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Abstract
Let Zn = {Z1, . . . , Zn} be a design; that is, a collection of n points Z j ∈ [−1, 1]d .
We study the quality of quantisation of [−1, 1]d by the points of Zn and the problem
of quality of coverage of [−1, 1]d byBd(Zn, r), the union of balls centred at Z j ∈ Zn .
We concentrate on the cases where the dimension d is not small, d ≥ 5, and n is not
too large, n ≤ 2d . We define the design Dn,δ as a 2d−1 design defined on vertices of
the cube [−δ, δ]d , 0 ≤ δ ≤ 1. For this design, we derive a closed-form expression
for the quantisation error and very accurate approximations for the coverage area
vol ([−1, 1]d ∩ Bd(Zn, r)).We provide results of a large-scale numerical investigation
confirming the accuracy of the developed approximations and the efficiency of the
designs Dn,δ .

Keywords Covering · Quantisation · Facility location · Space-filling · Computer
experiments · High dimension · Voronoi set
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1 Introduction

1.1 Main Notation

– ‖ · ‖: the Euclidean norm;
– Bd(Z , r) = {Y ∈ R

d : ‖Y − Z‖ ≤ r}: d-dimensional ball of radius r centered at
Z ∈ R

d ;
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– Zn = {Z1, . . . , Zn}: a design; that is, a collection of n points Z j ∈ R
d ;

– Bd(Zn, r) = ⋃n
j=1 Bd(Z j , r);

– Cd(Zn, r) = vol ([−1, 1]d ∩ Bd(Zn, r))/2d : the proportion of the cube [−1, 1]d
covered by Bd(Zn, r);

– vectors in Rd are row-vectors;
– for any a ∈ R, a = (a, a, . . . , a) ∈ R

d .

1.2 Main Problems of Interest

We will study the following two main characteristics of designs Zn = {Z1, . . . , Zn}
⊂ R

d .

1. Quantization error. Let X = (x1, . . . , xd) be uniform random vector on [−1, 1]d .
The mean squared quantisation error for a design Zn is defined by

θ(Zn) = EX�2(X ,Zn), where �2(X ,Zn) = min
Zi∈Zn

‖X − Zi‖2. (1)

2. Weak covering. Denote the proportion of the cube [−1, 1]d covered by the union
of n balls Bd(Zn, r) = ⋃n

j=1 Bd(Z j , r) by

Cd(Zn, r) := vol ([−1, 1]d ∩ Bd(Zn, r))

2d
.

For given radius r > 0, the union of n balls Bd(Zn, r)makes the (1−γ )-coverage
of the cube [−1, 1]d if

Cd(Zn, r) = 1 − γ. (2)

Complete coverage corresponds to γ = 0. In this paper, the complete coverage of
[−1, 1]d will not be enforced and we will mostly be interested in weak covering,
that is, achieving (2) with some small γ > 0.

Two n-point designs Zn and Z
′
n will be differentiated in terms of performance as

follows: (a) Zn dominates Z′
n for quantisation if θ(Zn) < θ(Z′

n); (b) if for a given
γ ≥ 0, Cd(Zn, r1) = Cd(Z

′
n, r2) = 1 − γ and r1 < r2, then the design Zn provides

a more efficient (1 − γ )-coverage than Z
′
n and is therefore preferable. In Sect. 1.4

we extend these definitions by allowing the two designs to have different number of
points and, moreover, to have different dimensions.

Numerical construction of n-point designs with moderate values of n with good
quantisation and coverage properties has recently attracted much attention in view
of diverse applications in several fields including computer experiments [7, 8, 11],
global optimization [15], function approximation [12, 13], and numerical integration
[9]. Such designs are often referred to as space-filling designs. Readers can find many
additional references in the citations above. Unlike the exiting literature on space-
filling, we concentrate on theoretical properties of a family of very efficient designs
and derivation of accurate approximations for the characteristics of interest.
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1.3 Relation Between Quantisation andWeak Coverage

The two characteristics, Cd(Zn, r) and θ(Zn), are related: Cd(Zn, r), as a function
of r ≥ 0, is the c.d.f. of the r.v. �(X ,Zn) while θ(Zn) is the second moment of the
distribution with this c.d.f.:

θ(Zn) =
∫

r≥0
r2dCd(Zn, r). (3)

In particular, this yields that if an n-point design Z
∗
n maximises, in the set of all n-

point designs, Cd(Zn, r) for all r > 0, then it also minimises θ(Zn). Moreover, if r.v.
�(X ,Zn) stochastically dominates �(X ,Z′

n), so that Cd(Z
′
n, r) ≤ Cd(Zn, r) for all

r ≥ 0 and the inequality is strict for at least one r , then θ(Zn) < θ(Z′
n).

The relation (3) can alternatively be written as

θ(Zn) =
∫

r≥0
r dCd(Zn,

√
r), (4)

where Cd(Zn,
√
r), considered as a function of r , is the c.d.f. of the r.v. �2(X ,Zn)

and hence θ(Zn) is the mean of this r.v. Relation (4) is simply another form of (1).

1.4 Re-NormalisedVersions and Formulation of Optimal Design Problems

In view of (13), the naturally defined re-normalised version of θ(Zn) is Qd(Zn) =
n2/dθ(Zn)/(4d). From (4) and (3), Qd(Zn) is the expectation of n2/d�2(X ,Zn)/(4d)

and the second moment of the r.v. n1/d�(X ,Zn)/(2
√
d) respectively. This suggests

the following re-normalization of the radius r with respect to n and d:

R = n1/dr

2
√
d

. (5)

We can then define optimal designs as follows. Let d be fixed, Zn = {Zn} be the set
of all n-point designs and Z = ⋃∞

n=1Zn be the set of all designs.

Definition 1.1 The design Z∗
m with some m is optimal for quantisation in [−1, 1]d , if

Qd(Z
∗
m) = min

n
min

Zn∈Zn

Qd(Zn) = min
Z∈Z

Qd(Z). (6)

Definition 1.2 The designZ∗
m with somem is optimal for (1−γ )-coverage of [−1, 1]d ,

if

R1−γ (Z∗
m) = min

n
min

Zn∈Zn

R1−γ (Zn) = min
Z∈Z

R1−γ (Z). (7)

Here 0 ≤ γ ≤ 1 and for a given design Zn ∈ Zn ,

R1−γ (Zn) = n1/dr1−γ (Zn)

2
√
d

, (8)
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where r1−γ (Zn) is defined as the smallest r such that Cd(Zn, r) = 1 − γ .

Importance of the factor
√
d in (5) will be seen in Sect. 3.5 where we shall study the

asymptotical behaviour of (1 − γ )-coverings for large d.

1.5 Thickness of Covering

Let γ = 0 in Definition 1.2. Then r1(Zn) is the covering radius associated with Zn so
that the union of the balls Bd(Zn, r) with r = r1(Zn) makes a coverage of [−1, 1]d .
Let us tile up the whole space R

d with the translations of the cube [−1, 1]d and
corresponding translations of the balls Bd(Zn, r). This would make a full coverage
of the whole space; denote this space coverage by Bd(Z(n), r). The thickness Θ of
any space covering is defined, see [1, (1), Chap. 2], as the average number of balls
containing a point of the whole space. In our case of Bd(Z(n), r), the thickness is

Θ(Bd(Z(n), r)) = n vol(Bd(0, r))

vol([−1, 1]d) = nrd vol(Bd(0, 1))

2d
.

The normalised thickness, θ , is the thickness Θ divided by vol(Bd(0, 1)), the volume
of the unit ball, see [1, (2), Chap. 2]. In the case ofBd(Z(n), r), the normalised thickness
is

θ(Bd(Z(n), r)) = nrd

2d
= dd/2 [R1(Z(n))]d ,

where we have recalled that r = r1(Zn) and R1−γ (Zn) = n1/dr1−γ (Zn)/(2
√
d) for

any 0 ≤ γ ≤ 1. We can thus define the normalised thickness of the covering of the
cube by the same formula and extend it to any 0 ≤ γ ≤ 1:

Definition 1.3 Let Bd(Zn, r) be a (1 − γ )-coverage of the cube [−1, 1]d with 0 ≤
γ ≤ 1. Its normalised thickness is defined by

θ(Bd(Zn, r)) = (
√
d R)d , (9)

where R = n1/dr/(2
√
d), see (5).

In view of (9), we can reformulate the definition (7) of the (1 − γ )-covering optimal
design by saying that this design minimises (normalised) thickness in the set of all
(1 − γ )-covering designs.

1.6 The Design of theMain Interest

We will be mostly interested in the following n-point design Zn = Dn,δ defined only
for n = 2d−1:

Design Dn,δ: a 2d−1 design defined on vertices of the cube [−δ, δ]d , 0 ≤ δ ≤ 1.
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For theoretical comparisonwith designDn,δ , we shall consider the following simple
design, which extends to the integer point lattice Zd (shifted by 1/2) in the whole
space Rd :

Design D
(0)
n : the collection of 2d points (±1/2, . . . ,±1/2), all vertices of the cube

[−1/2, 1/2]d .
Without loss of generality, while considering the design Dn,δ we assume that the

point Z1 ∈ Dn,δ = {Z1, . . . , Zn} is Z1 = δ = (δ, . . . , δ). Similarly, the first point
in D

(0)
n is Z1 = 1/2 = (1/2, . . . , 1/2). Note also that for numerical comparisons, in

Sect. 4 we shall introduce one more design.
The design Dn,1/2 extends to the lattice Dd (shifted by 1/2) containing points

X = (x1, . . . , xd) with integer components satisfying x1 + . . . + xd = 0 (mod 2),
see [1, Sect. 7.1, Chap. 4]; this lattice is sometimes called “checkerboard lattice”.
The motivation to theoretically study the design Dn,δ is a consequence of numerical
results reported in [14] and [4], where the present authors have considered n-point
designs in d-dimensional cubes providing good coverage and quantisation and have
shown that for all dimensions d ≥ 7, the design Dn,δ with suitable δ provides the best
quantisation and coverage per point among all other designs considered. Aiming at
practical applications mentioned in Sect. 1.2, our aim was to consider the designs with
n which is not too large and in any case does not exceed 2d .

If the number of points n in a design is much larger than 2d , then we may use the
following scheme of construction of efficient quantisers in the cube [−1, 1]d : (a) con-
struct one of the very efficient lattice space quantisers, see [1, Sect. 3, Chap. 2], (b) take
the lattice points belonging to a very large cube, and (c) scale the chosen large cube
to [−1, 1]d . In view of [2, Thm. 8.9], as n → ∞, the normalised quantisation error
Qd(Zn) of the sequence of resulting designs Zn converges to the respective quan-
tisation error of the lattice space quantiser. However, for any given n the study of
quantisation error of such designs is difficult (both, numerically and theoretically) as
there could be several non-congruent types of Voronoi cells due to boundary condi-
tions. Note also that the boundary conditions make significant difference in relative
efficiencies of the resulting designs. In particular, the checkerboard lattice Dd is better
than the integer-point lattice Zd for all d ≥ 3 as a space quantiser and becomes the
best lattice space quantiser for d = 4 but in the case of cube [−1, 1]d , the design Dn,δ

(with optimal δ) makes a better quantiser than D
(0)
n for d ≥ 7 only; see Sect. 2.4 for

theoretical and numerical comparison of the two designs.

1.7 Structure of the Rest of the Paper and theMain Results

In Sect. 2 we study Qd(Dn,δ), the normalised mean squared quantisation error for the
design Dn,δ . There are two important results, Theorems 2.2 and 2.3. In Theorem 2.2,
we derive the explicit form for the Voronoi cells for the points of the design Dn,δ and
in Theorem 2.3 we derive a closed-form expression for Qd(Dn,δ) for any δ > 0. As a
consequence, in Corollary 2.4 we determine the optimal value of δ.

Themain result of Sect. 3 is Theorem 3.2, where we derive closed-form expressions
(in terms ofCd,Z ,r , the fraction of the cube [−1, 1]d covered by a ballBd(Z , r)) for the

123



Discrete & Computational Geometry (2022) 68:540–565 545

coverage area with vol ([−1, 1]d ∩ Bd(Zn, r)). Then, using accurate approximations
for Cd,Z ,r , we derive approximations for vol ([−1, 1]d ∩ Bd(Zn, r)). In Theorem 3.4
we derive asymptotic expressions for the (1−γ )-coverage radius for the designDd,1/2
and show that for any γ > 0, the ratio of the (1−γ )-coverage radius to the 1-coverage
radius tends to 1/

√
3 as d → ∞. Numerical results of Sect. 3.5 confirm that even for

rather small d, the 0.999-coverage radius is much smaller than the 1-coverage radius
providing the full coverage.

In Sect. 4 we demonstrate that the approximations developed in Sect. 3 are very
accurate and make a comparative study of selected designs used for quantisation and
covering.

InAppendicesA–C,we provide proofs of themost technical results. InAppendixD,
for completeness, we briefly derive an approximation for Cd,Z ,r with arbitrary d, Z ,
and r .

The two most important contributions of this paper are: a) derivation of the closed-
form expression for the quantisation error for the design Dn,δ , and b) derivation
of accurate approximations for the coverage area vol ([−1, 1]d ∩ Bd(Zn, r)) for the
design Dn,δ .

2 Quantisation

2.1 Reformulation in Terms of the Voronoi Cells

Consider any n-point designZn = {Z1, . . . , Zn}. The Voronoi cell V (Zi ) for Zi ∈ Zn

is defined as

V (Zi ) = {x ∈ [−1, 1]d : ‖Zi − x‖ ≤ ‖Z j − x‖ for j 
= i}.

The mean squared quantisation error θ(Zn) introduced in (1) can be written in terms
of the Voronoi cells as follows:

θ(Zn) = EX min
i=1,...,n

‖X − Zi‖2 = 1

vol([−1, 1]d)
n∑

i=1

∫

V (Zi )
‖X − Zi‖2dX , (10)

where X = (x1, . . . , xd) and dX = dx1dx2 . . . dxd .
This reformulation has significant benefit when the design Zn has certain structure.

In particular, if all of the Voronoi cells V (Zi ), i = 1, . . . , n, are congruent, then we
can simplify (10) to

θ(Zn) = 1

vol(V (Z1))

∫

V (Z1)

‖X − Z1‖2dX . (11)

In Sect. 2.4, this formula will be the starting point for derivation of the closed-form
expression for θ(Zn) for the design Dn,δ .
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2.2 Re-Normalisation of the Quantisation Error

To compare efficiency of n-point designs Zn with different values of n, one must
suitably normalise θ(Zn) with respect to n. Specialising a classical characteristic for
quantisation in space, as formulated in [1, (86), Chap. 2], we obtain

Qd(Zn) = 1

d
· (1/n)

∑n
i=1

∫
V (Zi )

‖X − Zi‖2 dX
[
(1/n)

∑n
i=1 vol(V (Zi ))

]1+2/d . (12)

Note that Qd(Zn) is re-normalised with respect to dimension d too, not only with
respect ton. Normalization 1/d with respect tod is very natural in viewof the definition
of the Euclidean norm. Using (10), for the cube [−1, 1]d , (12) can be expressed as

Qd(Zn) = n2/dθ(Zn)

d
[∑n

i=1 vol(V (Zi ))
]2/d = n2/dθ(Zn)

d vol([−1, 1]d)2/d = n2/d

4d
θ(Zn). (13)

2.3 Voronoi Cells forDn,ı

Proposition 2.1 Consider thedesignD(0)
n,δ , the collectionof n=2d points (±δ, . . . ,±δ),

0 < δ<1. The Voronoi cells for this design are all congruent. The Voronoi cell for the
point δ = (δ, δ, . . . , δ) is the cube

C0 = {X = (x1, . . . , xd) ∈ R
d : 0 ≤ xi ≤ 1, i = 1, 2, . . . , d}. (14)

Proof Consider theVoronoi cells created by the designD(0)
n,δ in thewhole spaceR

d . For
the point δ = (δ, δ, . . . , δ), the Voronoi cell is clearly {X = (x1, . . . , xd) : xi ≥ 0}.
By intersecting this set with the cube [−1, 1]d we obtain (14). ��
Theorem 2.2 The Voronoi cells of the design Dn,δ = {Z1, . . . , Zn} are all congruent.
The Voronoi cell for the point Z1 = δ = (δ, δ, . . . , δ) ∈ R

d is

V (Z1) = C0 ∪
d⋃

j=1

Uj , (15)

where C0 is the cube (14) and

U j = {X = (x1, x2, . . . , xd) ∈ R
d : −1 ≤ x j ≤ 0, |x j | ≤ xk ≤ 1 for all k 
= j}.

(16)

The volume of V (Z1) is vol(V (Z1)) = 2.

Proof The design Dn,δ is symmetric with respect to all components implying that all
n = 2d−1 Voronoi cells are congruent immediately yielding that their volumes equal 2.
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Consider V (Z1) with Z1 = δ. Since Dn,δ ⊂ D
(0)
n,δ , where design D

(0)
n,δ is introduced in

Proposition 2.1, and C0 is the Voronoi set of δ for design D(0)
n,δ , C0 ⊂ V (δ) for design

Dn,δ too. Consider the d cubes adjacent to C0:

C j = {X = (x1, x2, . . . , xd) ∈ R
d : −1 ≤ x j ≤ 0, 0 ≤ xi ≤ 1 for all i 
= j};

(17)

j = 1, . . . , d. A part of each cubeC j belongs to V (Z1). This part is exactly the setUj

defined by (16). This can be seen as follows. A part of C j also belongs to the Voronoi
set of the point X jk = δ − 2δe j − 2δek , where el = (0, . . . , 0, 1, 0, . . . , 0) with 1
placed at l-th place; all components of X jk are δ except j-th and k-th components
which are −δ. We have to have |x j | ≤ xk , for a point X ∈ C j to be closer to Z1 than
to X jk . Joining all constraints for X = (x1, x2, . . . , xd) ∈ C j (k = 1, . . . , d, k 
= j)
we obtain (16) and hence (15). ��

2.4 Explicit Formulae for the Quantisation Error

Theorem 2.3 For the design Dn,δ with 0 ≤ δ ≤ 1, we obtain

θ(Dn,δ) = d

(

δ2 − δ + 1

3

)

+ 2δ

d + 1
, (18)

Qd(Dn,δ) = 2−2/d
(

δ2 − δ + 1

3
+ 2δ

d(d + 1)

)

. (19)

Proof To compute θ(Dn,δ), we use (11), where, in view of Theorem 2.2, vol(V (Z1))

= 2. Using the expression (15) for V (Z1) with Z1 = δ, we obtain

θ(Zn) = 1

2

∫

V (Z1)

‖X − Z1‖2 dX

= 1

2

[∫

C0

‖X − Z1‖2 dX + d
∫

U1

‖X − Z1‖2 dX
]

.

(20)

Consider the two terms in (20) separately. The first term is easy:

∫

C0

‖X − Z1‖2 dX =
∫

C0

d∑

i=1

(xi − δ)2dx1 . . . dxd

= d
∫ 1

0
(x − δ)2dx = d

(

δ2 − δ + 1

3

)

.

(21)

123



548 Discrete & Computational Geometry (2022) 68:540–565

For the second term we have

∫

U1

‖X − Z1‖2 dX =
∫ 0

−1

[∫ 1

|x1|
. . .

∫ 1

|x1|

d∑

i=1

(xi − δ)2dx2 . . . dxd

]

dx1

=
∫ 0

−1
(x1 − δ)2(1 + x1)

d−1dx1

+ (d − 1)
∫ 0

−1
(1 + x1)

d−2
∫ 1

|x1|
(x2 − δ)2dx2 dx1

= δ2 − δ + 1

3
+ 4δ

d(d + 1)
.

(22)

Inserting the obtained expressions into (20) we obtain (18). The expression (19) is a
consequence of (13), (18), and n = 2d−1. ��
A simple consequence of Theorem 2.3 is the following corollary.

Corollary 2.4 The optimal value of δ minimising θ(Dn,δ) and Qd(Dn,δ) is

δ∗ = 1

2
− 1

d(d + 1)
; (23)

for this value,

Qd(Dn,δ∗) = min
δ

Qd(Dn,δ) = 2−2/d
[
1

12
+ d2 + d − 1

(d + 1)2d2

]

. (24)

Let us make several remarks.

1. The value δ∗ can be alternatively characterised by the well-known optimality con-
dition of a general design saying that each design point of an optimal quantiser must
be a centroid of the related Voronoi cell; see e.g. [10]. Specifically, each design
point Zi ∈ Dn,δ is the centroid of V (Zi ) if and only if δ = δ∗.

2. From (19), for the design Dn,1/2 we get

Qd(Dn,1/2) = 2−2/d
[
1

12
+ 1

(d + 1)d

]

; (25)

this value is always slightly larger than (24).
3. For the one-point designD(0) = {0}with the single point 0 and the designD(0)

n with
n = 2d points (±1/2, . . . ,±1/2) we have Qd(D

(0)) = Qd(D
(0)
n ) = 1/12, which

coincides with the value of Qd in the case of space quantisation by the integer-point
lattice Zd , see [1, Chaps. 2 and 21].

4. The quantisation error (25) for the designDn,1/2 have almost exactly the same form
as the quantisation error for the ‘checkerboard lattice’ Dd in R

d ; the difference
is in the factor 1/2 in the last term in (25), see [1, (27), Chap. 21]. Naturally,
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Fig. 1 Qd (Dn,δ∗ ) and Qd (Dn,1/2) as functions of d and Qd (D
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Fig. 2 Qd (Dn,δ) as a function of δ and Qd (D
(0)
n ) = 1/12; d = 10

the quantisation error Qd for Dd in R
d is slightly smaller than Qd for Dn,1/2 in

[−1, 1]d .
5. The optimal value of δ in (23) is smaller than 1/2. This is caused by a non-

symmetrical shape of the Voronoi cells V (Z j ) for designs Dn,δ , which is clearly
visible in (15).

6. The minimal value of Qd(Dn,δ∗) with respect to d is attained at d = 15.
7. Formulae (23) and (24) are in agreement with numerical results presented in Table 4

of [14] and Table 5 of [4].

Let us now briefly illustrate the results above. In Fig. 1, the black circles depict the
quantity Qd(Dn,δ∗) as a function of d. The quantity Qd(D

(0)
n ) = 1/12 is shown with

the solid red line. We conclude that from dimension seven onwards, the design Dn,δ∗

provides better quantisation per points than the design D
(0)
n . Moreover, for d > 15,

the quantity Qd(Dn,δ∗) slowly increases and converges to 1/12. Typical behaviour of
Qd(Dn,δ) as a function of δ is shown in Fig. 2. This figure demonstrates the significance
of choosing δ optimally.

3 Closed-Form Expressions for the Coverage Area withDn,ı and
Approximations

In this section, we will derive explicit expressions for the coverage area of the cube
[−1, 1]d by the union of the balls Bd(Dn,δ, r) associated with the design Dn,δ intro-
duced in Sect. 1.2. That is, we will derive expressions for the quantity Cd(Dn,δ, r) for

123



550 Discrete & Computational Geometry (2022) 68:540–565

all values of r . Then, in Sect. 3.3, we shall obtain approximations forCd(Dn,δ, r). The
accuracy of the approximations will be assessed in Sect. 4.2.

3.1 Reduction to Voronoi Cells

For an n-point design Zn = {Z1, . . . , Zn}, denote the proportion of the Voronoi cell
around Zi covered by the ball Bd(Zi , r) as

Vd,Zi ,r := vol (V (Zi ) ∩ Bd(Zi , r))

vol(V (Zi ))
.

The following lemma is straightforward.

Lemma 3.1 Consider a design Zn = {Z1, . . . , Zn} such that all Voronoi cells V (Zi )

are congruent. Then for any Zi ∈ Zn, Cd(Zn, r) = Vd,Zi ,r .

In view of Theorem 2.2, for design Dn,δ all Voronoi cells V (Zi ) are congruent and
vol(V (Zi )) = 2; recall that n = 2d−1. By then applying Lemma 3.1 and without loss
of generality we have chosen Z1 = δ = (δ, δ, . . . , δ) ∈ R

d , we have for any r > 0

Vd,δ,r = vol (V (δ) ∩ Bd(δ, r))

2
= Cd(Dn,δ, r). (26)

In order to formulate explicit expressions for Vd,δ,r , we need the important quantity,
proportion of intersection of [−1, 1]d with one ball. Take the cube [−1, 1]d and a ball
Bd(Z , r) = {Y ∈ R

d : ‖Y − Z‖ ≤ r} centred at a point Z = (z1, . . . , zd) ∈ R
d ; this

point Z could be outside [−1, 1]d . The fraction of the cube [−1, 1]d covered by the
ball Bd(Z , r) is denoted by

Cd,Z ,r = vol ([−1, 1]d ∩ Bd(Z , r))

2d
.

3.2 Expressing Cd(Dn,ı, r) Through Cd,Z,r

Theorem 3.2 Depending on the values of r and δ, the quantity Cd(Dn,δ, r) can be
expressed through Cd,Z ,r for suitable Z as follows.

– For r ≤ δ:

Cd(Dn,δ, r) = Cd,2δ−1,2r

2
. (27)

– For δ ≤ r ≤ 1 + δ:

Cd(Dn,δ, r) = 1

2

[

Cd,2δ−1,2r + d
∫ r−δ

0
C
d−1, 2δ−1−t

1−t ,
2
√

r2−(t+δ)2
1−t

(1 − t)d−1 dt

]

.

(28)
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– For r ≥ 1 + δ:

Cd(Dn,δ, r) = 1

2

[

Cd,2δ−1,2r + d
∫ 1

0
C
d−1, 2δ−1−t

1−t ,
2
√

r2−(t+δ)2
1−t

(1 − t)d−1dt

]

.

(29)

The proof of Theorem 3.2 is given in Appendix A.

3.3 Approximation for Cd(Dn,ı, r)

Accurate approximations for Cd,Z ,r for arbitrary d, Z , and r were developed in [14].
By using the general expansion in the central limit theorem for sums of independent
non-identical r.v., the following approximation was developed:

Cd,Z ,r ∼= Φ(t) + ‖Z‖2 + d/63

5
√
3(‖Z‖2 + d/15)3/2

(1 − t2)ϕ(t), (30)

where

t =
√
3(r2 − ‖Z‖2 − d/3)

2
√‖Z‖2 + d/15

.

A short derivation of this approximation is included in Appendix D. Using (30), we
formulate the following approximation for Cd(Dn,δ, r).

Approximations for Cd(Dn,δ, r). Approximate the values C·,·,· in formulae (27),
(28), and (29) with corresponding approximations (30).

3.4 Simple Bounds for Cd(Dn,ı, r)

Lemma 3.3 For any r ≥ 0, 0 < δ < 1, and δ = (δ, δ, . . . , δ) ∈ R
d , the quantity

Cd(Dn,δ, r) can be bounded as follows:

Cd,2δ−1,2r + Cd,A,2r

2
≤ Cd(Dn,δ, r) ≤ Cd,2δ−1,2r , (31)

where A = (2δ + 1, 2δ − 1, . . . , 2δ − 1) ∈ R
d .

The proof of Lemma 3.3 is given in Appendix B. In Figs. 3 and 4, using the approxima-
tion given in (30) we study the tightness of the bounds given in (31). In these figures,
the dashed red line, dashed blue line and solid black line depict the upper bound, the
lower bound and the approximation forCd(Dn,δ, r) respectively.We see that the upper
bound is very sharp across r and d; this behaviour is not seen with the lower bound.
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Fig. 3 Cd (Dn,δ, r) with upper and lower bounds: d = 20
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Fig. 4 Cd (Dn,δ, r) with upper and lower bounds: d = 100

3.5 ‘Do Not Try to Cover the Vertices’

In this section, we theoretically support the recommendation ‘do not try to cover the
vertices’ which was first stated in [14] and supported in [4] on the basis of numerical
evidence. In other words, we will show on the example of the design Dn,1/2 that in
large dimensions the attempt to cover the whole cube rather than 0.999 of it leads to
a dramatic increase of the required radius of the balls.

Theorem 3.4 Let γ be fixed, 0 ≤ γ ≤ 1. Consider (1 − γ )-coverings of [−1, 1]d
generated by the designsDn,δ and the associated normalised radii R1−γ (Dn,δ), see (8).
For any 0 < γ < 1 and 0 ≤ δ ≤ 1, the limit of R1−γ (Dn,δ), as d → ∞, exists and
achieves minimal value for δ = 1/2. Moreover, R1−γ (Dn,1/2)/R1(Dn,1/2) → 1/

√
3

as d → ∞, for any 0 < γ < 1.

Proof is given in Appendix C.

In Figs. 5 and 6 using a solid red line we depict the approximation of Cd(Dn,1/2, r)
as a function of R = n1/dr/(2

√
d), see (5). The vertical green line illustrates the value

of R0.999 and the vertical blue line depicts R1 = n1/d
√
d + 8/(4

√
d). These figures

illustrate that as d increases, for all γ we have R1−γ /R1 slowly tending to 1/
√
3. From

the proof of Theorem 3.4, it transpires that Cd(Dn,δ, r) as a function of R converges
to the jump function with the jump at 1/(2

√
3).
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Fig. 5 Cd (Dn,1/2, r) with R0.999 and R1: d = 5
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Fig. 6 Cd (Dn,1/2, r) with R0.999 and R1: d = 50

4 Numerical Studies

For comparative purposes, we introduce another design which is one of the most
popular designs (both, for quantisation and covering) considered in applications.

Design Sn : Z1, . . . , Zn are taken from a low-discrepancy Sobol’s sequence on the
cube [−1, 1]d .

For constructing the design Sn , we use the R-implementation provided in the well-
known ‘SobolSequence’ package [3]. For Sn , we have set n = 1024 and F2 = 10
(an input parameter for the Sobol sequence function). Sobol sequences Sn attain their
best space-filling properties when n is a power of 2; that is, when n = 2	 for some
integer 	. We have chosen 	 = 10. As we study renormalised characteristics Qd( · )
and R1−γ ( · ) of designs, exact value of 	 for Sn with n = 2	 is almost irrelevant: in
particular, numerically computed values Qd(S2	 ) and R1−γ (S2	 ) for 	 = 8, 9, 11, 12
are almost indistinguishable from the corresponding values for 	 = 10 provided below
in Tables 1 and 2. By varying values of 	, we are not improving space-filling properties
of S2	 . In fact, increase of 	 generally leads to a slight deterioration of normalised
space-filling characteristics (including Qd( · ) and R1−γ ( · )) of Sobol sequences.
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4.1 Quantisation andWeak Covering Comparisons

In Table 1, we compare the normalised mean squared quantisation error Qd(Zn)

defined in (13) across three designs: Dn,δ∗ with δ∗ given in (23), D(0)
n and Sn . In

Table 2, we compare the normalised statistic R1−γ introduced in (7), where we have

fixed γ = 0.01. For designs Dn,δ (with the optimal value of δ), Dn,1/2 and D
(0)
n we

have also included R1, the smallest normalised radius that ensures the full coverage.
Let us make some remarks concerning Tables 1 and 2.

– In conjunction with Fig. 1, Table 1 shows that for d ≥ 7, the quantisation for
design Dn,δ∗ is superior over all other designs considered.

– For the weak coverage statistic R1−γ , the superiority of Dn,δ with optimal δ over
all other designs considered is seen for d ≥ 10.

– For the designs Dn,δ , the optimal value of δ minimising R1−γ depends on γ .
– From remark 6 of Sect. 2.4, the minimal value of Qd(Dn,δ∗) with respect to d is
attained at d = 15. For d > 15, the quantity Qd(Dn,δ∗) increases with d, slowly
converging to Qd(D

(0)
n ) = 1/12. This non-monotonic behaviour can be seen in

Table 1.
– Unlike the case of Qd(Dn,δ∗), such non-monotonic behaviour is not seen for the
quantity R1−γ and R1−γ (Dn,δ) monotonically decreases as d increases. Also,
Theorem 3.4 implies that for any γ ∈ (0, 1), R1−γ (Dn,δ) → 1/(2

√
3) ∼= 0.289

as d → ∞.

Table 1 Normalised mean squared quantisation error Qd for three designs and different d

d = 5 d = 7 d = 10 d = 15 d = 20

Qd (Dn,δ∗ ) 0.0876 0.0827 0.0804 0.0798 0.0800

Qd (D
(0)
n ) 0.0833 0.0833 0.0833 0.0833 0.0833

Qd (Sn) 0.0988 0.1003 0.1022 0.1060 0.1086

Table 2 Normalised statistic R1−γ across d with γ = 0.01 (value in brackets corresponds to optimal δ)

d = 5 d = 7 d = 10 d = 15 d = 20

R1−γ (Dn,δ) 0.4750 (0.54) 0.3992 (0.53) 0.3635 (0.52) 0.3483 (0.51) 0.3417 (0.50)

R1−γ (Dn,1/2) 0.4765 0.4039 0.3649 0.3484 0.3417

R1−γ (D
(0)
n ) 0.4092 0.3923 0.3766 0.3612 0.3522

R1−γ (Sn) 0.4714 0.4528 0.4256 0.4074 0.3967

R1(Dn,δ) 0.6984 (0.54) 0.6555 (0.53) 0.6178 (0.52) 0.5856 (0.51) 0.5714 (0.50)

R1(Dn,1/2) 0.7019 0.6629 0.6259 0.5912 0.5714

R1(D
(0)
n ) 0.5000 0.5000 0.5000 0.5000 0.5000
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Fig. 7 Cd (Dn,δ, r) and its approximation: d = 5, r from 0.7 to 1.1 increasing by 0.1
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Fig. 8 Cd (Dn,δ, r) and its approximation: d = 10, r from 0.95 to 1.15 increasing by 0.05

4.2 Accuracy of Covering Approximation and Dependence on ı

In this section, we assess the accuracy of the approximation of Cd(Dn,δ, r) developed
in Sect. 3.3 and the behaviour of Cd(Dn,δ, r) as a function of δ. In Figs. 7, 8, 9, and
10, the thick dashed black lines depict Cd(Dn,δ, r) for several different choices of r ;
these values are obtained via Monte Carlo simulations. The thinner solid lines depict
its approximation of Sect. 3.3. These figures show that the approximation is extremely
accurate for all r , δ, and d; we emphasise that the approximation remains accurate
even for very small dimensions like d = 3. These figures also clearly demonstrate the
δ-effect saying that a significantly more efficient weak coverage can be achieved with
a suitable choice of δ. This is particularly evident in higher dimensions, see Figs. 9
and 10.

Figs. 11 and 12 illustrate Theorem 3.4 and show the rate of convergence of the
covering radii as d increases. Let the probability density function f (r) be defined by
dCd(Dn,δ, r) = f (r) dr , where Cd(Dn,δ, r) as a function of r is viewed as the c.d.f.
of the r.v. r = �(X ,Zn), see Sect. 1.3. Trivial calculations yield that the density for
the normalised radius R expressed by (5) is pd(R) := 2

√
d n−1/d f (2

√
d n−1/d R). In

Fig. 11, we depict the density pd( · ) for d = 5, 10, 20 with blue, red, and black lines
respectively. The respective c.d.f.’s

∫ R
0 pd(τ ) dτ are shown in Fig. 12 under the same

colouring scheme.
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Fig. 9 Cd (Dn,δ, r) and its approximation: d = 15, r from 1.15 to 1.35 increasing by 0.05
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Fig. 10 Cd (Dn,δ, r) and its approximation: d = 50, r from 2.05 to 2.35 increasing by 0.075
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Fig. 11 Densities fd (R) for the design Dn,δ∗ ; d = 5, 10, 20

4.3 Stochastic Dominance

In Figs. 13 and 14, we depict the c.d.f.’s for the normalised distance n1/d�(X ,Zn)/

(2
√
d) for two designs: Dn,δ∗ in red, and D

(0)
n in black. We can see that the design

Dn,δ∗ stochastically dominates the design D
(0)
n for d = 10 but for d = 5 the design

D
(0)
n is preferable to the design Dn,δ∗ although there is no clear domination; this is in

line with findings from Sects. 2.4 and 4.1, see e.g. Fig. 1, Tables 1 and 2.
In Fig. 15, we depict the c.d.f.’s for the normalised distance n1/d�(X ,Zn)/(2

√
d)

foresign D
(0)
n (in red) and design Sn (in black). We can see that for d = 5, the design

D
(0)
n stochastically dominates the design Sn . The style of Fig. 16 is the same as Fig. 15,
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Fig. 12 c.d.f.’s of R for the design Dn,δ∗ ; d = 5, 10, 20
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Fig. 13 d = 5: design D(0)
n is preferable to design Dn,δ∗
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Fig. 14 d = 10: design Dn,δ∗ stochastically dominates design D(0)
n

however we set d = 10 and the design D
(0)
n is replaced with the design Dn,δ∗ . Here

we see a very clear stochastic dominance of the design Dn,δ∗ over the design Sn . All
findings are consistent with findings from Sect. 4.1, see Tables 1 and 2.
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Appendix A: Proof of Theorem 3.2

In view of (26), Cd(Dn,δ, r) = Vd,δ,r for all 0 ≤ δ ≤ 1 and r ≥ 0 and we shall derive
expressions for Vd,δ,r rather than Cd(Dn,δ, r).

Case (a): r ≤ δ. To prove this case, we observe i) for this range of r , Bd(δ, r) ⊂
[0, 1]d ; ii) the fraction of a cube covered by a ball is preserved under invertible affine
transformations; iii) the affine transformation x �→ 2x − 1maps the ball Bd(δ, r) and
cube [0, 1]d to Bd(2δ − 1, 2r) and [−1, 1]d , respectively. This leads to

Vd,δ,r = vol (Bd(δ, r))

2 vol([0, 1]d) = vol (Bd(2δ − 1, 2r))
2 vol([−1, 1]d) = Cd,2δ−1,2r

2
.

Case (b): δ ≤ r ≤ 1 + δ. Using (15) we obtain

Vd,δ,r = vol (Bd(δ, r) ∩ C0) + d vol (Bd(δ, r) ∩U1)

2
.
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The first quantity in the numerator has been considered in case (a) and it is simply
Cd,2δ−1,2r . Therefore we aim to reformulate the second quantity within the brackets,
vol (Bd(δ, r) ∩U1). Denote by P(t) = {(x1, x2, . . . , xd) : x1 = t}, the (d − 1)-
dimensional hyperplane. Then

vol (Bd(δ, r) ∩U1) =
∫ 0

δ−r
vold−1(P(t) ∩ Bd(δ, r) ∩U1) dt .

Notice further that

U1 ∩ P(t) = {t} × [|t |, 1]d−1, for − 1 ≤ t ≤ 0,

Bd(δ, r) ∩ P(t) = {t} × Bd−1

(
δ,

√
r2 − (t − δ)2

)
for δ − r ≤ t ≤ 0, r ≥ δ,

(32)

where δ = (δ, . . . , δ) ∈ R
d−1 and the natural identification ofP(t)withRd−1 is used.

The r.h.s. in (32) are a (d − 1)-dimensional cube and ball respectively. Since covered
fraction is preserved under affine transformations inRd−1, it suffices to construct one,
denote by φ, for which φ([|t |, 1]d−1) = [−1, 1]d . InP(t), such φ maps the cube from
(32) to the standard cube [−1, 1]d . Clearly, φ can be taken as

φ : x �→ x − (1+ |t|)/2
(1 − |t |)/2 = 2x − (1+ |t|)

1 − |t | ,

where 1 = (1, . . . , 1) and |t| = (|t |, . . . , |t |) are constant vectors in Rd−1. Note that

φ
(
Bd−1

(
δ,

√
r2 − (t − δ)2

))
= Bd−1

(
2δ − (1+ |t|)

1− |t| ,
2
√
r2 − (t − δ)2

1 − |t |
)

.

Finally, by the preservation of covered fraction, we obtain

vold−1(P(t) ∩ Bd(δ, r) ∩U1) = vold−1([|t |, 1]d−1) · C
d−1, 2δ−1−|t|

1−|t| ,
2
√

r2−(t−δ)2
1−|t |

.

As a result,

Vd,δ,r = 1

2

[

Cd,2δ−1,2r + d
∫ 0

δ−r
C
d−1, 2δ−1−|t|

1−|t| ,
2
√

r2−(t−δ)2
1−|t |

(1 − |t |)d−1 dt

]

= 1

2

[

Cd,2δ−1,2r + d
∫ r−δ

0
C
d−1, 2δ−1−t

1−t ,
2
√

r2−(t+δ)2
1−t

(1 − t)d−1 dt

]

.

(33)

Case (c): r ≥ 1 + δ. Case (c) is almost identical to case (b), with the only change
occurring within the lower limit of integration in (33); the lower limit of the integral
remains at −1 for all r ≥ 1 + δ. Since the steps are almost identical to case (b), they
are omitted and we simply conclude:

Vd,δ,r = 1

2

[

Cd,2δ−1,2r + d
∫ 1

0
C
d−1, 2δ−1−t

1−t ,
2
√

r2−(t+δ)2
1−t

(1 − t)d−1 dt

]

.
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Appendix B: Proof of Lemma 3.3

(a) Let us first prove the upper bound in (31). Consider the set Uj defined in (16) and
the associated set

U ′
j = {

X = (x1, x2, . . . , xd) ∈ [0, 1]d : |x j | ≤ xk ≤ 1 for all k 
= j
} ⊂ C0.

We have vol(Uj ) = vol(U ′
j ) = 1/d and

V (δ) = C0 ∪
d⋃

j=1

Uj ,

d⋃

j=1

U ′
j = C0 = [0, 1]d .

Let us prove that for any r ≥ 0 we have

vol (Uj ∩ Bd(δ, r)) ≤ vol (U ′
j ∩ Bd(δ, r)). (34)

With any X = (x1, x2, . . . , xd) ∈ U ′
1, we associate the point X

′ = (−x1, x2, . . . , xd)
∈ U1 by simply changing the sign in the first component. For these two points, we
have

‖δ − X‖2 = (x1 − δ)2 +
d∑

k=2

(xk − δ)2 < (−x1 − δ)2 +
d∑

k=2

(xk − δ)2 = ‖δ − X ′‖2.

Therefore, ‖δ − X‖2 ≤ r implies ‖δ − X ′‖2 ≤ r yielding (34).

To prove the upper bound in (31) for all r we must consider two cases: r ≤ δ and
r ≥ δ. For r ≤ δ, we clearly have

Vd,δ,r = Cd,2δ−1,2r

2
≤ Cd,2δ−1,2r .

For r ≥ δ, using (34) we have

Vd,δ,r = vol (Bd(δ, r) ∩ C0) + d vol (Bd(δ, r) ∩U1)

2

≤ vol (Bd(δ, r) ∩ C0) + d vol (Bd(δ, r) ∩U ′
1)

2
= vol (Bd(δ, r) ∩ C0) = Cd,2δ−1,2r

and hence the upper bound in (31).

(b) Consider now the lower bound in (31). For j ≥ 2, with the setUj we now associate
the set

Vj = {
X̃ = (x1, . . . , xd) : −1 ≤ x1 ≤ 0, 0 ≤ xm ≤ 1

(for m > 1), |x j | ≤ |xk | ≤ 1 for k 
= j
}
.
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With any point X = (x1, x2, . . . , xd) ∈ Uj (here x j is negative and |x j | ≤ |xk | ≤ 1
for k 
= j) we associate point X̃ = (−x1, x2, . . . , x j−1,−x j , x j+1, . . . , xd) ∈ Vj by
changing sign in the first and j-the component of X ∈ Uj . Setting without loss of
generality j = 2, we have for these two points:

‖δ − X‖2 = (x1 − δ)2 + (x2 − δ)2 +
d∑

k=3

(xk − δ)2

≤ (−x1 − δ)2 + (−x2 − δ)2 +
d∑

k=3

(xk − δ)2 = ‖δ − X̃‖2,

where the inequality follows from the inequalities x1 ≥ 0, x2 < 0, and |x2| < x1
containing in the definition of U2. Therefore, ‖δ − X̃‖2 ≤ r implies ‖δ − X‖2 ≤ r ,
where from

vol (Uj ∩ Bd(δ, r)) ≥ vol (Vj ∩ Bd(δ, r)). (35)

To prove the lower bound in (31) for all r we must consider two cases: r ≤ δ and
r ≥ δ. For r ≥ δ, using (35) we have

Vd,δ,r = 1

2

[

vol (Bd(δ, r) ∩ C0) +
d∑

i=1

vol ((Bd(δ, r) ∩Ui ))

]

≥ 1

2

[

vol (Bd(δ, r) ∩ C0) + vol (Bd(δ, r) ∩U1) +
d∑

i=2

vol (Bd(δ, r) ∩ Vi )

]

= vol (Bd(δ, r) ∩ C0) + vol (Bd(δ, r) ∩ C1)

2
,

where C1 is given in (17). To compute vol (Bd(δ, r) ∩ C1), we shall use a similar
technique to the proof of Theorem 3.2. The affine transformation

x �→ 2x + (1,−1,−1, . . . ,−1)

maps the ball Bd(δ, r) and the cube C1 to Bd(A, 2r) and [−1, 1]d respectively, where
A = (2δ + 1, 2δ − 1, . . . , 2δ − 1). Since the fraction of covered volume is preserved
under invertible affine transformations, one has

vol (Bd(δ, r) ∩ C1)

vol(C1)
= Cd,A,2r

and hence we can conclude:

Vd,δ,r ≥ vol (Bd(δ, r) ∩ C0) + vol (Bd(δ, r) ∩ C1)

2
= Cd,2δ−1,2r + Cd,A,2r

2
.
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For r ≤ δ, since vol (Bd(δ, r) ∩ C1) = Cd,A,2r = 0, we have

Vd,δ,r = Cd,2δ−1,2r + Cd,A,2r

2

and hence the lower bound in (31).

Appendix C: Proof of Theorem 3.4

Before proving Theorem 3.4, we prove three auxiliary lemmas.

Lemma C.1 Let r = rα,d = α
√
d with α ≥ 0 and Za,b;d = (a, b, b, . . . , b) ∈ R

d .
Then the limit limd→∞ Cd,Za,b;d ,2r exists and

lim
d→∞Cd,Za,b;d ,2r =

⎧
⎪⎨

⎪⎩

0 if α <
√
1/3 + b2/2,

1/2 if α = √
1/3 + b2/2,

1 if α >
√
1/3 + b2.

Proof Define

tα =
√
3(d (4α2 − b2 − 1/3) + b2 − a2)

2
√
a2 + (d − 1)b2 + d/15

.

As the r.v. ηz introduced in Appendix D are concentrated on a finite interval, for finite
a and b the quantities of ρa := E(|ηa − a2 − 1/3|3) and ρb := E(|ηb − b2 − 1/3|3)
are bounded. By applying the Berry–Esseen theorem (see [5, Sect. 2, Chap. 5]) to
Cd,Za,b,2r , there exists some constant C such that

−C max {ρa/σ 2
a , ρb/σ

2
b }

(σ 2
a + (d − 1)σ 2

b )1/2
+ Φ(tα) ≤ Cd,Za,b,2r ≤ Φ(tα) + C max {ρa/σ 2

a , ρb/σ
2
b }

(σ 2
a + (d − 1)σ 2

b )1/2
,

where σ 2
a = var(ηa) and σ 2

b = var(ηb). By the squeeze theorem, it is clear that if

4α2 − b2 − 1/3 > 0 and hence α >
√
1/3 + b2/2, then Cd,Za,b,2r → 1 as d → ∞.

If α <
√
1/3 + b2/2, then Cd,Za,b,2r → 0 as d → ∞. If α = √

1/3 + b2/2, then
Cd,Za,b,2r → 1/2 as d → ∞. ��

Lemma C.2 Let r = α
√
d. Then for δ = (δ, δ, . . . , δ), we have

lim
d→∞ Vd,δ,r = lim

d→∞Cd,2δ−1,2r =

⎧
⎪⎨

⎪⎩

0 if α <
√
1/3 + (2δ − 1)2/2,

1/2 if α = √
1/3 + (2δ − 1)2/2,

1 if α >
√
1/3 + (2δ − 1)2/2.
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Proof Using Lemma C.1 with Za,b = A = (2δ + 1, 2δ − 1, . . . , 2δ − 1), we obtain

lim
d→∞Cd,A,2r = lim

d→∞Cd,2δ−1,2r =

⎧
⎪⎨

⎪⎩

0 if α <
√
1/3 + (2δ − 1)2/2,

1/2 if α = √
1/3 + (2δ − 1)2/2,

1 if α >
√
1/3 + (2δ − 1)2/2.

By then applying the squeeze theorem to the bounds in Lemma 3.3 using the fact from
Lemma 3.1 we have Vd,δ,r = Cd(Zn, r), we obtain the result. ��
To determine the value of r that leads to the full coverage, we utilise the following
simple lemma.

Lemma C.3 For design Dn,δ , the smallest value of r that ensures a complete coverage
of [−1, 1]d satisfies

lim
d→∞

r1√
d

=
{
1 − δ if δ ≤ 1/2,

δ if δ > 1/2.

Proof of Theorem 3.4 From Lemma C.2, it is clear that the smallest α and hence r is
attained with δ = 1/2. Moreover, Lemma C.2 provides

lim
d→∞ Vd,1/2,r = lim

d→∞Cd,0,2r =

⎧
⎪⎨

⎪⎩

0 if α < 1/(2
√
3),

1/2 if α = 1/(2
√
3),

1 if α > 1/(2
√
3),

meaning for any 0 < γ < 1, r1−γ = √
d/(2

√
3). By then applying Lemma C.3 with

δ = 1/2, we obtain r1 = √
d/2 and hence r1−γ /r1 → 1/

√
3 as d → ∞. ��

Appendix D: Derivation of Approximation (30)

Let U = (u1, . . . , ud) be a random vector with uniform distribution on [−1, 1]d so
that u1, . . . , ud are i.i.d.r.v. uniformly distributed on [−1, 1]. Then for given Z =
(z1, . . . , zd) ∈ R

d and any r > 0,

Cd,Z ,r = P{‖U − Z‖ ≤ r} = P{‖U − Z‖2 ≤ r2} = P

⎧
⎨

⎩

d∑

j=1

(u j − z j )
2 ≤ r2

⎫
⎬

⎭
.

That is, Cd,Z ,r , as a function of r , is the c.d.f. of the r.v. ‖U − Z‖.
Let u have the uniform distribution on [−1, 1] and z ∈ R. The first three central

moments of the r.v. ηz = (u − z)2 can be easily computed:

Eηz = z2 + 1

3
, var(ηz) = 4

3

(

z2 + 1

15

)

,
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μ(3)
z = E [ηz − Eηz]3 = 16

15

(

z2 + 1

63

)

. (36)

Consider the r.v. ‖U − Z‖2 = ∑d
i=1 ηz j = ∑d

j=1(u j − z j )2. From (36) and indepen-
dence of u1, . . . , ud , we obtain

μd,Z = E‖U − Z‖2 = ‖Z‖2 + d

3
,

σ 2
d,Z = var(‖U − Z‖2) = 4

3

(

‖Z‖2 + d

15

)

, and

μ
(3)
d,Z = E[‖U − Z‖2 − μd,Z ]3 =

d∑

j=1

μ(3)
z j = 16

15

(

‖Z‖2 + d

63

)

.

If d is large enough then the conditions of the CLT for ‖U − Z‖2 are approximately
met and the distribution of ‖U − Z‖2 is approximately normal with mean μd,Z and
variance σ 2

d,Z . That is, we can approximate Cd,Z ,r by

Cd,Z ,r ∼= Φ

(
r2 − μd,Z

σd,Z

)

, (37)

where Φ( · ) is the c.d.f. of the standard normal distribution:

Φ(t) =
∫ t

−∞
ϕ(v) dv with ϕ(v) = e−v2/2

√
2π

.

The approximation (37) can be improved by using an Edgeworth-type expansion in
the CLT for sums of independent non-identically distributed r.v.

General expansion in the central limit theorem for sums of independent non-
identical r.v. has been derived by Petrov, see [5, Thm. 7, Chap. 6]; the first three
terms of this expansion have been specialised in [6, Sect. 5.6]. By using only the first
term in this expansion, we obtain the following approximation for the distribution
function of ‖U − Z‖2:

P

(‖U − Z‖2 − μd,Z

σd,Z
≤ x

)
∼= Φ(x) + μ

(3)
d,Z

6(σ 2
d,Z )3/2

(1 − x2)ϕ(x),

leading to the following improved form of (37):

Cd,Z ,r ∼= Φ(t) + ‖Z‖2 + d/63

5
√
3(‖Z‖2 + d/15)3/2

(1 − t2)ϕ(t),
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where

t = td,‖Z‖,r = r2 − μd,Z

σd,Z
=

√
3(r2 − ‖Z‖2 − d/3)

2
√‖Z‖2 + d/15

.
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