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Entropy-based test for generalized Gaussian distributions

Mehmet Siddik Cadirci, Dafydd Evans, Nikolai Leonenko

School of Mathematics, Cardiff University, Senghennydd Road, Cardiff, Wales, UK, CF24 4AG

Vitalii Makogin∗

Institute of Stochastics, Ulm University, Ulm, 08069 Germany.

Abstract

The proof of L2 consistency for the kth nearest neighbour distance estimator of the Shannon entropy

for an arbitrary fixed k ≥ 1 is provided. It is constructed the non-parametric test of goodness-of-fit

for a class of introduced generalized multivariate Gaussian distributions based on a maximum entropy

principle. The theoretical results are followed by numerical studies on simulated samples. It is shown

that increasing of k improves the power of the introduced goodness of fit tests. The asymptotic

normality of the test statistics is experimentally proven.

Keywords: Maximum entropy principle, generalized Gaussian distribution, Shannon entropy,

nearest neighbour estimator of entropy, goodness-of-fit test

2010 MSC: 62G05, 62G10, 62H12, 62H15, 28D20

We propose a non-parametric test of goodness-of-fit for a class of generalized multivariate Gaussian

distributions. Our approach is based on the estimation of the differential (Shannon) entropy

H(f) = −
∫
Rm

f(x) log f(x)dx, (1)

where f is a density function of a continuous random vector X ∈ Rm.

We use entropy estimators based on nearest neighbour distances. These were first studied by

(Kozachenko and Leonenko, 1987) and subsequently by (Tsybakov and Van der Meulen, 1996; Evans

et al., 2002; Goria et al., 2005; Leonenko et al., 2008; Leonenko and Pronzato, 2010; Evans, 2008;

Penrose and Yukich, 2011; Delattre and Fournier, 2017; Gao et al., 2018; Bulinski and Kozhevin,5

2019; Bulinski and Dimitrov, 2019) and Berrett et al. (2019). Nearest neighbour estimators (NNE)

are particularly attractive because they are computationally efficient and generalized easily to the

multivariate case. For an overview of non-parametric techniques of entropy estimation, see (Beirlant

et al., 1997).
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Berrett et al. (2019) have shown that subject to certain regularity conditions, as k → ∞, the10

k-NNE of Shannon entropy is efficient only for m ≤ 3, and present a bias-corrected estimator for

dimensions m ≥ 4. In this paper, we focus on the conventional k-NNE with fixed k ≥ 1, and prove its

L2 consistency. Note that the asymptotic variance of k-NNE decreases rapidly up to k = 3 only, see

(Berrett et al., 2019, Table 1), and this asymptotic inflation is distribution-free, which leads to the

conjecture that k = 3 is the most interesting case for any m ≥ 1. Our computational study confirms15

that the increasing of k improves the test’s power.

Entropy-based tests of goodness-of-fit exploit the so-called maximum entropy principle, see (Va-

sicek, 1976; Kapur, 1989). Choi (2008) introduced an entropy-based normality based on the fact

that normal densities posses the largest Shannon entropy among all densities with the same variance,

see also Dudewicz and Van Der Meulen (1981); Goria et al. (2005); Evans (2008) and the references20

therein. This paper proposes a new entropy-based test of a generalized normality based on the max-

imum Shannon entropy principle for the generalized multivariate Gaussian distribution. Our test

statistic uses the k-th nearest neighbour estimators of entropy and a moments estimators of order

s > 0. This methodology can be applied in image analysis, statistical physics, image processing, clas-

sifications of data, pattern recognition and machine learning. Provided Monte-Carlo simulations show25

that the test statistics are asymptotically normally distributed.

The goodness of fit testing for Gaussian data is well-studied, see the review of Ebner and Henze

(2020), and (González-Manteiga et al., 2016) among recent papers. Note that for high-dimensional

data, a dimension reduction is recommended before applying our methodology, see cf. (Shin and

Artemiou, 2017).30

The paper is organized as follows: we introduce the multivariate generalized Gaussian distribution

in Section 1 followed by a maximum entropy principle for them established in Section 2. In Section 3,

we discuss the state of the art for k-NNE, and present the associated goodness-of-fit statistics in

Section 4. In Section 5, we prove the L2 consistency of k−NNE of the Shannon entropy with some

auxiliary material on entropy bounds deferred to Appendix A. Numerical results are included in35

Section 6.

1. The generalized Gaussian distribution

The multivariate exponential power distribution MEPm(s, µ,Σ) on Rm has the density function

(Solaro, 2004)

f(x ;m, s, µ,Σ) =
β1(m, s)√

det Σ
exp

(
−1

2

[
(x− µ)TΣ−1(x− µ)

]s/2)
, (2)
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where

β1(m, s) =
Γ(m/2 + 1)

πm/2Γ(m/s+ 1)2m/s
,

µ ∈ Rm is a mean vector, Σ is an m×m positive definite matrix, s > 0 is a shape parameter (Solaro,

2004), and variance-covariance matrix V = β2Σ where

β2(m, s) =
22/sΓ

[
(m+ 2)/s

]
mΓ(m/s)

. (3)

Note that s = 2 corresponds to the multivariate normal distribution N(µ,Σ) on Rm, while s = 1

corresponds to the multivariate Laplace distribution. Multivariate exponential power distribution

was introduced by De Simoni (1968) and studied by Kano (1994) and Gómez et al. (1998). MEPm40

distributions belong to the elliptic family of multivariate distributions, and particularly to symmetric

Kotz type distributions, see (Fang et al., 1990) for details.

Taking µ to be the null vector and Σ to be the identity matrix, we obtain the isotropic exponential

power distribution IEPm(s) on Rm,

f(x ;m, s) =
Γ(m/2 + 1)

Γ(m/s+ 1)πm/22m/s
exp

(
−1

2
‖x‖s

)
, (4)

x ∈ Rm, where ‖ · ‖ denotes the Euclidean norm on Rm, i.e., ‖x‖ =
√
x21 + · · ·+ x2m, for x =

(x1, . . . , xm) ∈ Rm.

Applying the scaling x 7→ (2τ)−1/sx for τ > 0 yields the generalized Gaussian distributions

GGτ (m, s) on Rm, with density functions

fc(x;m, s) = c(m, s) exp (−τ‖x‖s) , x ∈ Rm, (5)

where

c(m, s) =
Γ(m/2 + 1)τm/s

Γ(m/s+ 1)πm/2
,

and taking τ = 1/s yields the canonical distribution GG(m, s) with the density

f(x;m, s) = c0(m, s) exp

(
−‖x‖

s

s

)
, x ∈ Rm, (6)

where

c0(m, s) =
Γ(m/2 + 1)

Γ(m/s+ 1)πm/2sm/s
.

A random vector X ∈ Rm is called isotropic if its density f can be written as f(x) = f̃(‖x‖) for

some function f̃ : R → [0,∞) called the radial density. If X is isotropic and g : R → R is a Borel

function, it is easy to show that

E [g(‖X‖)] =

∫
Rm

g(‖x‖)f(x) dx =
2πm/2

Γ(m/2)

∫ ∞
0

g(r)f̃(r)rm−1 dr (7)

3



provided the integrals exist. In particular, the moments of order s > 0 are given by

E(‖X‖s) =
2πm/2

Γ(m/2)

∫ ∞
0

rm+s−1f̃(r) dr (8)

provided the integrals exist.45

Lemma 1. If X ∼ GGτ (m, s), then E(‖X‖s) = m/(sτ).

Proof. If X ∼ GGτ (m, s) then X is isotropic and has the radial density function

f̃(r) =
Γ(m/2 + 1)τm/s

Γ(m/s+ 1)πm/2
exp(−τrs).

Hence by (8) we have

E(‖X‖s) =
2πm/2

Γ(m/2)

∫ ∞
0

rsf̃(r)rm−1 dr =
mτm/s

Γ(m/s+ 1)

∫ ∞
0

rm+s−1 exp(−τrs) dr

and changing the variable of integration to t = τrs yields

E(‖X‖s) =
m

sτ Γ(m/s+ 1)

∫ ∞
0

tm/se−tdt =
m

sτ
.

The above formulas can be derived from the results on symmetric Kotz type distributions, see

(Fang et al., 1990, Section 3.2.3).

2. A maximum entropy principle for GGτ (m, s)50

It is well known, (Kapur, 1989), that among all distributions on Rm whose densities f are supported

on the whole of Rm and whose mean and covariance matrix are fixed at zero and Σ respectively, the

Shannon entropy H(f) is maximized by the multivariate Gaussian distribution N(0,Σ) on Rm, and

thus

H(f) ≤ log
[
(2πe)m/2

√
det Σ

]
. (9)

We now prove an analogous result for the generalized Gaussian distribution.

Theorem 1. Let X ∈ Rm be a random vector, whose density f is supported on the whole Rm, and

for which there exists some s > 0 such that E(‖X‖s) <∞. Then H(f) < +∞ and satisfies

H(f) ≤ m

s
log
(
c1(m, s)E‖X‖s

)
,

where

c1(m, s) =

(
πm/2Γ(m/s+ 1)

Γ(m/2 + 1)

)s/m (se
m

)
with equality if and only if X ∼ GGτ (m, s) with τ = m/(sE‖X‖s).

4



Proof. Let X and Z be two random vectors whose density functions, f and f∗ respectively, are

supported on the whole of Rm, and for which there exists some s > 0 with E‖X‖s = E‖Z‖s < ∞.

First, we observe that

H(f) ≤ −
∫
Rm

f(x) log f∗(x) dx, (10)

with equality if and only if f = f∗ almost everywhere. This follows by Jensen’s inequality,

−
∫
Rm

f(x) log f(x) dx+

∫
Rm

f(x) log f∗(x)dx

=

∫
Rm

f(x) log

(
f∗(x)

f(x)

)
dx ≤ log

(∫
Rm

f(x)

(
f∗(x)

f(x)

)
dx

)
= log

(∫
Rm

f∗(x)dx

)
= 0,

assuming that both integrals −
∫
Rm f(x) log f(x) dx and

∫
Rm f(x) log f∗(x)dx are finite.

If Z ∼ GGτ (m, s) with τ =
m

sE‖X‖s
(which ensures that E‖Z‖s = E‖X‖s) we have

f∗(x) = c(m, s) exp(−τ‖x‖s),

where

c(m, s) =
Γ(m/2 + 1)τm/s

Γ(m/s+ 1)πm/2
.

For this case, − log f∗(x) = τ‖x‖s − log c(m, s) and hence

−
∫
Rm

f(x) log f∗(x)dz = τ

∫
Rm

‖x‖sf(x) dx− (log c(m, s))

∫
Rm

f(x) dx

= τ E‖X‖s − log c(m, s) =
m

s
− log c(m, s) by Lemma 1.

Therefore
∫
Rm f(x) log f∗(x)dx is finite under existence of E‖X‖s and the right-hand side of (10) is

finite. If H(f) = −∞, inequality (10) is valid as well.55

Thus, by (10) and substituting for c(m, s), we obtain

H(f) ≤ m

s
− log

[
τm/sΓ(m/2 + 1)

πm/2Γ(m/s+ 1)

]
=
m

s
log

[(
Γ(m/s+ 1)

Γ(m/2 + 1)

) s
m
(
eπ

s
2

τ

)]
,

and substituting for E‖X‖s = m/(sτ) completes the proof in the case H(f) < +∞.

Consider HM (f) := −
∫
AM

f(x) log f(x)dx, where AM = {x ∈ Rm, | log f(x)| ≤ M}. Denote by

CM :=
∫
AM

f(x)dx ≤ 1 and C∗M :=
∫
AM

f∗(x)dx ≤ 1. Then by Jensen’s inequality we have

−
∫
AM

f(x) log f(x) dx+

∫
AM

f(x) log f∗(x)dx

= CM

∫
AM

f(x)

CM
log

(
f∗(x)

f(x)

)
dx ≤ CM log

(∫
AM

f∗(x)

CM
dx

)
= CM logC∗M − CM logCM .

Therefore,

H(f) ≤ lim sup
M→∞

(
−
∫
AM

f(x) log f(x) dx

)
≤ lim sup

M→∞

(
−
∫
AM

f(x) log f∗(x) dx+ CM log
C∗M
Cm

)
< +∞.

5



Remark 1. Theorem 1 was proved for m = 1 in (Wyner and Ziv, 1969) and (Rosenblatt, 2000, p.103-

104). For m ≥ 1, some statements of Theorem 1 were also proved using other methods by Lutwak

et al. (2007).60

The similar to Theorem 1 result holds for the general multivariate exponential power distribution

MEPm(s, µ,Σ).

Theorem 2. Let X ∈ Rm be a random vector, whose density f is supported on the whole of

Rm. Let there exist some s > 0, µ ∈ Rm and m × m positive definite matrix Σ such that Ms :=

E
(
(X − µ)TΣ−1(X − µ)

)s/2
<∞. Then H(f) is finite and satisfies

H(f) ≤ log

√
det Σ

β1(m, s)
+

1

2
Ms (11)

with equality if and only if X ∼ MEPm(s, µ,Σ).

Remark 2. Let λ1, . . . , λm be eigenvalues of Σ. The moment Ms exists if and only if E‖X‖s <∞ due

to inequalities minmi=1 λ
−1
i ‖X‖2 ≤ (X − µ)TΣ−1(X − µ) ≤ maxmi=1 λ

−1
i ‖X‖2. Therefore, the entropy65

of X is maximized on an isotropic exponential power distribution IEP . Inequality (11) can be used

for a goodness of fit test for a family of MEP distributions with standard estimators µ̂ and V̂ for the

mean value µ and the variance-covariance matrix V = β2Σ, respectively. In the following, we consider

the isotropic case in detail.

Aulogiaris and Zografos (2004) prove the analogous maximum entropy principle for the symmetric70

Kotz type distributions, but fixing the moments of two types E(‖X‖s) and E(log ‖X‖).

3. Entropy estimation

In this section, we discuss the statistical estimation of the Shannon entropy for a wide class of

continuous distributions. Let k ≥ 1 and N > k, and let XN = {X1, . . . , XN} be a set of independent

and identically distributed random vectors in Rm with a common density function f . Let F be a finite

subset of XN having cardinality at least k, and let ρk(x, F ) denote the Euclidean distance between a

point x and its kth nearest neighbour in the set F \{x}. The kth nearest neighbour estimator (k-NNE)

of the Shannon entropy H(f) is defined to be

ĤN,k =
1

N

N∑
i=1

log
[
ρmk (Xi,XN )Vm(N − 1)e−ψ(k)

]
, (12)

where ψ(x) = Γ′(x)/Γ(x) is the digamma function and Vm = πm/2/Γ(m/2 + 1) is the volume of the

unit ball in Rm. For k = 1, this reduces to

ĤN,1 =
m

N

N∑
i=1

log ρ1(Xi,XN ) + log Vm + γ + log(N − 1), (13)

6



where γ = −ψ(1) ≈ 0.577216 is the Euler-Mascheroni constant. The estimator (13) was introduced

by Kozachenko and Leonenko (1987) while the general estimator (12) was first considered by Goria

et al. (2005). The main properties of (12) have been studied by Leonenko et al. (2008); Leonenko75

and Pronzato (2010); Penrose and Yukich (2011); Delattre and Fournier (2017); Gao et al. (2018);

Bulinski and Dimitrov (2021, 2019); Berrett et al. (2019) and Berrett and Samworth (2019).

Particularly, the proof of NNE and k-NNE consistency developed as follows. Pioneering paper

(Kozachenko and Leonenko, 1987) states that EĤN,1 → H(f) if
∫
Rm | log f(x)|1+εf(x)dx < ∞ and∫

Rm

∫
Rm | log ρ1(x, y)|1+εf(x)f(y)dxdy < ∞ for some ε > 0. Later, Leonenko et al. (2008) prove that80

if f is bounded and
∫
Rm fε(x)dx <∞ for some ε < 1, then EĤN,1 → H(f) in L2 as N →∞.

Other researchers could not significantly improve these quite restrictive conditions. Thus, if f is

bounded and has compact support, then ĤN,1 is L2−consistent, and for unbounded samples, f needs

to be strictly (in some sense) positive. A new approach based on the limit theory of Poisson point

processes allows breaking this wall.85

Many new results and methods on the nearest neighbour estimate of entropy can be found in

the book by Biau and Devroye (2015). In particular, they show that for k = 1, ĤN,1 → H(f) in

probability as N → ∞ if a density f is bounded and
∫
Rm f(x) log2(f(x) + 1)dx < ∞. Moreover, the

recent paper (Devroye and Gyöfi, 2021) shows that E
{∣∣∣ĤN,1 −H(f)

∣∣∣} → 0 as N → ∞, if and only

if E {log (‖X‖+ 1)} < ∞. And for compactly supported densities ĤN,1 → H(f), N → ∞ almost90

surely. Note that in the same spirit Lord et al. (2018) introduced and studied the geometric k-nearest

neighbour estimation of entropy and mutual information.

In this paper, we prove the convergence in mean-square of ĤN,k for the arbitrary k ≥ 1.

Theorem 3 (Main theorem). Suppose that E‖X‖α < ∞ for some α > 0 and f(x) ≤ M for some

M > 0. Then for any fixed k ≥ 1,

E
[
ĤN,k −H(f)

]2
→ 0 as N →∞. (14)

The case k = 1 in Theorem 3 was proved by Penrose and Yukich (2013, Theorem 2.4.ii). Note that

estimators ĤN,k from (12) and ĤN,1 from (13) have several non-matching terms due to the different95

distributions (Erlang and Poisson) arising in the proof of their consistency.

Remark 3. The condition of boundedness for the density f is not explicitly stated in (Penrose and

Yukich, 2013, Theorem 2.4.ii). In Appendix A, we give an example of a density f with bounded

support and for which H(f) is unbounded.

4. A test statistic for GG(m, s)100

Let k ≥ 1 be fixed and K be the class of density functions f on Rm such that

7



1. supp(f) = Rm,

2. E(‖X‖s) <∞ for some s > 0,

3. E(ĤN,k)→ H(f) as N →∞, and

4. ĤN,k → H(f) in probability as N →∞.105

Proposition 1. The density functions of the GGτ (m, s) belong to K for all m ≥ 1, s > 0, τ > 0 and

k ≥ 1.

Proof. The statement follows from Theorem 3, which applies because f is bounded, and Lemma 1.

Let X ∈ Rm be a random vector with a density f ∈ K, and let s > 0 be fixed. Based on a

random sample X1, X2, . . . from the distribution of X, we use the maximum entropy principle proved

in Section 2 to test the hypothesis X ∼ GG(m, s) against a suitable alternative. By Theorem 1, if

X ∼ GG(m, s) then

H(X) =
m

s
logE‖X‖s +

m

s
log c1(m, s),

where

c1(m, s) =

(
πm/2Γ(m/s+ 1)

Γ(m/2 + 1)

)s/m (se
m

)
.

We estimate the entropy H(X) by the kth nearest neighbour estimator ĤN,k from (12) and the

moment E‖X‖s by the sample moment

X̄
(s)
N =

1

N

N∑
i=1

‖Xi‖s.

Our test statistic TN,k = TN,k(m, s) is then

TN,k =
m

s
log c1(m, s) +

m

s
log X̄

(s)
N − ĤN,k.

By the law of large numbers, X̄
(s)
N → E‖X‖s in probability as N → ∞. Hence by Slutsky’s

theorem, if X ∼ GG(m, s) then for any fixed k ∈ {1, . . . , N − 1} we have

TN,k → 0 in probability as N →∞.

Otherwise, by the maximum entropy principle it must be that TN,k → ξ in probability as N → ∞,

where the constant ξ = ξ(m, s, k) is strictly positive. Thus, we reject the hypothesis X ∼ GG(m, s)

whenever TN,k ≥ tN,k,α, where tN,k,α = tN,k,α(m, s) is a so-called critical value of the test statistic

TN,k(m, s) at significance level α, which is a solution of

PH0

(
TN,k ≥ t

)
= α.

An analytical derivation of the distribution of TN,k when X ∼ GG(m, s) is difficult because the

covariances of ĤN,k and X̄
(s)
N are intractable, even though the asymptotic behaviour of ĤN,k can be110

8



revealed by applying results of Penrose and Yukich (2011); Delattre and Fournier (2017) or Berrett

et al. (2019), and the asymptotic behaviour of X̄
(s)
N by the delta method. Thus, we use Monte-Carlo

simulation to investigate the distribution of TN,k = TN,k(m, s) for different combinations of parameter

values.

Remark 4. The test statistic TN,k is scale-invariant: if Y = aX for some a > 0, then ĤN,k(Y ) =

log(am) + ĤN,k(X) and Ȳ
(s)
N = asX̄

(s)
N , and hence

TN,k(Y ) =
m

s
log c1(m, s) +

m

s
log Ȳ

(s)
N − ĤN,k(Y )

=
m

s
log c1(m, s) +

m

s
log X̄

(s)
N +

m

s
log(as)

− log(am)− ĤN,k(X)

=
m

s
log c1(m, s) +

m

s
log X̄

(s)
N − ĤN,k(X) = TN,k(X).

5. L2 consistency of the kth nearest neighbour estimator115

In this section, we prove Theorem 3 for arbitrary k ≥ 1. To this end we write (12) as

ĤN,k =
1

N

∑
x∈XN

l
(
N

1
mx,N

1
mXN

)
,

where

l(x,X ) := log
(
ρmk (x,X )Vme

−ψ(k)
)
, x ∈ Rm.

First, we require the following corollary of (Penrose and Yukich, 2013, Theorem 3.1).

Theorem 4. Let k ≥ 1 and q = 1 or q = 2, and suppose there exists p ≥ q such that

sup
N≥k

E
∣∣∣l (N 1

mX1, N
1
mXN

)∣∣∣p <∞. (15)

Then we have Lq convergence,

1

N

∑
x∈XN

l
(
N

1
mx,N

1
mXN

)
→
∫
Rm

E
[
l(0,Pf(x))

]
f(x) dx

as N → ∞, where f is the density function of X1 and Pλ denotes a homogeneous Poisson point

process of intensity λ > 0 on Rm.

Proof of Theorem 3. We apply Theorem 4. First, we show that H(f) =

∫
Rm

E
[
l(0,Pf(x))

]
f(x) dx,

where

l (0,Pλ) = m log ρk(0,Pλ) + log Vm − ψ(k).

9



Denote by Bt(0) the (Euclidean) ball of radius t centred at 0 i.e, Bt(0) = {y ∈ Rm, ‖y‖ ≤ t}.

The random variable ρk(0,Pλ) is the distance from 0 to the kth point of Pλ, and thus has Erlang

distribution with parameters k and λ|Bt(0)| = λVmt
m, that is

P
(
ρk(0,Pλ) ≤ t

)
= P

(
|Pλ ∩Bt(0)| ≥ k

)
= 1−

k−1∑
j=0

1

j!

(
λ|Bt(0)|

)j
e−λ|Bt(0)|

= 1−
k−1∑
j=0

1

j!
(λVmt

m)je−λVmt
m

(t ≥ 0).

Then

mE[log ρk(0,Pλ)] =

∫ ∞
0

log tm
(λVm)k(tm)(k−1)

(k − 1)!
e−λVmt

m

mtm−1dt

= − log(λVm) +

∫ ∞
0

log y
yk−1

(k − 1)!
e−ydy

= − log λ− log Vm + ψ(k).

Hence E
[
l(0,Pλ)

]
= − log λ and thus H(f) equals

−
∫
Rm

f(x) log f(x) dx =

∫
Rm

E
[
l(0,Pf(x))

]
f(x) dx.

Second, we check condition (15). Note that for every δ ∈ (0, 1) and p > 1 there exists C > 0 such

that

| log t|p ≤ Ct−δ1[0,1](t) + Ctδ1[1,∞)(t), t > 0.

Then because

|l(x,X )|p =
∣∣ log Vm − ψ(k) + log ρmk (x,X )

∣∣p ≤ ∣∣ log Vm − ψ(k)
∣∣p +

∣∣ log ρmk (x,X )
∣∣p,

we have

1

2p−1
E
∣∣∣l (N 1

mX1, N
1
mXN

)∣∣∣p ≤ |log Vm − ψ(k)|p + E
∣∣∣log ρmk

(
N

1
mX1, N

1
mXN

)∣∣∣p
≤ |log Vm − ψ(k)|p

+ CEρ−δk
(
N

1
mX1, N

1
mXN

)
1[0,1]

[
ρδk

(
N

1
mX1, N

1
mXN

)]
(16)

+ CEρδk
(
N

1
mX1, N

1
mXN

)
1[1,∞)

[
ρδk

(
N

1
mX1, N

1
mXN

)]
. (17)

Term (16) is finite because

sup
N≥k

Eρ−δk
(
N

1
mX1, N

1
mXN

)
1[0,1]

(
ρδk

(
N

1
mX1, N

1
mXN

))
≤ sup
N≥k

Eρ−δ1

(
N

1
mX1, N

1
mXN

)
<∞, (18)

10



Figure 1: Scatter plots for GG(m, s) with m = 2

where (18) is ensured by (Penrose and Yukich, 2013, Lemma 7.5) since f is bounded and δ ∈ (0,m).

Let rc(f) := sup{r ≥ 0 : E‖X1‖r <∞}. In the proof of (Penrose and Yukich, 2011, Theorem 2.3)

we see that if rc(f) > 0 and 0 < δ < mrc(f)(m+ rc(f))−1, then

sup
N≥k

Eρδk
(
N

1
mX1, N

1
mXN

)
<∞.

Thus, term (17) is finite.120

6. Numerical results

To investigate the behaviour of the statistic TN,k(m, s), we generate random samples from the

GG(m, s) distribution. This is achieved via the following stochastic representations (Solaro, 2004).

Lemma 2. For X ∼ GG(m, s), we have X
d
= UR where U is uniformly distributed on Sm−1 and

R
d
= V 1/s with V ∼ Gamma(m/s, 2).125

For the case m = 2, we put the generated points on scatter plots for different values of s, see

Figure 1.

11



(a) Empirical density function (b) Empirical log–density function

Figure 2: Empirical distribution of GG(m, s) for m = 1 and different values of s.

6.1. Empirical distribution of GG(m, s)

We generate N = 106 points from the GG(m, s) distribution for different values of s. For the

purpose of comparison, we apply the scaling X 7→ X/σ, where

σ2 =
22/sΓ

[
(m+ 2)/s

]
mΓ(m/s)

is the variance of the GG(m, s) distribution. The results are shown in Figure 2.

6.2. Asymptotic behaviour of TN,k(m, s) as N →∞.130

For fixed N and (m, s), we generate a sample of size N from the GG(m, s) distribution and record

the empirical value of TN,k(m, s) for a fixed k, repeating this M = 103 times. This yields a sample

realization {T1, T2, . . . , TM} from the distribution of TN,k(m, s), from which we estimate its mean and

variance by

T̄N,k(m, s) =
1

M

M∑
j=1

Ti and S2
N,k(m, s) =

1

M − 1

M∑
j=1

(Ti − T̄N,k)2.

In Figure 3, we show how T̄N,k(m, s) approaches 0 as N increases for various values of m ∈ {2, 3},

s ∈ {0.5, 1.5, 2.5} and k = 1, 2, 3 with error bars corresponding to the standard error SN,k(m, s). From

these data, we observe that the empirical variance is decreasing when k increases. From the other

hand, the bias or mean T̄N,k(m, s) is smaller for smaller values of k or m. These results confirm the

variance reduction of k-nearest neighbour estimators observed in Berrett et al. (2019).135

Moreover, we study the rate of convergence of T̄N,k(m, s) and SN,k(m, s) with respect to N. We

examine the model

log |T̄N,k(m, s)| = αm,s,k + βm,s,k logN − 1

2
logN, S2

N,k(m, s) =
σ2
k

N
,

12



Figure 3: Consistency of TN,k(m, s) for different values of k,m and s (M = 103 repetitions).

based on Monte-Carlo simulations with M = 103 and s ∈ {0.5, 0.75, 1, 1.5, 2, 2.5, 3, 4, 6}, m = 1, 2, 3,

k = 1, 2, 3 and N = {200, 250, 300, . . . , 1000}. We apply the standard linear regression method for

estimation of α and β. The values of β presented in Table 1 show that for m = 1, s ∈ (0, 6],

13



m = 1 m = 2 m = 3

s k = 1 k = 2 k = 3 k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

0.5 -0.5927 -0.5949 -0.5695 -0.4048 -0.2908 -0.2505 -0.0274 -0.0158 -0.0142

0.75 -0.9096 -0.7919 -0.6755 -0.3325 -0.2681 -0.2446 -0.0395 -0.0060 0.0161

1 -0.7831 -0.8072 -0.5907 -0.2570 -0.1509 -0.1587 0.0236 0.0369 0.0545

1.5 -0.4684 -0.3141 -0.4933 -0.1627 -0.1818 -0.1569 0.0980 0.1087 0.1103

2 -0.6773 -0.8744 -0.7892 -0.2581 -0.1591 -0.1066 0.1027 0.1355 0.1652

2.5 -0.5324 -0.2288 -0.4225 -0.0812 -0.0398 -0.0564 0.1720 0.1897 0.2417

3 -0.0982 -0.2166 -0.2609 -0.0732 0.0200 0.0491 0.1296 0.2073 0.2813

4 0.4087 -1.1497 -0.5968 -0.0849 0.0067 0.0706 0.3756 0.4163 0.5182

6 -1.2897 -0.3403 -0.5030 0.1171 0.1165 0.1810 0.5713 1.0758 1.9151

Table 1: Slope values β in Log-Log regression log |ET̂N,k(m, s)| = αm,s,k + βm,s,k logN − 1
2

logN.

Figure 4: Log-Log regression log |ET̂N,k(m, s)| = αm,s,k + βm,s,k logN − 1
2

logN.
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Figure 5: Values of
√
NSN,k(m, s).

m = 2, s ∈ (0, 3], and m = 3, s ∈ (0, 1] the decay of T̄N,k(m, s) is faster or equal than N−0.5. We can

observe also, that the decay is faster as values of m, k, or s are smaller. These facts are illustrated by140

Figure 4 as well.

The values of
√
NSN,k(m, s) are presented as box-plots in Figure 5. We deduce that

√
NSN,k(m, s)

is approximately a constant, σk, depending on k only. The mean values of σk are σ1 = 1.5014,

σ2 = 0.9788, and σ3 = 0.7760.

6.2.1. Asymptotic behaviour of TN,k(m, s0) on data from GG(m, s1)145

For m = 2 and various values of s0 and s1 from the set {0.5, 1.5, 2.5}, we generate samples from

the GG(m, s1) distribution and examine the behaviour of TN,k(m, s0) as N increases. The results are

shown in Figure 6.

6.3. Empirical distribution of TN,k(m, s)

Numerical results suggest that the distribution of TN,k(m, s) is asymptotically normal as the sample150

size N → ∞. For example, the histograms of TN,k(m, s) with N = 1000, s = 1.5, m = 2, k = 1, 2, 3

in Figure 7 have the Gaussian bell-shapes. The corresponding Q-Q plots in Figure 8 confirm that the

distributions belong to a Gaussian family.

For different values of (N, k) and (m, s), we generate samples from the GG(m, s) distribution and

record the corresponding values of TN,k(m, s), repeating thisM = 1000 times. To each of these samples155

from the distribution of TN,k(m, s) we then apply the Shapiro-Wilk test for normality (Shapiro and

Wilk, 1965) and record the p-value returned by the test. Figure 9 shows how these p-values behave as

15



Figure 6: The behaviour of TN,k(m, s0) with m = 2 on data from the GG(m, s1) distribution with m = 2.

N increases, for various values of m, s and k. The plots suggest that the normal hypothesis cannot

be rejected for samples of size N = 500 or more.

6.4. Asymptotic distribution of TN,k(m, s)160

We obtain from simulations that the limiting distribution of TN,k(m, s) is Gaussian and the variance

decay is of order N−2. Therefore,

√
N(TN,k(m, s)− ETN,k(m, s))→ N(0, σ2

k), N →∞

in distribution. As we have showen, ETN,k(m, s)) → 0 for some combinations of k,m, s. Let q̂α

16



Figure 7: Empirical distributions of TN,k(m, s) with m = 2 and the corresponding fitted normal curves.

Figure 8: Q-Q plots of empirical distribution of TN,k(m, s) with m = 2 and Gaussian distribution.

be the empirical quantile of order α of TN,k(m, s), i.e., P(TN,k(m, s) > q̂α|X ∼ GG(m, s)) = α. We

compute the values of q̂α by Monte-Carlo simulations with M = 1000 repetitions and put them in

Table 2 for the case α = 0.05 and m = 2, 3. Applying the convergence to a Gaussian distribution,

we can approximate critical values by

q̂α ≈ qaα :=
zασk + µm,s,k√

N
, (19)

where zα is a quantile of a standard normal law, i.e. 1 − Φ(zα) = α, where Φ is the cumulative

distribution function of N(0, 1). Indeed,

P(TN,k(m, s) > q̂α|X ∼ GG(m, s))

= P

(√
N(TN,k(m, s)− µm,s,k)

σk
>

√
N(q̂α − µm,s,k)

σk
|X ∼ GG(m, s)

)

≈ 1− Φ

(√
N(q̂α − µm,s,k)

σk

)
≈ 1− Φ

(√
N(qaα − µm,s,k)

σk

)
= 1− Φ(zα).
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Figure 9: Shapiro-Wilk p-values as N increases for different values of m, s and k (M = 1000 repetitions).

We compare q̂0.05 and qa0.05 via the values of
√
N(q̂0.05 − z0.05σk) and put them in Figure 10. We

observe that these differences are bounded with small deviations for N ∈ [400, 1000]. We put µm,s,k =

18



m = 2 m = 3

s N k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

0.5 100 0.30793 0.24175 0.24822 0.36634 0.33337 0.32294

200 0.21050 0.16076 0.15914 0.25667 0.22756 0.23070

300 0.16142 0.13318 0.12532 0.19678 0.17996 0.18353

400 0.14987 0.11753 0.10938 0.17643 0.16032 0.16511

500 0.11999 0.09835 0.09504 0.16458 0.14597 0.14865

600 0.11633 0.09082 0.08360 0.14080 0.12807 0.13425

700 0.11017 0.08036 0.07208 0.14109 0.12629 0.12869

800 0.09688 0.07448 0.06789 0.11715 0.11493 0.11691

900 0.08891 0.07289 0.06407 0.11932 0.10248 0.10692

1000 0.08601 0.06571 0.06167 0.11151 0.09898 0.10241

1.5 100 0.25888 0.21302 0.19695 0.31502 0.26798 0.24472

200 0.20046 0.15151 0.14194 0.22006 0.18361 0.17399

300 0.15430 0.12647 0.11199 0.18876 0.14910 0.14607

400 0.13574 0.10170 0.09125 0.16631 0.13473 0.13628

500 0.11918 0.08670 0.07895 0.14081 0.11325 0.11465

600 0.11443 0.08309 0.07641 0.13692 0.11288 0.11011

700 0.10600 0.07363 0.06833 0.12376 0.10341 0.09946

800 0.09096 0.07745 0.06870 0.10651 0.09512 0.09291

900 0.09028 0.06437 0.05851 0.11374 0.09236 0.09001

1000 0.08621 0.06662 0.05823 0.10552 0.08675 0.08698

2.5 100 0.25793 0.19961 0.17907 0.30506 0.21805 0.18471

200 0.19882 0.13606 0.12423 0.21229 0.16270 0.13955

300 0.16689 0.11676 0.10050 0.18882 0.14901 0.13202

400 0.13664 0.10649 0.09069 0.15503 0.11663 0.10525

500 0.12374 0.08466 0.07320 0.14034 0.11124 0.10215

600 0.10841 0.08133 0.07235 0.12984 0.10494 0.09515

700 0.09978 0.07492 0.06539 0.12056 0.09383 0.08865

800 0.09550 0.06888 0.06011 0.12023 0.09048 0.08349

900 0.08935 0.06529 0.05861 0.10784 0.08451 0.07856

1000 0.08663 0.06144 0.05170 0.10475 0.08237 0.07724

Table 2: Critical values of statistic TN,k(m, s) corresponding to significance level 0.05

maxN∈[400,1000]
√
N(q̂0.05 − z0.05σk) and present them in Table 3. In such case, qa0.05 ≥ q̂0.05 and the

I-type error of a test P(TN,k(m, s) > qa0.05|X ∼ GG(m, s)) based on approximated quantiles qa0.05 is

less or equal 0.05 for N ∈ [400, 1000], s ∈ [0.5, 6], k = 1, 2, 3, and m = 1, 2, 3, which is confirmed by165

Figure 11a.
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Figure 10: Values of
√
N(q̂α − zασk) for α = 0.05.

m = 1 m = 2 m = 3

s k = 1 k = 2 k = 3 k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

0.5 0.1297 0.1520 0.1817 0.5279 0.7406 0.9112 1.2633 1.7412 2.1283

0.75 0.2231 0.1732 0.1937 0.5690 0.5685 0.7610 1.1847 1.4941 1.7934

1 0.0816 0.1858 0.2037 0.4041 0.5870 0.6840 1.2457 1.3621 1.6662

1.5 0.2501 0.1907 0.2566 0.3601 0.5805 0.6669 1.1384 1.1986 1.4742

2 0.0732 0.2003 0.1612 0.4628 0.4952 0.5567 0.8820 1.1371 1.3024

2.5 0.0864 0.1863 0.2502 0.4766 0.5198 0.5375 0.9311 1.0595 1.2391

3 0.1683 0.1225 0.1999 0.5035 0.4658 0.5067 0.8932 1.0124 1.0566

4 0.1808 0.1930 0.1842 0.4400 0.4114 0.5017 0.8679 0.8074 0.8689

6 0.2685 0.2398 0.1649 0.3680 0.4282 0.4472 0.6333 0.5403 0.6336

Table 3: Values of µm,s,k for α = 0.05

6.5. Power of the goodness of fit test

We investigate also the power of the test to detect the alternative distribution. For this aim, we

test

H0: X ∼ GG(m, s) for a given s = 1.5 with unknown scale parameter τ1, vs.170

H1: X ∼ GG(m, v) with s 6= v > 0 and unknown scale parameter τ2
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(a) (b)

Figure 11: (a) I-type error of the test based on approximated critical values. (b) Comparison of the test’s power based

on empirical and approximated critical values.

via test statistics TN,k(m, s) with the empirical critical values q̂0.05. We generate M = 1000 samples

of size N = 500, 1000 under GG(m, v) distribution, and compute TN,k(m, s) with s = 1.5 for each

sample. The empirical power of the test is the ratio of number of rejections (when TN,k(m, s) > q̂0.05)

and M, see Figure 12. We definitely see, that the power is increasing with respect to k, N and the175

distance between s = 1.5 and v. Moreover, the power’s grows for v < s is significantly larger than for

v > s. Thus, we recommend applying the k-nearest entropy neighbour estimator and test statistics

with k = 3, which lead to the goodness of fit test with the maximum power.

We provide also the testing of H0 vs. H1 via rejection criteria TN,k(m, s) > qa0.05 with approximated

critical values qa0.05 given in (19). We compare the corresponding test’s powers in Figure 11b and180

observe that the proposed approximation in (19) does not affect the test’s power a lot. Hence, a

researcher can avoid Monte Carlo simulations of empirical quantiles and use formula (19) for running

our goodness of fit tests.

We apply the very same methodology on samples from the isotropic multivariate generalized Stu-

dent t-distribution GST (m, s, v), v > 0 on Rm, which has the density function

f(x;m, s, v) =
Γ
[
(v +m)/s

]
Γ(v/s)(vπ)m/2

Γ(m/2 + 1)

Γ(m/s+ 1)

(
1 +
‖x‖s

v

)−(v+m)/2

, x ∈ Rm,

see e.g. Lutwak et al. (2013). Namely, we test

H0: X ∼ GG(m, s) for a given s = 1.5 with unknown scale parameter τ1, vs.185

H1: X ∼ GST (m, s, v) with v > 0 and unknown scale parameter τ2.
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Figure 12: Empirical power function of the test for s = 1.5 on GG(m, v) distributions (M = 1000 repetitions).

H1: X ∼ GST (m, s, v) with v > 0 and unknown scale parameter τ2.

In the Gaussian case, GST (m, 2, v) is a multivariate t-distribution with v degrees of freedom. It

is not hard to show the following stochastic representation.

Lemma 3. For X ∼ GST (m, s, v), we have X
d
= Z(V )−1/s, where Z ∼ GG(m, s) and V ∼

Gamma(v/s, s/v).190

Therefore, GST (m, s,∞) = GG(m, s) and the test’s power must decrease with respect to v, which

is confirmed by our Monte Carlo simulations. Their results are illustrated by Figure 13.
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Figure 13: Empirical power function of the test for s = 1.5 on GST (m, s, v) distributions (M = 1000 repetitions).
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Appendix A. Bounds on Shannon entropy

Below, we present some essentials about bounds of the Shannon entropy. First, we show that there

exist densities such that −∞ = H(f) < ∞. We modify an example of (Gnedenko and Kolmogorov,

1954, p.223). For other examples, see Barron (1986).

Example 1. Let m = 1 and consider the density

f(x) =
[
x log2 e

x

]−1
1[0,1](x), x ∈ R. (A.1)

If X is random variable with density (A.1), then for s = 1

EX = E|X| =
∫ 1

0

[
log2 e

x

]−1
dx = 1− E1(1) ' 0.40365..., (A.2)

where

Ep(z) = zp−1Γ(1− p, z) = zp−1
∫ ∞
z

e−zt

tp
dt, p > 0, z ≥ 0,

is the generalized exponential integral. Thus, by Theorem 1 with m = 1 and s = 1,

H(f) ≤ log [2eE|X|] ' 0.8073.

From the other hand,

H(f) = −
∫ 1

0

[
x log2 e

x

]−1
log
[
x log2 e

x

]−1
dx = −∞.

Example 2. For m ≥ 2, the similar properties has the density

f(x) = c2(m)

[
‖x‖m log2 e

‖x‖

]−1
1B1(0)(x), x ∈ Rm,

where c2(m) = Γ(m2 )/(2πm/2). That is f has finite moments but H(f) = −∞.310

Second, we give an example of density with H(f) = +∞.

Example 3. Let random variable X have density (A.1). Then the density of Y = X−1 is

f(x) =
[
x log2(ex)

]−1
1[1,+∞)(x), x ∈ R (A.3)

and for any s > 0

E|Y |s =

∫ +∞

1

xs

x(1 + log x)2
dx = +∞. (A.4)
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The entropy of f equals

H(f) =

∫ +∞

1

log x+ 2 log(1 + log x)

x(1 + log x)2
dx =

∫ +∞

1

dx

x(1 + log x)
dx+

∫ +∞

1

log log2(ex)
e

x log2(ex)
dx

=

∫ +∞

1

dy

y
dy +

2√
e

∫ +∞

1/
√
e

log z

z2
dz = +∞.

For further examples and conditions when an entropy is finite, see Baccetti and Visser (2013).

If a random vector X in Rm has a bounded density f with ‖f‖∞ = supx∈Rm f(x) <∞, then there

is a lower bound for its entropy (Bobkov and Madiman, 2011).

1

m
H(f) ≥ log ‖f‖−1/m∞ . (A.5)

If, in addition, f is log-concave (that is, log f is concave), then

log ‖f‖−1/m∞ ≤ 1

m
H(f) ≤ 1 + log ‖f‖−1/m∞ .

Moreover, provided the existence of p-th moment E‖X‖p < ∞, p ≥ 1, one has for a log-concave

density f, see Marsiglietti and Kostina (2018),

H(f) ≥ 1

p
log

2pE‖X − E[X]‖p

Γ(1 + p)
. (A.6)

If m = 1, then for a symmetric log-concave random variable X

H(f) ≥ 1

p
log

2pE‖X‖p

Γ(p+ 1)
, p > −1. (A.7)

If a symmetric log-concave random vector on Rm has finite second moments, then

H(f) ≥ m

2
log

(det Σx)1/m

c5(m)
, (A.8)

where Σx = E
[
(X − EX)(X − EX)T

]
denotes the the covariance matrix of X and

c3(m) =
e2m2

4
√

2(m+ 2)
. (A.9)

Recently, bounds (A.6)–(A.8) have been improved by Madiman et al. (2021). Further useful inequal-

ities on the Shannon entropy can be found in (Fradelizi et al., 2020).

Constant c3(m) can be improved in the case of unconditional random vectors. A function f :

Rm → Rm is called unconditional if for every (x1, . . . , xm) ∈ Rm and (ε1, . . . , εm) ∈ {−1, 1}m, one

has

f(ε1x1, . . . , εmxm) = f(x1, . . . , xm).

For example, the density of standard isotropic Gaussian vector is unconditional. Thus, if X is uncon-

ditional, symmetric, and log-concave, then

c3(m) = e2/2. (A.10)

The constant (A.10) is better than the constant (A.9) for m ≥ 5.315
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