWD) while it has the maximum AWD (AWC). From Fig. 3c

and Fig. 4c, it is evident that MCD1 has excellent performance. This

is because the proposed MCD1 is the service’s profile aware as it

selects the most suitable provider based on both delay and cost.

111



FLEX: A Platform for Scalable Service Placement in Multi-Fog and Multi-Cloud Environments ACSW 2022, February 14–18, 2022, Brisbane, Australia

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

A
W

D
 (

m
s)

RND(s=25%) MC1(s=25%) MD1(s=25%) MCD1(s=25%)
RND(s=75%) MC1(s=75%) MD1(s=75%) MCD1(s=75%)

(a) AWD

100

150

200

250

300

350

400

450

A
W

C
 (

G
$)

RND(s=25%) MC1(s=25%) MD1(s=25%) MCD1(s=25%)
RND(s=75%) MC1(s=75%) MD1(s=75%) MCD1(s=75%)

(b) AWC (c) OF

Figure 3: Simulation results for experiment one with #Services=100, #Providers=8, f =25%.

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

A
W

D
 (

m
s)

RND(s=25%) MC1(s=25%) MD1(s=25%) MCD1(s=25%)
RND(s=75%) MC1(s=75%) MD1(s=75%) MCD1(s=75%)

(a) AWD

100

150

200

250

300

350

400

450

A
W

C
 (

G
$)

RND(s=25%) MC1(s=25%) MD1(s=25%) MCD1(s=25%)
RND(s=75%) MC1(s=75%) MD1(s=75%) MCD1(s=75%)

(b) AWC (c) OF

Figure 4: Simulation results for experiment one with #Service=100, #Providers=8, f =75%.

6.4.2 Experiment two. Table 4 demonstrates the performance of

the algorithms in terms of the AWD and AWC. As can be found from

the table, the proposed MCD1 achieves better trade-off between

the AWD and AWC than the other strategies. The OF results for

Experiment two have been displayed in Fig. 5. From the figure, we

can observe that the proposed MCD1 significantly performs better

than the others in all cases. In particular, the proposed policy can

reduce the OF by 25.6%, 26.8%, and 11.4% compared to RND, MC1,

and MD1, respectively, for the case s=75% and f =75%.

Table 4: AWD and AWC results of experiment two for #Service=100,

#Providers=20.

Comparing Ratio AWD (ms) AWC (G$)
Algorithms s f =25% f =75% f =25% f =75%

RND
25%

1854.3 1646.8 260.6 302.7

(std=283.3) (std=214.5) (std=30.1) (std=52)

75%

1721.7 1642.8 247.5 288.2

(std=143.6) (std=119) (std=30.1) (std=39.9)

MC1
25%

2152.5 1960.2 171.6 197.2

(std=400.3) (std=221.1) (std=11.8) (std=24.2)

75%

1918.8 1803.9 165.4 196.6

(std=252.7) (std=126.3) (std=12.9) (std=24)

MD1
25%

1364.3 1075.8 350.5 370.4

(std=160.4) (std=252.3) (std=43.5) (std=40.3)

75%

1359.2 991.9 348 376.5

(std=217.5) (std=244.2) (std=36.4) (std=27.8)

MCD1
25%

1719.5 1742 207.3 233.2

(std=176.3) (std=107.1) (std=8.1) (std=25.8)

75%

1543.9 1274.2 238.5 290.8

(std=159.4) (std=142.1) (std=33.6) (std=32)

Table 5: AWD and AWC results of experiment four for #Service=500,

#Providers=20.

Comparing Ratio AWD (ms) AWC (G$)
Algorithms s f =25% f =75% f =25% f =75%

RND
25%

1731.8 1546 251.4.2 323.5

(std=61.8) (std=120.2) (std=33.6) (std=31.7)

75%

1726.5 1597.2 244.8 317.3

(std=172.4) (std=166.2) (std=48.4) (std=57.8)

MC1
25%

1929.2 1779.3 172.6 190.6

(std=346.6) (std=179.9) (std=10.3) (std=25.5)

75%

2107 1758.3 169.3 186.6

(std=452.3) (std=117.7) (std=7.6) (std=21.4)

MD1
25%

1172.7 1044.7 433.4 385.6

(std=167.7) (std=182.8) (std=70) (std=40.1)

75%

1316 1102.9 404.5 384.8

(std=141) (std=163.3) (std=46.3) (std=33.2)

MCD1
25%

1653.3 1612.6 199.8 223.3

(std=67.7) (std=99) (std=6.7) (std=26.9)

75%

1472.6 1336.6 287.3 298.6

(std=131.6) (std=153.3) (std=31.1) (std=19.9)

(a) OF- f =25% (b) OF- f =75%

Figure 5:OF results for experiment twowith #Service=100, #Providers=20.

112



ACSW 2022, February 14–18, 2022, Brisbane, Australia Farzin, Azizi and Shojafar, et al.

6.4.3 Experiment three. The simulation results for Experiment

three are presented in Fig. 6 and Fig. 7. The overall behavior of the

algorithms is almost similar to experiment one. In general, as the

number of services increases, the AWD is also increases. This is

expected since more services need to be placed on CIPs. By growing

the rate of both latency-sensitive services and FIPs, the MD1 and

proposed MCD1 algorithms perform significantly better in terms

of the AWD compared with RND and MC1. However, the increase

in the AWC of the MCD1 is much lower than MD1. This is due the

fact that our MCD1 prefers CIPs for latency-tolerant services even

though FIPs are also available.

6.4.4 Experiment four. Table 5 and Fig. 8 show the results of ex-

periment four. From the table and figure, we can observe that by

considering both of the AWD and AWC, the proposed MCD1 shows

the best performance in all cases. When the rate of latency-sensitive

services is low, i.e., s=25%, MC1 performs better than MD1. How-

ever, this is vice-versa for the cases that s=75%. In particular, for the

scenario with s=25% and f =75%, the improvement of the proposed

MCD1 in terms of the average of OF is 28.5%, 13.7% and 33.1% in

comparison with RND, MC1 and MD1, respectively.

7 CONCLUSIONS AND FUTUREWORK
This work introduces FLEX, a novel platform for the service place-

ment problem in multi-Fog and multi-Cloud environments. FLEX

provides two important features, flexibility and scalability. FLEX

is flexible as it allows Fog and Cloud IPs to implement their own

service placement strategy. It is scalable as new Fog and Cloud

providers can easily be added to the platform. We formulated the

service placement problem as an optimization problem with the

aim of delay and cost minimization. Then, we proposed a delay

and cost-aware algorithm to efficiently solve the problem. We im-

plemented FLEX using a simulation environment and conducted

various experiments to numerically evaluate the performance of

the FLEX. Compared with the baseline policies, simulation results

show that the proposed heuristic algorithm performs significantly

better than the others. As a future work, we intend to use game

theory techniques for the provider selection phase.

REFERENCES
[1] Accessed: 2021-09-05. Number of Internet of Things (IoT) connected devices

worldwide from 2019 to 2030. https://www.statista.com/statistics/1183457/iot-

connected-devices-worldwide/.

[2] Orna Agmon Ben-Yehuda, Muli Ben-Yehuda, Assaf Schuster, and Dan Tsafrir.

2013. Deconstructing Amazon EC2 spot instance pricing. ACM Transactions on
Economics and Computation (TEAC) 1, 3 (2013), 1–20.

[3] Derian Alencar, Cristiano Both, Rodolfo Antunes, Helder Oliveira, Eduardo

Cerqueira, and Denis Rosário. 2021. Dynamic Microservice Allocation for Virtual

Reality Distribution with QoE support. IEEE Transactions on Network and Service
Management (2021).

[4] Sadoon Azizi, Fariba Khosroabadi, and Mohammad Shojafar. 2019. A priority-

based service placement policy for Fog-Cloud computing systems. Computational
Methods for Differential Equations 7, 4 (Special Issue) (2019), 521–534.

[5] Gaurav Baranwal, Ravi Yadav, and Deo Prakash Vidyarthi. 2020. QoE aware IoT

application placement in fog computing using modified-topsis. Mobile Networks
and Applications 25, 5 (2020), 1816–1832.

[6] Flavio Bonomi, Rodolfo Milito, Preethi Natarajan, and Jiang Zhu. 2014. Fog

computing: A platform for internet of things and analytics. In Big data and
internet of things: A roadmap for smart environments. Springer, 169–186.

[7] Xiaofeng Cao, Guoming Tang, Deke Guo, Yan Li, and Weiming Zhang. 2020.

Edge federation: Towards an integrated service provisioning model. IEEE/ACM
Transactions on Networking 28, 3 (2020), 1116–1129.

[8] Swati Dhingra, Rajasekhara Babu Madda, Amir H Gandomi, Rizwan Patan, and

Mahmoud Daneshmand. 2019. Internet of Things mobile–air pollution monitor-

ing system (IoT-Mobair). IEEE Internet of Things Journal 6, 3 (2019), 5577–5584.
[9] Sara Ghaemi, Hamzeh Khazaei, and Petr Musilek. 2020. ChainFaaS: An open

blockchain-based serverless platform. IEEE Access 8 (2020), 131760–131778.
[10] Mohammad Goudarzi, Huaming Wu, Marimuthu Palaniswami, and Rajkumar

Buyya. 2020. An application placement technique for concurrent IoT applications

in edge and fog computing environments. IEEE Transactions on Mobile Computing
20, 4 (2020), 1298–1311.

[11] Nikolay Grozev and Rajkumar Buyya. 2014. Multi-cloud provisioning and load

distribution for three-tier applications. ACM Transactions on Autonomous and
Adaptive Systems (TAAS) 9, 3 (2014), 1–21.

[12] Hiwa Omer Hassan, Sadoon Azizi, and Mohammad Shojafar. 2020. Priority,

network and energy-aware placement of IoT-based application services in fog-

cloud environments. IET communications 14, 13 (2020), 2117–2129.
[13] Álvaro Brandón Hernández, María S Perez, Smrati Gupta, and Victor Muntés-

Mulero. 2018. Using machine learning to optimize parallelism in big data appli-

cations. Future Generation Computer Systems 86 (2018), 1076–1092.
[14] Nathaniel Hudson, Hana Khamfroush, and Daniel E Lucani. 2021. QoS-aware

placement of deep learning services on the edge with multiple service implemen-

tations. arXiv preprint arXiv:2104.15094 (2021).
[15] Li Liu, Miao Zhang, Rajkumar Buyya, and Qi Fan. 2017. Deadline-constrained

coevolutionary genetic algorithm for scientific workflow scheduling in cloud

computing. Concurrency and Computation: Practice and Experience 29, 5 (2017),
e3942.

[16] Juan Luo, Luxiu Yin, Jinyu Hu, Chun Wang, Xuan Liu, Xin Fan, and Haibo

Luo. 2019. Container-based fog computing architecture and energy-balancing

scheduling algorithm for energy IoT. Future Generation Computer Systems 97
(2019), 50–60.

[17] Redowan Mahmud, Ramamohanarao Kotagiri, and Rajkumar Buyya. 2018. Fog

computing: A taxonomy, survey and future directions. In Internet of everything.
Springer, 103–130.

[18] Redowan Mahmud, Kotagiri Ramamohanarao, and Rajkumar Buyya. 2019. Edge

affinity-based management of applications in fog computing environments. In

Proceedings of the 12th IEEE/ACM International Conference on Utility and Cloud
Computing. 61–70.

[19] Redowan Mahmud, Kotagiri Ramamohanarao, and Rajkumar Buyya. 2020. Ap-

plication management in fog computing environments: A taxonomy, review and

future directions. ACM Computing Surveys (CSUR) 53, 4 (2020), 1–43.
[20] Redowan Mahmud, Satish Narayana Srirama, Kotagiri Ramamohanarao, and

Rajkumar Buyya. 2020. Profit-aware application placement for integrated fog–

cloud computing environments. J. Parallel and Distrib. Comput. 135 (2020),

177–190.

[21] Mithun Mukherjee, Lei Shu, and Di Wang. 2018. Survey of fog computing: Fun-

damental, network applications, and research challenges. IEEE Communications
Surveys & Tutorials 20, 3 (2018), 1826–1857.

[22] Ashish Nanda, Deepak Puthal, Joel JPC Rodrigues, and Sergei A Kozlov. 2019.

Internet of autonomous vehicles communications security: overview, issues, and

directions. IEEE Wireless Communications 26, 4 (2019), 60–65.
[23] BV Natesha and Ram Mohana Reddy Guddeti. 2018. Heuristic-based IoT ap-

plication modules placement in the fog-cloud computing environment. In 2018
IEEE/ACM International Conference on Utility and Cloud Computing Companion
(UCC Companion). IEEE, 24–25.

[24] BV Natesha and Ram Mohana Reddy Guddeti. 2021. Adopting elitism-based Ge-

netic Algorithm forminimizingmulti-objective problems of IoT service placement

in fog computing environment. Journal of Network and Computer Applications
178 (2021), 102972.

[25] Zahra Makki Nayeri, Toktam Ghafarian, and Bahman Javadi. 2021. Application

placement in Fog computing with AI approach: Taxonomy and a state of the art

survey. Journal of Network and Computer Applications (2021), 103078.
[26] Shvan Omer, Sadoon Azizi, Mohammad Shojafar, and Rahim Tafazolli. 2021. A

priority, power and traffic-aware virtual machine placement of IoT applications

in cloud data centers. Journal of Systems Architecture 115 (2021), 101996.
[27] Jun Qi, Po Yang, Geyong Min, Oliver Amft, Feng Dong, and Lida Xu. 2017. Ad-

vanced internet of things for personalised healthcare systems: A survey. Pervasive
and Mobile Computing 41 (2017), 132–149.

[28] Olena Skarlat and Stefan Schulte. 2021. FogFrame: a framework for IoT application

execution in the fog. PeerJ Computer Science 7 (2021), e588.
[29] Olena Skarlat, Stefan Schulte, Michael Borkowski, and Philipp Leitner. 2016.

Resource provisioning for IoT services in the fog. In 2016 IEEE 9th international
conference on service-oriented computing and applications (SOCA). IEEE, 32–39.

[30] Balázs Sonkoly, János Czentye, Márk Szalay, Balázs Németh, and László Toka.

2021. Survey on Placement Methods in the Edge and Beyond. IEEE Communica-
tions Surveys & Tutorials (2021).

[31] Argyrios Tasiopoulos, Onur Ascigil, Ioannis Psaras, Stavros Toumpis, and George

Pavlou. 2019. Fogspot: Spot pricing for application provisioning in edge/fog

computing. IEEE Transactions on Services Computing (2019).

113

https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/


FLEX: A Platform for Scalable Service Placement in Multi-Fog and Multi-Cloud Environments ACSW 2022, February 14–18, 2022, Brisbane, Australia

1000

1200

1400

1600

1800

2000

2200

A
W

D
 (

m
s)

RND(s=25%) MC1(s=25%) MD1(s=25%) MCD1(s=25%)
RND(s=75%) MC1(s=75%) MD1(s=75%) MCD1(s=75%)

(a) AWD

100

150

200

250

300

350

400

450

A
W

C
 (

G
$)

RND(s=25%) MC1(s=25%) MD1(s=25%) MCD1(s=25%)
RND(s=75%) MC1(s=75%) MD1(s=75%) MCD1(s=75%)

(b) AWC (c) OF

Figure 6: Simulation results for experiment three with #Service=500, #Providers=8, f =25%.

1000

1100

1200

1300

1400

1500

1600

1700

1800

A
W

D
 (

m
s)

RND(s=25%) MC1(s=25%) MD1(s=25%) MCD1(s=25%)
RND(s=75%) MC1(s=75%) MD1(s=75%) MCD1(s=75%)

(a) AWD

100

150

200

250

300

350

400

450

A
W

C
 (

G
$)

RND(s=25%) MC1(s=25%) MD1(s=25%) MCD1(s=25%)
RND(s=75%) MC1(s=75%) MD1(s=75%) MCD1(s=75%)

(b) AWC (c) OF

Figure 7: Simulation results for experiment three with #Service=500, #Providers=8, f =75%.

(a) OF- f =25% (b) OF- f =75%

Figure 8: OF results for experiment four with #Service=500,

#Providers=20.

[32] Farhad Tavousi, Sadoon Azizi, and Abdulbaghi Ghaderzadeh. 2022. A fuzzy

approach for optimal placement of IoT applications in fog-cloud computing.

Cluster Computing 25 (2022), 303–320.

[33] Muhammad Habib ur Rehman, Ibrar Yaqoob, Khaled Salah, Muhammad Imran,

Prem Prakash Jayaraman, and Charith Perera. 2019. The role of big data analytics

in industrial Internet of Things. Future Generation Computer Systems 99 (2019),
247–259.

[34] Karima Velasquez, David Perez Abreu, Luís Paquete, Marilia Curado, and Ed-

mundo Monteiro. 2020. A rank-based mechanism for service placement in the

fog. In 2020 IFIP Networking Conference (Networking). IEEE, 64–72.
[35] Ashkan Yousefpour, Ashish Patil, Genya Ishigaki, Inwoong Kim, Xi Wang,

Hakki C Cankaya, Qiong Zhang, Weisheng Xie, and Jason P Jue. 2019. FOGPLAN:

A lightweight QoS-aware dynamic fog service provisioning framework. IEEE
Internet of Things Journal 6, 3 (2019), 5080–5096.

[36] Kamal Aldein Mohammed Zeinab and Sayed Ali Ahmed Elmustafa. 2017. Internet

of things applications, challenges and related future technologies. World Scientific
News 2, 67 (2017), 126–148.

114


	Abstract
	1 Introduction
	2 Related Work
	3 FLEX Platform
	3.1 High-level Architecture
	3.2 Detailed Architecture

	4 Addressing Service Placement in FLEX
	4.1 Sets
	4.2 Decision Variables
	4.3 Delay
	4.4 Cost
	4.5 The Objective Function

	5 FLEX's Heuristic Algorithm
	6 Performance Evaluation
	6.1 Simulation settings
	6.2 Simulation metrics
	6.3 Baseline Algorithms
	6.4 Results

	7 Conclusions and Future Work
	References

