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a b s t r a c t 

Adverse life events can inflict substantial long-term damage, which, paradoxically, has been posited to stem 

from initially adaptative responses to the challenges encountered in one’s environment. Thus, identification of 

the mechanisms linking resilience against recent stressors to longer-term psychological vulnerability is key to 

understanding optimal functioning across multiple timescales. To address this issue, our study tested the rele- 

vance of neuro-reproductive maturation and senescence, respectively, to both resilience and longer-term risk for 

pathologies characterised by accelerated brain aging, specifically, Alzheimer’s Disease (AD). Graph theoretical 

and partial least squares analyses were conducted on multimodal imaging, reported biological aging and recent 

adverse experience data from the Lifespan Human Connectome Project (HCP). Availability of reproductive mat- 

uration/senescence measures restricted our investigation to adolescent ( N = 178) and middle-aged ( N = 146) 

females. Psychological resilience was linked to age-specific brain senescence patterns suggestive of precocious 

functional development of somatomotor and control-relevant networks (adolescence) and earlier aging of default 

mode and salience/ventral attention systems (middle adulthood). Biological aging showed complementary asso- 

ciations with the neural patterns relevant to resilience in adolescence (positive relationship) versus middle-age 

(negative relationship). Transcriptomic and expression quantitative trait locus data analyses linked the neural 

aging patterns correlated with psychological resilience in middle adulthood to gene expression patterns sug- 

gestive of increased AD risk. Our results imply a partially antagonistic relationship between resilience against 

proximal stressors and longer-term psychological adjustment in later life. They thus underscore the importance 

of fine-tuning extant views on successful coping by considering the multiple timescales across which age-specific 

processes may unfold. 
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Adverse life experiences can incur both immediate and long-term

sychological costs by accentuating vulnerability to psychiatric and

eurodegenerative disorders ( Selous et al., 2020 ; Tani et al., 2020 ).

omplementing a sizeable literature on the wide variety of sequelae

inked to adversity, there is a rapidly expanding body of work prob-

ng the mechanisms underlying the capacity to withstand it ( Gee, 2021 ;

urthy and Gould, 2020 ; Nelson and Gabard-Durnam, 2020 ). Psycho-

ogical resilience is often conceptualised as a dynamic construct indi-

ating positive adjustment to environmental challenges, which mani-

ests as lower-than-expected psychopathology given experienced adver-

ity ( Collishaw et al., 2016 ; Feder et al., 2009 ; Ioannidis et al., 2020 ;

alisch et al., 2017 ; Rutter, 2013 ). Whether indicative of quick recovery

r active resistance to stressors, resilience is thought to stem from mul-

ilevel interactions among neural, hormonal, ( epi )genetic, experiential,
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ehavioral and environmental factors ( Feder et al., 2009 ; Gee, 2021 ;

alisch et al., 2019 ; McEwen et al., 2015 ). 

There is compelling evidence that the mechanisms underpinning

esilience change across the lifespan due to normative developmen-

al/aging processes, as well as history of exposure and timing of stressors

 Aschbacher et al., 2021 ; Gee, 2021 ; Kalisch et al., 2019 ; Rickard et al.,

014 ; Romeo, 2010 ; Romeo, 2018 ). Characterizing life-stage specific

esilience processes is key to personalizing and, thus, optimizing detec-

ion and design of intervention paradigms for vulnerable individuals. To

ddress this issue, we examined the neural underpinnings of psychologi-

al resilience against recent negative experiences (henceforth referred to

s short-term resilience ) among adolescent and middle-aged female par-

icipants in the Human Connectome Project(HCP)-Development/Aging.

hort-term resilience was defined as lower-than-expected psychopathol-
ril 2022 
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gy (within the prior six months) relative to adversity experienced in

he past year (i.e., number of adverse events over which the participant

ad little or no control, cf. Amstadter et al., 2014 ; Bowes et al., 2010 ;

ollishaw et al., 2016 ; Rutter, 2013 ). 

Our investigation was inspired by theories of early life adversity

hich posit that mechanisms underlying initial positive adjustment

o environmental challenges may contribute to the long-term seque-

ae of stress exposure ( Belsky, 2019 ; McLaughlin et al., 2014, 2016 ).

e thus sought to elucidate whether the neural substrates of short-

erm resilience overlap those reportedly underpinning the long-term

egative consequences of adversity and whether any observed relation-

hips would vary by life stage (i.e., adolescence versus middle adult-

ood) ( Colich et al., 2020 ; Ramirez et al., 2020 ; Rasmussen et al., 2019 ;

ooley et al., 2021 ). Our focus was on accelerated brain and biologi-

al aging, two well-documented sequelae of early life adversity predic-

ive of later psychological vulnerability due to increased allostatic load

nd poorer fine tuning of the slower developing association systems

ransdiagnostically involved in psychopathology ( Colich et al., 2020 ;

cLaughlin et al., 2020 ; McTeague et al., 2017 ; Tooley et al., 2021 ). In

hildhood and adolescence, the two sequelae are likely interdependent,

s pubertal hormones regulate brain maturation processes, while preco-

ious functional neurodevelopment protects against accelerated cellular

ging following stress exposure ( Eck and Bangasser, 2020 ; Laube et al.,

020 ; Miller et al., 2020 ; Piekarski et al., 2017 ). Importantly, acceler-

ted neurobiological aging in childhood and adolescence is regarded

s an immediately adaptive response to adverse rearing environments

 Belsky, 2019 ; Rickard et al., 2014 ). Specifically, precocious brain de-

elopment, particularly for circuits relevant to emotion regulation, fos-

ers successful coping, whereas earlier biological maturation (i.e., ear-

ier pubertal timing) is posited to be evolutionarily adaptive because

t maximises reproductive opportunities before an anticipated prema-

ure demise ( Belsky, 2019 ; Brieant et al., 2021 ; Callaghan and Totten-

am, 2016 ; Gee et al., 2013 ). 

To our knowledge, a link between accelerated neurobiological aging

nd psychological resilience in middle adulthood has not been formally

rticulated. Such an association is nonetheless plausible with regards

o brain aging, if quicker recovery and/or greater active resistance to

tressors in later life stem(s) partly from reduced reactivity and less

ifferentiated processing of the external environment, both of which

re putative key features of neural senescence ( Garrett et al., 2013 ,

020 ; Grady and Garrett, 2018 ). In contrast, a positive link between re-

ilience and accelerated biological aging, at least in the form of earlier

enopausal onset, seems unlikely, given the role of ovarian hormones

n dampening hypothalamic-pituitary-adrenal (HPA) axis activity fol-

owing stress exposure ( Engel et al., 2019 ; Joffe et al., 2020 ; Süss et al.,

021 ). Thus, if a relationship between biological aging and patterns of

rain aging associated with resilience were to emerge, it would likely

e negative. 

Capitalizing on the above reviewed literature, the present study

ested the model represented in Fig. 1 . In short, adverse life experi-

nces were expected to accelerate brain development/aging, both di-

ectly ( Fig. 1 , a-c), and via speeded biological maturation ( Fig. 1 , a-b-c)

 Belsky, 2019 ; Colich et al., 2020 ). Our goal was to identify patterns

f accelerated brain development/aging linked to resilience ( Fig. 1 , c-

) and probe their relevance to long-term psychological vulnerability,

pecifically, risk for pathologies characterised by premature brain senes-

ence ( Fig. 1 , c-e). We reasoned that earlier timing of brain develop-

ent/aging processes associated with short-term resilience in adoles-

ence and middle adulthood could still reflect increased neurobiological

wear and tear ” and, thus, be linked to cellular markers suggestive of

ong-term risk for accelerated brain aging pathologies. 

Because history of exposure to stressors can impact short-term re-

ilience ( Kalisch et al., 2019 ), we sought to control for it through

arkers of key risk dimensions, such as deprivation (i.e., absence

f expected environmental support [e.g., material, cognitive]), threat

i.e., actual or potential exposure to violence), and unpredictability
2 
 Colich et al., 2020 ; Ellis et al., 2022 ; McLaughlin et al., 2021 ).

hese dimensions overlapped the life domains assessed with the re-

ent adverse events scales, specifically, financial difficulties, exposure

o crime/physical violence, conflict, as well as unpredictable events in-

olving interpersonal loss (e.g., [parental] separation/divorce) or other

ignificant life changes (e.g., change of residence/school). 

Our approach to controlling for prior stress exposure was grounded

n evidence that dimensional operationalizations of adversity better

apture long-term individual variability in neurodevelopmental out-

omes relative to cumulative risk measures, which are further prone

o recall biases, particularly for adult samples ( Baldwin et al., 2019 ;

llis et al., 2022 ; McLaughlin et al., 2021 ). Thus, the following in-

icators were used to estimate prior adversity exposure. First, global

xposure to multiple dimensions of adversity was gauged through

easures of socioeconomic status (SES) ( Colich et al., 2020 ). Specif-

cally, we used indices of income-to-needs, race and educational at-

ainment, which reportedly encapsulate distinguishable experiential as-

ects relevant to deprivation (e.g., poverty [deprivation of vital mate-

ial resources], reduced cognitive stimulation [cognitive deprivation]),

hreat (e.g., discrimination) and unpredictability (e.g., job insecurity)

 Braveman et al., 2005 ; Colich et al., 2020 ; Machlin et al., 2019). Al-

hough individual- and/or family-focused, these measures (e.g., edu-

ational attainment) have been shown to be strongly correlated ( r >

.50) with higher level environmental SES indicators, such as neigh-

ourhood disadvantage ( Murtha et al., 2022 ), which were unavail-

ble in the Lifespan HCP dataset. Second, social environmental unpre-

ictability was estimated through indices of marital relationship disso-

ution/reconfiguration ([parental] divorce/spousal death and the exis-

ence of step-parents, cf. Ellis et al., 2022 ), critical stressors across the

ifespan ( Kendler et al., 2017 ; Oh et al., 2018 ; Richards et al., 1997 ).

hird, in the HCP-Development sample only, we further controlled for

amily conflict, a social threat-based stressor evaluated through both

outh and parent ratings, which is a substantial contributor to psycho-

ogical well-being in early life and has been linked to functional neu-

odevelopmental timing in late childhood/adolescence ( Cummings and

iller-Graff, 2015 ; Harold and Sellers, 2018 ; Petrican et al., 2021 ).

ourth, likely exposure to physical violence/threat was quantified with

 lifetime inventory of traumatic brain injury. 

Accelerated biological aging pace was operationalised as earlier pu-

ertal timing (HCP-Development) or more advanced menopausal sta-

us (HCP-Aging) than expected by chronological age. Brain matura-

ion/senescence was estimated with both functional and structural in-

ices since there is compelling evidence that the two can be differen-

ially impacted by adversity (cf. Colich et al., 2020 ) and that uncoupling

f normative developmental changes in structure and function may be

etrimental (cf. Baum et al., 2020). 

Our core neural marker was BOLD fMRI signal variability (BOLD SV )

ue to its putative contribution to flexible and differentiated respond-

ng to the external milieu, its role in mediating environmental ef-

ects on long-term development and psychiatric risk, as well as its sus-

eptibility to lifespan fluctuations ( Cheng et al., 2021 ; Garrett et al.,

021 ; Grady and Garrett, 2018 ; Millar et al., 2020b ; Nomi et al., 2017 ;

heng et al., 2021 ; Wang et al., 2021 ). To capture mental state-specific

ffects ( Waschke et al., 2021 ), BOLD SV was estimated during wakeful

est and during performance of an externally oriented inhibitory control

ask sensitive to developmental, adversity and psychopathology effects

 Grahek et al., 2019 ; McTeague et al., 2017 ; Thompson et al., 2021 ;

ozzi et al., 2020 ; Vink et al., 2020 ). 

BOLDsv is reportedly foundational to the development and main-

enance of functionally segregated brain architecture, the linchpin of

fficient and environmentally resilient processing, whose gradual emer-

ence over the first two decades of life and subsequent decline from

ate middle-age onwards is accelerated though exposure to adver-

ity ( Baracchini et al., 2021 ; Chan et al., 2014 ; M.Y. 2018 ; Gabard-

urnam et al., 2016 ; Garrett et al., 2021 ; Geng et al., 2021 ; Grayson &

air, 2017 ; Hughes et al., 2020 ; Soldan et al., 2021 ; Tooley et al., 2021 ;
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Fig. 1. Schematic representation of the conceptual/measurement model. Adverse life events were expected to accelerate brain development/aging, both directly 

(panels a-c), and via speeded biological maturation (panels a-b-c). This study focused on recent adversity (panel a) and sought to control for prior adversity expo- 

sure (see text). The goal was to identify patterns of accelerated brain development/aging linked to resilience (panels c-d) and probe their relevance to long-term 

psychological vulnerability, specifically, risk for pathologies characterised by premature brain senescence (panels c-e). Resilience (panel d) was operationalized as 

inverse coded total problems score on the Child Behavior Checklist (CBCL, HCP-Development) or on the Adult Self-Report (ASR, HCP-Aging) residualized for recently 

experienced adversity ( in addition to the other confounders mentioned in the Method). Social problems are part of the total problems score only in the CBCL. 
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porns & Betzel, 2016 ). Relatedly, resting state BOLDsv is regarded as

 reflection of generic priors that shape future behavioral responses

 Pezzulo et al., 2021 ). As such, it is relevant to neurocognitive efficiency,

perationalised as reduced task-resting state functional brain reorgani-

ation for similar behavioral performance levels ( Heinzel et al., 2014 ;

eubauer and Fink, 2009 ). This capacity is linked to superior cognitive

unctioning ( Schultz and Cole, 2016 ; Thiele et al., 2022 ), declines with

ge (e.g., greater task-rest reorganization in older adults, Hughes et al.,

020 ) and fluctuates with adversity exposure ( Liu et al., 2021 ). Thus, in

ddition to BOLD SV , indices of neurocognitive efficiency (i.e., reduced

ask-resting state functional flexibility) and specialization (i.e., resting

tate and task-related network differentiation) were tested for their rel-

vance to psychological resilience. 

To estimate structural neurodevelopmental timing, we focused on

wo morphological brain features, cortical thickness and gray matter

olume (GMV). Both are robustly associated with BOLD SV , possibly via

ynaptic pruning processes ( Faust et al., 2021 ) and vary with age as a re-

ection of both typical and pathological cognitive changes ( Giedd et al.,

999 ; Lindenberger and Lovden, 2019 ; Millar et al., a , b ; Nadig et al.,

021 ; Pur et al., 2019 ; Roe et al., 2021 ; Sele et al., 2021 ; Vandekar et al.,

015 ). While meta-analytic evidence identifies cortical thickness as a

ritical indicator of adversity-induced accelerated neurodevelopment

 Colich et al., 2020 ), a link between stress exposure and GMV is yet

o be conclusively established. Nonetheless, across the lifespan, GMV

uctuations track with both short-term and long-term variations in cir-

ulating gonadal hormone levels ( Herting et al., 2014 ; Kim et al., 2018 ;

ehbein et al., 2021 ). Consequently, we included GMV together with

ortical thickness, reasoning that it could help explain biological aging

ffects on resilience-relevant brain profiles. 

Finally, we examined whether the neural aging mechanisms under-

ying psychological resilience would be linked to molecular markers

uggestive of increased long-term vulnerability to pathologies charac-

erized by premature brain senescence ( Cole et al., 2021 ; Dafsari and

essen, 2020 ; Darrow et al., 2016 ; Fang et al., 2020 ; Han et al., 2021 ).
3 
e focused on Alzheimer’s disease (AD), a condition robustly linked

o stress exposure and accelerated cellular aging via low-grade

ystemic inflammation, whose onset is reportedly precipitated by

arlier mood pathology ( Beurel et al., 2020 ; Cao et al., 2021 ;

afsari and Jessen, 2020 ; Darrow et al., 2016 ; Guerrero et al., 2021 ;

arerimana et al., 2022 ; Jin et al., 2021 ; Lutz et al., 2020 ; Ly et al.,

021 ; Riddle et al., 2017 ). To test the relationship between the neural

ubstrates of short-term resilience and molecular markers of accelerated

ging pathology, we used gene expression data from the Allen Insti-

ute of Brain Science. We thus estimated the overlap between the tran-

criptional signatures of our resilience-linked neural profiles and the AD

olygenic risk profile derived from recent meta-analytic genome-wide

ssociation study (GWAS) results ( Kunkle et al., 2019 ). 

. Method 

.1. Participants 

The present research uses cross-sectional data preprocessed by

he Lifespan HCP study team and downloaded in March 2021 as

art of the 2.0 Data Release for the HCP-Development ( www.hcp-

evelopment.org ) and HCP-Aging ( www.hcp-aging.org ) studies. The

wo samples described below reflect the largest number of biologically

nrelated participants who provided good quality data on all the vari-

bles of interest. We only included female participants because self-

eport measures of biological aging were unavailable for the males in the

CP-Aging sample. All participants were screened for a history of neuro-

ogical, psychiatric, endocrine, genetic and other serious medical (e.g.,

iabetes, two or more seizures) disorders, use of psychotropic drugs,

ead injuries with loss of consciousness and/or change in mental func-

ioning, and other conditions or bodily implants that may render their

articipation unsafe. Table 1 contains demographic information on both

amples. 

http://www.hcp-development.org
http://www.hcp-aging.org
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Table 1 

Demographic Information for the HCP-Development and HCP-Aging Participants. 

Variable HCP-Development N = 178 HCP-Aging N = 146 

Age (years) 12.27 ± 2.59 47.87 ± 7.03 

Race (%White) Caucasian (72.4%) Caucasian (60.3%) 

African American (6.4%) African American (21.2%) 

Asian (3.2%) Asian (6.2%) 

Multiracial (16.9%) Multiracial (7.5%) 

Not reported (1.1%) Not reported (4.8%) 

Family Income (USD) 

(adjusted for number of 

household members) 

37,129 ± 30,864 45, 580 ± 57, 377 

Education Graduate School (39%); 

Four-/three-year college (38%); 

One-/two-year college (10%); 

Highschool (13%) 

Graduate School (34%); 

Four-/three-year college (34%); 

One-/two-year college (23%); 

Highschool (9%) 

Handedness 

(% Mostly Right-handed) 

92% 95% 

Note. In the HCP-Development sample, education is that of the primary caregiver. 
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.1.1. HCP ‐Development 

This sample included 178 female participants, mostly right-handed

 N = 164) and aged 8 to 18 years ( M = 12.27 yrs, SD = 2.59 yrs).

his age range was selected because it spans the various stages of pu-

ertal development. The racial composition of the sample was as fol-

ows: White (72.4% [youth], 80% [parent/guardian]), African Ameri-

an (6.4% [youth] and 6% [parent/guardian]), Asian (3.2% [youth], 6%

parent/guardian]), mixed race (16.9% [youth], 6% [parent/guardian])

nd unknown/unreported (1.1% [youth], 2% [parent/guardian]). 

.1.1.1. Additional exclusion criteria. Exclusion criteria specific to HCP-

evelopment were premature birth and/or underweight birth weight,

eceiving special learning services at school and insufficient com-

and of English to complete the study (for the youth and/guardian)

 Somerville et al., 2018 ). 

.1.2. HCP ‐Aging 

This sample encompassed 146 female participants, predominantly

ight-handed ( N = 139) and aged 36 to 59 years ( M = 47.87 yrs,

D = 7.03 yrs), an interval that captures the transition from repro-

uctive to late post-menopausal status. The sample was 60.3% White,

1.2% African American, 6.2% Asian, 7.5% mixed race and 4.8% un-

nown/unreported. 

.1.2.1. Additional exclusion criteria. Exclusion criteria unique to the

CP-Aging were sensory (hearing/vision) deficits, uncontrolled high

lood pressure, major organ failure, and Montreal Cognitive Assessment

MoCA) score of 19 or lower ( Bookheimer et al., 2019 ). 

.2. Adversity 

.2.1. HCP ‐Development 

The 25-item Adverse Life Events scale from the PhenX Toolkit

Stover et al., 2010) indexed participants’ experience of negative events

ver which they which they had little control during the year preceding

he study. The scale uses a Yes / No response format to gauge event oc-

urrence, accompanied by a 4-point scale assessing event valence and

 6-point scale indexing event impact. Due to the low completion rate

f the event rating scale, our analyses focused on the total number of

dverse events experienced by the participants during the prior year. Of

he 25 event items, we eliminated one that overlapped with our health

ovariates ( “Got seriously sick or injured ”) and three that seemed likely

o evoke heterogeneous affective responses across the sample ( “Got new

tepmother or stepfather ”, ‘Parent got a new job ”, “Got new brother

r sister ”). The remaining event items reflected interpersonal loss (e.g.,

Someone in family died ”), interpersonal conflict (e.g., “Parents argued

ore than previously ”), financial difficulties (e.g., “Mother/father fig-

re lost job ”) or other life disruptions (e.g., “Family moved ”). 
4 
.2.2. HCP ‐Aging 

The 26-item Geriatric Adverse Life Events Scales (GALES, Devanand

t al., 2002 ) gauged participants’ experience of acute negative episodes

uring the year preceding the study. The instrument comprises a check-

ist of events, followed by 3-point ratings of event stressfulness and 6-

oint rating of event impact. Similar to the HCP-Development, the event

ating scales had a low response rate, which is why our analyses included

nly the number of adverse events. As in the HCP-Development, we

liminated the two items that overlapped with health covariates ( “New

ajor physical illness ”, ”Other major physical illness ”). We further ex-

luded two items that diverged substantially from the life areas covered

y the HCP-Development adverse events scale ( “Difficulty getting ade-

uate professional services ”, “Became caretaker for a friend/relative ”).

he remaining event items indexed life domains overlapping with those

ssessed by the corresponding HCP-Development event scale, specifi-

ally, interpersonal loss (e.g., death of a close other), interpersonal con-

icts (e.g., divorce), financial difficulties (e.g., losing one’s job) and

ther life disruptions (e.g., voluntarily changing place of residence). 

.3. Biological aging 

.3.1. Pubertal timing (HCP ‐Development) 

Pubertal status was assessed with the 5-item Pubertal Develop-

ent Scale (PDS), which was selected due to its significant correlation

ith other indices of pubertal development, including physician rat-

ngs ( Petersen et al., 1988 ). The questionnaire comprises three gender-

eneral items (i.e., growth spurt, changes in skin, hair growth) and two

ender-specific items (e.g., breast development, menarche). The instru-

ent, which uses a 4-point Likert type response format, ranging from

 (no development) to 4 (development already completed), was com-

leted by the youth if aged 9 and older and by the parent about the

outh for the younger participants. The scale evidenced excellent re-

iability in the present sample (Cronbach’s alpha = 0.87). An index of

ccelerated pubertal development was computed by regressing from the

ggregate PDS score the youth’s biological age, such that a positive resid-

al score indicated accelerated biological aging (cf. Colich et al., 2020 ;

umner et al., 2019 ). 

.3.2. Menopausal status (HCP ‐Aging) 

Responses on the self-report survey Stages of Reproductive Aging

orkshop (STRAW-10, Harlow et al., 2012) were used to estimate

enopausal status, which is indexed with STRAW codes as “reproduc-

ive/premenopausal ” (4.2), “late reproductive/premenopausal ” (4.1),

early transition ” (3), “late transition ” (2), “early postmenopausal ”

coded in chronological order as 1.11, 1.12, 1.13) and “late post-

enopausal ” (1.14). Participants who skipped periods due to rea-

ons other than natural menopause (STRAW codes 2.20, 1.11002/4/7,
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r  
.12002/4/7, 1.13002/4/7, 1.14002/4/7) were not included in the

nalyses. Menopausal status was estimated from the numerically trans-

ormed STRAW codes, which ranged in value from 1 ( “reproductive

ge ”/4.2) to 8 ( “late postmenopausal ”/1.14). Using data available from

26 of the 146 participants in our HCP-Aging sample and controlling

or whether blood was collected after fasting, we verified that more ad-

anced menopausal status was associated with higher levels of follicle

timulating hormone, Spearman’s rho of 0.77, p = .001, and lower levels

f estradiol, Spearman’s rho of − 0.58, p = .001 (cf. Harlow et al., 2012).

Biological aging was estimated by regressing out chronological age

rom the menopausal status index described above. Positive residual

cores reflected accelerated, while negative scores implied decelerated,

iological aging. We verified that age at menarche, a significant predic-

or of age at menopause, was not significantly associated with this index

f biological aging, r (144) = − 0.10, p = .23. 

.4. Resilience 

In both samples, resilience was estimated by regressing out the num-

er of adverse life experiences from the general psychopathology risk

ndex (as described below) multiplied by − 1. Positive residuals indi-

ated greater, whereas negative residuals indicated poorer, resilience

i.e., better- vs. worse-than-expected psychological functioning given ex-

erienced adversity). 

.4.1. HCP ‐Development: Child Behavior Checklist (CBCL) 

Psychological functioning was indexed with the parent-report ver-

ion of the CBCL ( Achenbach, 2009 ). This instrument was preferred

o the Achenbach Youth Self-report Scale (YSR, Achenbach, 1991 ) be-

ause it ensured consistency across the developmental sample (i.e., the

SR is completed by participants aged 11 + years) and seemed likely

o provide more reliable information for the younger adolescents. The

BCL consists of 112 items scored on a 3-point Likert scale (0 = not true ,

 = somewhat or sometimes true , 2 = very true or often true ). General psy-

hopathology risk was quantified by using the raw Total Problems score

ade available in the Lifespan HCP 2.0 Data Release. This strategy is in

ine with Achenbach’s (1991, 2013) recommendations that raw scores

rather than t-scores) be used in research given their greater precision

articularly at the extremes of the scale. In our case, this was particu-

arly appropriate since we used female-only samples and residualized

or age in our analyses. 

.4.2. HCP ‐Aging: Achenbach Adult Self ‐Report Scale (ASR) 

Participants’ risk for psychopathology was assessed with the

chenbach Adult Self-Report (ASR) instrument for ages 18–59

 Achenbach, 2009 ). The ASR contains a total of 123 statements relevant

o psychological functioning over the previous six months and, similar

o the CBCL, it requires respondents to use a 3-point rating scale (0 = not

rue , 1 = somewhat or sometimes true , 2 = very true or often true ) to indicate

ow well each item described them. As in the HCP-Development sam-

le, global psychopathology risk was estimated by using the raw Total

roblems score, which, similarly to CBCL, is recommended for use in

esearch over the adjusted t-score (cf. Achenbach, 1991, 2013 ). 

.5. Brain development/aging 

.5.1. In ‐Scanner task 

Both samples completed a version of a classic Go/NoGo task, which

uxtaposes free execution (Go trials) with inhibition (NoGo trials) of a

reprotent motor response ( Bookheimer et al., 2019 ; Davidow et al.,

019 ; Somerville et al., 2018 ; Winter & Sheridan, 2014 ). In the HCP-

evelopment, the task stimuli were associated with a history of re-

ard/punishment, an aspect that was omitted though in the HCP-Aging

nd, thus, for the sake of cross-sample comparability, also in our present

nalyses. 
5 
The task had an event-related design and required participants to

ress a button as soon as possible after seeing one of six shape stimuli

Go trials), but refrain from making a response to a circle or square

NoGo trials). Each shape was presented for 600 ms with a variable

nter-trial interval of 1 to 4.5 s. To minimize predictability, NoGo trials

re separated by 2, 3 or 4 consecutive Go trials. Go trials were marked

s correct if a button press was made within the response window (i.e.,

00 ms stimulus presentation and 200 ms into the subsequent fixation

nterval), whereas the converse applied to NoGo trials. In both samples,

ach task run contained 24 NoGo trials and 68 Go trials. 

.5.2. Data acquisition 

Scanning was performed across 4 US sites on Siemens Prisma 3T

canners (32-channel coil; for details, see Harms et al., 2018 ). T1-

eighted images were acquired with a multi-echo MPRAGE sequence

ith the following parameters: TR = 2500, TE = 1.8/3.6/5.4/7.2 ms, flip

ngle = 8°, FOV = 256 × 240 × 166 mm, 320 × 300 matrix, 208 slices,

.8 mm isotropic voxels. The fMRI data were acquired with a multi-

and gradient-recalled (GRE) EPI sequence (TR = 800 ms, TE = 37 ms, flip

ngle = 52°, FOV = 208 mm, 104 × 90 matrix, 72 oblique axial slices,

 mm isotropic voxels, multiband acceleration factor of 8). 

Four rfMRI scans (eyes open with passive crosshair viewing), last-

ng 26 min in total, were collected from all the participants included in

he present report. Two rfMRI scans were acquired with an anterior-to-

osterior (AP) and the other two with a posterior-to-anterior (PA) phase

ncoding sequence. Because HCP-Aging included only one scan per task,

ur analyses of the inhibitory control data are based on the correspond-

ng PA task run collected from each sample (4:11 min) ( Harms et al.,

018 ). 

.5.3. Data preprocessing 

The main processing steps applied to these data by the HCP study

eam are outlined below (for further details on specific steps, see

lasser et al., 2013 ; Robinson et al., 2018 ). Using the “fmriresults01 ”

le, available for each of the two samples as part of the 2.0 Data Re-

ease, we confirmed that the structural and functional outputs of the pre-

rocesssing pipelines described below passed the quality control checks

mplemented by the HCP team. 

.5.3.1. sMRI. The sMRI data were processed with the HCP Struc-

ural Pipelines (Pre-FreeSurfer, FreeSurfer, Post-FreeSurfer). The Pre-

reeSurfer pipeline included removal of non-brain tissue, correc-

ions for gradient non-linearity distortions and intensity inhomo-

eneity, as well as intensity normalization. The FreeSurfer pipeline

 http://surfer.nmr.mgh.harvard.edu/ ) generated the surface and vol-

me anatomical parcellations, as well as morphometric measurements

f structure volumes and surface areas (cf. Dale et al., 1999 ; Fischl et al.,

001 , 2002 , 1999a ; Fischl et al., 1999b ). The Post-FreeSurfer pipeline

ransformed the FreeSurfer outputs to NIFTI or GIFTI formats, ap-

lied the transforms generated with the Pre-FreeSurfer pipeline to

ring the structural images into the standard Montreal Neurolog-

cal Institute (MNI) − 152 template (0.8 mm isotropic voxels), pro-

ected the subject’s native mesh surfaces into standard mesh surfaces

164k_fs_LR/32k_fs_LR) and generated surface myelin maps and ribbon

olume myelin maps. The structural data thus processed were subse-

uently precisely aligned across participants through multimodal sur-

ace mapping (MSM) registration which combines information regard-

ng sulcal depth, myelin and functional connectivity patterns in or-

er to optimize registration of functional cortical areas across subjects

 Robinson et al., 2018 ). 

.5.3.2. fMRI. The fMRI data were processed by applying the Generic

MRI Volume and Surface Processing Pipelines, multi-run independent

omponent analysis (ICA) FIX denoising and multimodal surface match-

ng registration. The Generic Volume Processing Pipeline accomplished

emoval of spatial and gradient distortions, correction for participant

http://www.surfer.nmr.mgh.harvard.edu/
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Fig. 2. Schematic representation of the brain(-behavior) analysis pipeline described in the Method. Voxel-wise structural and functional indices (panel a) were 

averaged within each of the 300 ROIs from the Schaefer Atlas (panel b). To increase comparability with the Gordon atlas, results for the sub-components of the 

Schaefer networks are not presented separately apart from the somatomotor A and somatomotor B networks (panel b) which map onto the somatomotor-hand and 

somatomotor-mouth networks from the Gordon atlas. Pairwise correlations in the timeseries of all 300 Schaefer ROIs were estimated as Fisher’s z-transformed scores 

(panel c). Positive z-transformed scores were inputted into a multilayer Louvain-like community algorithm to quantify ROI-based indices of functional network 

differentiation during rest and a Go/No-Go task, as well as indices of task-rest functional flexibility (panel d). Following residualization for confounds (non-imaging 

variables only, see text), the ROI-specific structural and functional indices, as well as measures of adversity exposure, biological aging and psychological resilience 

were entered into a partial least squares (PLS) analysis (panel e). CT = cortical thickness. GMV = gray matter volume. (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 
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ovement, bias field removal, spatial normalization to the standard

ontreal Neurological Institute (MNI) − 152 template (2 mm isotropic

oxels), intensity normalization to a global mean and masking out of

on-brain voxels. Subsequent temporal preprocessing steps involved

eak high-pass temporal filtering with the goal of removing linear

rends in the data. The Generic Surface Processing Pipeline registered

he functional data into a standard grayordinate space by projecting

he cortical gray matter into a registered surface mesh with a standard

umber of vertices (32k_fs_LR mesh) and projecting the subcortical data

o a set of subcortical gray matter voxels. A small amount of spatial

moothing (2 mm full-width-at-half-maximum [FWHM]) was also ap-

lied to the functional data at this step. The ICA FIX denoising pipeline,

hich combines FSL’s MELODIC with a more complex automated noise

dentifier ( “FIX ”), handled removal of artifacts (e.g., rigid/physiological

otion-related) which had survived the Generic fMRI Volume Prepro-

essing step (for details, see Griffanti et al., 2014 ). Finally, similar to

he structural data, the cleaned functional data were precisely aligned

cross participants through MSM registration ( Robinson et al., 2018 ). 

.6. Data analysis 

Our pipeline is depicted in Fig. 2 and the main steps are described

elow. 

.6.1. ROI definition 

Our main analyses were based on the Schaefer 300 parcel-functional

tlas ( Schaefer et al., 2018 ; Yeo et al., 2011 ), downloaded from

ttps://github.com/ThomasYeoLab/CBIG . The atlas version we used

ncompasses 17 functional networks, spanning core systems, such as

he DMN (A/B/C), Control (A/B/C), Salience/Ventral Attention (A/B),

orsal Attention (DAN A/B), Somatomotor (SM A/B), Visual (VIS Cen-

ral/Peripheral), Limbic (LB A/B), and Temporo-parietal (TP). To test
6 
hether age would impact intrinsic ROI functional homogeneity, we es-

imated the standard deviation (SD) in resting state BOLD signal across

ll the component voxels within each ROI at each time point using

he “cifti-parcellate ” command with the STDEV method in the Connec-

ome Workbench. A Mann-Whitney test provided evidence of signifi-

antly greater ROI functional inhomogeneity in the HCP-Aging relative

o the HCP-Development (Mdns of 101.56 and 113.80, U (standardized

est statistic) = 11.21, p = .0001). Consequently, to account for inter-

ndividual differences in how well the Schaefer functional brain atlas

t the present data, our SD-based measure of functional homogeneity,

veraged across all ROIs and time points, was regressed out from all the

euroimaging variables of interest (see Section 2.7 below). 

.6.2. BOLD SV 

Based on the Schaefer atlas, ROI-level standard deviations in BOLD

ignal were computed separately for the rest and for the inhibitory con-

rol task run ( Garrett et al., 2020 , 2010). These calculations were based

n fully preprocessed functional data (as described above). 

.6.3. BOLD SV ‐related morphological characteristics 

FSL’s FAST was applied to each participant’s MNI aligned T1 im-

ges in order to obtain voxelwise gray matter volume (GMV) esti-

ates. Subsequently, GMV estimates were extracted for each of Schae-

er ROIs using fslmeants. Likewise, based on the corresponding MSM

egistered 32k_fs_LR .dscalar.nii files, ROI-specific cortical thickness es-

imates were obtained using the Schaefer .dlabel.nii atlas files and the

cifti parcellate ” function in the Connectome Workbench. 

.6.4. BOLD SV -related functional architectural features 

To test our hypotheses regarding the indirect contribution of BOLD SV 

o psychological resilience via functional network differentiation and

https://www.github.com/ThomasYeoLab/CBIG
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exibility across multiple mental states, we conducted the connectivity

nalyses detailed below. 

.6.4.1. ROI ‐to ‐ROI correlations in timeseries. Pairwise Pearson’s corre-

ations between all the Schaefer ROIs were computed separately for task

nd rest in Matlab and expressed as Fisher’s z-transformed scores. Previ-

us research has documented differences in the brain’s modular organi-

ation (i.e., number of identified communities) based on the time scale

n which connectivity has been assessed ( Bassett et al., 2011 ). To avoid

aving time scale act as a potential confound when comparing task-rest

unctional brain organization, we opted to characterize resting state con-

ectivity on the same time scale as task-related connectivity, thereby

reaking the 1912-volumes resting state data into six blocks of 290 vol

ach (the additional volumes from the beginning and end of the rest-

ng state scan were dropped from the analyses). In line with prior stud-

es using multilayer community detection algorithms (e.g., Finc et al.,

020 ), only the positive Fisher’s z-scores were entered in the network-

evel analyses detailed below, while negative z-scores were set to zero. 

.6.4.2. Network ‐level analyses. All the network-level metrics were

omputed using the Brain Connectivity Toolbox (BCT, Rubinov &

porns, 2010) and the Network Community Toolbox (NCT, Bassett,

.S. [2017, November]. Network Community Toolbox. Retrieved from

ttp://commdetect.weebly.com/ ), as described below. 

2.6.4.2.1. Functional community structure: multilayer louvain ‐like algo-

ithm. To characterize patterns of ROI-based functional reorganization

etween rest and task, we used a multilayer generalised Louvain-like

ommunity detection algorithm, first introduced by Mucha et al. (2010)

nd implemented in the NCT. This algorithm partitions a network with

ultiple layers into non-overlapping groups of nodes (i.e., functional

ommunities) with the goal of maximizing an objective modularity qual-

ty function, defined as 

 = 

1 
2 𝜇

∑
𝑖𝑗𝑙𝑟 

[(
𝑤 𝑖𝑗𝑙 − 𝛾𝑙 𝑒 𝑖𝑗𝑙 

)
𝛿𝑙𝑟 + 𝛿𝑖𝑗 𝜔 𝑗𝑙𝑟 

]
𝛿
(
𝑔 𝑖𝑙 , 𝑔 𝑗𝑟 

)

here 2 𝜇 is the sum of all connection weights in the network across all

ayers, w ijl represents the connection strength between nodes i and j in

ayer l; 𝛾 l is a resolution parameter determining the size of the identified

odules in layer l; e ijl is the connection strength expected by chance

etween nodes i and j in layer l, and defined as e ijl = 

s il s jl 
𝑣 

with s il and

 jl being the sum of all connection weights of node i and j, respectively,

n layer l, while v is the sum of all connection weights in the network in

ayer l; 𝜔 jlr is the connection strength between node j in layer l and node

 in layer r, and g il and g jr give the community assignments of node i in

ayer l and node j in layer r. 

In the above modularity quality optimization, there are two free pa-

ameters, the spatial resolution parameter, 𝛾, which tunes community

ize within each layer, and the cross-layer connection strength parame-

er, 𝜔 , which determines community stability across layers. In our study,

he two network layers were defined by the rest and the inhibitory con-

rol task, respectively. Dovetailing with the prior literature ( Finc et al.,

020 ; Mattar et al., 2015), the spatial resolution parameter was set to

he default value of 1. In line with other studies of heterogenous mental

tates ( Finc et al., 2020 ), the cross-layer (task-rest) connection strength

arameter was set to 0.5. To account for the near degeneracy of the

odularity landscape (Good et al., 2010), the multilayer community

etection algorithm was initiated 100 times for each of the six task-rest

airs (as described above, the rest scan was broken down into six blocks

qual in duration to the task block). All the functional network inter-

ctions indices detailed below were averaged across the 600 iterations

f the modularity optimization function (6 task-rest pairs x 100 itera-

ions/pair). 

2.6.4.2.2. Functional network interactions. Our analyses focused on

wo ROI-level functional interaction diagnostics, which were computed

n the NCT across the 600 iterations of the multilayer community de-

ection algorithm: (1) functional flexibility/task-resting state functional
7 
eorganization, operationalised as the number of times each ROI in the

chaefer atlas changed communities between task and rest, and (2) dif-

erentiation/segregation (called “recruitment ” in the NCT), which was

stimated separately for task vs rest, and operationalised as the number

f times a given ROI was assigned to the same community as the other

OIs in its native functional system, as defined in the Schaefer functional

tlas. To facilitate mapping of the relevant results onto the conceptual

odel presented in Fig. 1 , indices of functional network differentiation

uring task and rest were multiplied by − 1 in the HCP-Aging sample,

o that higher scores would reflect greater dedifferentiation consistent

ith greater functional brain aging. This was done post-analysis for pre-

entational purposes only. 

.7. Confounding variables 

.7.1. Family conflict 

The 9-item Family Conflict subscale of the Moos Family Environment

cale (Moos and Moos, 1994) gauged exposure to domestic violence in

he HCP-Development sample. Each item is scored as 1 or 0 for true / false ,

ith reverse coding of items that imply lack of conflict in the home (e.g.,

We fight a lot in our family. ” versus “Family members rarely become

penly angry. ”). Higher scores indicate a more conflictual family envi-

onment. Both parent and youth versions demonstrated acceptable reli-

bility (Cronbach’s alphas of 0.67 and 0.61). Two parents and one youth

ailed to answer one item on the scale. Consequently, for both caregiver

nd youth versions, all the reported analyses used the sum scores pro-

ated by number of missing items, as available in the Lifespan HCP 2.0

ata Release. Consistent with the interpretation that youth and parent

valuations may capture distinguishable aspects of the family environ-

ent, the two scores were only moderately correlated, Spearman’s rho

f 0.28, p = .0001. We opted to control not only for youth, but also

arental measures of conflict because the latter could capture indirect

outes through which interpersonal conflict which did not involve the

outh may have still impacted their psychological functioning. 

.7.2. Residualization 

Recent literature suggests that residualization of both variable sets

ntroduced in multivariate analyses such as PLS or canonical correlation

nalyses , which use permutation-based significance testing, may bias

esults ( Winkler et al., 2020 ). Consequently, we only residualized the

on-imaging variables entered in the PLS analyses (i.e., recently experi-

nced adversity, biological aging, resilience). All residualization analy-

es were conducted separately in the HCP-Aging and HCP-Development

amples. The following confounders were thus regressed out from each

f the three non-imaging variables using multiple linear regression anal-

sis: 

1) participants’ chronological age in order to estimate acceler-

ated/decelerated development/aging and recent adversity exposure

independent of age (within each group), 

2) SES indicators: (a) race (represented through four dummy coded

variables “African American ”, “Asian ”, “Multiracial ”, “Not Re-

ported ”) which also accounted for racial differences in genetic archi-

tecture and risk loci ( Abdellaoui and Verweij, 2021 ; Nievergelt et al.,

2019 ; Wojcik et al., 2019 ) potentially relevant to adversity expo-

sure and psychological resilience; (b) income-to-needs (i.e., family

income divided by number of dependants, see Table 1 ); (c) educa-

tional attainment (of the primary caregiver in HCP-Development [to

ensure consistency across participants given variability in parental

marital status and availability of educational information for the sec-

ond biological parent/primary caregiver’s current partner] and of

the participant in HCP-Aging, coded as a continuous variable, see

Table 1 ), 

3) history of social environmental unpredictability predating the prior

year: sum of parental divorce and having a step-parent (maximum

possible value of “2 ″ , HCP-Development) or number of divorces

and/or times one has been widowed (HCP-Aging); 

http://www.commdetect.weebly.com/
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4) chronic social threat: family conflict (HCP-Development only, youth

and parent ratings), 

5) history of likely exposure to physical threat/violence: (HCP-

Aging only) lifetime history of head trauma (cf. Saikumar and

Bonini, 2021 ) based on the total score from the Boston Assessment of

Traumatic Brain Injury-Lifetime Questionnaire ( Fortier et al., 2014 ;

the sole HCP-Development participant relevant to our objectives

with head trauma followed by loss of consciousness was eliminated

from analyses), 

6) physical health outcomes potentially also linked to prior adversity

exposure and which could have impacted the neuroimaging mea-

sures (all scores available in the 2.0 Data Release): (a) BMI (coded

as a continuous variable), (b) regular medication use (dummy coded

as Yes/No), 

7) handedness (continuous) score, 

8) scanner site (three dummy variables [i.e., “Harvard ”[HCP-

D evelopment ]/ ”Massachusetts General Hospital ”[HCP-Aging]

coded “1 ″ for participants tested at Harvard/ Massachusetts General

Hospital and “0 ″ otherwise, “Minnesota" coded “1 ″ for participants

tested at the University of Minnesota and “0 ″ otherwise, “UCLA"

coded “1 ″ for participants tested at UCLA and “0 ″ otherwise; Wash-

ington University in St. Louis was the baseline against which the

other three sites were compared) to account for broad demographic

and individual scanner-related differences among sites), 

9) participant-specific average SD in resting state BOLD signal across all

voxels within each ROI at each time point as a participant-specific

index of “brain fit ” with the Schaefer functional atlas, 

0) average scan-specific motion per participant ( Power et al., 2015 ), 

1) overall accuracy on the SST operationalised as sum of misses on the

Go trials and false alarms on the No-Go trials in order to capture indi-

vidual differences in how the participants managed the task demands

irrespective of their behavioral performance. 

.7.2.1. Data reduction: multivariate normality. The multiple linear re-

ression analyses used for confounder residualization are sensitive to vi-

lations of multivariate normality ( Hair et al., 2014 ), which we observed

n our original data. To address this issue, a square-root transformation

as applied to the Total Problems scores in both samples prior to resid-

alization for confounders. In the HCP-Development sample, issues of

ultivariate non-normality further required elimination of a univariate

utlier on recent adversity ( z -score > 4) and elimination of multivariate

Mahalanobis distance-based, p < .001) outliers prior to residualization,

eaving a final sample of 168 participants. Following these steps, an ex-

mination of the adversity, resilience and accelerated biological aging

esiduals using the Kolmogorov-Smirnov test (with the Lilliefors signifi-

ance correction) confirmed that multivariate non-normality issues had

een solved in both samples (all p s > 0.05). 

.8. Brain ‐behavior ‐gene analyses 

.8.1. Partial least squares analysis (PLS) 

To identify brain patterns linked to adversity, resilience and bio-

ogical aging, as well as characterize the relationship between brain

nd gene expression profiles, we used partial least squares correla-

ion often referred to as PLS (Krishnan et al., 2011), a multivari-

te technique that can identify in an unconstrained, data-driven man-

er, neural patterns (i.e., latent variables or LVs) related to dif-

erent conditions (i.e., task PLS) and/or individual differences vari-

bles (behavioral PLS). PLS was implemented using a series of Mat-

ab scripts, which are available for download at https://www.rotman-

aycrest.on.ca/index.php?section = 345 . 

.8.1.1. Brain differences related to adversity, biological aging and re-

ilience: behavioral PLS 1. To identify yoked differences in profiles of

rain morphology and function, which are linked to adversity, biolog-

cal aging and resilience, we conducted one behavioral PLS analysis in
8 
hich each data type was modelled as a separate condition. Number

f adverse events, accelerated biological aging, resilience —all of which

ad been residualised for confounders as described above and, thus, pre-

ented themselves as approximate continuous Gaussian variables —were

ntered as the behavioral variables. The HCP-Development and HCP-

ging participants were entered as two separate groups. By entering

he two groups in the same analysis we were able to probe age group-

pecific vs age group-independent brain correlates of adversity, acceler-

ted biological aging, and resilience. 

.8.1.2. Gene expression ‐brain profile associations indicative of risk vs re-

ilience: behavioral PLS 2. A behavioral PLS analysis probed the link be-

ween gene expression profiles and patterns of brain structure/function

elevant to adversity and resilience. The latter was the brain LV identi-

ed in behavioral PLS analysis 1. The former was expressed as an ROI x

ene expression level matrix and derived with the abagen toolbox from

he comprehensive transcriptomic maps provided by the Allen Brain In-

titute (see section “Gene Expression Data Processing and Analysis ” be-

ow). 

.8.1.3. Significance and reliability testing. In all the reported PLS anal-

ses, the significance of each LV was determined using a permutation

est (5000 permutations for the brain-[behavior] analyses and 100,000

ermutations for all the analyses involving gene expression data). In

he permutation test, the rows of the ROI or of the gene expression data

re randomly reordered (Krishnan et al., 2011). In all PLS analyses, po-

ential axis rotations (i.e., changes in the order of the extracted LVs)

nd reflections (i.e.,changes in the sign of the saliences), which may oc-

ur during resampling with either permutations or bootstrapping, were

orrected with a Procrustes rotation, which defines a transformation

hrough which the resampled singular value decomposition outcome

i.e., the identified LVs) is rotated to match most closely the original

ingular value decomposition outcome ( Milan and Whittaker, 1995 ). 

In the gene-brain PLS analysis, to account for correlated gene ex-

ression patterns based on anatomical proximity ( Fornito et al., 2019 ;

arkello & Misic, 2021) we used Vasa’s “rotate_parcellation ” func-

ion in Matlab ( https://github.com/frantisekvasa/rotate_parcellation/

ommit/bb8b0ef10980f162793cc180cef371e83655c505 ) in order to

enerate 100,000 spatially constrained permutations of the Schaefer

rain LV, as identified in behavioral PLS analysis 1. These spatially con-

trained permuted brain LVs were used to assess the significance of the

xtracted gene LVs. 

In the case of our present analyses, PLS assigned to each ROI or gene

 weight, which reflected the contribution of the respective ROI or gene

o a specific LV. The reliability of each ROI’s or gene’s contribution to

 particular LV was tested by submitting all weights to a bootstrap esti-

ation (1000 bootstraps for the brain-[behavior] analyses and 100,000

ootstraps for all the analyses involving gene expression data) of the

tandard errors (SEs, Efron, 1981 ) (the bootstrap samples were obtained

y sampling with replacement from the participants, Krishnan et al.,

011). In order to increase the stability of the reported results, we used

 number of permutations/bootstraps several orders greater than the

tandard ones (i.e., 500 permutations/100 bootstrap samples), as recom-

ended by McIntosh and Lobaugh (2004) for use in PLS analyses of neu-

oimaging data. The higher number of permutations/bootstraps used for

he gene expression data was determined by the relatively lower result

tability compared to the brain-(behavior) only analyses, as suggested

y preliminary successive iterations of the gene PLS analysis using 5000

ermutations/1000 bootstraps. A bootstrap ratio (BSR) (weight/SE) of

t least 3 in absolute value (approximate associated p -value of .0027)

as used as a threshold for identifying those ROIs that made a signifi-

ant contribution to the identified LVs. For the gene PLS analyses, we

ocused on approximately the top 20% of absolute value BSRs (i.e., ap-

roximately top 10% at either tail of the distribution), which amounted

o a BSR at least 5 (approximate associated p -value < 10 − 5 ). The BSR is

nalogous to a z-score, so an absolute value greater than 2 is thought to

https://www.rotman-baycrest.on.ca/index.php?section=345
https://www.github.com/frantisekvasa/rotate_parcellation/commit/bb8b0ef10980f162793cc180cef371e83655c505
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3827623/
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Fig. 3. Schematic representation of the transcriptomic and polygenic risk data analysis pipeline described in the Method. Micro-array gene expression data provided 

by the Allen Brain Institute were inputted into the abagen toolbox in order to estimate gene expression levels for each of the Schaefer ROIs (panel a). A PLS analysis 

was conducted on the ROI-specific gene expression data and the brain LVs linked to adversity and resilience in order to identify their transcriptional signatures (panel 

b). A GO enrichment analysis was performed to identify the functional gene categories associated with the resilience brain LVs (panel c). Permutation-based testing 

(see main text) was used to characterize the overlap between the gene expression profile relevant to resilience and the AD risk genes identified in prior meta-analyses 

(panel d). In panel (d) we illustrate the estimation of AD risk for cases in which the brain LV of interest is positively correlated with the identified gene LV (as per 

panel b). AD = Alzheimer’s Disease. LV = latent variable. PLS = partial least squares analysis. GO = gene ontology. 
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ake a reliable contribution to the LV (Krishnan et al., 2011), although

or neuroimaging data BSR absolute values greater than 3 tend to be

sed (McIntosh & Lobaugh, 2004). 

.8.2. Mediation analyses 

To test potential mechanisms through which neurodevelopmental

iming may mediate the impact of adversity on psychopathology, we

sed Hayes’ PROCESS 3.5 macro for SPSS ( Hayes, 2018 ). PROCESS is

n ordinary least squares (OLS) and logistic regression path analysis

odeling tool, based on observable variables. Mediation models were

ested employing 95% confidence intervals with 50,000 bootstrapping

amples. In line with extant guidelines on balancing Type I and Type II

rrors in mediation analyses ( Hayes and Scharkow, 2013 ; Tofighi and

elley, 2020 ), the confidence intervals for indirect effects was esti-

ated using percentile bootstrap, which is the default option in PRO-

ESS 3.5. As recommended by Hayes and Cai (2007) , a heterodastic-

ty consistent standard error and covariance matrix estimator was used.

ootstrapping-based 95% confidence intervals for the indirect effects,

s outputted by PROCESS, were used as effect size estimates. In the me-

iational analyses, number of adverse events experienced in the prior

ear constituted the predictor variable, whereas global psychopathol-

gy (i.e., raw Total Problems score) representated the main outcome.

rofiles of accelerated/decelerated brain development/aging, linked by

LS to adversity and/or psychological resilience, were tested as poten-

ial mediators. 

.8.3. Gene expression data processing and analysis 

Fig. 3 depicts the pipeline for the transcriptomic and polygenic risk

ata analyses. The main steps are described below. 

.8.3.1. Microarray gene expression. Micro-array gene expression data

ere obtained from six postmortem brains (1 female, ages 24.0–

7.0, 42.50 + /- 13.38) provided by the Allen Institute for Brain
9 
cience ( https://www.brain-map.org/ ). Because only two of the six

rains contained data from the right hemisphere and gene expres-

ion patterns are largely symmetric across the two hemispheres, our

ain analyses were based on gene expression patterns mirrored across

he two hemispheres. However, we also verified that the results of

ur gene enrichment AD-related gene expression analyses are repli-

ated when only using gene-brain data from the left hemisphere

OIs (cf. Ball et al., 2020 ; Hansen et al., 2021 ; see Supplemen-

ary Materials). The gene expression data was processed with abagen

 https://github.com/netneurolab/abagen ). Microarray probes were re-

nnotated based on the probe-to-gene mapping information provided

y Arnatkevi či ū t ė et al. (2019) and filtered based on their expression

ntensity relative to background noise ( Quackenbush, 2002 ), such that

robes with intensity less than the background in > = 50% of samples

cross donors were discarded. When multiple probes indexed the ex-

ression of the same gene, we selected and used the probe with the most

onsistent pattern of regional variation across donors (i.e., differential

tability; Hawrylycz et al., 2015 ). 

The MNI coordinates of tissue samples were updated to those gen-

rated via non-linear registration using the Advanced Normalization

ools (ANTs; https://github.com/chrisfilo/alleninf ). Samples were as-

igned to brain regions in the Schaefer atlas if their MNI coordinates

ere within 2 mm of a given parcel. All tissue samples not assigned to

 brain region in the provided atlas were discarded. 

Inter-subject variation was addressed by normalizing tissue sam-

le expression values across genes using a robust sigmoid function

 Fulcher et al., 2013 ): 

 norm 

= 1∕ 
(
1 + exp 

(
− ( 𝑥 − ⟨𝑥 ⟩) ∕ IQ R 𝑥 

))

here ⟨x ⟩ is the median and IQR x is the normalized interquartile range

f the expression of a single tissue sample across genes. Normalized ex-

ression values were then rescaled to the unit interval: 

 𝑠𝑐𝑎𝑙𝑒𝑑 = 

(
𝑥 𝑛𝑜𝑟𝑚 − min 

(
𝑥 𝑛𝑜𝑟𝑚 

))
∕ 
(
max 

(
𝑥 𝑛𝑜𝑟𝑚 

)
− min 

(
𝑥 𝑛𝑜𝑟𝑚 

))

https://www.brain-map.org/
https://www.github.com/netneurolab/abagen
https://www.github.com/chrisfilo/alleninf
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Gene expression values were then normalized across tissue samples

sing an identical procedure. Samples assigned to the same brain region

ere averaged separately for each donor and then across donors. After

e eliminated the ROIs without reliable gene expression (based on the

bagen parameters outlined above), the resulting gene expression ma-

rix, used in all our analyses, was in the format 297 (ROIs) x 15,632

genes). A list of ROIs lacking reliable gene expression is included in the

upplemental Materials (Table S1). 

.8.3.2. Gene ontology (GO) enrichment analysis. To identify the func-

ional gene categories that underpin the link between the resilience-

elevant brain and the gene expression profiles, we used the software

oolbox created by Fulcher et al. (2021) . This toolbox has been shown

o adequately control for within gene ontology (GO) category gene-

ene co-expression patterns, thereby mitigating the potential for inflated

alse positive rates which can affect traditional inference methods of

O enrichment. Enrichment analyses were conducted using 40,000 cus-

om null ensembles, obtained by using Vasa’s algorithm to rotate the

esilience-linked brain LVs from behavioral PLS analysis 1. Analyses

ere conducted on GO categories comprising 5 to 200 genes. Below we

eport the corrected p -values obtained by fitting a Gaussian distribution

o the estimated null distribution. 

.8.3.3. AD overlap tests. To probe the link between short-term psycho-

ogical resilience and longer-term risk for accelerated cognitive aging

athologies, we examined the overlap between our resilience-relevant

ene expression LV and AD risk genes identified in prior meta-analyses

f genome-wide brain association studies (GWAS, minpGWAS of at least

0 − 7 , Kunkle et al., 2019 ). The AD-relevant candidate risk loci had been

apped onto the corresponding genes by the original authors using the

NP2GENE tool in FUMA and made available via the Public Results tab

 https://fuma.ctglab.nl/browse , Watanabe et al., 2017 ). Based on their

QTL analysis output, we identified 77 AD-linked genes reliably ex-

ressed in our data. Of these, the risk allele(s) reduced gene expression

or 44 of them ( AD_low ), but increased gene expression for the remaining

3 ( AD_high ). 

2.8.3.3.1. Resilience ‐relevant gene LV. Our AD risk overlap tests

ere conducted on genes with an absolute value BSR of at least 5 (as-

ociated p -value < 10 − 5 ). Comparisons were conducted separately for

enes with positive versus negative loadings on the gene LV. As an ex-

mple, for the positive BSR genes, the procedure was as follows: (1) we

btained separate counts of the number of AD_low and AD_high genes,

espectively, with a BSR of at least 5 on our gene LV ( AD_low_pos and

D_high_pos , respectively); (2) we counted the number of genes with a

SR of at least 5 on our gene LV ( Orig_pos ); (3) from each of the cor-

esponding gene LVs in the null distribution (each of which had been

ligned with the original gene LVs via a Procrustes transform), we se-

ected a number of genes equal to Orig_pos ( Null_pos ); (4) we counted

he number of null samples (out of the total of 100,000) in which the

umber of either AD_low_pos or AD_high_pos in Null_Pos exceeded the one

bserved in Orig_pos . The same procedure was followed for the negative

SR genes. The estimation of the AD risk associated with a given brain

V depended on the sign of the correlation between the gene and brain

V. For instance, if the identified gene LV were to be positively corre-

ated with the brain LV of interest, then the associated AD risk would

e estimated as a conjunction of AD_low genes with negative BSRs and

D_high genes with positive BSRs observed in the original data relative

o the null distribution. 

.9. Replication of results 

All the results reported below were replicated using bi-hemispheric

ata from the Gordon atlas ( Gordon et al., 2016 ), as well as left-

emisphere-only data from the Schaefer and Gordon atlases, respec-

ively (for results of these analyses, see Supplemental Materials). The

eft-hemisphere only analyses were solely relevant to the brain-gene
10 
nalyses and were conducted to verify the robustness of our bi-

emispheric results, because only two of the six donors from the Allen

rain Institute had right hemisphere transcriptomic data. Furthermore,

ecause operationalization of racial ancestry can be difficult and its in-

erpretation open to some debate (e.g., whether it reflects genetic vs

ES-related effects), we further replicated all the results in analyses in

hich we did not control for racial background. In the Results below,

ased on the Schaefer atlas, we only discuss the results replicated across

ll the control analyses outlined above and included in the Supplemen-

al Materials. These results are presented in red rectangles in Figs. 4 and

 . 

. Results 

.1. Brain profiles linked to adversity and resilience: behavioral PLS 

nalysis 1 

This analysis identified two LVs (both p s = 0.0002), accounting for

5.20% (LV1) and 12.14% (LV2) of the brain-behavior covariance. 

.1.1. LV1: accelerated functional brain development/aging correlates with 

ecent exposure to adversity in adolescence and middle age 

LV1 reflected primarily brain patterns linked to adversity exposure

nd was most robustly expressed in ROIs from the DMN, SAL-VAN,

ontrol, DAN, SM and VIS (see Fig. 4 -a and Table S2). In both sam-

les, this LV reflected the positive association between recent adversity

xposure and accelerated functional brain development (i.e., increased

ask-related network differentiation, HCP-Developmment, Fig. 4 -b) or

ging (i.e., reduced BOLD SV during both task and rest, HCP-Aging,

ee Fig. 4 -c). Furthermore, in both adolescence and middle adult-

ood, the adversity-linked profile of earlier functional brain develop-

ent/senescence was also associated with accelerated biological aging.

upplemental analyses replicating these results are presented in Figures

1, S3, and S5. 

.1.2. LV2: opposing patterns of functional brain development/aging 

nvolving SM, control, dmn and sal ‐van predict resilience in adolescence 

ersus middle adulthoodhood 

LV2 differentiated developmental/aging patterns observed in DMN

nd SAL-VAN ROIs from those detected in SM and Control ROIs (see

ig. 5 -a, b and Table S3). In the HCP-Development sample, this LV

inked greater resilience, recently experienced adversity and faster bi-

logical aging to accelerated SM and Control, but delayed DMN and

AL-VAN, functional development, as indicated by patterns of BOLD SV 

nd functional network differentiation (see Fig. 5 -c). Complementarily,

n the HCP-Aging sample, LV2 associated higher levels of resilience,

ecently experienced adversity and slower biological aging with de-

ayed SM/Control, but accelerated DMN/SAL-VAN functional aging, as

eflected in patterns of functional network dedifferentiation and task-

esting state topological flexibility (see Fig. 5 -d). These results were

eplicated in the corresponding supplemental analyses (see Figures S2,

4, and S6). 

.2. Functional brain mechanisms protecting against adversity ‐linked 

sychopathology: mediation analyses 

Based on our proposed neural sequence related to psychological re-

ilience ( Fig. 1 -c), we next tested the role of BOLD SV and of its putative

unctional network correlates (task-rest flexibility, task/rest differentia-

ion) in partially accounting for the shared variance between adversity

nd psychopathology. No structural brain variables were included in

hese analyses since none evidenced robust relationships with either re-

ilience or adversity in the PLS analyses. Based on the PLS-identified

rain LVs linked to adversity exposure and resilience (and replicated

n the supplemental analyses), our mediation analyses focused on LV2

https://www.fuma.ctglab.nl/browse
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Fig. 4. First extracted LV from the behavioral-PLS analysis linking adversity and biological aging to brain maturation (HCP- Development) or senescence (HCP- 

Aging). Panel (a) depicts the Schaefer ROIs with robust loadings (absolute value BSR > 3) on the LV in panels (b, c) and visualized with the BrainNet Viewer 

( http://www.nitrc.org/projects/bnv/ ) ( Xia et al., 2013 ). ROI colours reflect Schaefer et al.’s network assignments. In panel (a), the size of the ROIs is proportional to 

their associated absolute value BSR. Panel (b) shows the correlations between the behavioral variables and the brain scores in each condition (i.e., data type) in the 

HCP-Development sample. Panel (c) shows the same information in the HCP-Aging sample. Error bars are the 95% confidence intervals from the bootstrap procedure. 

Confidence intervals that do not include zero reflect robust correlations between the respective behavioral variable and the brain score in a given condition across 

all HCP-Development/Aging participants (as appropriate). In panels (b, c), significant brain-behavior correlations replicated across all the supplemental analyses 

(including analyses based on the Gordon atlas and analyses with no race-related covariates) are within red line rectangles. LV = latent variable. BSR = bootstrap 

ratio. GMV = gray matter volume. Task = inhibitory control (Go/No-Go) task. Schaefer networks: TP = temporo-parietal. SAL-VAN = salience/ventral attention. 

LB = limbic. DMN = default mode. DAN = dorsal attention. SM- A = somatomotor-A. SM- B = somatomotor-B. VIS = visual. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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task-related BOLD SV , functional differentiation during task) in the HCP-

evelopment sample. In the HCP-Aging sample, we examined mediation

ffects of task and resting state BOLD sv (PLS LV1, Fig. 4 -c) via functional

exibility and task-related network differentiation (LV2, Fig. 5 -d). The

V1 flexibility and dedifferentiation scores score were not included in

he analyses because their associations with adversity were more dif-

cult to accommodate within the model depicted in Fig. 1 -c and they

ere not replicated across all supplemental analyses. Biological aging

as not included in any of the mediation analyses due to its weak corre-

ations with adversity and psychological resilience/risk in both samples

 r s from 0.09 to 0.10). 

.2.1. HCP ‐Development 

The results did not support our hypothesis that BOLD SV would ex-

lain the shared variance between adversity exposure and psychopathol-

gy risk through its functional network correlates (i.e., task-related net-

ork differentiation) (see Fig. 6 -a and Table 2 ). 

.2.2. HCP ‐Aging 

We only found evidence of resting state BOLD SV mediation effects via

ask-rest functional network flexibility (see Fig. 6 -c and Table 2 ), but not

ia task-related functional network dedifferentiation (see Fig. 6 -b and

able 2 ). The results presented in Fig. 6 -c thus imply that widespread

dversity-related reductions in resting state BOLD SV are associated with

reater SM/Control, but reduced DMN/SAL-VAN functional flexibility,

hich are, in turn, linked to higher psychopathology risk. These results

ere replicated in the corresponding supplemental analyses (see Figure

7 and Table S10). 
11 
.3. Gene expression profiles linked to adversity, resilience and AD risk 

.3.1. Gene expression profile linked to adversity exposure and resilience 

A behavioral PLS analysis, based on the abagen-outputted ROI x gene

xpression matrix, identified a sole gene expression profile ( p = 10 − 5),

hich accounted for 83.81% in the brain-gene expression covariance.

his gene LV was linked positively to the resilience, r = 0.30, 95%

I = [.24; 0.39] but negatively to the adversity-relevant, r = − 0.40, 95%

I = [ − 0.50; − 0.32] brain LV (see Fig. 7 -b). Given the relationship be-

ween the resilience-associated brain patterns in the HCP-Development

nd HCP-Aging samples (see Fig. 5 -c, d), the identified gene LV was

ositively linked to the HCP-Aging, but negatively linked to the HCP-

evelopmental neural senescence/maturation patterns. 

.3.2. GO enrichment patterns 

The enrichment analysis ( Fulcher et al., 2021 ) suggested that the

CP-Aging resilience brain profile was positively, whereas the HCP-

evelopment was negatively, linked to greater expression of genes in-

olved in positive regulation, as well as modulation, of postsynaptic in-

ibitory potential (both corrected p -values of 0.012, see Fig. 7 -a; see

upplemental Materials for replication of these effects with the Gor-

on atlas). No significant associations were detected for the adversity-

elevant brain LV. 

.3.3. Relevance of the AD risk genes to the HCP ‐Development vs 

CP ‐Aging resilience brain 

Given the positive correlation between the gene and the HCP-Aging

esilient brain LV, resilience-linked AD risk in the HCP-Aging was de-

ned based on the number of the AD_low genes with negative BSRs

nd AD_high genes with positive BSRs. Complementarily, based on the

http://www.nitrc.org/projects/bnv/
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Fig. 5. Second extracted LV from the behavioral-PLS analysis linking adversity, resilience and biological aging to brain maturation (HCP-Development) or senescence 

(HCP-Aging). Panels (a) and (b) depict the Schaefer ROIs with robust loadings (absolute value BSR > 3) on the LV represented in panels (c) and (d). The ROIs were 

visualized with the BrainNet Viewer ( http://www.nitrc.org/projects/bnv/ ) ( Xia et al., 2013 ). ROI colours reflect Schaefer et al.’s network assignments. In panels 

(a) and (b), the size of the ROIs is proportional to their associated absolute value BSR. Panel (c) shows the correlations between the behavioral variables and the 

brain scores in each condition (i.e., data type) in the HCP-Development sample. Panel (d) shows the same information in the HCP-Aging sample. Error bars are the 

95% confidence intervals from the bootstrap procedure. Confidence intervals that do not include zero reflect robust correlations between the respective behavioral 

variable and the brain score in a given condition across all HCP-Development/Aging participants (as appropriate). In panels (c) and (d), significant brain-behavior 

correlations replicated across all the supplemental analyses (including analyses based on the Gordon atlas and analyses with no race-related covariates) are within red 

line rectangles. LV = latent variable. BSR = bootstrap ratio. GMV = gray matter volume. Task = inhibitory control (Go/No-Go) task. Schaefer networks: DMN = default 

mode. SAL-VAN = salience/ventral attention. SM- A = somatomotor-A. SM- B = somatomotor-B. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

Fig. 6. Mediational model linking adversity exposure to psychopathology risk in HCP-Development (a) and HCP-Aging (b,c). A dashed line indicates a statistically 

non-significant path ( p > .05). 

12 
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Table 2 

Standardized Statistical Parameters for the Mediational Models Linking Adversity to Psychopathology Risk. 

Mediator 1/Mediator 2 

Effect of IV on 

Mediator 1 ( p ) 

Unique Effect of 

Mediator 1 on 

Mediator 2 ( p ) 

Unique Effect of 

Mediator 2 on 

DV ( p ) 

Indirect Effect 

( SE ) 

95% CI Indirect 

Effect 

HCP-Development 

Task BOLD SV /Differentiation .18 (0.019) .33 (0.00001) .15 (0.062) .008 (0.006) [ − 0.001;.023] 

HCP-Aging 

Rest BOLD SV /Task 

Differentiation a 
− 0.22 (0.012) .19 (0.08) − 0.20 (0.007) .008 (0.007) [ − 0.001; 0.025] 

Task BOLD SV /Task 

Differentiation a 
− 0.22 (0.005) .08 (0.40) − 0.20 (0.007) .004 (0.005) [ − 0.005; 0.016] 

Rest BOLD SV /Flexibility b − 0.22 (0.012) .35 (0.0003) − 0.15 (0.039) .012 (0.009) [.0001; 0.034] 

Task BOLD SV /Flexibility b − 0.22 (0.005) − 0.003 (0.97) − 0.15 (0.039) − 0.0001 (0.003) [ − 0.007; 0.007] 

Note. p = statistical significance value. SE = bootstrap-based standard error. CI = confidence interval. a These paths are part 

of the same mediational model depicted in Fig. 6 -b. b These paths are part of the same mediational model depicted in Fig. 6 -c. 

IV = independent variable. DV = dependent variable. 

Fig. 7. Results of the transcriptomic and AD overlap analyses. Output of the enrichment analysis conducted with Fulcher et al. (2021) software toolbox on the 

accelerated brain development LV linked positively (HCP-Aging)/negatively (HCP-Development) to resilience (panel a). Panel (a) depicts only the ROIs with an 

absolute value BSR > 3 on the identified brain LV (see Fig. 5 ). Panel (b) represents the spatial expression map of the gene LV identified in behavioral PLS analysis 2. 

The ROIs were visualized with the BrainNet Viewer ( http://www.nitrc.org/projects/bnv/ ) ( Xia et al., 2013 ). ROI colours reflect Schaefer et al.’s network assignments 

and their size is proportional to how strongly they express the gene LV (i.e., the absolute value of the associated brain score). Panel (c) depicts the results of the 

AD-resilience gene LV overlap analyses. LV = latent variable. BSR = bootstrap ratio. Schaefer networks: TP = temporo-parietal. SAL-VAN = salience/ventral attention. 

LB = limbic. DMN = default mode. DAN = dorsal attention. SM- A = somatomotor-A. SM- B = somatomotor-B. VIS = visual. 
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s  
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egative correlation between the gene and HCP-Development resilient

rain LV, resilience-linked AD risk in the HCP-Development was derived

rom the number of the AD_high genes with negative BSRs and AD_low

enes with positive BSRs. There was no evidence of a significant associ-

tion between the HCP-Development resilient brain profile and AD risk

permutation-based p = .28). We found though support for a significant

ssociation between the HCP-Aging resilient brain profile and AD risk

permutation-based p = .0002) (see Fig. 7 -c). 

. Discussion 

The substantial long-term damage inflicted by life adversities pre-

umably stems, at least partly, from psychological mechanisms sup-

orting initial adaptation, such as accelerated neurobiological aging

 Belsky, 2019 ; Callaghan and Tottenham, 2016 ; McLaughlin et al.,

014, 2016 ). Using lifespan HCP data, our study replicates the asso-
13 
iation between recent adversity exposure and accelerated biological

nd functional brain development/aging. The latter is most salient in

igher-order association systems (i.e., DMN, SAL-VAN, DAN, Control)

hich are known for their protracted developmental trajectories and en-

anced lifespan vulnerability to psychiatric disorders ( Cai et al., 2021 ;

wyer et al., 2014 ; Ho et al., 2021 ; Kaiser et al., 2015 ; Sydnor et al.,

021 ). More importantly, our investigation extends this literature by

dentifying age-specific patterns of apparent acceleration/deceleration

n brain development/senescence linked to resilience and earlier (ado-

escence) versus delayed (middle-age) biological aging. Suggestive of

 partially antagonistic relationship between short-term resilience and

onger term psychological adjustment ( Colich et al., 2020 ), the neural

ging correlates of middle-aged resilience were associated with tran-

criptomic markers of vulnerability to accelerated brain aging patholo-

ies, specifically, AD. 

http://www.nitrc.org/projects/bnv/


R. Petrican, A. Fornito and N. Jones NeuroImage 255 (2022) 119209 

4

 

s  

G  

t  

T  

S  

c  

u  

B  

t  

o  

w  

c  

i  

p  

r  

g  

b  

z  

j  

l  

w  

a  

c

 

D  

H  

s  

t  

f  

s  

s

 

m  

o  

t  

e  

b  

f  

o  

b  

l  

a

4

 

a  

v  

o  

p  

(  

2  

o  

t  

d  

i  

2  

a  

c  

r  

i  

m  

h  

v  

T

 

t  

a  

t  

M  

c  

o  

t  

a  

l  

P  

n  

o  

l  

p  

p  

e  

t  

l

4

 

r  

(  

p  

s  

t  

p  

t  

l  

v  

2

 

t  

S  

v  

B  

D  

p  

t  

w  

c  

A  

l  

c  

p  

a  

t  

m  

S  

S

 

w  

e  

t  

d  

4

 

w  

p  
.1. Psychological resilience and brain development/aging 

Paralleling previous proposals that the timing of adversity shapes its

equelae ( Aschbacher et al., 2021 ; Gee and Casey, 2015 ; Nelson and

abard-Durnam, 2020 ), we unveiled complementary neural signa-

ures of psychological resilience in adolescence versus middle age.

hese profiles reflected the divergent developmental/aging patterns of

M/Control versus DMN/SAL-VAN ROIs (see Fig. 5 -c, d). In adoles-

ence, greater resilience was linked to relatively faster functional mat-

ration of SM/Control systems, as reflected by patterns of task-related

OLD SV and network differentiation (see Fig. 5 -c). Complementarily,

he HCP-Aging resilience profile reflected the divergent relationship

f brain-wide resting state BOLD SV decrements, related to adversity,

ith sensory and control versus attentional and internally oriented pro-

essing system differentiation and flexibility (see Fig. 6 -c). As such,

t mainly captured the antithetic segregation and functional efficiency

atterns of SM/Control versus DMN/SAL-VAN which are predictive of

educed psychopathology (i.e., the link between higher resilience and

reater DMN/ SAL-VAN dedifferentiation and task-rest reorganization,

ut greater SM/Control differentiation and reduced task-rest reorgani-

ation, see Fig. 5 -d). Whether these findings reflect divergent aging tra-

ectories underpinning resilience and/or indicate the chronically high

evels of cognitive effort engaged by individuals who successfully cope

ith adversity is a question for future research (see Finc et al., 2020 for

 link between reduced DMN segregation/differentiation and greater

ognitive effort). 

Of note, the joint contributions of SM, SAL-VAN and the core

MN subsystem, reportedly subserving self-related processes ( Andrews-

anna et al., 2007 ), to resilience concur with recent proposals linking

elf-regulatory success to (internal) self-in-(external) context represen-

ations ( Koban et al., 2021 ). The involvement of SM and SAL-VAN is

urther consonant with their putative function as transdiagnostic hubs,

ince sensory and attentional deficits constitute key psychopathology

ymptoms ( Kebets et al., 2019 ; McTeague et al., 2017 ). 

It is worth pointing out that extant evidence suggests that coupled

aturational changes in structure and function, particularly in higher-

rder association systems subserving cognitive control-relevant func-

ion, are cornerstone to successful development in adolescence (cf. Baum

t al., 2020). However, in our study, greater psychological resilience in

oth adolescence and middle adulthood was associated only with dif-

erences in functional maturation/aging timing. This raises the question

f whether structure-function developmental/aging uncoupling could

e one of the mechanisms underpinning the partially antagonistic re-

ationship between short-term resilience and long-term psychological

djustment. 

.2. Neurogenetic substrates of the resilience ‐AD vulnerability overlap 

Extending prior investigations on the interplay between genetic

nd neural architecture in shaping evolutionary and lifespan de-

elopmental processes, our present study testifies to the relevance

f a yoked connectomics-transcriptomics approach to characterizing

otential mechanisms underpinning vulnerability to brain disorders

 Arnatkevi či ū t ė et al., 2021 ; Changeux et al., 2021 ; Fornito et al., 2015 ,

019). Specifically, complementing prior findings on the contribution

f negative affectivity and mood pathology to AD onset, we report that

he brain senescence patterns predictive of short-term resilience in mid-

le adulthood are associated with a gene expression profile implicated

n AD risk ( Cole et al., 2021 ; Dafsari and Jessen, 2020 ; De Jager et al.,

021 ; Kunkle et al., 2019 ). The transcriptomic signature of the brain

ging profile positively associated with the adult, but negatively asso-

iated with the adolescent, resilient brain LV (see Fig. 5 -c, d) was en-

iched for genes implicated in synaptic inhibition. These results are thus

n line with the putative role of altered GABA-ergic inhibition in the

ood- and AD-linked cognitive deficits, as well as the relevance of in-

ibitory/excitatory balance to adolescent neural plasticity and neurode-
14 
elopmental disorders ( Larsen and Luna, 2018 ; Prevot and Sibille, 2021 ;

ang et al., 2021 ; Zacharopoulos et al., 2021 ). 

Our neurogenetic results are thus compatible with the interpreta-

ion that immediate adaptation mechanisms linked to neurobiological

ging may unleash a cascade of cellular processes that heighten long-

erm psychiatric and neurodegenerative risk ( Dafsari and Jessen, 2020 ;

cLaughlin et al., 2014, 2016). This proposal echoes prior reports that

ellular changes precede by decades the clinical phase of AD, thereby

pening a window of opportunity for earlier identification and interven-

ions targeting at-risk individuals ( De Strooper and Karran, 2016 ). An

lternative interpretation warranting further study is that our resilience-

inked neurogenetic results reflect a case of antagonistic pleiotropy (cf.

rovenzano and Deleidi, 2021 ). Specifically, individuals who are ge-

etically predisposed towards accelerated brain aging and later devel-

pment of AD (e.g., Gonneaud et al., 2021 ) may show greater psycho-

ogical resilience earlier in life, potentially through a less differentiated

rocessing of the external milieu. The viability of this proposal is worth

robing in future studies targeting interactions between genetically and

nvironmentally (i.e., acute and chronic adversity) triggered accelera-

ion in neurobiological aging, as well as their role in predicting psycho-

ogical resilience across multiple timescales. 

.3. Brain profiles linked to the timing of biological aging 

Our investigation focused on two key hormonal transition stages,

eflecting female reproductive maturation and senescence, respectively

 Laube et al., 2020 ; Rehbein et al., 2021 ). Our decision was based on

rior evidence on the role of ovarian hormones in psychological re-

ilience, an effect likely explained through their GABA-ergic and oxy-

ocin mediated downregulation of HPA axis activity following stress ex-

osure ( Engel et al., 2019 ; Joffe et al., 2020 ; Süss et al., 2021 ). Moreover,

he susceptibility of ovarian hormones to adverse life events renders it

ikely that they could (partly) explain stress modulation of brain de-

elopment/aging trajectories ( Eck and Bangasser, 2020 ; Gordon et al.,

018 ). 

Our analyses revealed complementary patterns of association be-

ween accelerated biological and brain aging in the two age groups.

pecifically, in line with prior evidence on the immediately adaptive

alue of precocious neurobiological aging in adolescence ( Belsky, 2019 ;

rieant et al., 2021 ; Callaghan and Tottenham, 2016 ), in the HCP-

evelopment sample, we detected a positive association between earlier

ubertal timing and the accelerated functional neurodevelopment pat-

ern predictive of resilience. Conversely, accelerated biological aging

as robustly inversely linked to the resilience functional brain senes-

ence profile characterised during the inhibitory control task in HCP-

ging (i.e., overlapping neural substrates of greater resilience and de-

ayed biological aging). This finding suggests that in later life quick re-

overy and/or active resistance to stressors may depend (in part) on

reservation of sex hormone-mediated (down)regulation of HPA axis

ctivity and dampened reactivity to the external milieu, potentially due

o the accelerated aging of functional networks underpinning environ-

ental vigilance (i.e., SAL-VAN [cf., Fig. 5 -b, S2-b), CON [cf. Figure

4-b,6-b), Dosenbach et al., 2007 ; Sadaghiani and D’Esposito, 2015 ;

eeley et al., 2007 ; Sridharan et al., 2008 ). 

In neither sample was biological aging timing robustly associated

ith the number of recent negative experiences. This implies that accel-

rated maturation/senescence may be solely related to chronic, rather

han acute, forms of adversity ( Tooley et al., 2021 ) and/or only certain

imensions of adversity (i.e., exposure to violence, Colich et al., 2020 ).

.4. Limitations and future directions 

Our present findings could be extended in several ways. First, multi-

ave longitudinal data could be used to account for heterogenous re-

roductive and neural developmental trajectories through growth curve
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A  
nalysis methods ( Becht and Mills, 2020 ). Second, recent studies under-

core the protective role of the brain’s functional architecture against

dversity-linked cardiometabolic risks ( Miller et al., 2018 ). While we

ontrolled for cardiometabolic functioning as a means of accounting for

rior adversity exposure, its potential link to brain and biological aging

atterns underpinning shorter- versus longer-term resilience would war-

ant further study. Third, the impact of adversity on biological aging in

hildhood/adolescence varies with genetic susceptibility to earlier mat-

ration ( Sun et al., 2020 ), an effect that may be worth probing across

he life course. Fourth, future investigations combining hormonal mea-

ures with self, parental (for adolescents) or physician indices of biolog-

cal aging (i.e., pubertal timing/menopausal status, e.g., Herting et al.,

021 ) could determine the mechanisms through which psychological

esilience, as demonstrated immediately after exposure to stressful life

vents, may dampen or accentuate longer-term vulnerability to psychi-

tric and/or neurodegenerative disorders. Fifth, direct lifespan com-

arisons of chronic versus acute exposure to adversity (cf. Gee and

asey, 2015 ) may elucidate their distinguishable effects on reproductive

nd brain system-specific maturation/senescence, thereby helping per-

onalize interventions for vulnerable individuals ( Brieant et al., 2021 ;

urstein et al., 2021 ; Goldstein et al., 2021 ; Herzberg et al., 2021 ;

yborowska et al., 2018 ). While a dimensional approach to adversity,

imilar to the one we used to estimate longer-term stress exposure, is cur-

ently thought to better capture the individual variability in long-term

eurodevelopmental outcomes (e.g., Ellis et al., 2022 ), indices of cu-

ulative stress exposure should nonetheless be included to provide fur-

her insight into the determinants of resilience (e.g., Seery et al., 2010 ,

eery et al., 2013 ). These measures would ideally be collected within

 prospective longitudinal design, since retrospective assessments are

rone to recall biases (for a meta-analysis, see Baldwin et al., 2019 ).

uch in-depth phenotyping may be difficult to implement in studies

s large as the Lifespan HCPs. However, this provides a useful illus-

ration of how the exploratory work that is afforded by large high-

uality multimodal databases can be developed in more depth through

maller studies carrying targeted phenotyping on a question of inter-

st. Sixth, use of cellular senescence measures (e.g., DNA methylation,

chumacher et al., 2021 ) would enable inclusion of gender diverse

amples and more in-depth exploration of resilience-relevant neuroge-

etic mechanisms, including potential sex differences (for a review, see

cEwen et al., 2015 ). For instance, cellular aging indices would allow

nquiries into how pre-/perinatal stressors (e.g., malnutrition, maternal

raumatic experiences/inflammation) can interact with the offspring’s

enetic profile to shape their lifespan development, including biolog-

cal aging rate and, thus, potentially their resilience against later life

dversity ( Chan et al., 2019 ; Goldstein et al., 2021 ; Krontira et al.,

020 ; Mareckova et al., 2020 ; Ramo-Fernandez et al., 2021 ). Seventh,

here is compelling evidence that personal characteristics, such as sense

f purpose, sprituality, and social-affective enrichment in the form of

arm parenting in childhood/adolescence and supportive close rela-

ionships later in life can alleviate the sequelae of prior adversity ex-

osure ( Bowes et al., 2010 ; Feder et al., 2009 ; Gee, 2021 ; Gunnar et al.,

019 ; Kiecolt-Glaser et al., 2020 ; Luby et al., 2020 ; Manvelian and

barra, 2020 ; Sbarra and Coan, 2018 ; Toumbelekis et al., 2021 ). As

uch, more in-depth investigation of the unique mechanisms through

hich distinct intra- and interpersonal factors may protect against the

align effects of stressful life experiences would be worth pursuing in

he future. 

.5. Conclusions 

In sum, we documented the distinguishable patterns of acceler-

ted/decelerated neurodevelopment linked to resilience in adolescence

nd middle adulthood, as well as the potential psychological benefit of

arlier reproductive maturation, but delayed reproductive senescence.

dditionally, we provided suggestive evidence that the neural aging

echanisms underpinning short-term psychological resilience in mid-
15 
le adulthood could be linked to increased long-term risk for accelerated

rain senescence pathologies, such as AD. 

ata statement 

The raw data are available at https://nda.nih.gov/ccf/lifespan-

tudies upon completion of the relevant data use agreements. The data

sed in this report came from the Lifespan Human Connectome Project-

nnual Release 2.0. 

ode availability 

We used already existing code, as specified in the main text with

inks for free download. 

onflict of interest 

The authors declare no competing interests. 

redit authorship contribution statement 

Raluca Petrican: Conceptualization, Methodology, Formal analy-

is, Data curation, Visualization, Writing – original draft. Alex Fornito:

ethodology, Software, Resources, Writing – review & editing. Natalie

ones: Investigation, Writing – review & editing. 

cknowledgments 

Data used in the preparation of this article were obtained

rom the Lifespan human connectome project (HCP) ( https://www.

umanconnectome.org/study/hcp-lifespan-development ; https://www.

umanconnectome.org/study/hcp-lifespan-aging ), held in the NIMH

ata Archive (NDA). The Lifespan HCP research is supported

y grants U01MH109589 , U01MH109589-S1 , U01AG052564 , and

01AG052564-S1 and by the 14 NIH Institutes and Centers that support

he NIH Blueprint for Neuroscience Research , by the McDonnell Center

or Systems Neuroscience at Washington University, by the Office of the

rovost at Washington 

University, by the University of Minnesota Medical School, by the

niversity of Massachusetts Medical School, and by the University of

alifornia Los Angeles Medical School. This manuscript reflects the

iews of the authors and may not reflect the opinions or views of the

IH or HCP consortium investigators. The authors would like to thank

alentina Escott-Price for helpful discussions during the earlier stages

f this manuscript. 

upplementary materials 

Supplementary material associated with this article can be found, in

he online version, at doi: 10.1016/j.neuroimage.2022.119209 . 

eferences 

bdellaoui, A., Verweij, K., 2021. Dissecting polygenic signals from genome-wide associ-

ation studies on human behaviour. Nat. Human Behav. 5, 686–694 . 

chenbach, T.M., 1991. Manual For the Youth Self-Report and 1991 Profile. University of

Vermont, Department of Psychiatry, Burlington, VT . 

chenbach, T.M., 2009. The Achenbach System of Empirically Based Assessment (ASEBA):

Development, Findings, Theory and Applications. University of Vermont Research

Center for Children, Youth and Families, Burlington, VT . 

chenbach, T.M. (2013). DSM Guide for the ASEBA. Burlington, VT: University of Ver-

mont, Research Center for Children, Youth, & Families. 

mstadter, A.B., Myers, J.M., Kendler, K.S., 2014. Psychiatric resilience: longitudinal twin

study. British J. Psych. 205, 275–280 . 

ndrews-Hanna, J.R., Snyder, A.Z., Vincent, J.L., Lustig, C., Head, D., Raichle, M.E., Buck-

ner, R.L., 2007. Disruption of large-scale brain systems in advanced aging. Neuron 56,

924–935 . 

rnatkevi či ū t ė, A., Fulcher, B.D., Fornito, A., 2019. A practical guide to linking brain-wide

gene expression and neuroimaging data. Neuroimage 189, 353–367 . 

https://www.nda.nih.gov/ccf/lifespan-studies
https://www.humanconnectome.org/study/hcp-lifespan-development
https://www.humanconnectome.org/study/hcp-lifespan-aging
https://doi.org/10.1016/j.neuroimage.2022.119209
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0001
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0002
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0003
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0005
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0006
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0007


R. Petrican, A. Fornito and N. Jones NeuroImage 255 (2022) 119209 

A  

 

 

A  

 

 

B  

 

B  

 

B  

 

 

B  

 

B  

B  

B  

B  

 

 

 

B  

 

B  

 

B  

 

B  

 

C  

 

C  

C  

 

 

 

C  

 

C  

 

C  

 

 

C  

C  

 

 

C  

 

 

 

C  

 

C  

 

 

C  

 

D  

D  

D  

 

 

D  

 

 

D  

 

D  

D  

 

D  

 

 

D  

 

E  

E  

 

 

E  

F  

F  

 

F  

F  

 

F  

 

F  

 

 

F  

F  

 

F  

F  

F  

 

 

F  

 

F  

 

G  

 

 

G  

 

 

G  

 

G  

 

G  

G  
rnatkeviciute, A., Fulcher, B.D., Oldham, S., Tiego, J., Paquola, C., Gerring, Z.,

Aquino, K., Hawi, Z., Johnson, B., Ball, G., Klein, M., Deco, G., Franke, B., Bell-

grove, M.A., Fornito, A., 2021. Genetic influences on hub connectivity of the human

connectome. Nat. Commun. 12, 4237 . 

schbacher, K., Hagan, M., Steine, I.M., Rivera, L., Cole, S., Baccarella, A., Epel, E.S.,

Lieberman, A., Bush, N.R., 2021. Adversity in early life and pregnancy are immunolog-

ically distinct from total life adversity: macrophage-associated phenotypes in women

exposed to interpersonal violence. Transl. Psychiatry 11, 391 . 

aldwin, J.R., Reuben, A., Newbury, J.B., Danese, A., 2019. Agreement between prospec-

tive and retrospective measures of childhood maltreatment: a systematic review and

meta-analysis. JAMA Psychiatry 76, 584–593 . 

all, G., Seidlitz, J., Beare, R., Seal, M.L., 2020. Cortical remodelling in childhood is as-

sociated with genes enriched for neurodevelopmental disorders. Neuroimage 215,

116803 . 

aracchini, G., Mi š i ć, B., Setton, R., Mwilambwe-Tshilobo, L., Girn, M., Nomi, J.S., Ud-

din, L.Q., Turner, G.R., Spreng, R.N., 2021. Inter-regional BOLD signal variabil-

ity is an organizational feature of functional brain networks. Neuroimage, 118149

doi: 10.1016/j.neuroimage.2021.118149 , Advance online publication . 

assett, D.S., Wymbs, N.F., Porter, M.A., Mucha, P.J., Carlson, J.M., Grafton, S.T., 2011.

Dynamic reconfiguration of human brain networks during learning. Proc. Natl. Acad.

Sci. U.S.A. 108, 7641–7646 . 

echt, A.I., Mills, K.L., 2020. Modeling individual differences in brain development. Biol.

Psychiatry 88, 63–69 . 

elsky, J., 2019. Early-life adversity accelerates child and adolescent development. Curr.

Dir. Psychol. Sci. 28, 241–246 . 

eurel, E., Toups, M., Nemeroff, C.B., 2020. The bidirectional relationship of depression

and inflammation: double trouble. Neuron 107, 234–256 . 

ookheimer, S.Y., Salat, D.H., Terpstra, M., Ances, B.M., Barch, D.M., Buckner, R.L.,

Burgess, G.C., Curtiss, S.W., Diaz-Santos, M., Elam, J.S., Fischl, B., Greve, D.N.,

Hagy, H.A., Harms, M.P., Hatch, O.M., Hedden, T., Hodge, C., Japardi, K.C.,

Kuhn, T.P., Ly, T.K., … Yacoub, E., 2019. The lifespan human connectome project

in aging: an overview. Neuroimage 185, 335–348 . 

owes, L., Maughan, B., Caspi, A., Moffitt, T.E., Arseneault, L., 2010. Families promote

emotional and behavioural resilience to bullying: evidence of an environmental effect.

J. Child Psychol. Psychiatry 51, 809–817 . 

raveman, P.A., Cubbin, C., Egerter, S., Chideya, S., Marchi, K.S., Metzler, M., Posner, S.,

2005. Socioeconomic status in health research: one size does not fit all. JAMA 294,

2879–2888 . 

rieant, A.E., Sisk, L.M., Gee, D.G., 2021. Associations among negative life events, changes

in cortico-limbic connectivity, and psychopathology in the ABCD Study. Dev. Cogn.

Neurosci. 52, 101022 . 

urstein, O., Simon, N., Simchon-Tenenbaum, Y., Rehavi, M., Franko, M., Shamir, A.,

Doron, R., 2021. Moderation of the transgenerational transference of antenatal

stress-induced anxiety. Transl. Psychiatry 11, 268 . 

ai, W., Ryali, S., Pasumarthy, R., Talasila, V., Menon, V., 2021. Dynamic causal brain

circuits during working memory and their functional controllability. Nat. Commun.

12, 3314 . 

allaghan, B.L., Tottenham, N., 2016. The Stress Acceleration Hypothesis: effects of ear-

ly-life adversity on emotion circuits and behavior. Curr. Opin. Behav. Sci. 7, 76–81 . 

ao, P., Chen, C., Liu, A., Shan, Q., Zhu, X., Jia, C., Peng, X., Zhang, M., Farzinpour, Z.,

Zhou, W., Wang, H., Zhou, J.N., Song, X., Wang, L., Tao, W., Zheng, C., Zhang, Y.,

Ding, Y.Q., Jin, Y., Xu, L., … Zhang, Z., 2021. Early-life inflammation promotes de-

pressive symptoms in adolescence via microglial engulfment of dendritic spines. Neu-

ron doi: 10.1016/j.neuron.2021.06.012 , S0896-6273(21)00427-X . 

han, K.L., Lo, C., Ho, F.K., Leung, W.C., Yee, B.K., Ip, P., 2019. The association between

intimate partner violence against women and newborn telomere length. Transl. Psy-

chiatry 9, 239 . 

han, M., Park, D.C., Savalia, N.K., Petersen, S.E., Wig, G.S., 2014. Decreased segregation

of brain systems across the healthy adult lifespan. Proc. Natl. Acad. Sci. U.S.A. 111,

E4997–E5006 . 

han, M.Y., Na, J., Agres, P.F., Savalia, N.K., Park, D.C., Wig, G.S., 2018. Socioeco-

nomic status moderates age-related differences in the brain’s functional network or-

ganization and anatomy across the adult lifespan. Proc. Natl. Acad. Sci. U.S.A. 115,

E5144–E5153 . 

hangeux, J.P., Goulas, A., Hilgetag, C.C., 2021. A connectomic hypothesis for the ho-

minization of the brain. Cerebral Cortex 31, 2425–2449 . 

heng, W., Luo, N., Zhang, Y., Zhang, X., Tan, H., Zhang, D., Sui, J., Yue, W., Yan, H.,

2021. DNA methylation and resting brain function mediate the association be-

tween childhood urbanicity and better speed of processing. Cerebral Cortex bhab117.

doi: 10.1093/cercor/bhab117 , Advance online publication . 

ole, J.J., McColl, A., Shaw, R., Lynall, M.E., Cowen, P.J., de Boer, P., Drevets, W.C., Har-

rison, N., Pariante, C., Pointon, L., consortium, N.I.M.A., Goodyear, C., Bullmore, E.,

Cavanagh, J, 2021. No evidence for differential gene expression in major depressive

disorder PBMCs, but robust evidence of elevated biological ageing. Transl. Psychiatry

11, 404 . 

olich, N.L., Rosen, M.L., Williams, E.S., McLaughlin, K.A., 2020. Biological aging in child-

hood and adolescence following experiences of threat and deprivation: a systematic

review and meta-analysis. Psychol. Bull. 146, 721–764 . 

ollishaw, S., Hammerton, G., Mahedy, L., Sellers, R., Owen, M.J., Craddock, N., Tha-

par, A.K., Harold, G.T., Rice, F., Thapar, A., 2016. Mental health resilience in the ado-

lescent offspring of parents with depression: a prospective longitudinal study. Lancet

Psych. 3, 49–57 . 

ummings, E.M., Miller-Graff, L.E., 2015. Emotional security theory: an emerging theo-

retical model for youths’ psychological and physiological responses across multiple

developmental contexts. Curr. Dir. Psychol. Sci. 24, 208–213 . 

afsari, F.S., Jessen, F., 2020. Depression —an underrecognized target for prevention of

dementia in Alzheimer’s disease. Transl. Psychiatry 10, 160 . 
16 
ale, A.M., Fischl, B., Sereno, M.I., 1999. Cortical surface-based analysis. I. Segmentation

and surface reconstruction. Neuroimage 9, 179–194 . 

arrow, S.M., Verhoeven, J.E., Révész, D., Lindqvist, D., Penninx, B.W., Delucchi, K.L.,

Wolkowitz, O.M., Mathews, C.A., 2016. The Association Between Psychiatric Disor-

ders and telomere length: a meta-analysis involving 14,827 persons. Psychosom. Med.

78, 776–787 . 

avidow, J.Y., Sheridan, M.A., Van Dijk, K., Santillana, R.M., Snyder, J., Vidal Busta-

mante, C.M., Rosen, B.R., Somerville, L.H., 2019. Development of prefrontal cortical

connectivity and the enduring effect of learned value on cognitive control. J. Cogn.

Neurosci. 31, 64–77 . 

e Jager, C.H., White, C.C., Bennett, D.A., Ma, Y., 2021. Neuroticism alters the tran-

scriptome of the frontal cortex to contribute to the cognitive decline and onset of

Alzheimer’s disease. Transl Psychiatry 11, 139 . 

e Strooper, B., Karran, E., 2016. The Cellular Phase of Alzheimer’s Disease. Cell 164,

603–615 . 

evanand, D.P., Kim, M.K., Paykina, N., Sackeim, H.A., 2002. Adverse life events in elderly

patients with major depression or dysthymic disorder and in healthy-control subjects.

Am. J. Ger. Psychiatry 10, 265–274 . 

osenbach, N.U., Fair, D.A., Miezin, F.M., Cohen, A.L., Wenger, K.K., Dosenbach, R.A.,

Fox, M.D., Snyder, A.Z., Vincent, J.L., Raichle, M.E., Schlaggar, B.L., Petersen, S.E.,

2007. Distinct brain networks for adaptive and stable task control in humans. Proc.

Natl. Acad. Sci. U.S.A. 104, 11073–11078 . 

wyer, D.B., Harrison, B.J., Yücel, M., Whittle, S., Zalesky, A., Pantelis, C., Allen, N.B.,

Fornito, A., 2014. Large-scale brain network dynamics supporting adolescent cogni-

tive control. J. Neurosci. 34, 14096–14107 . 

ck, S.R., Bangasser, D.A., 2020. The effects of early life stress on motivated behaviors: a

role for gonadal hormones. Neurosci. Biobehav. Rev. 119, 86–100 . 

llis, B.J., Sheridan, M.A., Belsky, J., McLaughlin, K.A., 2022. Why and how does early

adversity influence development? Toward an integrated model of dimensions of envi-

ronmental experience. Dev. Psychopathol. 1–25. doi: 10.1017/S0954579421001838 ,

Advance online publication . 

ngel, S., Klusmann, H., Ditzen, B., Knaevelsrud, C., Schumacher, S., 2019. Menstrual

cycle-related fluctuations in oxytocin concentrations: a systematic review and meta–

analysis. Front. Neuroendocrinol. 52, 144–155 . 

ang, Y., Scott, L., Song, P., Burmeister, M., Sen, S., 2020. Genomic prediction of depres-

sion risk and resilience under stress. Nat. Human Behav. 4, 111–118 . 

aust, T.E., Gunner, G., Schafer, D.P., 2021. Mechanisms governing activity-dependent

synaptic pruning in the developing mammalian CNS. Nat. Rev. Neurosci. 22, 657–673 .

eder, A., Nestler, E.J., Charney, D.S., 2009. Psychobiology and molecular genetics of

resilience. Nat. Rev. Neurosci. 10, 446–457 . 

inc, K., Bonna, K., He, X., Lydon-Staley, D.M., Kühn, S., Duch, W., Bassett, D.S., 2020. Dy-

namic reconfiguration of functional brain networks during working memory training.

Nat. Commun. 11, 2435 . 

ischl, B., Liu, A., Dale, A.M., 2001. Automated manifold surgery: constructing geomet-

rically accurate and topologically correct models of the human cerebral cortex. IEEE

Transacti. Med. Imaging 20, 70–80 . 

ischl, B., Salat, D.H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der

Kouwe, A., Killiany, R., Kennedy, D., Klaveness, S., Montillo, A., Makris, N., Rosen, B.,

Dale, A.M., 2002. Whole brain segmentation: automated labeling of neuroanatomical

structures in the human brain. Neuron 33, 341–355 . 

ischl, B., Sereno, M.I., Dale, A.M., 1999a. Cortical surface-based analysis. II: inflation,

flattening, and a surface-based coordinate system. Neuroimage 9, 195–207 . 

ischl, B., Sereno, M.I., Tootell, R.B., Dale, A.M., 1999b. High-resolution intersubject aver-

aging and a coordinate system for the cortical surface. Hum. Brain Mapp. 8, 272–284 .

ornito, A., Zalesky, A., Breakspear, M.J., 2015. The connectomics of brain disorders. Nat.

Rev. Neurosci. 16, 159–172 . 

ornito, A., Arnatkevicuite, A., Fulcher, B.D., 2019. Bridging the gap between the brain’s

transcriptome and connectome. Trends Cogn. Sci. (Regul. Ed.) 23, 34–50 . 

ortier, C.B., Amick, M.M., Grande, L., McGlynn, S., Kenna, A., Morra, L., Clark, A., Mil-

berg, W.P., McGlinchey, R.E., 2014. The Boston Assessment of Traumatic Brain In-

jury-Lifetime (BAT-L) semistructured interview: evidence of research utility and va-

lidity. J. Head Trauma Rehabil. 29, 89–98 . 

ulcher, B.D., Little, M.A., Jones, N.S., 2013. Highly comparative time-series analysis:

the empirical structure of time series and their methods. J. Royal Soci. Interface 10,

20130048 . 

ulcher, B.D., Arnatkeviciute, A., Fornito, A., 2021. Overcoming false-positive gene-cate-

gory enrichment in the analysis of spatially resolved transcriptomic brain atlas data.

Nat. Commun. 12, 2669 . 

abard-Durnam, L.J., Gee, D.G., Goff, B., Flannery, J., Telzer, E., Humphreys, K.L., Lu-

mian, D.S., Fareri, D.S., Caldera, C., Tottenham, N., 2016. Stimulus-elicited connectiv-

ity influences resting-state connectivity years later in human development: a prospec-

tive study. J. Neurosci. 36, 4771–4784 . 

arrett, D.D., Skowron, A., Wiegert, S., Adolf, J., Dahle, C.L., Lindenberger, U., Raz, N.,

2021. Lost dynamics and the dynamics of loss: longitudinal compression of brain sig-

nal variability is coupled with declines in functional integration and cognitive perfor-

mance. Cerebral Cortex doi: 10.1093/cercor/bhab154 . 

arrett, D.D., Epp, S.M., Kleemeyer, M., Lindenberger, U., Polk, T.A., 2020. Higher per-

forming older adults upregulate brain signal variability in response to feature-rich

sensory input. Neuroimage 217, 116836 . 

arrett, D.D., Kovacevic, N., McIntosh, A.R., Grady, C.L., 2013. The modulation of BOLD

variability between cognitive states varies by age and processing speed. Cerebral Cor-

tex 23, 684–693 . 

ee, D.G., 2021. Early Adversity and Development: parsing Heterogeneity and Identifying

Pathways of Risk and Resilience. Am. J. Psychiatry 178, 998–1013 . 

ee, D.G., Casey, B.J., 2015. The impact of developmental timing for stress and recovery.

Neurobiol. Stress 1, 184–194 . 

http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0008
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0009
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0010
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0011
https://doi.org/10.1016/j.neuroimage.2021.118149
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0013
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0014
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0015
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0016
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0018
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0019
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0020
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0021
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0022
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0023
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0024
https://doi.org/10.1016/j.neuron.2021.06.012
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0026
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0027
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0028
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0029
https://doi.org/10.1093/cercor/bhab117
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0031
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0033
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0034
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0035
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0036
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0037
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0038
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0039
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0040
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0041
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0042
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0044
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0045
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0046
https://doi.org/10.1017/S0954579421001838
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0048
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0049
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0050
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0051
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0052
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0053
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0054
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0055
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0056
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0058
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0059
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0060
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0061
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0062
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0063
https://doi.org/10.1093/cercor/bhab154
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0065
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0066
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0067
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0068


R. Petrican, A. Fornito and N. Jones NeuroImage 255 (2022) 119209 

G  

 

 

G  

 

G  

 

G  

 

 

G  

 

 

G  

 

 

 

 

 

 

G  

 

G  

 

 

G  

 

G  

G  

G  

 

 

 

G  

 

 

G  

 

 

H  

H  

 

H  

 

H  

 

H  

 

 

 

 

H  

 

H

 

H  

 

H  

 

H  

H  

 

H  

 

H  

 

 

 

 

H  

 

 

H  

 

H  

 

I  

J  

 

J  

 

 

K  

 

K  

 

K  

 

 

 

K  

 

K  

 

K  

 

K  

K  

K  

K  

 

 

 

 

 

 

L  

L  

 

L  

L  

 

L  

 

L  

 

L  

 

M  

 

ee, D.G., Gabard-Durnam, L.J., Flannery, J., Goff, B., Humphreys, K.L., Telzer, E.H.,

Hare, T.A., Bookheimer, S.Y., Tottenham, N., 2013. Early developmental emergence

of human amygdala-prefrontal connectivity after maternal deprivation. Proc. Natl.

Acad. Sci. U.S.A. 110, 15638–15643 . 

eng, F., Botdorf, M., Riggins, T., 2021. How behavior shapes the brain and the

brain shapes behavior: insights from memory development. Journal of Neurosci. 41,

981–990 . 

iedd, J.N., Blumenthal, J., Jeffries, N.O., Castellanos, F.X., Liu, H., Zijdenbos, A., Paus, T.,

Evans, A.C., Rapoport, J.L., 1999. Brain development during childhood and adoles-

cence: a longitudinal MRI study. Nat. Neurosci. 2, 861–863 . 

lasser, M.F., Sotiropoulos, S.N., Wilson, J.A., Coalson, T.S., Fischl, B., Andersson, J.L.,

Xu, J., Jbabdi, S., Webster, M., Polimeni, J.R., Van Essen, D.C., Jenkinson, M., Con-

sortium, WU-Minn HCP, 2013. The minimal preprocessing pipelines for the human

connectome project. Neuroimage 80, 105–124 . 

oldstein, J.M., Cohen, J.E., Mareckova, K., Holsen, L., Whitfield-Gabrieli, S., Gilman, S.E.,

Buka, S.L., Hornig, M., 2021. Impact of prenatal maternal cytokine exposure on sex

differences in brain circuitry regulating stress in offspring 45 years later. Proc. Natl.

Acad. Sci. U.S.A. 118, e2014464118 . 

onneaud, J., Baria, A.T., Pichet Binette, A., Gordon, B.A., Chhatwal, J.P., Cruchaga, C.,

Jucker, M., Levin, J., Salloway, S., Farlow, M., Gauthier, S., Benzinger, T., Morris, J.C.,

Bateman, R.J., Breitner, J., Poirier, J., Vachon-Presseau, E., Villeneuve, S.Alzheimer’s

Disease Neuroimaging Initiative (ADNI), Dominantly Inherited Alzheimer Network

(DIAN) Study Group, … Pre-symptomatic Evaluation of Experimental or Novel Treat-

ments for Alzheimer’s Disease (PREVENT-AD) Research Group, 2021. Accelerated

functional brain aging in pre-clinical familial Alzheimer’s disease. Nat. Commun. 12,

5346 . 

ordon, E.M., Laumann, T.O., Adeyemo, B., Huckins, J.F., Kelley, W.M., Petersen, S.E.,

2016. Generation and evaluation of a cortical area parcellation from resting-state

correlations. Cerebral Cortex 26, 288–303 . 

ordon, J.L., Rubinow, D.R., Eisenlohr-Moul, T.A., Xia, K., Schmidt, P.J., Girdler, S.S.,

2018. Efficacy of transdermal estradiol and micronized progesterone in the preven-

tion of depressive symptoms in the menopause transition: a randomized clinical trial.

JAMA Psychiatry 75, 149–157 . 

rady, C.L., Garrett, D.D., 2018. Brain signal variability is modulated as a function of

internal and external demand in younger and older adults. Neuroimage 169, 510–523 .

rahek, I., Shenhav, A., Musslick, S., Krebs, R.M., Koster, E.H., 2019. Motivation and

cognitive control in depression. Neurosci. Biobehav. Rev. 102, 371–381 . 

rayson, D.S., Fair, D.A., 2017. Development of large-scale functional networks from birth

to adulthood: A guide to the neuroimaging literature. NeuroImage 160, 15–31 . 

riffanti, L., Salimi-Khorshidi, G., Beckmann, C.F., Auerbach, E.J., Douaud, G., Sex-

ton, C.E., Zsoldos, E., Ebmeier, K.P., Filippini, N., Mackay, C.E., Moeller, S., Xu, J.,

Yacoub, E., Baselli, G., Ugurbil, K., Miller, K.L., Smith, S.M., 2014. ICA-based artefact

removal and accelerated fMRI acquisition for improved resting state network imaging.

Neuroimage 95, 232–247 . 

uerrero, A., De Strooper, B., Arancibia-Cárcamo, I.L., 2021. Cellular senescence

at the crossroads of inflammation and Alzheimer’s disease. Trends Neurosci.

doi: 10.1016/j.tins.2021.06.007 , S0166-2236(21)00119-3Advance online publica-

tion . 

unnar, M.R., DePasquale, C.E., Reid, B.M., Donzella, B., Miller, B.S., 2019. In: Pubertal

Stress Recalibration Reverses the Effects of Early Life Stress in Postinstitutionalized

Children, 116. Proceedings of the National Academy of Sciences of the United States

of America, pp. 23984–23988 . 

air, J.F., Black, W.C., Babin, B.J., Anderson, R.E., Tatham, R.L., 2014. Multivariate Data

Analysis. Pearson Education Limited . 

an, L., Schnack, H.G., Brouwer, R.M., Veltman, D.J., van der Wee, N., van Tol, M.J.,

Aghajani, M., Penninx, B., 2021. Contributing factors to advanced brain aging in de-

pression and anxiety disorders. Transl Psychiatry 11, 402 . 

ansen, J.Y., Markello, R.D., Vogel, J.W., Seidlitz, J., Bzdok, D., Misic, B., 2021. Mapping

gene transcription and neurocognition across human neocortex. Nat. Human Behav.

doi: 10.1038/s41562-021-01082-z . 

arerimana, N.V., Liu, Y., Gerasimov, E.S., Duong, D., Beach, T.G., Reiman, E.M., et al.,

2022. Genetic evidence supporting a causal role of depression on Alzheimer’s disease.

Biol. Psychiatry doi: 10.1016/j.biopsych.2021.11.025 . 

arms, M.P., Somerville, L.H., Ances, B.M., Andersson, J., Barch, D.M., Bastiani, M.,

Bookheimer, S.Y., Brown, T.B., Buckner, R.L., Burgess, G.C., Coalson, T.S., Chap-

pell, M.A., Dapretto, M., Douaud, G., Fischl, B., Glasser, M.F., Greve, D.N., Hodge, C.,

Jamison, K.W., Jbabdi, S., … Yacoub, E., 2018. Extending the human connectome

project across ages: imaging protocols for the lifespan development and aging projects.

Neuroimage 183, 972–984 . 

arold, G.T., Sellers, R., 2018. Annual research review: interparental conflict and youth

psychopathology: an evidence review and practice focused update. J. Child Psychol.

Psychiatry 59, 374–402 . 

awrylycz, M., Miller, J.A., Menon, V., Feng, D., Dolbeare, T., Guillozet-Bongaarts, A.L., …

Lein, E., 2015. Canonical genetic signatures of the adult human brain. Nat. Neurosci.

18, 1832 . 

ayes, A., Cai, L., 2007. Using heteroskedasticity-consistent standard error estimators in

OLS regression: an introduction and software implementation. Behav. Res. Methods

39, 709–722 . 

ayes, A.F., Scharkow, M., 2013. The relative trustworthiness of inferential tests of the

indirect effect in statistical mediation analysis: does method really matter? Psychol.

Sci. 10, 1918–1927 . 

ayes, A.F., 2018. Introduction to Mediation, Moderation, and Conditional Process Anal-

ysis: A Regression-Based Approach, 2nd Edition Guilford Press, New York . 

einzel, S., Lorenz, R.C., Brockhaus, W.R., Wüstenberg, T., Kathmann, N., Heinz, A.,

Rapp, M.A., 2014. Working memory load-dependent brain response predicts behav-

ioral training gains in older adults. J. Neurosci. 34, 1224–1233 . 
17 
erting, M.M., Gautam, P., Spielberg, J.M., Kan, E., Dahl, R.E., Sowell, E.R., 2014. The

role of testosterone and estradiol in brain volume changes across adolescence: a lon-

gitudinal structural MRI study. Hum. Brain Mapp. 35, 5633–5645 . 

erting, M.M., Uban, K.A., Gonzalez, M.R., Baker, F.C., Kan, E.C., Thompson, W.K.,

Granger, D.A., Albaugh, M.D., Anokhin, A.P., Bagot, K.S., Banich, M.T., Barch, D.M.,

Baskin-Sommers, A., Breslin, F.J., Casey, B.J., Chaarani, B., Chang, L., Clark, D.B.,

Cloak, C.C., Constable, R.T., … Sowell, E.R., 2021. Correspondence between perceived

pubertal development and hormone levels in 9-10 year-olds from the adolescent brain

cognitive development study. Front Endocrinol. (Lausanne) 11, 549928 . 

erzberg, M.P., McKenzie, K.J., Hodel, A.S., Hunt, R.H., Mueller, B.A., Gunnar, M.R.,

Thomas, K.M., 2021. Accelerated maturation in functional connectivity following

early life stress: circuit specific or broadly distributed? Dev. Cogn. Neurosci. 48,

100922 . 

o, T.C., Walker, J.C., Teresi, G.I., Kulla, A., Kirshenbaum, J.S., Gifuni, A.J., Singh, M.K.,

Gotlib, I.H., 2021. Default mode and salience network alterations in suicidal and non–

suicidal self-injurious thoughts and behaviors in adolescents with depression. Transl.

Psychiatry 11, 38 . 

ughes, C., Faskowitz, J., Cassidy, B.S., Sporns, O., Krendl, A.C., 2020. Aging relates to a

disproportionately weaker functional architecture of brain networks during rest and

task states. Neuroimage 209, 116521 . 

oannidis, K., Askelund, A.D., Kievit, R.A., van Harmelen, A.L., 2020. The complex neu-

robiology of resilient functioning after childhood maltreatment. BMC Med. 18, 32 . 

in, W.N., Shi, K., He, W., Sun, J.H., Van Kaer, L., Shi, F.D., Liu, Q., 2021. Neuroblast

senescence in the aged brain augments natural killer cell cytotoxicity leading to im-

paired neurogenesis and cognition. Nat. Neurosci. 24, 61–73 . 

offe, H., de Wit, A., Coborn, J., Crawford, S., Freeman, M., Wiley, A., Athappilly, G.,

Kim, S., Sullivan, K.A., Cohen, L.S., Hall, J.E., 2020. Impact of estradiol variability

and progesterone on mood in perimenopausal women with depressive symptoms. J.

Clin. Endocrinol. Metab. 105, e642–e650 . 

aiser, R.H., Andrews-Hanna, J.R., Wager, T.D., Pizzagalli, D.A., 2015. Large-scale net-

work dysfunction in major depressive disorder: a meta-analysis of resting-state func-

tional connectivity. JAMA Psychiatry 72, 603–611 . 

alisch, R., Cramer, A., Binder, H., Fritz, J., Leertouwer, I., Lunansky, G., Meyer, B., Tim-

mer, J., Veer, I.M., van Harmelen, A.L., 2019. Deconstructing and reconstructing re-

silience: a dynamic network approach. Perspect. Psycholog. Sci. 14, 765–777 . 

alisch, R., Baker, D.G., Basten, U., Boks, M.P., Bonanno, G.A., Brummelman, E., Chmi-

torz, A., Fernàndez, G., Fiebach, C.J., Galatzer-Levy, I., Geuze, E., Groppa, S., Helm-

reich, I., Hendler, T., Hermans, E.J., Jovanovic, T., Kubiak, T., Lieb, K., Lutz, B.,

Müller, M.B., … Kleim, B., 2017. The resilience framework as a strategy to combat

stress-related disorders. Nat. Human Behavi. 1, 784–790 . 

ebets, V., Holmes, A.J., Orban, C., Tang, S., Li, J., Sun, N., Kong, R., Poldrack, R.A.,

Yeo, B., 2019. Somatosensory-motor dysconnectivity spans multiple transdiagnostic

dimensions of psychopathology. Biol. Psychiatry 86, 779–791 . 

endler, K.S., Lönn, S.L., Salvatore, J., Sundquist, J., Sundquist, K., 2017. Divorce and

the onset of alcohol use disorder: a swedish population-based longitudinal cohort and

co-relative study. Am. J. Psychiatry 174, 451–458 . 

iecolt-Glaser, J.K., Renna, M.E., Shrout, M.R., Madison, A.A., 2020. Stress reactivity:

what pushes us higher, faster, and longer - and why it matters. Curr. Dir. Psychol. Sci.

29, 492–498 . 

im, G.W., Park, K., Jeong, G.W., 2018. Effects of sex hormones and age on brain volume

in post-menopausal women. J Sex Med 15, 662–670 . 

oban, L., Gianaros, P.J., Kober, H., Wager, T.D., 2021. The self in context: brain systems

linking mental and physical health. Nat. Rev. Neurosci. 22, 309–322 . 

rontira, A.C., Cruceanu, C., Binder, E.B., 2020. Glucocorticoids as mediators of adverse

outcomes of prenatal stress. Trends Neurosci. 43, 394–405 . 

unkle, B.W., Grenier-Boley, B., Sims, R., Bis, J.C., Damotte, V., Naj, A.C., Boland, A.,

Vronskaya, M., van der Lee, S.J., Amlie-Wolf, A., Bellenguez, C., Frizatti, A.,

Chouraki, V., Martin, E.R., Sleegers, K., Badarinarayan, N., Jakobsdottir, J., Hamil-

ton-Nelson, K.L., Moreno-Grau, S., … Olaso, R.Genetic and Environmental Risk in

AD/Defining Genetic, Polygenic and Environmental Risk for Alzheimer’s Disease Con-

sortium (GERAD/PERADES), 2019. Genetic meta-analysis of diagnosed Alzheimer’s

disease identifies new risk loci and implicates A 𝛽, tau, immunity and lipid process-

ing. Nat. Genet. 5, 414–430 . 

arsen, B., Luna, B., 2018. Adolescence as a neurobiological critical period for the devel-

opment of higher-order cognition. Neurosci. Biobehav. Rev. 94, 179–195 . 

aube, C., van den Bos, W., Fandakova, Y., 2020. The relationship between pubertal hor-

mones and experience-dependent plasticity: implications for cognitive training in ado-

lescence. Dev. Cogn. Neurosci. 42, 100753 . 

indenberger, U., Lövdén, M., 2019. Brain plasticity in human lifespan development: the

exploration–selection–refinement model. Ann. Rev. Develop. Psychol. 1, 197–222 . 

iu, M., Backer, R.A., Amey, R.C., Splan, E.E., Magerman, A., Forbes, C.E., 2021. Con-

text matters: situational stress impedes functional reorganization of intrinsic brain

connectivity during problem-solving. Cerebral Cortex 31, 2111–2124 . 

uby, J.L., Baram, T.Z., Rogers, C.E., Barch, D.M., 2020. Neurodevelopmental optimiza-

tion after early-life adversity: cross-species studies to elucidate sensitive periods and

brain mechanisms to inform early intervention. Trends Neurosci. 43, 744–751 . 

utz, M.W., Luo, S., Williamson, D.E., Chiba-Falek, O., 2020. Shared genetic etiol-

ogy underlying late-onset Alzheimer’s disease and posttraumatic stress syndrome.

Alzheimer’s Dementia 16, 1280–1292 . 

y, M., Karim, H.T., Becker, J.T., Lopez, O.L., Anderson, S.J., Aizenstein, H.J.,

Reynolds, C.F., Zmuda, M.D., Butters, M.A., 2021. Late-life depression and increased

risk of dementia: a longitudinal cohort study. Transl. Psychiatry 11, 147 . 

anvelian, A., Sbarra, D.A., 2020. Marital status, close relationships, and all-cause mortal-

ity: results from a 10-year study of nationally representative older adults. Psychosom.

Med. 82, 384–392 . 

http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0069
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0070
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0071
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0072
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0073
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0074
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0075
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0076
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0078
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0080
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0001a
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0082
https://doi.org/10.1016/j.tins.2021.06.007
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0084
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0086
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0087
https://doi.org/10.1038/s41562-021-01082-z
https://doi.org/10.1016/j.biopsych.2021.11.025
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0090
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0091
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0092
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0093
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0094
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0095
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0096
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0097
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0098
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0099
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0100
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0102
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0103
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0105
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0106
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0108
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0109
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0110
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0111
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0112
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0113
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0114
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0115
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0117
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0118
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0119
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0120
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0122
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0123
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0125
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0126
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0127
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0128


R. Petrican, A. Fornito and N. Jones NeuroImage 255 (2022) 119209 

M  

 

M  

M  

 

M  

 

M  

 

M  

 

M  

 

M  

 

M  

 

 

M  

 

M  

 

 

M  

 

 

M  

 

 

 

 

M  

N  

 

 

N  

 

N  

N  

 

 

 

 

N  

 

O  

 

P  

P  

 

 

P  

 

P  

 

P  

P  

P  

 

P  

 

Q  

R  

 

 

 

R  

 

 

R  

 

 

R  

R  

R  

 

R  

 

R  

 

 

 

R  

 

 

 

 

R  

R  

R  

S  

S  

 

 

S  

S  

 

S  

S  

S  

 

S  

 

S  

S  

 

 

S  

 

S  

 

 

S  

 

 

 

areckova, K., Marecek, R., Andryskova, L., Brazdil, M., Nikolova, Y.S., 2020. Maternal

depressive symptoms during pregnancy and brain age in young adult offspring: find-

ings from a prenatal birth cohort. Cerebral Cortex 30, 3991–3999 . 

cEwen, B.S., Gray, J., Nasca, C., 2015. Recognizing resilience: learning from the effects

of stress on the brain. Neurobiol. Stress 1, 1–11 . 

cLaughlin, K.A., Sheridan, M.A., 2016. Beyond Cumulative Risk: A Dimensional Ap-

proach to Childhood Adversity. Current Directions in Psychological Science 25,

239–245 . 

cLaughlin, K. A., Sheridan, M. A., Lambert, H. K., 2014. Childhood adversity and neu-

ral development: deprivation and threat as distinct dimensions of early experience.

Neuroscience and Biobehavioral Reviews 47, 578–591 . 

cLaughlin, K.A., Colich, N.L., Rodman, A.M., Weissman, D.G., 2020. Mechanisms linking

childhood trauma exposure and psychopathology: a transdiagnostic model of risk and

resilience. BMC Med. 18, 96 . 

cLaughlin, K.A., Sheridan, M.A., Humphreys, K.L., Belsky, J., Ellis, B.J., 2021. The value

of dimensional models of early experience: thinking clearly about concepts and cate-

gories. Perspect. Psychol. Sci. 16, 1463–1472 . 

cTeague, L.M., Huemer, J., Carreon, D.M., Jiang, Y., Eickhoff, S.B., Etkin, A., 2017. Iden-

tification of common neural circuit disruptions in cognitive control across psychiatric

disorders. Am. J. Psychiatry 174, 676–685 . 

ilan, L., Whittaker, J., 1995. Application of the parametric bootstrap to models that

incorporation a singular value decomposition. J. Royal Statist. Soci., Series C (Applied

Statistics) 44, 31–49 . 

illar, P.R., Petersen, S.E., Ances, B.M., Gordon, B.A., Benzinger, T., Morris, J.C.,

Balota, D.A., 2020a. Evaluating the sensitivity of resting-state BOLD variability to

age and cognition after controlling for motion and cardiovascular influences: a net-

work-based approach. Cerebral Cortex 30, 5686–5701 . 

illar, P.R., Ances, B.M., Gordon, B.A., Benzinger, T., Fagan, A.M., Morris, J.C.,

Balota, D.A., 2020b. Evaluating resting-state BOLD variability in relation to biomark-

ers of preclinical Alzheimer’s disease. Neurobiol. Aging 96, 233–245 . 

iller, G.E., Chen, E., Armstrong, C.C., Carroll, A.L., Ozturk, S., Rydland, K.J., Brody, G.H.,

Parrish, T.B., Nusslock, R., 2018. Functional connectivity in central executive network

protects youth against cardiometabolic risks linked with neighborhood violence. Proc.

Natl. Acad. Sci. U.S.A. 115, 12063–12068 . 

iller, J.G., Ho, T.C., Humphreys, K.L., King, L.S., Foland-Ross, L.C., Colich, N.L., Or-

daz, S.J., Lin, J., Gotlib, I.H., 2020. Early life stress, frontoamygdala connectivity,

and biological aging in adolescence: a longitudinal investigation. Cerebral Cortex 30,

4269–4280 . 

urtha, K., Larsen, B., Pines, A., Parkes, L., Moore, T.M., Adebimpe, A., Bertolero, M.,

Alexander-Bloch, A., Calkins, M.E., Davila, D.G., Lindquist, M.A., Mackey, A.P.,

Roalf, D.R., Scott, J.C., Wolf, D.H., Gur, R.C., Gur, R.E., Barzilay, R., Satterth-

waite, T.D., 2022. Associations between neighborhood socioeconomic status, parental

education, and executive system activation in youth. Cerebral Cortex bhac120.

doi: 10.1093/cercor/bhac120 , Advance online publication . 

urthy, S., Gould, E., 2020. How early life adversity influences defensive circuitry. Trends

Neurosci. 43, 200–212 . 

adig, A., Seidlitz, J., McDermott, C.L., Liu, S., Bethlehem, R., Moore, T.M., Mallard, T.T.,

Clasen, L.S., Blumenthal, J.D., Lalonde, F., Gur, R.C., Gur, R.E., Bullmore, E.T., Sat-

terthwaite, T.D., Raznahan, A., 2021. Morphological integration of the human brain

across adolescence and adulthood. Proc. Natl. Acad. Sci. U.S.A. 118, e2023860118 . 

elson 3rd, C.A., Gabard-Durnam, L.J., 2020. Early Adversity and Critical Periods: neu-

rodevelopmental consequences of violating the expectable environment. Trends Neu-

rosci. 43, 133–143 . 

eubauer, A.C., Fink, A., 2009. Intelligence and neural efficiency. Neurosci. Biobehav.

Rev. 33, 1004–1023 . 

ievergelt, C.M., Maihofer, A.X., Klengel, T., Atkinson, E.G., Chen, C.Y., Choi, K.W.,

Coleman, J., Dalvie, S., Duncan, L.E., Gelernter, J., Levey, D.F., Logue, M.W., Poli-

manti, R., Provost, A.C., Ratanatharathorn, A., Stein, M.B., Torres, K., Aiello, A.E.,

Almli, L.M., Amstadter, A.B., … Koenen, K.C., 2019. International meta-analysis of

PTSD genome-wide association studies identifies sex- and ancestry-specific genetic

risk loci. Nat. Commun. 10, 4558 . 

omi, J.S., Bolt, T.S., Ezie, C., Uddin, L.Q., Heller, A.S., 2017. Moment-to-moment BOLD

signal variability reflects regional changes in neural flexibility across the lifespan. J.

Neurosci. 37, 5539–5548 . 

h, D.L., Jerman, P., Silvério Marques, S., Koita, K., Purewal Boparai, S.K., Burke Har-

ris, N., Bucci, M, 2018. Systematic review of pediatric health outcomes associated

with childhood adversity. BMC Pediatr. 18, 83 . 

etersen, A.C., Crockett, L., Richards, M., Boxer, A., 1988. A self-report measure of puber-

tal status: reliability, validity, and initial norms. J. Youth Adolesc. 17, 117–133 . 

etrican, R., Miles, S., Rudd, L., Wasiewska, W., Graham, K.S., Lawrence, A.D., 2021. Pu-

bertal timing and functional neurodevelopmental alterations independently mediate

the effect of family conflict on adolescent psychopathology. Dev. Cogn. Neurosci. 52,

101032 . 

ezzulo, G., Zorzi, M., Corbetta, M., 2021. The secret life of predictive brains: what’s spon-

taneous activity for? Trends Cogn. Sci. (Regul. Ed.) doi: 10.1016/j.tics.2021.05.007 ,

S1364-6613(21)00128-5 . 

iekarski, D.J., Boivin, J.R., Wilbrecht, L., 2017. Ovarian hormones organize the matura-

tion of inhibitory neurotransmission in the frontal cortex at puberty onset in female

mice. Current Biol. 27, 1735–1745 . 

ower, J.D., Schlaggar, B.L., Petersen, S.E., 2015. Recent progress and outstanding issues

in motion correction in resting state fMRI. Neuroimage 105, 536–551 . 

révot, T., Sibille, E., 2021. Altered GABA-mediated information processing and cognitive

dysfunctions in depression and other brain disorders. Mol. Psychiatry 26, 151–167 . 

rovenzano, F., Deleidi, M., 2021. Reassessing neurodegenerative disease: im-

mune protection pathways and antagonistic pleiotropy. Trends Neurosci.

S0166-2236(21)00118-1 . 
18 
ur, D.R., Eagleson, R.A., de Ribaupierre, A., Mella, N., de Ribaupierre, S., 2019. Moder-

ating effect of cortical thickness on BOLD signal variability age-related changes. Front

Aging Neurosci. 11, 46 . 

uackenbush, J., 2002. Microarray data normalization and transformation. Nat. Genet.

32, 496–501 . 

amirez, J.S.B., Graham, A.M., Thompson, J.R., Zhu, J.Y., Sturgeon, D., Bagley, J.L.,

Thomas, E., Papadakis, S., Perrone, A., Earl, E., Miranda Dominguez, O., Feczko, E.,

Fombone, E.J., Amaral, D.G., Nigg, J.T., Sullivan, E.L., Fair, D., 2020. Maternal inter-

leukin-6 is associated with macaque offspring amygdala development and behavior.

Cerebral Cortex 30, 1573–1585 . 

amo-Fernández, L., Gumpp, A.M., Boeck, C., Krause, S., Bach, A.M., Waller, C., Ko-

lassa, I.T., Karabatsiakis, A., 2021. Associations between childhood maltreatment and

DNA methylation of the oxytocin receptor gene in immune cells of mother-newborn

dyads. Transl. Psychiatry 11, 449 . 

asmussen, J.M., Graham, A.M., Entringer, S., Gilmore, J.H., Styner, M., Fair, D.A., Wad-

hwa, P.D., Buss, C., 2019. Maternal Interleukin-6 concentration during pregnancy is

associated with variation in frontolimbic white matter and cognitive development in

early life. Neuroimage 185, 825–835 . 

ehbein, E., Hornung, J., Poromaa, I.S., Derntl, B., 2021. Shaping of the female human

brain by sex hormones: a review. Neuroendocrinology 111, 183–206 . 

ichards, M., Hardy, R., Wadsworth, M., 1997. The effects of divorce and separation on

mental health in a national UK birth cohort. Psychol. Med. 27, 1121–1128 . 

ickard, I.J., Frankenhuis, W.E., Nettle, D., 2014. Why are childhood family factors asso-

ciated with timing of maturation? A role for internal prediction. Perspect. Psycholog.

Sci. 9, 3–15 . 

iddle, M., Potter, G.G., McQuoid, D.R., Steffens, D.C., Beyer, J.L., Taylor, W.D., 2017.

Longitudinal cognitive outcomes of clinical phenotypes of late-life depression. Am. J.

Geriatric Psychiatry 25, 1123–1134 . 

obinson, E.C., Garcia, K., Glasser, M.F., Chen, Z., Coalson, T.S., Makropoulos, A.,

Bozek, J., Wright, R., Schuh, A., Webster, M., Hutter, J., Price, A., Cordero Grande, L.,

Hughes, E., Tusor, N., Bayly, P.V., Van Essen, D.C., Smith, S.M., Edwards, A.D., Haj-

nal, J., … Rueckert, D., 2018. Multimodal surface matching with higher-order smooth-

ness constraints. Neuroimage 167, 453–465 . 

oe, J.M., Vidal-Piñeiro, D., Sørensen, Ø., Brandmaier, A.M., Düzel, S., Gonzalez, H.A.,

Kievit, R.A., Knights, E., Kühn, S., Lindenberger, U., Mowinckel, A.M., Ny-

berg, L., Park, D.C., Pudas, S., Rundle, M.M., Walhovd, K.B., Fjell, A.M., Wester-

hausen, R.Australian Imaging Biomarkers and Lifestyle Flagship Study of Ageing,

2021. Asymmetric thinning of the cerebral cortex across the adult lifespan is acceler-

ated in Alzheimer’s disease. Nat. Commun. 12, 721 . 

omeo, R.D., 2018. The metamorphosis of adolescent hormonal stress reactivity: a focus

on animal models. Front. Neuroendocrinol. 49, 43–51 . 

omeo, R.D., 2010. Adolescence: a central event in shaping stress reactivity. Dev. Psy-

chobiol. 52, 244–253 . 

utter, M., 2013. Annual research review: resilience–clinical implications. J. Child Psy-

chol. Psychiatry 54, 474–487 . 

adaghiani, S., D’Esposito, M, 2015. Functional characterization of the cingulo-opercular

network in the maintenance of tonic alertness. Cerebral Cortex 25, 2763–2773 . 

aikumar, J., Bonini, N.M., 2021. Synergistic effects of brain injury and ag-

ing: common mechanisms of proteostatic dysfunction. Trends Neurosci.

doi: 10.1016/j.tins.2021.06.003 , S0166-2236(21)00115-6. Advance online pub-

lication . 

barra, D.A., Coan, J.A., 2018. Relationships and health: the critical role of affective sci-

ence. Emotion Rev. 10, 40–54 . 

chaefer, A., Kong, R., Gordon, E.M., Laumann, T.O., Zuo, X.N., Holmes, A.J., Eick-

hoff, S.B., Yeo, B., 2018. Local-global parcellation of the human cerebral cortex from

intrinsic functional connectivity MRI. Cerebral Cortex 28, 3095–3114 . 

chultz, D.H., Cole, M.W., 2016. Higher Intelligence is associated with less task-related

brain network reconfiguration. J. Neurosci. 36, 8551–8561 . 

chumacher, B., Pothof, J., Vijg, J., Hoeijmakers, J., 2021. The central role of DNA damage

in the ageing process. Nature 592, 695–703 . 

eeley, W.W., Menon, V., Schatzberg, A.F., Keller, J., Glover, G.H., Kenna, H., Reiss, A.L.,

Greicius, M.D., 2007. Dissociable intrinsic connectivity networks for salience process-

ing and executive control. J. Neurosci. 27, 2349–2356 . 

eery, M.D., Leo, R.J., Lupien, S.P., Kondrak, C.L., Almonte, J.L., 2013. An upside to ad-

versity?: moderate cumulative lifetime adversity is associated with resilient responses

in the face of controlled stressors. Psychol. Sci. 24, 1181–1189 . 

eery, M.D., Holman, E.A., Silver, R.C., 2010. Whatever does not kill us: cumulative life-

time adversity, vulnerability, and resilience. J. Pers. Soc. Psychol. 99, 1025–1041 . 

ele, S., Liem, F., Mérillat, S., Jäncke, L., 2021. Age-related decline in the brain: a longitu-

dinal study on inter-individual variability of cortical thickness, area, volume, and cog-

nition. Neuroimage 240, 118370. doi: 10.1016/j.neuroimage.2021.118370 , Advance

online publication . 

elous, C., Kelly-Irving, M., Maughan, B., Eyre, O., Rice, F., Collishaw, S., 2020. Ad-

verse childhood experiences and adult mood problems: evidence from a five-decade

prospective birth cohort. Psychol. Med. 50, 2444–2451 . 

heng, J., Zhang, L., Feng, J., Liu, J., Li, A., Chen, W., Shen, Y., Wang, J.,

He, Y., Xue, G., 2021. The coupling of BOLD signal variability and degree

centrality underlies cognitive functions and psychiatric diseases. Neuroimage

doi: 10.1016/j.neuroimage.2021.118187 . 

oldan, A., Pettigrew, C., Zhu, Y., Wang, M.C., Bilgel, M., Hou, X., Lu, H., Miller, M.I., Al-

bert, M., Research Team, BIOCARD, 2021. Association of lifestyle activities with func-

tional brain connectivity and relationship to cognitive decline among older adults. In:

Cerebral Cortex, p. bhab187. doi: 10.1093/cercor/bhab187 Advance online publica-

tion . 

http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0129
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0130
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0001b
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0001c
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0132
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0133
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0134
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0135
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0136
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0137
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0138
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0139
https://doi.org/10.1093/cercor/bhac120
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0142
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0143
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0144
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0146
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0147
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0148
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0149
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0151
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0152
https://doi.org/10.1016/j.tics.2021.05.007
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0154
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0155
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0156
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0157
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0158
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0159
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0160
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0161
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0162
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0163
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0164
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0165
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0166
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0168
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0169
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0170
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0171
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0173
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0174
https://doi.org/10.1016/j.tins.2021.06.003
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0177
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0178
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0179
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0180
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0181
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0182
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0183
https://doi.org/10.1016/j.neuroimage.2021.118370
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0185
https://doi.org/10.1016/j.neuroimage.2021.118187
https://doi.org/10.1093/cercor/bhab187


R. Petrican, A. Fornito and N. Jones NeuroImage 255 (2022) 119209 

S  

 

 

 

 

S  

S  

 

S  

 

S  

 

 

 

 

 

 

S  

 

T  

T  

T  

 

T  

T  

 

T  

T  

 

 

 

 

T  

T  

 

 

V  

 

 

V  

 

 

W  

 

W  

W  

W  

W  

 

W  

 

 

 

X  

Y  

 

Z  

 

omerville, L.H., Bookheimer, S.Y., Buckner, R.L., Burgess, G.C., Curtiss, S.W.,

Dapretto, M., Elam, J.S., Gaffrey, M.S., Harms, M.P., Hodge, C., Kandala, S., Kast-

man, E.K., Nichols, T.E., Schlaggar, B.L., Smith, S.M., Thomas, K.M., Yacoub, E., Van

Essen, D.C., Barch, D.M., 2018. The lifespan human connectome project in develop-

ment: a large-scale study of brain connectivity development in 5-21 year olds. Neu-

roimage 183, 456–468 . 

porns, O., Betzel, R. F., 2016. Modular Brain Networks. Annual Review of Psychology

67, 613–640 . 

ridharan, D., Levitin, D.J., Menon, V., 2008. A critical role for the right fronto-insular

cortex in switching between central-executive and default-mode networks. Proc. Natl.

Acad. Sci. U.S.A. 105, 12569–12574 . 

umner, J.A., Colich, N.L., Uddin, M., Armstrong, D., McLaughlin, K.A., 2019. Early expe-

riences of threat, but not deprivation, are associated with accelerated biological aging

in children and adolescents. Biol. Psychiatry 85, 268–278 . 

üss, H., Willi, J., Grub, J., Ehlert, U., 2021. Estradiol and progesterone as resilience mark-

ers?–findings from the swiss perimenopause study. Psychoneuroendocrinology 127,

105177 . 

Sydnor, V.J., Larsen, B., Bassett, D.S., Alexander-Bloch, A., Fair, D.A., Liston, C.,

Mackey, A.P., Milham, M.P., Pines, A., Roalf, D.R., Seidlitz, J., Xu, T., Raz-

nahan, A., Satterthwaite, T.D., 2021. Neurodevelopment of the association

cortices: patterns, mechanisms, and implications for psychopathology. Neuron

doi: 10.1016/j.neuron.2021.06.016 , S0896-6273(21)00457-8. Advance online publi-

cation . 

un, Y., Fang, J., Wan, Y., Su, P., Tao, F., 2020. Association of early-life adversity with

measures of accelerated biological aging among children in China. JAMA Network

Open 3, e2013588 . 

ang, X., Jaenisch, R., Sur, M., 2021. The role of GABAergic signalling in neurodevelop-

mental disorders. Nat. Rev. Neurosci. 22, 290–307 . 

ani, Y., Fujiwara, T., Kondo, K., 2020. Association between adverse childhood experi-

ences and dementia in older japanese adults. JAMA Network Open 3, e1920740 . 

hiele, J.A., Faskowitz, J., Sporns, O., Hilger, K., 2022. Multitask brain network recon-

figuration is inversely associated with human intelligence. Cerebral Cortex bhab473.

doi: 10.1093/cercor/bhab473 , Advance online publication . 

hompson, A., Schel, M.A., Steinbeis, N., 2021. Changes in BOLD variability are linked to

the development of variable response inhibition. Neuroimage 228, 117691 . 

ofighi, D., Kelley, K., 2020. Indirect effects in sequential mediation models: evaluating

methods for hypothesis testing and confidence interval formation. Multivariate Behav

Res 55, 188–210 . 

ooley, U.A., Bassett, D.S., Mackey, A.P., 2021. Environmental influences on the pace of

brain development. Nat. Rev. Neurosci. 22, 372–384 . 

ozzi, L., Staveland, B., Holt-Gosselin, B., Chesnut, M., Chang, S.E., Choi, D., Shiner, M.L.,

Wu, H., Lerma-Usabiaga, G., Sporns, O., Barch, D., Gotlib, I.H., Hastie, T.J., Kerr, A.B.,

Poldrack, R.A., Wandell, B.A., Wintermark, M., Williams, L.M., 2020. The human con-

nectome project for disordered emotional states: protocol and rationale for a research

domain criteria study of brain connectivity in young adult anxiety and depression.

Neuroimage 124, 116715 . 
19 
oumbelekis, M., Liddell, B.J., Bryant, R.A., 2021. Secure attachment priming protects

against relapse of fear in Young adults. Transl. Psychiatry 11, 584 . 

yborowska, A., Volman, I., Niermann, H., Pouwels, J.L., Smeekens, S., Cillessen, A.,

Toni, I., Roelofs, K., 2018. Early-life and pubertal stress differentially mod-

ulate grey matter development in human adolescents. Sci. Rep. 8, 9201.

doi: 10.1038/s41598-018-27439-5 . 

andekar, S.N., Shinohara, R.T., Raznahan, A., Roalf, D.R., Ross, M., DeLeo, N., Ru-

parel, K., Verma, R., Wolf, D.H., Gur, R.C., Gur, R.E., Satterthwaite, T.D., 2015. Topo-

logically dissociable patterns of development of the human cerebral cortex. J. Neu-

rosci. 35, 599–609 . 

ink, M., Gladwin, T.E., Geeraerts, S., Pas, P., Bos, D., Hofstee, M., Durston, S., Volle-

bergh, W., 2020. Towards an integrated account of the development of self-regulation

from a neurocognitive perspective: a framework for current and future longitudinal

multi-modal investigations. Dev. Cogn. Neurosci. 45, 100829 . 

ang, H., Ghaderi, A., Long, X., Reynolds, J.E., Lebel, C., Protzner, A.B., 2021. The longi-

tudinal relationship between BOLD signal variability changes and white matter mat-

uration during early childhood. Neuroimage 242, 118448 . 

aschke, L., Kloosterman, N., Obleser, J., Garrett, D.D., 2021. Behaviour needs neural

variability. Neuron 109, 1–16 . 

atanabe, K., Taskesen, E., van Bochoven, A., Posthuma, D., 2017. Functional mapping

and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 . 

inkler, A.M., Renaud, O., Smith, S.M., Nichols, T.E., 2020. Permutation inference for

canonical correlation analysis. Neuroimage 220, 117065 . 

inter, W., Sheridan, M., 2014. Previous reward decreases errors of commission on later

’No-Go’ trials in children 4 to 12 years of age: evidence for a context monitoring

account. Dev. Sci. 17, 797–807 . 

ojcik, G.L., Graff, M., Nishimura, K.K., Tao, R., Haessler, J., Gignoux, C.R., High-

land, H.M., Patel, Y.M., Sorokin, E.P., Avery, C.L., Belbin, G.M., Bien, S.A., Cheng, I.,

Cullina, S., Hodonsky, C.J., Hu, Y., Huckins, L.M., Jeff, J., Justice, A.E., Kocarnik, J.M.,

… Carlson, C.S., 2019. Genetic analyses of diverse populations improves discovery for

complex traits. Nature 570, 514–518 . 

ia, M., Wang, J., He, Y., 2013. Brainnet viewer: a network visualization tool for human

brain connectomics. PLoS One 8, e68910 . 

eo, B.T.T., Krienen, F.M., Sepulcre, J., Sabuncu, M.R., Lashkari, D., Hollinshead, M.,

… Buckner, R.L., 2011. The organization of the human cerebral cortex estimated by

intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 . 

acharopoulos, G., Sella, F., Cohen Kadosh, R., 2021. The impact of a lack of mathematical

education on brain development and future attainment. Proc. Natl. Acad. Sci. U.S.A.

118, e2013155118 . 

http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0188
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0001e
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0189
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0190
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0191
https://doi.org/10.1016/j.neuron.2021.06.016
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0193
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0194
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0195
https://doi.org/10.1093/cercor/bhab473
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0197
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0198
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0199
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0200
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0201
https://doi.org/10.1038/s41598-018-27439-5
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0205
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0206
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0207
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0208
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0209
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0212
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0213
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0214
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0215
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0216
http://refhub.elsevier.com/S1053-8119(22)00333-0/sbref0217

	Psychological resilience and neurodegenerative risk: A connectomics-transcriptomics investigation in healthy adolescent and middle-aged females
	2 Method
	2.1 Participants
	2.1.1 HCP-Development
	2.1.2 HCP-Aging

	2.2 Adversity
	2.2.1 HCP-Development
	2.2.2 HCP-Aging

	2.3 Biological aging
	2.3.1 Pubertal timing (HCP-Development)
	2.3.2 Menopausal status (HCP-Aging)

	2.4 Resilience
	2.4.1 HCP-Development: Child Behavior Checklist (CBCL)
	2.4.2 HCP-Aging: Achenbach Adult Self-Report Scale (ASR)

	2.5 Brain development/aging
	2.5.1 In-Scanner task
	2.5.2 Data acquisition
	2.5.3 Data preprocessing

	2.6 Data analysis
	2.6.1 ROI definition
	2.6.2 BOLDSV
	2.6.3 BOLDSV-related morphological characteristics
	2.6.4 BOLDSV-related functional architectural features

	2.7 Confounding variables
	2.7.1 Family conflict
	2.7.2 Residualization

	2.8 Brain-behavior-gene analyses
	2.8.1 Partial least squares analysis (PLS)
	2.8.2 Mediation analyses
	2.8.3 Gene expression data processing and analysis

	2.9 Replication of results

	3 Results
	3.1 Brain profiles linked to adversity and resilience: behavioral PLS analysis 1
	3.1.1 LV1: accelerated functional brain development/aging correlates with recent exposure to adversity in adolescence and middle age
	3.1.2 LV2: opposing patterns of functional brain development/aging involving SM, control, dmn and sal-van predict resilience in adolescence versus middle adulthoodhood

	3.2 Functional brain mechanisms protecting against adversity-linked psychopathology: mediation analyses
	3.2.1 HCP-Development
	3.2.2 HCP-Aging

	3.3 Gene expression profiles linked to adversity, resilience and AD risk
	3.3.1 Gene expression profile linked to adversity exposure and resilience
	3.3.2 GO enrichment patterns
	3.3.3 Relevance of the AD risk genes to the HCP-Development vs HCP-Aging resilience brain


	4 Discussion
	4.1 Psychological resilience and brain development/aging
	4.2 Neurogenetic substrates of the resilience-AD vulnerability overlap
	4.3 Brain profiles linked to the timing of biological aging
	4.4 Limitations and future directions
	4.5 Conclusions

	Data statement
	Code availability
	Conflict of interest
	Credit authorship contribution statement
	Acknowledgments
	Supplementary materials
	References


