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Thesis Summary 

A rich literature has shown the importance of sleep for enhancing memories. It has been shown 

that we can trigger memories by re-presenting sound cues during sleep that were associated 

with specific memories during wake, this method is called targeted memory reactivation 

(TMR) and it is used in a lot of recent studies. Recent work showed that it is possible to use 

machine learning classifiers with TMR and identify memory reactivations during sleep. This 

inspired me to explore memory reactivations and their characteristics in human slow wave 

sleep (SWS) and rapid eye movement (REM) sleep.  

Chapter 1 is an introduction. In Chapter 2, I used a serial reaction time task (SRTT) and 

machine learning classifiers and showed that we can identify memory reactivation and its 

timing after TMR in SWS.  

In Chapter 3, new characteristics of reactivations are revealed. I analyse different SWS 

graphoelements such as slow oscillations (SOs), spindles and show that we can use them to 

know when to deliver our TMR cues.  

In Chapter 4, I use trials of varying lengths to see the impact of this on early reactivations that 

were detected in Chapter 3 and see the behaviour of reactivation when cues are separated 

further apart.  

In Chapter 5, I take a leap of faith and try classifying memory reactivation in human REM with 

a new pipeline and that was successful. Detection of memory replay in REM sleep was shown 

in rodents but not with TMR in humans. I explore the characteristics of the detected 

reactivations and how they relate to the rodent literature. In Chapter 6, there is a general 

discussion and conclusion. 

The findings of this work pave the way for understanding sleep reactivation better and 

improving TMR delivery in SWS. REM sleep findings offer a starting point for more 

investigations to come.  
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 CHAPTER 1  

Introduction 

 

 

 Sleep physiology 

We spend around one-third of our lives asleep. Sleep has been shown to benefit our 

memories (Squire & Zola, 1996; Stickgold, 2005). It is characterised by unconsciousness and 

reduced responsiveness to external stimuli. Sleep is essential for us to think clearly and process 

memories and the more we remain in waking state and deprive ourselves from sleep the longer 

the duration of sleep we get afterwards, this is known as sleep homeostasis. But why do we 

enter this state and lose our consciousness and what is the brain doing during that time? Is the 

brain just taking rest or is the story more fascinating than that?  

Luckily, nowadays we can monitor sleep via Polysomnography (PSG) and observe 

different activities that happen during sleep. With PSG we can monitor different functions such 

as the activity of the brain with Electroencephalography (EEG), the movements of the eyes 

with Electrooculography (EOG), muscles activity with Electromyography (EMG), and heart 

rhythm with Electrocardiography (ECG). EEG is offers an easy way to record the activity of 

the brain using different electrodes that cover the scalp. It is cheap and non-invasive, so it does 

not require a surgery. EEGs have low signal-to-noise ratio but offer a high temporal resolution. 

By analysing the brain activity using EEG during sleep we are certain that the brain is not 

merely resting. Interestingly, the activity pattern during sleep does not only differ from the 

activity in wake but also varies from time to time within sleep itself. These different patterns 

can be organised into different sleep stages, (Patel et al., 2020; Silber et al., 2007), Figure 1.1.  

“If the human brain were so 

simple that we could 

understand it, we would be so 

simple 

that we couldn’t.” 

Emerson M. Pugh 
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Stage 1 / N1 

In this sleep stage, the brain activity gets slower and the brain produces alpha waves of 

relatively low frequency (~8 to 13 HZ) and the body starts to relax with occasional muscle 

twitches. It is characterised by rolling of eye movements, it is easy to awake the sleeper from 

N1. The sleeper can quickly enter the second stage, N2, and usually does not spend a lot of 

time in N1 if not disturbed. N1, N2, and N3 sleep stages are called non-rapid eye movement 

(NREM) stages. 

Stage 2 / N2  

  Now the sleeper enters N2, and the muscles are more relaxed and brain activity looks 

different from N1. A rhythmic brain wave activity is produced which is called a sleep spindle 

(~10 to 16 HZ). Sleep spindles are shown to be related to learning (Fernandez & Lüthi, 2020; 

Ulrich, 2016). In N2, the movements of the eyes stop. N2 is also characterised by K-complexes 

which appear as negative voltage peaks, followed by a positive component (Cash et al., 2009). 

During the first sleep cycle, N2 can last from 10 to 25 minutes, then as the night proceeds the 

duration of N2 can become longer. A sleeper spends around half of sleep time in N2. 

Stage 3 / N3 

N3 is known as deep sleep and slow wave sleep (SWS). During this stage, the body relaxes 

even more, and the brain activity looks different as it produces identifiable delta waves (1 to 4 

HZ) and slow oscillations (SOs) (<2 HZ) with large amplitudes (>75 μV). SOs have an up-

going phase (depolarisation), and down-going phase which is a period of neuronal silence with 

respect to firing (hyperpolarisation) (Amzica & Steriade, 1998). Fast spindles (~13 to 16 HZ) 

typically occur on the up-going phase (Born & Wilhelm, 2012; Siclari et al., 2014) and they 

are shown to be linked to memory consolidation (Nishida & Walker, 2007). Deep sleep gets 

shorter as the night proceeds and more time is spent in rapid eye movement (REM) sleep. 
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Rapid Eye Movement (REM) sleep  

In REM sleep, the eyes move rapidly behind the closed eyelids, it is also characterised by 

brain activity that looks similar to wake and no muscular activity. Theta activity (~ 4 to 8 HZ) 

is prominent during this sleep stage (Boyce et al., 2016; Hutchison & Rathore, 2015; Nishida 

et al., 2009). REM sleep is linked to the most vivid dreams (Crick & Mitchison, 1983). It can 

take up to 25% of sleep time and the duration of REM gets longer as the night proceeds. 

 

 

Figure 1.1 A representation of the EEG traces (left side) of different sleep stages and a 

representation of hypnogram showing the progression of a night of sleep with different stages 

(right side), (Christian G Fink, 2012). 

 

 Memories: what are they? how are they processed and 

reactivated? what sleep has to do with memory? 

A memory is a piece of information that is encoded, stored, and retrieved by the brain. 

Memories are crucial for making future actions, without them it would not be possible to 
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continue developing relationships. Our memories go through three important phases: memory 

encoding, consolidation, retrieval. During encoding memories are formed and a memory trace 

is created as a result of perceiving a stimulus. During consolidation, the memory trace is 

strengthened and integrated into a stable network of memories (Lechner et al., 1999). Memories 

can then be accessed and retrieved during the retrieval phase. Memories can be divided into 

different types, some of these are declarative and non-declarative memories (Squire & Zola, 

1996). Forms of the declarative explicit memories are like remembering facts and faces which 

require our awareness. On the other hand, procedural (non-declarative) memories are implicit 

memories that do not require our awareness, like motor skills.  

A small, curved part of the brain called the ‘hippocampus’ plays a great role in learning, 

memory, and navigation (Maguire et al., 2000). The hippocampus helps us process and retrieve 

memories. It was suggested that declarative memories are hippocampus dependant (Squire & 

Zola, 1996). However, memories could include both explicit and implicit elements at the same 

time (Peigneux et al., 2001) and the hippocampus was also shown to be involved in the 

formation of motor memory (Albouy et al., 2008). The hippocampus can be considered as a 

storage of short-term memories, those that can be later transformed into long-term memories 

and transferred to another area of the brain: the ‘neocortex’, sleep plays an important role in 

this transfer. A cognitive representation of locations is formed inside the hippocampus by 

‘place cells’ that are activated when rodents are in a particular place in the environment, the 

repetitive replay of the firing pattern is an ongoing process of consolidation. This replay of 

firing was shown in rodents where place cells that fired when rodents were in specific locations 

during the task co-fired again during sleep (Pavlides & Winson, 1989). Several studies have 

now shown that replays of different memories take place during sleep (Lee & Wilson, 2002; 

Louie & Wilson, 2001; Wilson & McNaughton, 1994). These studies open the door for more 

investigations on the characteristics of these detectable memory replays and show that sleep is 

very important to memory. 

 Sleep and memory models 

One of the models of human memory was firstly introduced in 1971 by Marr, it is called 

the two-stage memory system (Marr, 1971). It suggests that memories are firstly encoded into 

the hippocampus and then transferred to a slow learning more stable long-term storage in the 

neocortex. The fast-learning hippocampus helps ensuring a fast encoding of memories; 
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however, memories are still unstable. When those memories are repeatedly reactivated the 

long-term slow learning store is trained on those memories and they transform into long-term 

memories (Frankland & Bontempi, 2005).   

 Sleep has different stages. In order to understand the role of sleep stages and memory, 

a paradigm called the ‘night-half paradigm’ adopted the idea that different sleep stages benefit 

different types of memories (Fowler et al., 1973; Yaroush et al., 1971). In the night-half 

paradigm, the influence of SWS-rich sleep was compared to REM-rich sleep by manipulating 

the timing of learning and sleep. This idea is now known as the dual-process hypothesis (Plihal 

& Born, 1997). This hypothesis assumed that declarative memories benefit from SWS, while 

REM sleep is important for non-declarative memory consolidation. It has been shown that 

SWS-rich sleep benefited declarative memories and REM-rich sleep benefited procedural 

memories (Plihal & Born, 1999). Another hypothesis called the sequential hypothesis assumed 

that memory formation benefits from cycling between SWS and REM sleep (Ambrosini et al., 

1988a, 1988b; Rasch & Born, 2013). 

A hypothesis that is adopted in many reviews (Ellenbogen et al., 2007; Lewis & 

Durrant, 2011; Mölle & Born, 2011) and the one we adopt in the current work is the active 

system consolidation (ASC) hypothesis  (introduced by (Diekelmann & Born, 2010)) which is 

compatible with aspects from both the dual-process hypothesis and the sequential hypothesis. 

In ASC, sleep is not seen as just a passive shelter. Instead, ASC hypothesis suggests that 

memory consolidation happens as a result of the newly encoded memories being repeatedly 

reactivated during SWS and thus transformed from the short-term store (hippocampus) into 

long-term store (neocortex). The stabilisation is thought to be taking place in REM sleep. In 

ASC model (Rasch & Born, 2013), a dialogue between neocortex and hippocampus is 

suggested, where SOs drive reactivation of hippocampal memories with accompanying sharp 

wave ripples nested into thalamo-cortical spindles. It is suggested that ripples, together with 

the reactivated memory information, are nested into the troughs of spindles. In this work, we 

do subscribe to the idea that sleep has an active role and that SO, spindles, and sharp wave 

ripples play an important role in the reactivation of memories. 
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 Targeted Memory Reactivation (TMR) 

Cues (odour/sound/electrical shock) can be associated with learning material by 

presenting them at the same time during encoding. We can then redeliver the cues during 

subsequent sleep and thereby reactivate the cued memory. This method is known as targeted 

memory reactivation (TMR). In 1987, Hennevin et al. applied TMR in an active avoidance-

conditioning (Hennevin et al., 2007; Hennevin & Hars, 1987). They applied it on rats using a 

mild electrical shock to the ear and found that a redelivery of these shocks during post-learning 

REM sleep increased both the time spent in REM sleep and the recall of avoidance. A number 

of studies done in humans have now shown the benefits of using TMR on memory 

consolidation for declarative (Cairney et al., 2014; Fuentemilla et al., 2013; Rasch et al., 2007; 

Rudoy et al., 2009) and non-declarative memories (Antony et al., 2012; Monika Schönauer et 

al., 2014). We use TMR in the current work to associate memories with sound cues and play 

those sounds in the sleep stage of interest. 

 The serial reaction time task (SRTT) 

In this work, we use the serial reaction time task (SRTT) and pair it with sounds then use TMR 

to reactivate this task in sleep. It is important to think about the SRTT and whether we expect 

this task to reactivate in SWS and REM sleep.  

In SRTT, sounds are paired with four different finger presses associated with images that 

appeared on the four quadrants of the screen, as illustrated in, Figure 2.5. Participants should 

learn two 12-item sequences, A and B (A: 1 2 1 4 2 3 4 1 3 2 4 3 and B: 2 4 3 2 3 1 4 2 3 1 4 

1) and only one of them will be cued during sleep (reactivated sequence). Sequences are 

matched for learning difficulty such that both contained each item three times. Sequences are 

presented in blocks and each block contained three repetitions of a sequence. The blocks are 

interleaved so that a block of the same sequence is presented no more than twice in a row. 

There are 24 blocks of each sequence (48 blocks in total), and each block is followed by a 

pause of 15 seconds during which feedback on reaction time (RT) and error-rate are presented. 

After the 48 blocks of sequences A and B, there are four blocks of random sequences. They 

contained the same visual stimuli and an ‘R’ displayed centrally on the screen. Two of these 

blocks are paired with the tone group of one sequence (reactivated in sleep), and the other two 

are paired with the tone group of the other sequence (non-reactivated). Each sequence is paired 
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with a group of pure musical tones, either low tones within the 4th octave (C/D/E/F) or high 

tones within the 5th octave (A/B/C#/D). These tone groups are counterbalanced across 

sequences. For each trial, a 200 ms tone is played, and at the same time a visual cue appears in 

one of the corners of the screen. The location indicates which key on the keyboard should be 

pressed as quickly and accurately as possible: 1 – top left corner = left shift; 2 – bottom left 

corner = left Ctrl; 3 – top right corner = up arrow; 4 – bottom right corner = down arrow. Visual 

cues are neutral objects or faces, used in previous studies (Cousins et al., 2014), which appear 

in the same position for each sequence (1 = male face, 2 = lamp, 3 = female face, 4 = water 

tap). Visual cues stay on the screen until the correct key is pressed, after which 880 ms inter-

trial interval followed. 

We included a motor imagery (IMG) version of the SRTT. IMG task consisted of 30 interleaved 

blocks (15 of each sequence), presented in the same order as during the SRTT. Again, each 

trial consisted of a 200 ms tone and a visual stimulus, the latter being shown for 270 ms and 

followed by an 880 ms inter-trial interval. There are no random blocks during the imagery task 

and no performance feedback during the pause between blocks. An explicit recall test is done 

after sleep, in which participants are asked if they remember the images’ locations of the two 

sequences to see if one sequence is recalled better than the other one (reactivated vs. non-

reactivated).  

TMR in SWS shows benefits when the cued sequence is compared to un-cued sequence of the 

SRTT (Cousins et al., 2014, 2016). Thus, we aim to replicate this. Additionally, classification 

results from our group showed that it is possible to detect reactivation of the SRTT by above 

chance accuracy (Belal et al., 2018). Thus, we aim to build classification pipelines that explore 

the characteristics of reactivation and whether reactivations are similar to wake activation and 

also to know when to apply TMR. In REM, we would expect REM sleep to relate to the SRTT 

given its procedural nature (Plihal & Born, 1999). The SRTT shows post-learning changes 

related to REM sleep suggesting reprocessing of the task in REM. Whether reactivation is 

detectable after TMR in human REM sleep is still unexplored. However, a study showed that 

several brain areas activated during the execution of a serial reaction time task during 

wakefulness were significantly more active during REM sleep for trained vs non-trained 

participants (Maquet et al., 2000). In that task, markers were displayed on the screen facing the 

participants and they reacted to a stimulus by pressing the spatially corresponding response 

key. Similarly, results from another serial reaction time study suggest that regional cerebral 
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reactivation in REM sleep reflects the reprocessing of learned material (Peigneux et al., 2003). 

Another serial reaction time study examined experience-dependent functional connectivity of 

the left premotor area and bilateral cuneus. They showed that the left premotor cortex is 

correlated with the left posterior parietal cortex and bilateral pre-supplementary motor area 

during REM sleep of participants trained on the task vs. non-trained (Laureys et al., 2001). This 

collective evidence suggests that reactivation of the SRTT takes place in SWS and REM sleep. 

We aim to take this further and relate wake and sleep category specific patterns with high 

temporal accuracy using EEGs with TMR in pipelines employing multivariate pattern 

classifiers. Subsequently, we aim to characterise the detected reactivations and explore when 

to apply our TMR cues. 

 What are EEG classifiers? What could they say about 

memory reactivation during sleep? 

We will start by taking a closer look at what classification means in a general machine 

learning context. Afterwards, we will see how classifiers are useful with EEGs and detecting 

memory reactivation. 

Machine learning is the study of the set of algorithms that enable the computer to make 

decisions based on a set of observations, known as the ‘training data’. A computer can make 

decisions by following automated algorithms that can iteratively update parameters of the 

classifier to build a ‘model’. In the case of supervised learning, this is done using the training 

observations and their respective categories. Supervised learning is the approach that we use 

in the current work, and it means that we need our computer to distinguish between categories 

(‘classes’) based on observations from different classes. Simply, assuming that we have 1000 

observations from two classes (a ‘binary classification problem’) and we have two 

measurements (the ‘features’) in every observation, we can scatter every observation in a 2d 

space such that each observation is represented by a point. We can then look at the points in 

this mapped space (the ‘feature space’), as shown in Figure 1.2. In this example, a classifier 

then tries to draw a separating line between the observations of the two classes, which is the 

case in linear classification. When the classifier follows the learning algorithm and draws the 

separating line, it can assign a prediction to the new observations according to which side of 

the line they are on. We can then calculate the confidence/certainty of the classifier prediction, 
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which is high for the samples falling further away from the separating line (‘decision 

boundary’). This can be explained by the maximum posterior probability from the two classes 

(ranges from 0 to 1), as shown in Figure 1.2. We can then check the category prediction of the 

classifier (‘predicted label’) and compare it to the actual label of the observation (‘true label’ 

or ‘ground truth’). In this way, we are able to evaluate the performance of the classifier. 

Machine learning classifiers have a variety of applications, including speech recognition, 

natural language processing (NLP), computer vision, brain computer interface (BCI), 

bioinformatics etc.  

 

Figure 1.2: Binary classification problem. A linear classifier calculates a separating decision 

boundary between the two classes and can provide a certainty for every observation. 

Now, let us demonstrate how supervised learning can be used to develop EEG 

classifiers that can differentiate the brain activity states and categorise them. With EEGs, we 

are able to record the activity of the brain with a high temporal accuracy. This activity is 

recorded using different electrodes (‘channels’) covering the different areas of the scalp. Let 

us try to visualise the data and see how a classifier can work with them and classify EEG 

patterns. At every time instance we get a value from all channels. Thus, assuming we have a 

sampling rate of 100 samples/second, if we record the activity of the brain for one second we 

will then have 100 values from every channel. Now, we assume that we have two activities that 

we want to distinguish: right and left-hand movements. We collected 1000 observations 

(‘trials’) for the classifier to train on (500 left hand and 500 right hand movements) with a 
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sound cue instructing participants/subjects with which hand to move. A trial here lasts one 

second. For simplicity, let us now assume that we expect the difference between left- and right-

hand trials to be maximum in two channels, one on each side of the brain. We can organise our 

EEG data (1000 trials x 2 channels x 100 timepoints) in a 3d shape (3d-tensor), as shown in 

Figure 1.3. Assuming no need for pre-processing at the moment, we can train our classifier on 

these raw EEG recordings directly after aggregating channels and timepoints dimensions 

together by reshaping them into one vector, thereby making our data 2d (1000 trials x 200 

channel-time). Now, our classifier can take every trial and learn how to differentiate between 

left- and right-hand activity. If we want to test our model later, we can test it with trials from a 

‘testing set’ or some left out trials from the training set then see what class they will be assigned 

to, then compare the predicted class labels to the true labels of those trials. Classification can 

further be manipulated slightly to reveal new information. For instance, we can do a 

classification across time and evaluate the discriminability between classes at every time point. 

This can be illustrated by the same example as in Figure 1.3, except now we build a classifier 

model at every time point. This means that we build 100 classifier models, one at every time 

point, such that each classifier will have (1000 trials x 2 channels) to train on. If we take one 

time slice from our EEG data (Figure 1.3, green area) we can see how the classifier model is 

built on every timepoint. The posterior probabilities and feature space can be visualised, similar 

to the one in Figure 1.2, since now the classifier has two features at any given time point. This 

temporal classification can be beneficial when we are not sure about the exact timing of the 

effect (not sure when the difference between the classes occurs) or when the effect could only 

be happening for a small duration, and thus extracting the features from the whole trial could 

distort the effect. Now, every classifier at every time point can be used to predict the class of 

some left-out trials (not used in training) from the same dataset ‘validation set’, or perhaps be 

used to evaluate all time points from a different dataset, thereby generating a temporal 

generalisation plot (King & Dehaene, 2014). These time x time temporal generalisation plots 

are discussed in different chapters of the current work (e.g., Figure 2.1). We can now imagine 

that if we want to detect memory reactivation, we could train a classifier model on activation 

of the memory during the encoding phase in wake and then apply the model on sleep EEG, 

after TMR cues. We can then evaluate the classification performance.  
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Figure 1.3 A representation of EEG data in 3d space (trials x channels x timepoints). A time 

slice is shown in green. 

Thus, we can use machine learning to build EEG classifiers that can enable us to: (i) 

detect reactivation during sleep to examine relationships between memory reactivation and 

consolidation; (ii) reveal interesting characteristics about reactivations, and even (iii) guide us 

on when to apply the TMR cues, as we will see in later chapters and discussions. 

Some studies developed machine learning classifiers for the sake of detecting and 

discriminating memory reactivations. A study by (Deuker et al., 2013) showed that it is possible 

to build a machine learning paradigm in which a classifier was trained on wake data during 

encoding and then applied on subsequent wake and sleep to classify reactivations. 

Classification in that study was applied on the continuous EEG to detect spontaneous memory 

reactivation. Another study used machine learning to detect spontaneous reactivation in REM 

sleep and showed success (M. Schönauer et al., 2017). The classification of spontaneous 

reactivation is challenging and will be difficult if we want to detect reactivations of multiple 

memories. Thus, if we know the exact label of the reactivation and roughly the timing of 

reactivation, we can evaluate our classification results with respect to that. TMR offers exactly 

that. TMR offers a unique association between sounds and categories, it gives a class label for 

every trial during wake and sleep. A study adopting TMR showed that it is possible to 

discriminate reactivation of different memories of a finger tapping task during Non-REM 

(NREM) sleep (Belal et al., 2018).  Several following studies showed that it is possible to detect 

Trials

Channels

Time

PIPELINE (LEFT HAND VS. RIGHT HAND)
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memory reactivation in SWS with TMR (Cairney et al., 2018; Schreiner et al., 2018; Wang et 

al., 2019).   

 The relationship between different sleep stage 

graphoelements and detectable reactivation and consolidation 

Different sleep graphoelements in SWS and REM sleep are shown to be related to 

consolidation and reactivation. In SWS, studies explored interesting relationships between 

sleep spindles and the detected reactivation. It has been shown that sleep spindles play an active 

role in reactivation (Antony et al., 2018; Cairney et al., 2018). A study by (Zhang et al., 2018) 

adopted intracranial EEG (iEEG) and representational similarity analysis (RSA) to show that 

spontaneous replays are locked to ripples happening in high gamma frequency (Xue et al., 

2010; Yaffe et al., 2014; Zhang et al., 2015). SOs are also shown to be important in tuning the 

timing of TMR sounds. Neurons oscillate between hyperpolarization and depolarisation with 

sustained firing. Depolarised SO state drives memory reactivation in the hippocampus via 

interactions with thalamic sleep spindles and hippocampal sharp wave ripples. Additionally, 

fast spindles that typically occur on the up-going phase (Born & Wilhelm, 2012; Siclari et al., 

2014) are shown to be linked to both memory consolidation (Nishida & Walker, 2007) and 

reactivation (Cairney et al., 2018). In REM sleep, theta activity is prominent (Boyce et al., 

2016; Hutchison & Rathore, 2015; Nishida et al., 2009). In wake, theta activity was shown to 

be linked to memory processing and encoding of new information (Battaglia et al., 2011; 

Juergen Fell et al., 2011; Kahana et al., 1999; Vertes, 2005). Also, a link between detected 

replay in rodents and theta activity was suggested (Louie & Wilson, 2001).  A study in humans 

showed increased theta power during post-learning REM sleep indicating a link between theta 

activity and memory reprocessing (Fogel et al., 2007). 

 Sleep reactivation differs temporally from wake activation  

In an interesting study by Schreiner and colleagues, the reactivation classification 

strength was shown across time and enabled us to see when reactivation is happening after 

TMR (Schreiner et al., 2018). They showed that the reactivation is occurring more than one 

time in a word-sound pairing task. Evidence of reactivation reoccurrence was also found in a 

category specific activity after TMR (Cairney et al., 2018). Those studies offer interesting 
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findings on SWS reactivation and show that the reactivation is reoccurring. A mechanism for 

how TMR biases NREM reactivation and causes the recurring reactivation in a hippocampus-

cortex dialogue is proposed by Lewis and Bendor (2019). It is suggested that during the up-

going state of a SO, a presentation of TMR increases the activity of cortical neurons that are 

associated with the cued memory and this selects which context will be reactivated by the 

hippocampus. This leads to a hippocampal bias to spontaneously replay a sequence related to 

the selected context. Subsequently, hippocampal replay leads to a cortical replay of the same 

memory, and while the cortical neurons are in the up-going state this hippocampal-cortical 

replay could repeatedly occur (Lewis & Bendor, 2019). In rats, replay during NREM sleep has 

different temporal characteristics compared to wake and it has been shown to occur from 10 to 

20 times faster (Ji & Wilson, 2007; Lee & Wilson, 2002; Nádasdy et al., 1999). Sleep 

reactivation in rats was also shown to be compressed 6 to 7 times in comparison to wake 

suggesting that processing could be faster with the absence of behavioural constraints (Euston 

et al., 2007). We are interested in exploring the temporal characteristics of detectable 

reactivation in our data and investigate them further.   

  Coming up next 

In the upcoming chapters, we will use TMR with a serial reaction time task (SRTT), 

wherein we will see how we can train a classification model on the activation pattern of a motor 

imagery memory and classify sleep reactivation. We delve into the relationship between sleep 

stage graphoelements and their active role in reactivation. We also investigate when to apply 

TMR and explore the temporal properties of reactivation pattern, we will also study the 

recurrence of reactivation after TMR and temporal compression. 
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 CHAPTER 2 

 

Initial attempts to classify memory 

reactivation across time with EEG 

classifiers  

 

In this study, Anne C. M. Koopman collected data from participants and Monika Śledziowska 

helped with data collection, Suliman Belal, Martyna Rakowska, and Monika Śledziowska 

helped with scripts of the study design and behavioural analysis. All the EEG and classification 

analyses were done by me and developed in Matlab. Penelope A. Lewis supervised and advised 

on the study and throughout the work and writing. Matthias S. Treder supervised and advised 

on EEG and classifiers. 
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  Abstract 

Recent studies have adopted different methods to reveal that it is possible to classify memory 

reactivations in humans during slow wave sleep (SWS). Here, we use targeted memory 

reactivation (TMR) in which memories are associated with sounds and different classes can be 

selectively triggered during sleep. Recent efforts show that reactivation could be reoccurring 

after a sound cue. Here, we use machine learning and build EEG classifiers that can classify 

memory reactivation during SWS of a motor memory and show that reactivation is delayed in 

comparison to wake activation. We also show that there is a behavioural improvement as a 

result of TMR. Furthermore, we tested the same classification pipeline with REM sleep to find 

that REM reactivation could be classifiable but not yet strong enough. 

 Introduction  

It is now broadly accepted that sleep can enhance our memories. During SWS memories are 

spontaneously replayed which helps in strengthening these memories (Rasch & Born, 2013). 

Sounds and odours that have been associated with a memory can be used to trigger reactivation 

when presented during specific sleep stages and this has been employed in a number of studies 

(Cairney et al., 2014; Fuentemilla et al., 2013; Rasch et al., 2007; Rudoy et al., 2009). EEG is 

an electrophysiological monitoring method used to record electrical activity of the brain and is 

widely used in Brain Computer Interface (BCI) systems. EEGs are also widely used in sleep 

studies to define sleep stages. Thus, developing an EEG-based tool can be extremely useful. 

EEG can be easily employed and is cheaper than other techniques. Yet, EEG signals are 

accompanied with noise. Thus, a reliable machine learning system and discriminative features 

should be used to try to detect reactivation in sleep.   

Participants first spent an adaptation night in the lab. Next, they performed the SRTT 

by learning two sequences (A and B) of button presses (Cousins et al., 2014), which differed 

in order of buttons pressed and the four tones associated. Afterwards, participants heard the 

tones and imagined pressing the appropriate buttons without movement.  Tones associated with 

one of the sequences were reactivated during either REM or SWS.  Importantly, those tones 

were also played to participants during the adaptation night prior to learning the task, as a 
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control. Subsequently, we developed a classification pipeline that shows classification 

performance across time to see when reactivation happens in our SRTT. 

We trained a classifier to identify left and right-hand presses using the imagination 

condition. The trained classifier was then applied to the data after each TMR tone in SWS and 

REM. We used time domain amplitudes as features and a linear discriminant analysis (LDA) 

for classification (Blankertz et al., 2011; Mika et al., 1999). We find overnight improvement 

for the reactivated sequence compared to the non-reactivated sequence which implies TMR 

cuing benefit. Furthermore, we found that we can classify reactivation of motor imagery (left 

hand vs. right hand) and we can see that the classification pattern is delayed (initiated around 

1 sec. after the onset of the cue) in comparison to wake activation (initiated from 0.7 sec. after 

the onset of the cue). This suggests interesting temporal property of the detected reactivation 

and needs further investigation. Classification of REM sleep, however, did not yield significant 

difference between the experimental and adaptation nights. 

  Results  

 Detection of TMR cued reactivation in sleep with classifiers 

We were interested to detect neural replays triggered by TMR using EEG classification, 

determine how these related to behavioural consolidation and how they differed between sleep 

stages. To achieve this, we first produced a time x time classification in wake, Figure 2.1. Here, 

the accuracy for classifying left- vs. right-handed trials using a classifier trained at the specified 

‘training time’ and tested at the specified ‘testing time’ was built one row at a time. We used 

time domain features of 80 ms averages (40 ms before and after each time point). Using a 

threshold of 75% correct classification rate that we defined in our method (see classification 

methods), we identified a time of interest (TOI) in which classification accuracy peaked from 

0.7 to 1.1 seconds after cue onset for wake data of the SWS group (Figure 2.1a) and 0.64 to 

0.97 seconds after cue onset for wake data of the REM group (Figure 2.1b).   
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Figure 2.1 Classification in wake: Grand average classification correct rate of wake motor 

imagery of right hand vs. left hand (wake imagery training and testing) using time domain 

features with an 80 ms smoothing window and LDA classifier. For a) SWS group and b) 

REM group. 

Turning to sleep data, we next examined classification in sleep with a second time x time 

classification procedure, but this time training with wake (y-axis) and testing with sleep (x-

axis), Figure 2.2. To avoid double-dipping, we used a leave-one-subject-out approach wherein, 

for each subject, data from the other subjects were used to select a sleep TOI for that subject. 

An example of the sleep classification result and the TOI of sleep for one participant from the 

SWS group is shown in Figure 2.2. Note that the TOI in sleep was defined as the window with 

the highest average accuracy, where window length was determined by the window length 

obtained during wake classification. The TOI during sleep varied slightly between participants 

but interestingly, SWS TOI occurred later for the experimental night than it did during wake, 

from 0.88 ± 0.04 to 1.28 ± 0.04 seconds after cue onset. For completeness, we also extracted 

the TOI based on the adaptation night, which should be a time period that does not relate to the 

encoded memory of the hands, because the task had not yet been completed in this night. Thus, 

the exact same analysis was performed on the adaptation night to get its TOI which was: 0.55 

± 0.036 to 0.95 ± 0.036 seconds after cue onset. For the REM group the TOI for the 

experimental night was 0.74 ± 0.004 to 1.07 ± 0.004 seconds after cue onset, and the TOI of 

the adaptation night was 1.1 ± 0.21 to 1.4 ± 0.21 seconds after cue onset. 
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Figure 2.2 Classification of right- versus left-handed trials during the experimental (EXP) 

night. Note that the classifier was trained during wake (time of training is shown on the y-

axis) and applied during sleep (time of testing is shown on the x-axis). The TOI for one 

participant from the SWS group is shown here. TOI is marked with a dashed square and is 

calculated by leaving the data of that participant out and getting the maximum window from 

average classification of all other participants of the same group. 

 

We applied our classifier to SWS and assessed classification performance with accuracy using 

300 trials, as this was the maximum number we could use consistently across all participants. 

Figure 2.3a shows the accuracies for the experimental vs. the adaptation night for the SWS 

group using the TOI defined by the experimental night. Classification accuracies was 

significantly higher for the experimental night than the adaptation night (paired t-test, t(9) = 

4.1; p = 0.003). When we consider the TOI of the adaptation night, we would expect no 

difference between the classification accuracies of the two nights. Indeed, this was the case, a 

paired t-test showed no difference between the nights in this analysis, (paired t-test, t(9) = -1.6; 

p = 0.14). This suggests that only the experimental night contained memory related reactivation 

that is similar to the encoded memory. 

We repeated the process for the REM group for both experimental and adaptation nights. For 

this group, we included 366 trials, as this was the maximum available for all participants. The 
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classification performance did not exceed chance level and showed no difference between 

experimental and adaptation nights (paired t-test, t(13) = 1.57; p = 0.14), as shown in Figure 

2.3b using the TOI defined by the experimental night. Interestingly, however, if the outlier 

participant that obtained 40% correct classification in the experimental night is rejected, there 

is a difference between experimental and adaptation nights: mean accuracy for the 

experimental night becomes: 51.6%, and for the adaptation night: 49.4%, (paired t-test, t(12) = 

2.93; p = 0.013). Furthermore, with the outlier rejected, the experimental night is significantly 

higher than chance level 50% (t(12) = 2.93; p = 0.013). As expected, the classification using 

the TOI defined using the adaptation night did not show a significant difference between the 

nights (paired t-test, t(13) = 1.01; p = 0.332). 

 

Figure 2.3: Classification accuracy in the experimental and control (adaptation) night, for 

both the a) SWS group, (paired t-test, t(9) = 4.1; p = 0.003) and b) REM group, (paired t-test, 

t(13) = 1.57; p = 0.14), this difference is significant if the outlier point at ~40% is rejected 

(paired t-test, t(12) = 2.93; p = 0.013). 

  

a b 
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 Correlating classification performance with behaviour 

We tested if there is a correlation between the classification performance and behavioural 

improvement, as summarised in Table 2.1. There was no significant relationship with either 

early (random blocks after sleep - first four blocks after sleep) or late (random blocks after 

sleep - last four blocks after sleep) behavioural improvements for any of the groups. 

 

Table 2.1 Correlations between classification performance and either early or late behaviour 

improvement for both groups. 

 REM sleep group 

n = 14 

SWS group 

n = 10 

    

Early improvement r = -0.15 p = 0.63 r = -0.16 p = 0.66 

Late improvement r = 0.18 p = 0.55 r = 0.24 p = 0.51 

     

 

 Behavioural performance 

We defined a measure called the sequence specific improvement (SSI) to measure how much 

participants improved after sleep compared to the last blocks before sleep, SSI was calculated 

as follows: 

SSI = (random blocks after sleep - first four blocks after sleep) - (random blocks before sleep 

- last four blocks before sleep)  

We found a significant difference in SSI for the reactivated sequence compared to the non-

reactivated sequence in SWS group, Figure 2.4a. (t-test P = 0.042, n=15). Interestingly, when 

we separated the trials of left and right hand to see the improvement for each hand we found 

that the significant improvement was derived from the non-dominant hand (left hand) as shown 

in Figure 2.4b (Koopman et al., 2020). 
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Figure 2.4: Behavioural improvement. a) using the sequence specific improvement (SSI) 

measure, a significant overnight improvement is found for the reactivated sequence compared 

to the non-reactivated, only in SWS group. b) dominant hand is less sensitive to TMR during 

SWS. 

 

a 

b 
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 Discussion  

 Linear classifiers with time domain features detect reactivation in SWS  

While it is well-established that TMR can facilitate consolidation, the question of whether this 

intervention truly triggers memory reactivation has attracted much attention in the last couple 

of years (see (Lewis & Bendor, 2019; Schreiner & Staudigl, 2020)). A number of studies have 

now succeeded in demonstrating neural reactivation after TMR (Belal et al., 2018; Cairney et 

al., 2018; Murphy et al., 2018; Schreiner et al., 2018; Shanahan et al., 2018), using a variety of 

methods and measures. In this experiment, we developed a novel pipeline for classification of 

memory reactivation after TMR using EEG amplitude alone. Although we were able to detect 

reactivation at above chance levels in SWS, there was no association between the level of 

detection and measures of behavioural consolidation. This corresponds to the findings of Belal 

and colleagues, who applied a different classification pipeline on the same task, but found no 

significant correlation with behaviour (Belal et al., 2018). Interestingly, however, some reports 

have identified correlations between detected reactivation and subsequent behavioural 

performance (Cairney et al., 2018; Schreiner et al., 2018; Shanahan et al., 2018; Sterpenich et 

al., 2021). It is unclear whether this difference relates to the task in question or the specific 

classification pipeline. 

In REM, our classification results were much more marginal. It is true that the removal of an 

obvious outlier led to above-chance classification in the experimental night, and this was also 

significantly stronger than classification in the adaption night. However, the actual level of 

classification accuracy was still very low (averaged 51.6%). While this finding is encouraging, 

suggesting that TMR in this stage is eliciting some kind of response, it is not sufficient evidence 

to state that we can definitely detect reactivation in REM. The EEG in this sleep stage is 

extremely noisy, partially due to the many eye movements. We speculate that removing the 

eye movements noise from EEG and perhaps changing the pipeline or features of the brain 

response may be needed to convincingly classify memory reactivation during REM.  

 Conclusion 

In this chapter, we demonstrated that machine learning methods can be used to classify memory 

reactivation in human SWS. We also showed that we can analyse the temporal characteristics 

of the reactivation after the TMR sound and we are able to identify the timing of the reactivation 
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which is delayed in comparison to wake activation. In the next chapter, we will use the SWS 

data and analyse reactivations to find more about their characteristics. Results in REM sleep 

showed a slight hint of classification, however, a different pipeline could be more suitable to 

detect reactivation in REM sleep.  

  Methods 

 Experimental Design   

The current study uses EEG from human participants (n=15 for SWS, n=15 for REM). 

Participants completed a SRTT before and after sleep (SRTT; adapted from (Cousins et al., 

2014). As illustrated in Figure 2.5, sounds cued four different finger presses. EEG signals are 

used in a machine learning pipeline to identify the timing of sleep reactivations and classify 

them. We used data from 30 participants, they were divided into two groups, the SWS group 

and the REM group. Participants learned two 12-item sequences, A and B (A: 1 2 1 4 2 3 4 1 

3 2 4 3 and B: 2 4 3 2 3 1 4 2 3 1 4 1). Sequences had been matched for learning difficulty; 

both contained each item three times. Sequences were presented in blocks and each block 

contained three repetitions of a sequence. The blocks were interleaved so that a block of the 

same sequence was presented no more than twice in a row. There were 24 blocks of each 

sequence (48 blocks in total), and each block was followed by a pause of 15 seconds during 

which a feedback on reaction time (RT) and error-rate were presented. The pause could be 

extended by the participants if they wanted. After the 48 blocks of sequences A and B, 

participants performed four blocks of random sequences. They contained the same visual 

stimuli and an ‘R’ displayed centrally on the screen. Two of these blocks were paired with the 

tone group of one sequence (reactivated in sleep), and the other two were paired with the tone 

group of the other sequence (not reactivated).  

Participants were aware that there were two twelve-item sequences, and each sequence 

was indicated with ‘A’ or ‘B’ appearing centrally on the screen, but participants were not asked 

to learn the sequences explicitly. Counterbalancing across participants determined whether 

sequence A or B was the first block, and which of the sequences was reactivated during sleep. 

Each sequence was paired with a group of pure musical tones, either low tones within the 4th 

octave (C/D/E/F) or high tones within the 5th octave (A/B/C#/D). These tone groups were 

counterbalanced across sequences. For each trial, a 200 ms tone was played, and at the same 
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time a visual cue appeared in one of the corners of the screen. The location indicated which 

key on the keyboard needed to be pressed as quickly and accurately as possible: 1 – top left 

corner = left shift; 2 – bottom left corner = left Ctrl; 3 – top right corner = up arrow; 4 – bottom 

right corner = down arrow. Participants were instructed to keep individual fingers of their left 

and right hand on the left and right response keys, respectively. Visual cues were neutral objects 

or faces, used in previous studies (Cousins et al., 2014), which appeared in the same position 

for each sequence (1 = male face, 2 = lamp, 3 = female face, 4 = water tap). The nature of the 

cues (objects/faces), participants were told, was irrelevant. Visual cues stayed on the screen 

until the correct key was pressed, after which an 880 ms inter-trial interval followed. 

After completion of the SRTT, participants were asked to do the same task again, but 

were instructed to only imagine pressing the buttons. Motor imagery (IMG) consisted of 30 

interleaved blocks (15 of each sequence), presented in the same order as during the SRTT. 

Again, each trial consisted of a 200 ms tone and a visual stimulus, the latter being shown for 

270 ms and followed by an 880 ms inter-trial interval. There were no random blocks during 

the imagery task and no performance feedback was presented during the pause between blocks. 

As a control, participants were asked to sleep in the lab before doing the SRTT training. During 

control night, sounds were played with the same criteria as the actual experiment.  

After the experimental night participants were asked to perform the tasks again, first 

the motor imagery, then the SRTT. Eventually, they were asked if they remember the images’ 

locations of the two sequences to see if one sequence is recalled better than the other one. Motor 

imagery data set of each participant was used for classification. The adaptation/control night is 

useful for eliminating the possibility that a classifier could merely classify sound induced 

effects on the EEG. Thus, if the classifier can classify the experimental night but not the 

adaptation night this suggests the classifier is classifying memory reactivations, rather than a 

simple response to a sound.  

  None of the participants reported prior knowledge of performing the SRTT. All 

participants had normal or corrected-to-normal vision, normal hearing, and no history of 

physical, psychological, neurological, or sleep disorders. Participants did not consume alcohol 

and caffeine in the 24 hours prior to the study or perform any extreme physical exercise or nap. 

This study was approved by the School of Psychology, Cardiff University Research Ethics 

Committee, and all participants gave written informed consents.  
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Data acquisition. EEG was used in this study from human participants. EEG was collected 

using 21 electrodes (according to the 10-20 system) on the scalp, they consisted of 13 standard 

locations: Fz, Cz, Pz, F3, F4, C5, CP3, C6, CP4, P7, P8, O1, and O2, and were referenced to 

the mean of left and right mastoid channels. Three EMG channels were used on the chin and 

two on the left and right sides above and below the eyes for collecting EOG, and one ground 

on the forehead. The impedance values were below 5kΩ for scalp electrodes and below 10kΩ 

for face electrodes. PSG were scored by two trained sleep scorers and only the parts of the 

correct sleep stage were kept for further analyses. Data were collected at 200 HZ sampling rate. 

Sound cues were delivered either during SWS and REM sleep stages according to the group.  

  

 

Figure 2.5: The experiment. a) The experiment consisted of an adaptation and an 

experimental night. During the adaptation night, participants were wired-up for EEG and 

tones were played while they slept as shown in d. During the experimental night, participants 

were wired-up, then they completed the serial reaction time task (SRTT) and motor imagery 

task (IMG) as outlined in b and c, respectively. Then, participants went to sleep and TMR 

was carried out in SWS or REM sleep, depending on the group, as shown in d. After waking 

up, participants completed IMG then the SRTT, and finally the explicit recall task shown in e.  

b) In the SRTT, four images are presented in two different sequences. Each image is 

accompanied by a specific pure tone (different for each sequence) and requires a specific 

button press. c) In IMG, Participants view the same sequences of images (paired with the 

same tones), but this time are instructed to only imagine pressing the buttons. d) One 

sequence was played as long as participants were in the relevant sleep stage, with a 20 second 
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pause between repetitions. e) In the explicit recall ‘E’, participants marked the order of each 

sequence on paper. Motor imagery trial duration was 1.1 sec (duration between onsets of 

cues). Sleep trial duration (between cues duration) was 1.5 sec. 

 Classification 

We trained an EEG classifier to classify right- versus left-handed trials. This classifier was 

trained and tested using data from the motor imagery task performed just before and after sleep 

to assess the classifier performance during wake. We band-pass filtered the EEG signal from 

0.1 to 50 Hz, and performed smoothing with 80 ms moving average (40 ms before and 40 ms 

after each individual time point). This 80 ms moving window was applied to the whole trial. 

The resulting time domain features were submitted to a linear discriminant analysis (LDA) 

classifier. LDA implementation from Matlab was used. A time x time classification was then 

performed using features from one time point to train a classifier, and that classifier was then 

tested on all time points. 

We reasoned that if the classifier did not perform well in wake (either because the memory is 

weakly encoded or because it can somehow not classify the encoded memory), then it would 

not work during sleep, where noise is much higher and signal is much lower. We therefore used 

classifier performance during wake as a filter and excluded participants in whom wakeful 

reactivation could not be classified above 0.7 correct rate from further classification. During 

memory reactivation after a cue, there may be a time where activation reaches a peak, and other 

time points may not be very relevant for classification. We therefore used wakeful 

classification to extract the time period when classification accuracy was highest. This ‘peak 

activation period’ is very important for classification. We defined this time period as the time 

of interest (TOI). Using our wake-to-wake classifier, we identified a TOI based on the time of 

the highest classification rates. This is the window when we can best discriminate between the 

two classes, defined using a threshold of 0.75 correct rate on the grand average accuracies of 

all participants. 

Subsequently, we developed an EEG classifier using wake samples and applied it on sleep. 

This was trained using every time point of wake and applied on sleep after each TMR cue. If 

reactivation really occurs during sleep and is detectable with the current pipeline, then we 

would expect the classification to peak around the TOI that we identified during wake motor 
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imagery. We applied the classifier to data from both adaptation and experimental nights for 

REM and SWS groups, as the comparison between these two nights allows us to separate the 

brain response to sounds (adaptation night) from the brain response to memory-related cues 

(experimental night). If TMR is associated with genuine memory reactivation, classification 

should be stronger during the experimental night, when participants have associated tones with 

the task, than during the adaptation night when tones have no memory associations. 

We devised a method for removing noisy trials. In this method, trials which had low posterior 

probability (i.e., those which fell near the decision boundary) were considered noise and 

eliminated from the analysis. Rather than defining a set cut-off value, we used the maximum 

number of trials that was available for all participants consistently to determine which trials 

would be kept. In the SWS group this meant 300 trials, and 366 in the REM group. Importantly, 

this process does not consider the actual class label – it only considers the distance from the 

decision boundary. The exact same process was employed for classification of both the 

experimental and adaptation nights. After we had removed these noisy trials, classification 

accuracy on experimental and adaptation nights was compared to determine whether the 

classifier was detecting memory reactivation. 

Given that the SRTT is a motor task, and we are classifying right- and left-hand presses, we 

expected to obtain meaningful results by focusing on the motor area when obtaining features. 

Thus, we repeated the classification analysis using only the four channels around the motor 

area: CP3, C5, CP4, and C6, instead of using all channels as in the previous analysis. This final 

classification pipeline is shown in Figure 2.6. It uses the TOI as identified with the 

classification using all channels. However, whereas previously each time point had a 

classification output, here we aggregated the time points inside the TOI together on motor 

channels to form feature vectors. This allows the classifier to consider more information, which 

should enable it to learn better. Put differently, this analysis only provides one overall 

classification for a trial, rather than one for each time point, but it has more information 

compared to individual time points. Signals were band-pass filtered from 0.1 to 50 Hz, and 

smoothed and the time domain features were extracted and aggregated from the sleep TOI and 

the chosen channels and then fed to the LDA classifier. 
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Figure 2.6 Block diagram of the final classification pipeline. Signals were band-pass filtered, 

and smoothed. Time points inside the TOI were then aggregated using motor channels to 

form feature vectors that were subsequently given to the classifier for classification. 
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 CHAPTER 3  

Targeting targeted memory reactivation:  

characteristics of cued reactivation in 

sleep 

 

 

For this chapter, Anne C. M. Koopman collected data from participants, Suliman Belal and 

Monika Śledziowska contributed into the scripts of the experiment design. All the EEG, 

classification and post-classification analyses were done by me and developed in Matlab. 

Penelope A. Lewis supervised and advised on the study and throughout the work and writing. 

Matthias S. Treder supervised and advised on EEG analyses and classifiers. 
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 Abstract 

Targeted memory reactivation (TMR) is a technique in which sensory cues associated with 

memories during wake are used to trigger memory reactivation during subsequent sleep. The 

characteristics of such cued reactivation, as well as the optimal placement of cues to elicit it, 

remain to be determined. To examine this, we built an EEG classifier that can discriminate 

between the TMR elicited reactivation of right- and left-handed movements in a finger tapping 

task. We found that cues which fall on the up-going transition of the slow oscillation (SO) are 

more likely to elicit a classifiable reactivation related to these movements. Furthermore, we 

were able to predict the likelihood of eliciting a classifiable reactivation after each cue using 

pre-cue features of the ongoing SO such as the rising slope and half wave durations. We also 

found that classifiable reactivations occurred either immediately after the auditory cue or one 

second later. These findings greatly extend our understanding of memory reactivation in sleep 

and pave the way for the development of wearable technologies to efficiently enhance memory 

through cueing in sleep. 
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 Introduction   

Memories are neurally replayed during sleep, and this process is associated with consolidation 

(Ólafsdóttir et al., 2018; Rasch & Born, 2013; Squire et al., 2015). Targeted memory 

reactivation (TMR) is a technique in which sensory cues are paired with learned material during 

wake, then re-presented during subsequent sleep in order to trigger reactivation of the 

associated material (Cellini & Cappuzo, 2018; Hu et al., 2019).  This procedure leads to 

memory benefits for reactivated material (see  (Hu et al., 2019) for a recent meta-analysis).  

Importantly, several studies have confirmed the reinstatement of learning related brain activity 

after TMR cues in non-rapid eye movement (NREM) sleep (see (Lewis & Bendor, 2019) for a 

review).  Studies have looked at the neural structures involved in reactivation (Shanahan et al., 

2018; van Dongen et al., 2011), and found both positive (Cairney et al., 2018; Schreiner et al., 

2018; Shanahan et al., 2018; Wang et al., 2019), and negative (Murphy et al., 2018) 

relationships between the extent of reactivation and subsequent memory benefits.  

Cortical activity during slow wave sleep (SWS) is characterised by high amplitude slow 

oscillations (SOs) in which neurones oscillate between hyperpolarization and neuronal silence 

(“down-state”) and depolarisation with sustained firing (“up-state”).  Depolarised SO up-states 

drive memory reactivation in the hippocampus via interactions with thalamic sleep spindles 

(SS) and hippocampal sharp wave ripples (SWRs). One study showed that TMR during the up-

going phase was associated with memory benefit, while TMR of the down-going phase was 

not (Göldi et al., 2017). Another study showed that stimulating the up-going phase of the SO 

produces a higher ERP response compared to down-going phase (Schabus et al., 2012). This 

could be due to the fact that neurones are in the process of depolarising and are thus moving 

closer to the threshold for firing during the up-going phase.  Furthermore, fast spindles, which 

have been linked both to memory consolidation (Nishida & Walker, 2007) and to reactivation 

(Cairney et al., 2018), typically occur on the up-going phase (Born & Wilhelm, 2012; Siclari 

et al., 2014).   

TMR is thought to prime a memory trace for reactivation (Lewis & Bendor, 2019), and has 

been shown to trigger SO-spindle complexes (Cairney et al., 2018; Oyarzún et al., 2017; 

Schreiner et al., 2015). Based on the above observations, we predict that application of such 

priming during the up-going phase of the slow oscillation, just prior to a spindle event may be 

more likely to lead to reactivation than application of the same stimulation during the down-
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going phase of the oscillation when fast spindles rarely occur and excitability is reduced. SOs 

vary in terms of generation locus as well as shape, for instance having different periods, trough 

depths, and peak to trough slopes. These varied morphologies are thought to relate to the degree 

of synchronisation across neural populations in the cortex (Bernardi et al., 2018; Siclari et al., 

2014). Given these differences, some SOs are likely to facilitate reactivation more efficiently 

than others. We hypothesise that it may be possible to predict this efficiency based on features 

of the ongoing oscillatory structure of sleep, with specific reference to SOs and spindles, in the 

time period directly before stimulation. This would not only optimise stimulation, but would 

also allow selective targeted stimulation, minimising the number of sound cues needed to 

influence consolidation, and thus minimising the risk of disturbing sleep through provision of 

excessive cues. 

In the current chapter, we set out to characterise memory reactivation after TMR in NREM 

sleep and to determine whether applying TMR on the up-going phase is more likely to elicit 

reactivation, and also whether it is possible to predict the optimal time for TMR stimulation 

using the ongoing morphology of SOs and spindles. Following our prior work on classification 

of memory reactivation after SWS TMR (Belal et al., 2018), we used a serial reaction time task 

(SRTT) (Koopman et al., 2020), (Chapter 2), in which participants respond to audio-visual cues 

by pressing 4 buttons using two fingers on each hand. Each finger press was cued by a picture-

sound pair, and the tones associated with the task were replayed during SWS on the night after 

training to elicit memory reactivation (Figure 2.5).  Importantly, we also played the relevant 

tones during an adaptation night when the participant slept in the lab prior to training each 

participant on the SRTT task.  This provided a night of control data during which tones could 

not have evoked memory reactivation, as they were not yet associated with any memories. We 

then trained a classifier to identify neural responses associated with left and right-handed 

presses in wake and applied it on the data after each TMR tone in SWS on both adaptation and 

experimental nights. Finally, we used the features of the ongoing oscillation to train another 

classifier to determine whether TMR applied at a given time in the oscillatory sequence would 

elicit detectable reactivation.  
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 Results  

 TMR improved sequence memory 

The SRTT task is reliably facilitated by TMR in SWS (Cousins et al., 2014, 2016; Monika 

Schönauer et al., 2014). Our data are in line with this, since improvement on sequence memory 

cueing was associated with a significant advantage in overnight improvement (paired-samples 

cued vs. uncued t-test, n = 13, p = 0.049) (Koopman et al., 2020).  

 Multiple reactivations detected after TMR 

Prior work (Cairney et al., 2018; Schreiner et al., 2018) has suggested a recurrent pattern of 

reactivation after a TMR cue, with a reinstatement of the target memory immediately after the 

cued memory followed by a later reinstatement, see (Lewis & Bendor, 2019) for a discussion. 

Building on this work, we examined the time course of classification after TMR for evidence 

of a similar pattern. Our results revealed significantly higher classification performance in the 

experimental night than the adaptation night with two different effects described by two 

clusters after TMR onset (Figure 3.1a). An early cluster (p = 0.02) that occurred immediately 

after TMR onset and a late cluster (p = 0.01) that occurred ~1sec later. Results are corrected 

for multiple comparisons with cluster-based permutation (see methods for details), trial 

duration in sleep was 1500 ms.  

To test whether this was due to recurrent reactivation of the same response, we examined each 

trial to see whether it included an early reactivation, a late reactivation, or both. We then looked 

at whether the same trials were classified correctly at both early and late peaks (Figure 3.1b).  

This revealed that the majority of trials contain one peak, either early or late, and only 8.7% of 

trials showed reoccurring reactivation by classifying correctly during both early and late peaks.  

Comparison of the prevalence of reoccurring reactivation to chance level showed it was below 

chance (Wilcoxon signed rank test, n = 12, p = 0.002, z = -3.0594) (see methods for details); 

(Figure 3.1b). Overall, these results suggest that the reactivations we are detecting in this 

paradigm are not recurrent, but instead normally occur just once after each cue: either early or 

late within our trial duration. 
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Figure 3.1 Classification results from training on wake and testing on sleep. a Classification 

results for both nights. The blue curve represents the area under the ROC curve (AUC) across 

time for the experimental night (with standard error shaded around the mean), red curve 

represents the adaptation night, TMR sounds are presented at the beginning of sleep trials, 

‘early’ and ‘late’ are used to mark early and late reactivations. Classification results have two 

significant effects expressed by two clusters, (early cluster, p = 0.02, and late cluster, p = 

0.01). b Proportions of correct trials with only early reactivation (46.2%), only late 

reactivation (45.1%), and reoccurring reactivations (8.7%). c proportion of correct trials with 
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the TMR cue falling on different SO phase transitions for the two nights, circles represent 

participants and the grey curve is a simplified cartoon representation of the phase of a slow 

oscillation (SO), two phases are marked on the x-axis (Up-to-Down and Down-to-Up) and 

the y-axis represents the proportion of correct trials. The preferred phase for early 

reactivation is when the sound falls on the up-going transition of the SO (Wilcoxon signed 

rank test, n = 12, p = 0.019, z = 2.4) compared to down-going. 

 

 Preferred TMR phase for reactivation 

There is evidence that TMR may be more effective when applied to the up-going phase of the 

SO (Göldi et al., 2017). Moreover, fast rhythms, such as spindle, and gamma activity are more 

prominent in the SO up-going state than in the SO down-going state (Mölle et al., 2002; 

Piantoni et al., 2013; Valderrama et al., 2012), also there are changes to the ERP when the 

auditory stimulation is applied during the up-going phase of the SO (Schabus et al., 2012). 

Building on the extensive literature relating to reactivation during rodent sharp-wave ripples 

(Kudrimoti et al., 1999; Nakashiba et al., 2009; O’Neill et al., 2008), data from human epilepsy 

patients has shown that the SO up-going state shows higher gamma oscillations (Van Quyen et 

al., 2010), and sharp-wave ripples, which have been shown to carry reactivation (Zhang et al., 

2018), on the other hand, ripples are supressed during the SO down-going state (Clemens et 

al., 2007). Thus, up-going state appears to be the preferred time for reactivation (Göldi et al., 

2019). 

Given this background, we predicted that TMR would more effectively trigger reactivations if 

applied to the up-going phase of the oscillation. We tested this hypothesis by dividing our 

correctly classified sleep trials post-hoc based upon the phase at which TMR was initiated, see 

methods 3.5 for details. In the experimental night, this showed a significantly higher proportion 

of correct trials for early reactivation when TMR was applied on the up-going compared to the 

down-going SO transition and the chance level of 0.5 (Wilcoxon signed rank test, n=12, p = 

0.019, z = 2.4), Figure 3.1c. As a control, we compared the proportion of correct trials of the 

adaptation night between these two transitions and also against chance and found no difference 

(Wilcoxon signed rank test, n = 12, p = 0.24, z = -1.18). We repeated this analysis for the 

incorrectly classified trials for early reactivation and found no significant difference between 
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transitions and chance level for the experimental night (Wilcoxon signed rank test, n = 12, p = 

0.16, z = 1.4) nor for the adaptation night (Wilcoxon signed rank test, n = 12, p = 0.31, z = -

1.02). We also did the same for late reactivation but found no difference between up-going and 

down-going phase transitions. We then tested whether applying TMR on either the positive or 

negative half wave leads to detectable early reactivation, by following the same approach. 

Analysis of the phase values of the correct and incorrect trials did not show a preferred phase 

(positive or negative half waves) compared to chance for both experimental and adaptation 

nights. 

This analysis shows that TMR cues which fall on the up-going transition of the SO are more 

likely to lead to a classifiable early reactivation than TMR cues that fall on the down-going 

phase, supporting the idea that slow oscillations interact with reactivation in some functional 

way. This could also be important for optimisation of TMR cueing in order to successfully 

trigger reactivation.  

 Predicting reactivation using pre-cue Slow Oscillation features 

While the literature suggest that reactivation is modulated by SOs, (Inostroza & Born, 2013; 

Ngo et al., 2018; Rasch & Born, 2013), the mechanism for this modulation remains to be 

understood. We were interested to determine whether the features of the ongoing SO prior to 

stimulation could predict whether a given TMR cue would produce a classifiable reactivation. 

In other words, we wanted to know whether some points in the oscillatory pattern are more 

optimal than others for delivering TMR, and if so, which features of the ongoing oscillatory 

structure determine this. To examine this, we performed a second classification analysis, this 

time training our classifier on SO features. We wanted to see if we could discriminate between 

trials in which the hand for which movement was being cued was classified correctly vs. 

incorrectly (the results of main reactivation classifier, Figure 3.1a). To this end, we extracted 

SO features from the Fz electrode during the two seconds of data before the onset of TMR.  

The extracted features are described in Extended Data Table 1. These features were fed to 

decision tree classifiers (Gordon et al., 1984) which were trained on two classes: correctly 

classified, and incorrectly classified from the main classifier, see methods for more details. As 

a control, we compared the results obtained from the experimental night SO-based classifier to 

a SO-based classifier trained and tested using the adaptation night, Figure 3.2a. The 

performance of the experimental night classifier was significantly higher than that of the 



37 

 

adaptation night for predicting the early reactivation (Wilcoxon signed rank test, n=12, p = 

0.015, z = 2.43) but not late reactivation (p > 0.2). This indicates that it was possible to predict 

classifiable early reactivation in the experimental night when learned information could 

actually be reactivated compared to the control condition when nothing had been learned yet. 

This result shows that we can use SO features to predict when to optimally deliver TMR in 

order to maximise the probability of producing a classifiable early reactivation. 

In addition to the ongoing pattern of SO oscillations, we were interested in how the ongoing 

pattern of spindles might impact upon the ability of TMR to elicit classifiable reactivations.  

We therefore repeated the above analysis, now using spindle features. We thus trained a 

spindle-based classifier to predict whether we could use these higher frequency oscillations to 

determine whether TMR would produce a correct classification. We used features from 

channels around the motor area (C5, CP3, C6, and CP4). We thus extracted a binary value 

representing whether there was a spindle in the 1.5 seconds duration pre-cue (0: no spindle, 1: 

has spindle) and used this in a decision trees classifier, see methods. This showed that we can 

discriminate between correctly classified and incorrectly classified trials only in the 

experimental night and not the adaptation night (Wilcoxon signed rank test for experimental 

vs. adaptation, n = 12, p = 0.04, z = 2.04), Figure 3.2b. Subsequently, we analysed the trials of 

each participant to get an idea whether it was the presence or absence of spindles that might 

predict which trials had been correctly classified by the reactivation classifier. This showed 

that trials with fewer pre-cue spindles are more likely to have late reactivation (Extended Data 

Figure 4). This is in keeping with the study by (Wang et al., 2019) in which significant post-

cue reactivation was observed in trials with low pre-cue sigma power. It was argued that 

spindles have a periodicity of about 4 seconds, thus, it is possible that the occurrence of pre-

cue spindles which prevented post cue spindles and reactivation in the (Antony et al., 2018) 

study also prevented late reactivation in our study. However, it is notable that there was no 

such relationship with early reactivation. Overall, these results suggest that we can use spindle 

features to predict when to deliver TMR in order to trigger a classifiable late reactivation. 
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Figure 3.2: Predicting reactivation using pre-cue features. a) Classification results of the SO 

based classifier for the experimental vs. the adaptation night for early reactivation (Wilcoxon 

signed rank test, n=12, p = 0.015, z = 2.43). b) Classification results of the spindle-based 

classifier for the experimental vs. the adaptation night for late reactivation (Wilcoxon signed 

rank test, n=12, p = 0.04, z = 2.04). 

 

 Characteristics of detected reactivations 

Because this is a motor task, we wanted to know whether classification of reactivation was 

derived from the channels over the motor area. We therefore analysed the selected features that 

were included for classification after the feature selection step. This showed that the selected 

features always came from the motor area channels (C5, CP3, C6, CP4), with 66.7% of features 

being chosen from the right motor channels and 33.3% from left. This shows that the activity 

patterns in wake and sleep arise from the motor area and are related to the motor task. 

Because sleep is characterised by relatively low frequencies such as SOs (0.5 – 1.5 Hz), delta 

waves (1.5 – 4 Hz), and theta (4 – 8 Hz), we hypothesised that these would be the most 

important for our classification. To investigate this, we applied a low pass filter with cut-off 

frequency of 10 Hz without smoothing the signals. The resulting classification pattern was 

similar to the result without this filter in Fig. 2a (early cluster, p = 0.01, and late cluster, p = 

0.03), suggesting that feature of the low frequency range is deriving classification. 
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As shown in Figure 3.1a, we found that reactivation could occur at either of the two different 

timepoints - either early after the onset of the cue or approximately one second later. This 

shows the temporal characteristic of reactivations within trial duration. We also wanted to 

examine the characteristics of reactivations occurring at these two different times across the 

time course of stimulation. Our prior work on this task suggested that classification 

performance decreases as the number of stimulations in a night increases (Belal et al., 2018). 

We were therefore interested to know if this finding would hold with our new classification 

pipeline and data. We tested whether more correct classifications occur before or after the 

middle of the stimulation time by indexing trials that were classified as correct for early/late 

reactivation to range from 0 (first trial in stimulation) to 1 (last trial) for every subject, then we 

compared the indices of all trials to 0.5 (middle of stimulation) across subjects. This revealed 

that reactivations could be detected to a similar extent at any time during stimulation and was 

not more prevalent at the beginning or end. Neither reactivations which occurred right after the 

TMR tone, nor reactivations which occurred ~1 second after the TMR tone differed 

significantly from the middle of the stimulation time (Wilcoxon signed rank test, n = 12, p = 

0.39, z = 0.86, and p = 0.58, z = 0.55 for early and late reactivations, respectively). 

Finally, we wanted to examine how the performance of early and late reactivations varied 

across the night of stimulation. Thus, we obtained a performance curve across stimulation time 

for each peak by observing the changes of classification performance during the time of that 

peak throughout trials of stimulation (Extended Data Figure 1). We used a 50-trial block to 

calculate classification performance and slid this by one trial at a time to progress across the 

stimulation time. We then normalised the stimulation time to have the range [0 to 1], with 0 

being the first stimulation in the night and 1 the last stimulation. Interestingly, classification 

performance differed between the two peaks around approximately 0.6, that is, 60% of the way 

through stimulation time, with early reactivation more likely to occur at this time (Extended 

Data Figure 1).  

 The relationship between behaviour and classification performance  

Some prior reports have shown a positive relationship between detectable reactivation after 

TMR tones and the extent of TMR related benefit (Bendor & Wilson, 2012; Cairney et al., 

2018; Schreiner et al., 2018). We searched for this relationship by testing for correlations 

between classification and behavioural performance. Because different trials classified 
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correctly at early and late timepoints after the cue, and because such temporally distinct 

reactivation may potentially also have distinct functional characteristics, we performed all 

correlations twice, using the classification rate at first the early peak and then the late peak.  

This revealed a negative correlation between pre-sleep reaction time for the reactivated 

sequence and classification AUC in the early peak (Spearman r = -0.60, uncorrected p = 0.04), 

Figure 3.3a. In other words, faster pre-sleep performance was associated with a more 

classifiable reactivation immediately after the TMR cue. This could mean that a stronger 

representation had formed, and this could reactivate more easily. 

Interestingly, the late peak showed quite different associations from the early peak. Here, 

classification AUC negatively predicted the extent to which responses on the cued sequence 

sped up across the night of sleep (performance just before sleep – performance early post-

sleep), (Spearman r = -0.72, uncorrected p = 0.01), Figure 3.3b. We refer to it as overnight 

improvement, however, this improvement is the improvement of reaction time for the task and 

not the improvement in learning the sequence. The late peak AUC also predicted slower 

reaction times for the non-cued sequence after sleep (Spearman r = 0.68, uncorrected p = 0.02), 

Figure 3.3c. Thus, the stronger the late peak the slower the non-reactivated sequence was 

performed immediately after sleep. These results could suggest that when reactivation occurs 

~1 second after the TMR cue it somehow disrupts both the spontaneous consolidation of the 

non-reactivated sequence and the cued consolidation of the reactivated sequence. Late 

reactivation could have this property which is in-line with the study that showed a negative 

correlation between reactivation and improvement (Murphy et al., 2018). 
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Figure 3.3: Correlation with behavioural results. a) negative correlation between the 

classification performance (AUC) of the first peak and the average reaction time of the last 

four blocks before sleep for the reactivated (R) sequence (spearman correlation = -0.60, 

uncorrected p = 0.04). b) Late peak correlated negatively with the overnight improvement of 

the reactivated sequence (spearman correlation = -0.72, uncorrected p = 0.01). c) Late peak 

predicted slower reaction times after sleep for the non-reactivated (NR) sequence (spearman 

correlation = 0.68, uncorrected p = 0.019). d) Correlation of lateralized sigma power (z-

transformed) with classification performance for the early peak (Spearman correlation = -

0.69, p = 0.016). 
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 The relationship between sleep spindles and classification performance 

Sleep spindles have been strongly linked with memory reactivation (Antony et al., 2019; 

Klinzing et al., 2019; Rasch & Born, 2013). Work in rodents shows that replays correlate with 

spindles (Peyrache et al., 2012). Lateralised spindle density during cue periods has been shown 

to predict TMR-related benefit (Cousins et al., 2014), and lateralised spindle power over motor 

cortex is strongly associated with overnight improvements in finger tapping tasks (Nishida & 

Walker, 2007). We tested for a relationship between sigma power at (11 to 16 HZ) and 

classification performance. We found that, even though participants used both hands in this 

task, the lateralized sigma power was negatively associated with the early classification peak, 

(Spearman r = -0.69, p = 0.016) as shown in Figure 3.3d. Thus, the more the lateralised spindles 

right before the stimulus compared to after, the more likely we were to classify reactivation 

immediately after the TMR cue (more details about power calculation in methods). This is 

interesting in light of a prior analysis of our behavioural data showing TMR-related 

improvement in the weaker left, but not the stronger right hand over sleep (Koopman et al., 

2020). This correlation suggests that a lateralised spindle response may provide a marker for 

more classifiable early reactivation. 

 Discussion 

This study examined memory reactivations after auditory TMR of a finger tapping task in SWS 

using EEG classifiers. We found evidence of reactivation both immediately after TMR cues 

and about one second later. Importantly however, most correctly classified trials contained a 

reactivation at just one of these time points. We also found that TMR cues applied during the 

up-going state of the SO were more likely to result in a classifiable reactivation than those 

applied during the down-going transition. Furthermore, we showed that the pattern of ongoing 

slow oscillations and spindles before a TMR cue can be used to predict whether that cue will 

produce a classifiable reactivation. These findings markedly deepen our understanding of 

neural reactivations after TMR cues in sleep and may lead to improved methods for efficient 

boosting of memory via the TMR manipulation. 

 Timing of reactivation after the cue 

The delay between TMR onset and triggered reactivation is a matter of current investigation.  

Thus, rodent work showing a reverberation of reactivation between cortex and hippocampus 
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(Rothschild et al., 2017) has led to the suggestion that replays may ‘echo back’ again and again 

after TMR. In fact, work in rodents (Bendor & Wilson, 2012) suggests that TMR cued replay 

can continue to repeat for up to 10 seconds after the offset of the auditory cue and a second cue 

can interrupt this replay. Turning to humans, one study showed strong reactivation about two 

seconds after the cue, with a trend towards an earlier reactivation immediately after the cue 

(Cairney et al., 2018).  Another study showed recurrent reactivation after a TMR cue, one 

immediately after the cue and a second one about two seconds after the cue (Schreiner et al., 

2018). Our findings are in keeping with this work since they suggest that reactivation can occur 

either immediately after the cue or around one second later. Because our inter-trial interval was 

only 1500 ms, it is possible that the start of the next trial, marked by a TMR cue, may have 

disrupted the reactivation pattern such that we were unable to identify reactivations after this 

time. Importantly however, our data shows that within a single trial, reactivation does not occur 

at both early and late timepoints, but only at one or the other. It is possible that this may also 

have been the case in the prior human studies (Cairney et al., 2018; Schreiner et al., 2018), as 

they looked at the average across trials instead of examining individual trials.   

Since our data show that reactivations occur at different delays (immediately after the cue and 

one second later) on different trials, we must ask whether such differences in timing are 

important. Interestingly, we found that the early peak in reactivation was predicted by pre-sleep 

behavioural performance, while the late peak showed no such correlation and was instead 

negatively correlated with overnight improvement in reaction time on the cued sequence. It is 

difficult to interpret these findings, but one possibility is that a strongly encoded memory of 

the task leads to more immediate reactivation after a TMR cue. On the other hand, late 

reactivation may result from a weaker memory trace, and might actually disrupt consolidation 

of the task. It is also possible that weaker memories that do not reactivate immediately after 

the TMR cue could become distorted during the delay, such that late reactivation is 

counterproductive to consolidation instead of beneficial. After all, reactivation is associated 

with spindles (Antony et al., 2018) and TMR is thought to trigger SO-spindle complexes 

(Cairney et al., 2018; Oyarzún et al., 2017). Spindles have been shown to gate Ca2+ influx into 

dendrites, thereby facilitating synaptic plasticity (Rosanova & Ulrich, 2005; Seibt et al., 2017) 

and this Ca2+ influx is strongly amplified when spindles coincide with SO up-states (Niethard 

et al., 2018). One recent study even showed that the more closely spindles coincided with SOs 

after a cue, the higher the fidelity of the associated reactivation signal (Schreiner et al., 2020). 
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Thus, delayed reactivation that does not correspond to a SO coupled spindle may be 

counterproductive.  

We also aim at analysing whether the early reactivation was caused by the TMR cue at time 0 

or whether the brain was able to predict the upcoming cue and thus reactivated its contents 

before it was presented. This possibility seems likely given that the task is a sequence that gets 

repeated many times and the intertrial delay is fixed. This could enable a temporal predictability 

after representing the sequence many times such that the brain adapts to the intertrial delay and 

knows the upcoming cue because it follows the sequence order that was encoded in wake. 

 Optimal timing of TMR cues 

The exact mechanisms by which TMR triggers reactivation are unknown, but the up-going 

phase is clearly more reactive to stimulation than the down-going phase, since neurones are 

preparing to fire as the slow oscillation approaches its peak and beginning a silent period as it 

enters the trough. Stimulation after the negative peak of the SO, during the up-going phase, 

was shown to produce a higher amplitude than stimulating during the down-going phase, this 

finding shows a phase dependent ERP response and may suggest a different relationship 

between reactivation and up- vs. down- going phase of the SO (Schabus et al., 2012). SOs are 

highly heterogeneous, differing both in locus of generation and in terms of shape. For instance, 

SOs differ in period, trough depth, and peak to trough slope (Bernardi et al., 2018; Siclari et 

al., 2014). Importantly, the SO down-state is thought to be required for the generation of a 

thalamic down-state which triggers a spindle (Mak-McCully et al., 2017). On the other hand, 

the SO up-going state is thought to initiate memory reactivation with sharp wave ripples and 

thalamo-cortical spindles (Sirota & Buzsáki, 2005). Given the established association between 

memory reactivation and spindles, and given that spindle initiation apparently requires a sharp 

SO trough, it is reasonable to suppose that TMR stimulation of some SOs may be more likely 

to trigger reactivation than TMR stimulation of others. For instance, SOs with a deeper trough 

or steeper slope, or some combination of these might be more likely to carry reactivation-

bearing spindles. Such differences could explain why we were able to predict which 

stimulations would be successful based on the features of the ongoing SO before the TMR cue, 

although, notably, the combination of features was necessary and no single SO feature was 

sufficient for this prediction. Related to this, we also found that trials with fewer pre-cue 

spindles are more likely to have late reactivation (Extended Data Figure 4). This is in good 
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keeping with work from Wang and colleagues, (Wang et al., 2019), showing that less pre-cue 

spindles predicted more post-cue reactivation, and that such reactivation begins around one 

second after the onset of the cue. 

Importantly, such predictive analysis could potentially be used to boost the efficacy of TMR 

by ensuring that stimulation occurs only at the times when it is most likely to be effective. This 

could minimise any potential disturbance from TMR, which does often lead to arousals when 

delivered indiscriminately. Such increased precision of cue delivery could be important for 

translation of the TMR technique from lab to the home environment.    

 Conclusion   

This study elucidates several interesting characteristics of TMR cued reactivation, how this 

relates to the ongoing oscillatory pattern in slow wave sleep, and how best to elicit it. For a 

start, we show that reactivation can occur at different times after the cue and these times are 

different from wake. Detected reactivations are not recurring after one sound cue. Early and 

late reactivations also appear to have different functional significance. Furthermore, we show 

that the SO up-going transition is a preferred window for TMR delivery, probably because it 

heralds the spindle-bearing upstate. Finally, we show that both pre-cue SO morphology and 

spindle incidence can be used to predict TMR cued reactivation, providing a clear mechanism 

for more efficient stimulation in future studies as well as delivery of TMR by wearable devices 

for at-home manipulation of reactivation to facilitate memory. In our next study, we would like 

to explore whether the triggered early reactivation is caused by the current cue at time 0 or 

whether it could be a result of the brain expecting the upcoming cue and thus reactivating its 

information. We would test this by jittering the onset of TMR such that, if the early reactivation 

is absent this could mean that the brain was reactivating the information of the upcoming cue.  

 Methods 

 Wake-to-wake classification to locate a time of highest classification rate  

We started the analysis by performing a wake-to-wake motor imagery classification. This was 

performed for each subject separately, with trials serving as observations and are being labelled 

according to the hand they belong to. EEG signals were band-pass filtered (0.1 to 50 Hz) and 

the mean was subtracted. Features were extracted by calculating time-domain amplitude 
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averages of 80 ms (40 ms before and 40 ms after every time point). Subsequently, features 

were fed to a linear discriminant analysis (LDA) classifier (Blankertz et al., 2011). Each 

classifier was trained and tested on data during the wake experiment before sleep, in a time x 

time fashion (King & Dehaene, 2014). The classifier was trained on a specific time point and 

tested with all time points to build one row in the time x time classification, illustrated in Figure 

3.4a. We assumed that if a classifier is not classifying at a considerably high rate during wake, 

then this would decrease the possibility of that classifier to classify sleep reactivation where 

noise is higher. Consequently, we chose the subjects with wake-wake classification with Area 

Under the ROC Curve (AUC) >= 0.7, (n = 13). One subject was neglected because of a 

technical problem during the collection of sleep data. The rest of data was used for 

classification (SWS: n = 12). We also do realise the rich literature of motor imagery 

classification with common spatial patterns (CSP) and other methods (Blankertz et al., 2008; 

Lemm et al., 2005; Pfurtscheller et al., 1997, 2006; Ramoser et al., 2000). However, given the 

differences between wake and sleep data sets and their different nature of noise and oscillations 

we decided to use time domain features with our classifiers. 

Initial investigations revealed a higher classification performance for left- vs. right-hand 

(where both fingers were aggregated into one class) than for faces vs. objects. Therefore, we 

conducted the analysis on left- vs. right-hand imagery. The trial length was defined as the 

duration between cue onsets (1.1 sec. in wake). Sound cues had a duration of 200 ms and were 

played from time 0 of the trial. During sleep, trial length was 1.5 sec. 

Motor imagery classification during wake shows a time period with maximum classification 

performance (marked with dashed box in Figure 3.4a). This time region should be useful for 

discriminating left hand and right hand. We defined this time period as the time of interest 

(TOI). A TOI is a time window that has high classification rate, indicating its ability to 

discriminate the classes. It acts as a temporal marker of expected discrimination. To locate this 

window, we used a threshold of 0.85 on the average classification AUC from all subjects.  

 

a 
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Figure 3.4: Classification with a classifier trained using wake motor imagery. a) Grand 

average classification AUC for left- vs. right-hand motor imagery using a sliding 80ms 

smoothing window and LDA classifiers, dashed box represents the time of interest (TOI).  b) 

Illustration of classification procedure of left- vs. right-hand (training: wake and testing: 

sleep) which is applied for both the experimental night and adaptation (control) night. A 

sliding window approach is performed, wherein a classifier is tested on a window from sleep 

a 

b 
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and the classification result replaces the centre of that window then the window is slid by one 

time point to construct a performance curve across time (blue curve). 

 

 Wake-sleep Classification  

Once we had built a classifier on wake data, we tested it on sleep data. We applied it to sleep 

using a sliding window approach, as shown in Figure 3.4b. Using the sliding window approach 

the classification was applied on the first testing window in sleep, for example: [0 to 0.38] 

second, which matches the length of the TOI. Then, the classification performance is placed at 

the centre time of this window, i.e., at 0.190 second. Subsequently, the sliding sleep window 

is shifted by one time point and the process is repeated. Thus, the results of classification are 

AUC values across time.    

The wake-to-sleep classifier used the concatenated averages inside the TOI as features. These 

concatenated time points were reduced to the most informative contiguous time points using 

mutual information on wake data for each participant. The reason for that is to reduce the 

features to the most informative time points since the reactivation might be temporally short 

compared to wake activation. Consequently, we slide a shorter window that contains the most 

informative features which enables the classifier to detect the reactivation if it was temporally 

short or long. The most informative time points were chosen such that the time points are 

contiguous and contain the highest 10% of the mutual information values. 

We devised a method for removing noisy trials with no TMR effect. Let us imagine that the 

noisy trials belong to a new ‘no effect’ class which is different from right- and left-hand. The 

features of those trials in the feature space should fall near the decision boundary, in a region 

of uncertainty of the classifier; Extended Data Figure 2a. Thus, we define trials as ‘no effect’ 

if they fall in that area. We rejected noisy trials falling close to the boundary and used 300 clean 

trials from every participant, as there were 300 clean trials in the participant with the lowest 

number of such trials, and we wanted to be consistent among participants. Those 300 trials 

correspond to a certainty average of 0.86, with 0.1 standard deviation. Importantly, to avoid 

any bias, this cleaning process was unsupervised, meaning that the information of the ground 

truth class labels of sleep data was not used. Moreover, we verified that this cleaning process 



49 

 

would not be useful if the data we were trying to clean was random and contained no useful 

information, as illustrated in (Extended Data Figure 2b). This was the case with the control 

night. It would also not be useful if sleep data was not scattered in a similar way to wake 

training samples because the decision boundary position and orientation which are determined 

using wake will then be meaningless for sleep samples. Thus, this cleaning process only works 

if the data is not random. Importantly, the exact same cleaning procedure was performed for 

both the experimental and adaptation night for completeness. 

 Preferred TMR phase analysis 

Phase information was extracted using Hilbert transform on the band pass filtered signal (0.5 

to 2 HZ) using electrode FZ. We divided phase values into two ranges: [0 to π] and (π to 2π], 

indicating the two transitions: down-going and up-going, respectively. For each participant, we 

determined the number of correctly classified trials in which TMR fell on either phase range in 

each night, then normalised by the total number of correct trials. We compared the proportion 

of correct trials where TMR occurred in the down-going and up-going transitions of the SO. 

The same process was repeated for the incorrect trials of the experimental night also, the correct 

and incorrect trials of the adaptation night. 

 Lateralised sleep sigma power analysis 

The lateralized sigma power [11 16] HZ was calculated using short time Fourier transform 

during the duration: [0 to 0.5] sec. relative to cue onset which is around the early reactivation. 

Lateralised power was calculated as the difference between left and right motor channels (C6, 

CP4, C5, CP3) and was baseline corrected ([-0.2 0] sec. relative to cue onset). Consequently, 

percentage change from baseline was calculated. 

 Reoccurrence of reactivation 

We statistically tested if one reactivation (early or late) is more likely to happen or whether 

reactivation is reoccurring after a sound cue. Thus, we took the accuracy for recurring 

reactivation (i.e., the ratio of correct trials during the time of both early and late reactivation 

simultaneously) and compared it to the probability of both reactivations happening 

simultaneously after a sound cue (the accuracy for early reactivation multiplied by the accuracy 
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for late reactivation) as a chance level. We performed this analysis for every subject and 

compared the accuracy of reoccurring reactivation to chance level.  

 SO based classification 

The SO based classification consisted of 200 decision trees ensemble. Leave one out 

classification is used wherein the data of all participants except one is used to train the classifier 

and the left-out participant is used for testing the classifier. This gives a classification result for 

the left-out participant and the process is then repeated until the classification performance is 

calculated for all participants. Every decision tree is trained on a random subset of trials from 

the training set and tested on the testing set and the final result is the aggregated votes from all 

decision trees.    

 Statistical testing 

To assess the statistical significance of the classification results, we compared the classification 

performance of the experimental night against the adaptation/control night. Sounds played 

during the adaptation night were the same sounds used in the experimental night but because 

the adaptation night was before participants had been trained on the experimental task, these 

sounds were not yet associated with any memories.  This control was used to make sure that 

classification is not derived due to some sound induced features/noise in EEG.  

Statistical analysis was performed using the classification results of the two nights with cluster-

based permutation using Fieldtrip (Oostenveld et al., 2011). Monte Carlo was used with a 

sample-specific test statistic threshold of 0.05, a permutation test threshold for clusters of 0.05, 

and 10,000 permutations. The correction window used in the test was the whole length of sleep 

trial, i.e., [0 to 1.5] sec.       
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Extended Data Figure 1:  performance of classification peaks throughout stimulation time 

(stimulation time is normalised to have the range [0 to 1]) the performance was calculated for 

each 50-trial block, the shaded area represents the standard error (SE) and the solid line 

represents the mean of different participants. After the middle of the stimulation time, early 

and late reactivations show different behaviour. 

 

Early reactivation
Late reactivation

Stimulation time (norm.)
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Extended Data Figure 2: Illustrating classification feature space using one subject. a) 

Classification of left hand (class 1) vs. right hand (class 2), posterior probability is illustrated. 

Wake data from one subject is used and the area of ‘no effect’ is near the decision boundary 

corresponding to low posterior probability (green). b) If trials were random and did not 

contain discriminative information, then rejecting some trials that fell near the decision 

boundary (cyan) will not lead to improved classification performance. Thus, cleaning random 

data will not be useful and only the data with actual classifiable effect would benefit from this 

cleaning. 

  

a 

b 
b 

a 
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Extended Data Figure 3: The four images that appeared to participants in the task: two faces 

and two objects. One image appeared at the beginning of every trial, all images are shown 

together for illustration. 
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Extended Data Figure 4: likelihood of pre-cue spindles [-1.5 to 0] sec. for correct and 

incorrect trials. Percentages of trials with spindles are shown for correct and incorrect trials of 

reactivation classifier which shows that the lack of pre-cue spindles accompanies classifiable 

late reactivation. Each point represents one participant. 

 

Feature Description Variable 

cosPhase Cosine of the phase of auditory stimulation Continuous 

sinPhase Sine of the phase of auditory stimulation Continuous 

vSOTrough Voltage of SO trough before the click   Continuous 

vSOPeak Voltage of SO peak in the click wave   Continuous 
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vSOPeakTrough Voltage of SO peak-trough before the click   Continuous 

tSONegWave Time of duration for the negative wave before click   Continuous 

tSOPosWave Time of duration for the positive wave before click   Continuous 

tSORising Time of duration from the trough to zero crossing before click Continuous 

tSOPeakTrough Time of duration for the peak to trough before click  Continuous 

tStimSOCrossing Time between zero-crossing to click time   Continuous 

tStimSOTrough Time between trough before click to click time Continuous 

tStimEstimPeak Time between click time to wave peak  Continuous 

rmsSONegWave Area under curve for trough section before click (troughArea) Continuous 

rmsSOPosWave Area under curve for peak section before the click Continuous 

rmsSOWave Area under curve for all wave previous to stimulation Continuous 

numSOTroughs Number of troughs in the negative wave before click Ordinal 

numSOPeaks Number of peaks in the positive wave before click Ordinal 
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risingSOSlope Slope from the trough to zero crossing before click Continuous 

SOwaveRatio Duration ratio for the wave before click (Slope) Continuous 

SOhalfWaveRatio Duration ratio for the negative wave before click Continuous 

FSonStim Presence of fast spindle on stimulation Binary 

SSonStim Presence of slow spindle on stimulation Binary 

existFSonSO Presence of fast spindle on the wave before stimulation Binary 

existSSonSO Presence of slow spindle on the wave before stimulation Binary 

 

Extended Data Table 1: Description SO features used for predicting reactivation.   

 

 

 

   

 



57 

 

 

 

 

 

 

 CHAPTER 4 

 

The effect of temporal jittering of cues 

on TMR reactivation in SWS sleep 

 

In this study, me, Martyna Rakowska, and Penelope A. Lewis designed the experiment. Me, 

Martyna Rakowska, and Paulina Bagrowska collected data from participants. All the EEG, 

classification and post-classification analyses were done by me and developed in Matlab. 

Penelope A. Lewis supervised and advised on the study and throughout the work and writing. 

Matthias S. Treder supervised and advised on EEG and classifiers. 
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  Abstract 

In this chapter, we delve deeper into the temporal characteristics of the detected reactivations. 

Following our previous study (Chapter 3), we repeated the experiment but jittered the timing 

of the TMR cues during sleep to study the impact of such jittering on reactivations. As in 

chapter 3, we identified multiple reactivations above chance level. However, we found a 

markedly different timing of reactivations after jittering. Specifically, reactivation occurred for 

extended periods after a jittered cue and continued until the presentation of a second cue we 

also do not get the early reactivation that we found in chapter 3. More precisely, reactivations 

occurred at 1 second after the onset of the cue and again at 2 seconds. These results suggest 

that reactivation can occur for extended periods and there is an element of predictability of 

TMR cues which influences the timing during which we can detect reactivation. We also found 

that the lack of pre-cue spindles predicted both reactivations. 

 

  

 

 

 

 

 

 

 



59 

 

 Introduction  

Sleep is essential for both declarative and non-declarative memory consolidation (Diekelmann 

& Born, 2010; Rasch & Born, 2013; Squire et al., 2015), during sleep, memories are reactivated 

such that brain activity is reinstated during offline periods which facilitates the consolidation 

process (Ólafsdóttir et al., 2018; Wilson & McNaughton, 1994). These memories can be 

selectively triggered by representing odours or sounds that were originally present during the 

encoding of those memories. This method is called targeted memory reactivation (TMR) and 

it has shown great success in biasing reactivation and affecting the behavioural improvement 

as a result of cuing (Belal et al., 2018; Cellini & Cappuzo, 2018; Hu et al., 2019; Schreiner et 

al., 2018; Shanahan et al., 2018; Wang et al., 2019). TMR has been shown to have positive 

(Cairney et al., 2018; Schreiner et al., 2018; Wang et al., 2019) as well as negative effects 

(Murphy et al., 2018) on memory. Several studies have confirmed the reinstatement of learning 

related brain activity after TMR cues in Non-REM (NREM) sleep (see (Lewis & Bendor, 

2019)). We also showed in (Chapter 3), that we can detect TMR elicited reactivation in SWS.  

In this study, we use a highly sleep dependent serial reaction time task (SRTT) which was 

shown to be affected by TMR in SWS in human participants (Cousins et al., 2014). We updated 

the study design by jittering the delivery of TMR and including three follow up sessions. In the 

follow up sessions, participants performed the SRTT again. In the final follow up session, 

participants performed a sequence recall task where they marked the order of each sequence, 

Figure 4.1. It has been shown that memory reactivation during SWS can be detected using EEG 

(Belal et al., 2018; Cairney et al., 2018; Schreiner et al., 2018; Wang et al., 2019), chapter 2 

and 3. fMRI (Deuker et al., 2013; Shanahan et al., 2018), and also intracranial EEG (iEEG) 

(Zhang et al., 2018). In some studies, reactivation was detectable with above chance accuracy 

with information about the exact timing of these reactivations. Various studies found the 

reactivation to be locked to the onset of the TMR sound (Wang et al., 2019), locked to TMR 

onset and mediated by spindle activity (Cairney et al., 2018), locked to onset and mediated by 

phase of theta activity (Schreiner et al., 2018), locked to ripples (Zhang et al., 2018), or locked 

to slow oscillation (SO)-spindle complexes (Schreiner et al., 2020). In our prior work (Chapter 

3), we found a TMR-locked evidence of reactivation and by applying TMR on the up-going 

phase of the SO we can trigger an early reactivation. Additionally, the lack of pre-cue spindles 

can predict occurrence of detectable reactivation after the cue.  
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It has been shown that the delay between the onset of reactivation and the TMR cue onset is 

different from the delay in wake, chapter 2 and 3, also the reactivation in sleep can echo 

repeatedly after TMR (Bendor & Wilson, 2012; Rothschild et al., 2017). In rodents, it was 

shown that TMR replay can repeat several times after the offset of a cue (Bendor & Wilson, 

2012). In humans, it has been shown that reactivation could be reoccurring  (Schreiner et al., 

2018). In the current study, we explored the timing of activation during wake and when the 

activation pattern is strongest and compared this to when the reactivation pattern during sleep 

peaked. We found that indeed the reactivation pattern is delayed (after 1 second and at 2 

seconds) compared to activation in wake (around 0.7 seconds). 

In the current study, we sought to detect reactivation of our SRTT and determine the temporal 

characteristics of detectable SWS reactivation using EEG signals and linear machine learning 

models. Following our prior work on this problem (Chapter 3), we wanted to understand the 

effect of extending the trial durations after a TMR cue and making these durations 

unpredictable. We therefore jittered the onset of cue timings to be able to see how this would 

affect the detected reactivations.  

In Chapter 3, we showed that reactivation can be detected with EEG classifiers and the detected 

reactivations happen at two different timings. That study used a trial duration of 1.5 second and 

we were able detect an early reactivation which happened immediately after a TMR onset and 

another reactivation which happened ~1 second after the cue onset. In the current study, we 

jitter the timing of TMR onsets from 2.5 to 3.5 seconds in hopes of determining whether 

reactivations also occur later than 1 second after the TMR cue. The jittering should also enable 

us to determine if the early reactivation at TMR onset is caused by the current cue onset at time 

0 or whether a previous TMR cue is enabling the brain to predict the upcoming cue. If this is 

the case, then the brain reactivates the upcoming cue information without waiting for the cue 

to be actually presented which is a possibility given that the task is a sequence. 

Brain activity during SWS is characterised by SO. SO have an up-going phase which is related 

with sustained firing depolarisation state and during which faster phenomena like sleep 

spindles (Born & Wilhelm, 2012; Siclari et al., 2014) which are linked to memory consolidation 

(Nishida & Walker, 2007) and to reactivation (Cairney et al., 2018). On the other hand, a 

hyperpolarisation state of neuronal silence is linked to the down-going phase of the SO. 

Additionally, memory benefit was shown to be linked to the up-going phase of the SO (Göldi 
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et al., 2017). It has also been shown that we could produce higher ERP responses by stimulating 

the up-going phase of the SO vs. the down-going. Here, we use jittered cues and aim to 

investigate whether the delivery of TMR during the up-going phase of the SO can produce 

better classifiable responses compared to down-going phase. We also aim to explore the 

relationship between sleep spindles and reactivation following our work in Chapter 3 and 

(Wang et al., 2019). 

 

Figure 4.1: Study design. a) Participants were wired-up, afterwards they completed the serial 

reaction time task (SRTT) and motor imagery task (IMG), respectively. Then, participants 

went to sleep and TMR was carried out in SWS, as shown in c. After that, participants had 

three follow up sessions of SRTT. During the final follow up session, participants performed 

an explicit recall task where the order of each sequence had to be marked. b) In SRTT, four 

images are presented in two different sequences. Each image is accompanied by a specific 

tone (different for each sequence) and requires a specific button press. In IMG, Participants 

view the same sequences of images and imagine that they are pressing the buttons. c) 

Schematic representation of the TMR protocol. Reactivation took place in SWS. Sequences 

were followed by a 20-second pause.  
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 Results  

 TMR elicits multiple reactivations 

We sought to analyse the temporal characteristics of detected motor imagery reactivation. The 

detection of reactivation was shown to reoccur (Cairney et al., 2018; Schreiner et al., 2018), 

with the reinstatement of the target memory immediately after the cued memory, followed by 

a later reinstatement (Lewis & Bendor, 2019). Our own work (Chapter 3) also shows two 

reactivations, one immediately after the TMR cue and another after ~1 second. Thus, in the 

present study, we wanted to examine the time course of classification performance between the 

reactivation of left- and right-hand activity given that we here jitter the timing of cues. Thus, 

we build classification models using EEG activity of the motor imagery during wake. These 

models discriminate the activity of different hands at every time point after the onset on the 

cue. Once trained, we tested the models on the activity that arises after the onset of TMR in 

SWS. Our results show late reactivations, but not the early reactivations that we found in 

(Chapter 3). This suggests that the early reactivation may have resulted from the brain 

predicting the upcoming cue due to the fact that our task is sequence based and that the intertrial 

delay was fixed. Interestingly, in the jittered design, we see a reactivation after around 1 second 

after the cue onset and also see reactivation at around 2 seconds from the onset (n = 12, p = 

0.01, p = 0.0045 for both clusters after 1 second and at 2 seconds, respectively) (Figure 4.2). 

Results were corrected for multiple comparisons with cluster-based permutation (see methods 

for details). Trial duration in sleep was jittered between 2500 ms and 3500 ms.  
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Figure 4.2: Classification results after training the classification model on wake and testing 

with sleep. The blue curve represents the area under the ROC curve (AUC) across time (with 

standard error shaded around the mean). TMR sounds are presented at the beginning of sleep 

trials (time 0). Green shaded areas mark the timing of the two clusters indicating 

reactivations. Classification results have two significant effects expressed by two clusters (1-

second cluster, p = 0.01, and 2-second cluster, p = 0.0045). 

 

 Reactivation is reinstated on the motor area 

To be sure that the detected reactivation is related to our motor task we used the channels on 

the motor area for classification. We chose 12 electrodes on the motor area (C1, C3, C5, CP1, 

CP3, CP5, C2, C4, C6, CP2, CP4, CP6). The classification performance shown in Figure 4.2, 

is using these motor channels which ensures that the detected pattern is a reactivation of the 

task. Classification with motor channels followed our previous work in chapter 3, where we 

showed that classification was derived from the motor area.  

TMR

P = 0.4206       0.393      0.1996      0.2333      0.0123      0.0057
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 Reactivations are not reoccurring  

As in our previous analyses with this task (Chapter 3), detected reactivations appear to reoccur. 

However, this pattern arises as a result of combining different trials and different participants. 

Thus, reactivation could actually happen at just one of the two detected time durations of 

reactivations in each trial but appears to reoccur as a result of looking at the overall effect 

across many trials. To examine this, we compared the probability of having a correct trial at 

the timing of both peaks with the probability of finding both peaks simultaneously 

(multiplication of both probabilities as chance level) after a TMR. We found that the probability 

of having trials classified correctly at the timing of both peaks simultaneously is significantly 

lower than chance level (Wilcoxon signed rank test, n = 12, p = 0.004, z = -2.90). This suggests 

that, as in Chapter 3, it is unlikely that reactivations are reoccurring in the same trial after a 

sound cue. 

 Lack of pre-cue spindles facilitates post-cue detectable reactivation 

We analysed the duration before the onset of the stimulus and extracted the information of 

whether there was a spindle happening before the stimulus or not (see methods for more 

details). We found that when we analyse the pre-cue periods of the correctly classified trials, 

the occurrence of spindles is less likely compared to incorrect trials. This suggests that the lack 

of pre-cue spindles facilitates reactivation. We performed this analysis for both peaks, at 1 

second and 2 seconds, to find that this was true for both of them: first peak (1 second) 

(Wilcoxon signed rank test for percentage of trials with pre-cue spindles for correct vs. 

incorrect trials, n = 12, p = 0.023, z = -2.28), and second peak (2 seconds) (Wilcoxon signed 

rank test, n = 12, p = 0.002, z = -3.061), Figure 4.3. 
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Figure 4.3: Lack of pre-cue spindles predicted correctly classified reactivations. Percentages 

of trials containing spindles are shown for correct and incorrect trials of reactivation classifier 

for both 1-second reactivation (a) and 2-second reactivation (b) for each participant. This 

shows that the lack of pre-cue spindles is related to both detectable reactivations after TMR. 

First peak (1 second) (Wilcoxon signed rank test for percentage of trials with pre-cue spindles 

for correct vs. incorrect trials, n=12, p = 0.023, z = -2.28), and second peak (2 seconds) 

(Wilcoxon signed rank test, n=12, p = 0.002, z = -3.061). 

 

 Preferred SO TMR phase for detectable reactivation  

During the up-going state of the SO, fast rhythms such as spindle, and gamma activity are more 

prominent than in the SO down-going state (Mölle et al., 2002; Piantoni et al., 2013; 

Valderrama et al., 2012). In rodents, sharp-wave ripples seem related to reactivation 

Reactivation after 1 second

*

Reactivation at 2 seconds

**

a b 
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(Kudrimoti et al., 1999; Nakashiba et al., 2009; O’Neill et al., 2008). Likewise, in humans 

sharp-wave ripples have been shown to carry reactivation (Zhang et al., 2018). Thus, we could 

assume that by applying the stimulation on the up-going phase of the SO we would expect 

reactivation to occur.  

We tested this by dividing our sleep trials and analysing the number of correctly classified trials 

that had the TMR on the up-going phase of the SO and comparing that to the correct trials that 

had the TMR on the down-going. We performed this analysis for both peaks and revealed that 

the up-going phase is preferred for TMR to elicit the reactivation at 2 seconds (Wilcoxon signed 

rank test, n = 12, p = 0.013, z = 2.47). In other words, the majority of correct trials had TMR 

on the up-going phase of SO. We repeated this for incorrect trials and found no difference 

between up-going and down-going phase transitions (up-going vs. down-going Wilcoxon 

signed rank test, n = 12, p = 0.11, z = 1.6). We also repeated this for the peak at 1 second but 

found no difference between phase transitions (for correct trials Wilcoxon signed rank test, n 

= 12, p = 0.21, z = 1.25), (for incorrect trials Wilcoxon signed rank test, n = 12, p = 0.64, z = -

0.47). This shows that when the sound cues are delivered during the up-going phase of the SO 

they are more likely to elicit a classifiable reactivation 2-second after the onset of the cue which 

goes in line with the mentioned studies and emphasises the importance of the SO phase in the 

delivery of TMR, Figure 4.4. 
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Figure 4.4: Correctly classified trials had TMR on the up-going SO phase. For every 

participant, the proportion of correct trials with the TMR cue falling on both SO phase 

transitions down-going and up-going are shown. The shown curve is a simplified 

representation of the phase of a slow oscillation (SO), two phases are marked on the x-axis 

and the y-axis represents the proportion of correct trials. The preferred phase for 2-second 

reactivation is when the sound falls on the up-going transition of the SO (Wilcoxon signed 

rank test, n = 12, p = 0.013, z = 2.47) compared to down-going.  

 

 Employing pre-cue Slow Oscillation features to predict detectable 

reactivation 

Reactivation has been suggested to be modulated by SOs, (Inostroza & Born, 2013; Ngo et al., 

2018; Rasch & Born, 2013), however, the mechanism for this modulation remains to be 

understood. Following our prior work (Chapter 3), we were interested to see if we can use the 

pre-cue SO features to predict whether each cue will trigger reactivation. In chapter 3, we found 

that pre-cue SO features can be used to discriminate between the correctly and incorrectly 

classified trials and that was happening for an early reactivation. Here, we used the same SO 

*

SO phase
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features as in (Chapter 3, Extended data Table 1), to examine this. These features are used with 

decision tree classifiers to differentiate between the classes (correctly classified reactivation vs. 

incorrectly classified reactivation), see methods for more details. We found that we were not 

able to use the SO features to predict those later reactivations (those of the current study: at 1 

second and 2 seconds compared to the reactivations in chapter 3). In other words, the 

classification using SO based features did not yield a discrimination between correct and 

incorrect trials for the peak at 1 second vs. chance (Wilcoxon signed rank test, n = 12, p = 0.42, 

z = 0.80) nor for the peak at 2 seconds vs. chance (Wilcoxon signed rank test, n = 12, p = 0.58, 

z = 0.5491), Figure 4.5a, b. In Chapter 3, the SO based classification was able to discriminate 

correct from incorrect trials only for the early reactivation. Since the early reactivation is not 

existing here, we would expect the classifier to not be able to predict the later peaks that we 

found here.  

 Classification performance across the time of stimulation 

In our prior work (Chapter 3), we showed two reactivations and analysed the classification 

performance across stimulation time by calculating the performance during the time of the 

peaks using a 50-trial blocks and sliding this by one trial. The analysis of Chapter 3 showed 

that both reactivations occur throughout almost the whole stimulation time. Here, we used a 

similar approach using a 50-trial sliding blocks and observed that we see the two reactivations 

at 1 second and 2 seconds consistently during stimulation time, Figure 4.5c.  
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Figure 4.5: Discriminating the correct vs. incorrect trials based on the pre-cue SO features. 

For every participant, decision trees were used to discriminate between correctly and 

incorrectly classified trials to test whether it is possible to predict classifiable reactivations 

using pre-cue SO features. This showed no significant effect p > 0.4 for both a) 1-second and 

b) 2-second peaks suggesting that we cannot use pre-cue SO features to perform this 

prediction of late peaks. c) Classification performance across stimulation time for both peaks 

did not show a variation in the patterns of both peaks and suggests that reactivation is 

happening throughout stimulation time. 

1-second peak
2-second peak

a b 

c 

a b 

c 
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 Correlation of classification performance with behaviour 

We performed a spearman correlation analysis between the classification performance during 

the timing of the two peaks (the peak performance of the cluster at 1 second and the peak 

performance of the cluster at 2 seconds) and behavioural measures. Behavioural measures 

included: the average reaction time of the 4 blocks before sleep and the average of the best 4 

blocks before sleep and also a sequence specific skill (SSS) measure. SSS_pre is defined as the 

average of the last 4 blocks before sleep subtracted from the average of the random blocks 

before sleep. SSS_best is the average of the best 4 blocks before sleep subtracted from the 

average of the random blocks before sleep. For the first peak at 1 second and the second peak 

at 2 seconds, no significant correlation was found between behavioural measures and 

classification performance. We suspect that this could be a result of jittering the delivery of 

TMR, as explained in the discussion.  

 Discussion 

In this work, we tested the effect of jittering TMR trial durations during sleep by delivering the 

sound cues with varying inter-cue durations from 2500 ms to 3500 ms. We found two 

significant effects indicating two separate reactivations. The first was after 1 second from the 

onset of the cue and the other was 2 seconds after the onset. We analysed these effects to see 

if a reactivation is reoccurring after the same sound cue and found that it is not. Interestingly, 

the lack of pre-cue spindles accompanied correctly classified trials. We also found that the 

phase of the SO at which TMR is applied plays an important role in predicting the correctness 

of the reactivation at 2 seconds and suggests that the stimulation of the up-going phase of the 

SO is more likely to elicit this late reactivation. These results are in line with the results of 

(Chapter 3) and also emphasise the importance of pre-cue spindle and the importance of 

stimulating the up-going phase of the SO. 

 TMR did not improve sequence memory 

In our previous investigation with the SRTT, we showed that there was a sequence memory 

improvement as a result of TMR when we compared the reactivation vs. the non-reactivated 

sequences (Cousins et al., 2014; Koopman et al., 2020). The improvement was observed when 

we tested the overnight improvement of sequence memory. In the present study, performance 

after sleep in the 24-hrs session was better for the reactivated vs. the non-reactivated sequence, 

however, the difference was not significant (Wilcoxon signed rank test, n = 12, P = 0.14, Z = 



71 

 

1.5). We think that because in the current study we changed the timing of trials by jittering the 

onset of the cues we disrupted the monotonicity of the sequence and thus it became harder for 

the brain to process the cues as a sequence. Jittering the time of trials added an element of 

temporal unpredictability with every sound played and made it harder to process the 

information as a sequence. A model by Polyn and colleagues explored temporal information 

and showed that it relies on associations formed during memory encoding (Polyn et al., 2009). 

We think that the temporal information is a necessary part of the sequence memory and jittering 

could be interfering with it. 

 Temporal characteristics of detected reactivation 

Studies have shown that reactivation may have different temporal characteristics from that of 

awake activation. Schreiner and colleagues showed that reactivation reoccurs after  TMR cues, 

with one reactivation immediately after the cue and another after 2 seconds from onset 

(Schreiner et al., 2018). Our previous work on this task also showed multiple reactivations, 

however not reoccurring, with one reactivation immediately after TMR onset and another after 

1 second from onset (Chapter 3). Additionally, work in rodents showed that memory replay 

may echo multiple times (Bendor & Wilson, 2012). In our current study, reactivation did not 

happen immediately after the onset of the jittered cues as in chapter 3, with equally spaced 

cues. We think that, in chapter 3, this could be because the brain is predicting the next stimuli 

and starts reactivating and showing the pattern of the next cue before it actually takes place. 

This could be the reason because the sequences get repeated many times and cues are spaced 

equally. Interestingly, the reactivations do not occur in the same trials meaning that a TMR cue 

is likely to trigger one reactivation after 1 second or 2 seconds, but not both. We have already 

seen this with the early and late reactivations found in (Chapter 3) where the detected 

reactivations show this pattern.  

Because we were curious to look for SWS phenomena that might predict reactivation, we 

analysed the pre-cue spindles to find that the lack of pre-cue spindles predicts the peaks after 

both 1 second and 2 seconds. This is in line with our previous findings with no cue jittering, 

and with other work showing that less pre-cue spindles predicted more post-cue reactivation, 

and that such reactivation begins around 1 second after the onset of the cue (Wang et al., 2019). 
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The down-going phase of SOs is related to neuronal silence, on the other hand, the up-going 

phase is related to a depolarised state of sustained firing during which sleep spindles occur  

(Born & Wilhelm, 2012; Siclari et al., 2014). In line with our expectations based on the 

previous findings, we found that we get more classifiable reactivations when TMR is applied 

on the up-going phase of SOs.   

 Conclusions 

Overall, our results are broadly in line with our previous findings on the same task. In this 

work, we explored different characteristics of the detected reactivations. Results show that 

reactivation can happen at different timings after a TMR cue and are not reoccurring after a 

sound cue. Also, results emphasise the importance of stimulating the up-going phase of the 

SOs and stimulating with few pre-cue spindles in order to get classifiable reactivations. Results 

of jittering TMR delivery showed that the arising EEG pattern will differ from that obtained 

with no jittering (Chapter 3) and the element of predictability will be eliminated. Meanwhile, 

jittering the time of TMR could disrupt the temporal consistency of the sequence, thus, 

preventing improvement of the sequence memory in the follow up sessions. 

 Methods 

Participants. In the present study, we collected EEG and behavioural data from human 

participants (n = 23) (13 females, age mean ±SD: 19.5 ±1.1; 10 males, age: 20.9 ±1.9). The 

number of participants was further reduced because 4 participants were 2 standard deviations 

away from mean behavioural performance. Also, data had to be rejected to fit with the analysis 

requirement following the same procedure of classification employed in (Chapter 3). Thus, the 

final number of participants with higher than classification threshold set for wake (ROC Curve 

(AUC) > = 0.7) was 12 participants. Participants completed a SRTT before sleep and during 

three follow up sessions, the first one was after the night of stimulation (24 hours), the second 

after 10 days later, and eventually the final session after 6 to 8 weeks. None of the participants 

reported prior knowledge of the SRTT. All participants were right-handed. All participants had 

normal or corrected-to-normal vision, normal hearing, and no history of physical, 

psychological, neurological, or sleep disorders. Responses in a pre-screening questionnaire 

reported no stressful events and no travel before commencing the study. Participants did not 

consume alcohol or caffeine in the 24 hours prior to the study or perform any extreme physical 
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exercise or nap. This study was approved by the School of Psychology, Cardiff University 

Research Ethics Committee, and all participants gave written informed consents.  

 

Study Design. The SRTT that we use in this work was shown to be facilitated by TMR in SWS 

(Cousins et al., 2014, 2016; Monika Schönauer et al., 2014). We collected the SRTT 

behavioural data in three sessions after the stimulation night, with one the next day (24 hours) 

after performing the task and spending the night in the lab, the second one after 10 days and 

the third after 6 to 8 weeks. The SRTT was similar to that in chapter 2, Figure 2.5. 

During the night of stimulation cues were presented in during N2 and N3 of NREM sleep with 

the continuous supervision of experiments. In this work, N3 data is analysed for memory 

reactivation. Stimulation was paused with any signs of arousals until the experimenters observe 

approximately three 30-second epochs with stable N2 or N3. In the follow up sessions (24 

hours, 10 days, and 6 to 8 weeks) after the task, participants were asked to perform the SRTT 

again. Eventually, in the last session, they were asked if they remember the locations of images 

of the two sequences in order to see if one sequence is recalled better than the other one. Motor 

imagery data set of each participant was used for classification. As a behavioural measure, we 

use sequence specific skill (SSS), calculated for pre-sleep as: reaction time of random blocks 

pre-sleep – reaction time of last 4 blocks pre-sleep. 

Data acquisition. The current study uses EEG from human participants. EEG was collected 

using 64 actiCap active electrodes with 62 channels on the scalp including the reference 

electrode at CPz and ground electrode at AFz. Two electrodes were used on the left and right 

sides above and below the eyes for collecting electrooculography (EOG) signals and two 

electrodes on the right and left sides of chin for collecting the electromyography (EMG). Data 

were collected at 500 HZ and 250 HZ and subsequently resampled to 200 HZ for all EEG 

analysis. Sound cues were delivered during N2 and N3 sleep stages. 

EEG cleaning. We cleaned the EEG data using a short cleaning pipeline that consisted of band-

pass filtering (0.1 to 30 HZ) and centring. For sleep data, sleep was scored manually and only 

the trials in the epochs scored as N3 were used in this work. Afterwards, we removed outliers 

based on statistical measures (variance, max, min) and a trial is considered as an outlier if it is 

higher than the third quartile + (the interquartile range *1.5) or less than the first quartile - (the 

interquartile range*1.5) in more than 25% of channels. If a trial was bad for <25% of channels 



74 

 

it was interpolated using neighbouring channels with triangulation method in Fieldtrip. 

Furthermore, because our task is motor-related we defined a number of channels around the 

motor area (C6, C4, C2, C1, C3, C5, CP5, CP3, CP1, CP2, CP4, and CP6) and a trial was 

rejected if it is bad on >25% of these channels otherwise bad channels are interpolated and the 

trial was kept. 

 Classifying memory reactivation during SWS 

Based on our previous findings on this task (Chapter 3), we used a time during which the 

classification was highest during wake (time of interest (TOI)) to be consistent with our 

previous study and to ensure that we are training our classifier model with the same ERP 

component and thus be able to compare results of the current and previous studies to some 

extent. Time domain features were extracted by extracting the amplitude averages of 80 ms, 

that is, 40 ms before and 40 ms after every time point. Subsequently, features were fed to a 

linear discriminant analysis (LDA) classifier (Blankertz et al., 2011). Each participant had their 

own classifier model that was trained on wake data using the features during the timing of TOI. 

For each participant, a classifier model was built using wake data from that participant and 

applied on sleep data from the same participant in a sliding window fashion. We use the same 

approach we used in (Chapter 3). With the sliding window, the classification was applied on 

the first window in sleep, for example: [0 to 0.38] second which matches the length of the TOI. 

Then the classification performance was placed at the centre time of this window: 0.190 second 

and the sliding window was shifted on sleep data by one time point and the process was 

repeated. Using the same cleaning approach that we used in the previous study, we cleaned the 

trials and kept approximately 100 trials from each participant as this was the maximum number 

we could get consistently from all participants. Thus, the results of classification are AUC 

values across time, as shown in Figure 4.2.    

 Preferred TMR phase analysis 

We band-pass filtered our signals using channel Fz. After that, we used Hilbert transformation 

to extract instantaneous phase values as we did in (Chapter 3). We then divided phase values 

into two ranges: [0 to π] and (π to 2π], indicating the two transitions: down-going and up-

going, respectively. For each participant, we determined the number of correctly classified 

trials in which TMR fell on either phase range, then normalised this value by the total number 

of correct trials. This yielded a data point for every participant in each phase transition. We 
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compared the proportion of correct trials where TMR occurred in the down-going vs. up-going 

transition of the SO. Afterwards, we repeated the same process for the incorrectly classified 

trials. 

 Reactivation recurrence  

We tested whether the reoccurrence effect that we observe in the classification performance is 

a genuine recurrence or whether it is caused by the fact that we look at the grand effect of many 

trials. To do this, we compared the accuracy of classifying a reoccurring reactivation which is 

the number of trials that are classified correctly at both: the time of reactivation after 1 second 

and 2 seconds at the same time. We then compared this number to the multiplication of 

probabilities of correct trials at both peaks simultaneously which can be seen as a chance level. 

This showed that the probability of reoccurring reactivation is below chance (Wilcoxon signed 

rank test, n = 12, p = 0.004, z = -2.9). This shows that reactivation happens once after TMR 

cue at either time point but not both simultaneously.  

 SO based classification 

Similar to Chapter 3, the SO based classification consisted of 200 decision trees ensemble. 

Leave one out classification is used wherein the data of all participants except one is used to 

train the classifier and the left-out participant is used for testing the classifier. This gave a 

classification result for the left-out participant and the process was then repeated until the 

classification performance was calculated for all participants. Every decision tree is trained on 

a random subset of trials from the training set and tested on the testing set, and the final result 

is the aggregated votes from all decision trees.    

 Statistical testing  

Statistical analysis was performed using Fieldtrip (Oostenveld et al., 2011). Monte Carlo was 

used with a sample-specific test statistic threshold = 0.05, permutation test threshold for 

clusters = 0.05, and 10,000 permutations. The correction window used on sleep classification 

data was from 0 to 2.5 seconds.  
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 CHAPTER 5 

 

 

Identifying memory reactivation in 

human REM sleep using EEG 

classifiers 

 

In this study, Anne C. M. Koopman collected data from participants, Suliman Belal and 

Monika Śledziowska contributed to study design. All the EEG, classification and post-

classification analyses were done by me and developed in Matlab. Penelope A. Lewis 

supervised and advised on the study and throughout the work and writing. Matthias S. Treder 

supervised and advised on EEG and classifiers. 
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 Abstract  

Memories are reactivated during non-rapid eye movement (NREM) sleep, but the question of 

whether equivalent reactivation also occurs in rapid eye movement (REM) sleep is hotly 

debated. To examine this issue, we used a technique called targeted memory reactivation 

(TMR) in which sounds are paired with learned stimuli in wake, and then re-presented in 

subsequent sleep, to trigger reactivation. We then used time domain features to train a linear 

classifier model on discriminating between stimulus classes and found evidence of TMR-

induced reactivation in REM. Our analysis revealed that reactivation was temporally 

compressed by approximately five times in REM compared to wakeful performance of the task, 

and often occurred twice within a single trial.  Interestingly, reactivation was only apparent in 

trials with a high theta power. Our data provide the first evidence for memory reactivation in 

human REM sleep after TMR as well as an initial characterisation of this reactivation.  
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 Introduction 

While the reactivation of memories in non-REM sleep is widely supported by evidence from 

humans, rodents, and other animals (Bendor & Wilson, 2012; Ji & Wilson, 2007; Lee & 

Wilson, 2002; Rasch & Born, 2013; Wang et al., 2019; Wilson & McNaughton, 1994), it is 

still unclear whether equivalent reactivation occurs in REM. Reactivation in non-REM has 

been identified using EEG classifiers (Belal et al., 2018; Cairney et al., 2018; Schreiner et al., 

2018; Wang et al., 2019), with fMRI (Rasch et al., 2007; Shanahan et al., 2018), and with 

intracranial recording (Zhang et al., 2018). Targeted memory reactivation (TMR), a technique 

which allows the active triggering of memory reactivation, causes both neural and behavioural 

plasticity when applied in non-REM sleep (Lewis & Bendor, 2019). However, very few studies 

in rodents show evidence for reactivation in REM, (Hennevin et al., 1995; Hennevin & Hars, 

1985; Louie & Wilson, 2001). Furthermore TMR in REM typically fails to produce any 

measurable behavioural impact (Cordi et al., 2014; Rasch et al., 2007), though work on 

conditioning seems to be the exception to this rule (Rihm & Rasch, 2015; Sterpenich et al., 

2014). A study showed that spontaneous reactivation can be detected in human REM sleep (M. 

Schönauer et al., 2017), their finding was motivating for us to use TMR with EEG classifier to 

classify reactivation and see if it is possible to detect reactivation after TMR. We also aimed to 

explore the temporal characteristics and dynamics of such reactivation.  

We were specifically interested in theta activity because this frequency is prominent in REM 

sleep (Boyce et al., 2016; Hutchison & Rathore, 2015; Nishida et al., 2009), and human studies 

suggest a possible relationship between memory and theta activity (Jürgen Fell et al., 2002; 

Klimesch et al., 2001; Sederberg et al., 2003). In wake, theta activity is suggested to be a 

preferable window for the encoding of new information (Battaglia et al., 2011; Juergen Fell et 

al., 2011; Kahana et al., 1999; Vertes, 2005). Of the few studies that have provided support for 

memory reactivation in REM, two showed a link to theta activity (Louie & Wilson, 2001; Poe 

et al., 2000). We were therefore interested to determine whether theta is associated with TMR 

cued reactivation in human REM. 

Reactivated memories can have different temporal structure compared to their trace at 

encoding. In rats, replay during non-REM sleep has been shown to occur from 10 to 20 times 

faster in comparison to wake (Ji & Wilson, 2007; Lee & Wilson, 2002; Nádasdy et al., 1999). 

Sleep reactivation in rats was also shown to be compressed 6 to 7 times in comparison to wake 
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suggesting that processing could be faster with the absence of behavioural constraints (Euston 

et al., 2007). We were interested to know whether we could find evidence of temporal 

compression during memory reactivation in human REM sleep.  

Memory reactivation can reoccur more than once after a TMR cue in non-REM sleep 

(Schreiner et al., 2018), and this has been argued to be of functional significance for 

consolidation from the hippocampus to the cortex (Lewis & Bendor, 2019). Building on this 

we were interested to determine whether a similar pattern is apparent for REM sleep 

reactivation. 

We used a serial reaction time task (SRTT), which is known to be sleep sensitive (Born & 

Wilhelm, 2012; Spencer et al., 2006) and also sensitive to TMR in non-REM sleep (Cousins et 

al., 2014, 2016; Monika Schönauer et al., 2014) to examine these questions. In our SRTT, 

participants were presented with audio-visual cues and responded by pressing 4 buttons (two 

from each hand). Cues were organised in a 12-item sequence of presses. Sounds were replayed 

softly during subsequent REM to trigger the associated memories of left- and right-hand 

presses, Figure 5.1. We used two sequences and replayed only one of them in sleep. For control, 

we also included an adaptation night in which participants slept in the lab and we played the 

same tones that would later be played during the experimental night. This provided data in 

which tones could not have evoked memory reactivation, as participants had not yet learned 

the behavioural task, so the sounds were meaningless. 

Our findings demonstrate that it is possible to use machine learning to build EEG classifiers 

that can detect reactivation after TMR cues in REM sleep. This classification pipeline uses 

linear classification of time domain amplitudes to discriminate between reactivation of left- 

and right-hand button presses. We also reveal that theta activity is associated with detected 

reactivation. Furthermore, we show that the detected reactivations reoccur within each given 

trial and are temporally compressed ~5x compared to wake activation.  
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Figure 5.1: Experimental design. a) The experiment consisted of two nights: an adaptation 

and an experimental night. In the adaptation night, tones were presented to the participants 

during REM sleep and EEG recordings were acquired. In the experimental night, participants 

were wired-up for EEG, then completed the SRTT and an imagery task. Afterwards 

participants slept in the lab and TMR cues were presented as shown in c). After waking up, 

participants completed the motor imagery and SRTT again, and finally they did the explicit 

recall task as illustrated in d.  b) In the SRTT, images are presented in two different 

sequences each with a different set of tones. Each image is associated with a unique tone and 

requires a specific button press. In the imagery task, participants were cued with pictures and 

sounds but were told to only imagine performing the finger tapping (without movement). c) 

The sounds of only one learned sequence (cued sequence) were played in the correct order 

during REM sleep, with a 20 second pause between repetitions. d) Explicit recall test. 

Participants were asked to mark the order of each sequence on paper as accurately as they can 

remember. 

 

Introduction

Motor Imagery Analysis to locate the time of interest (toi)  

References

Classifying memory reactivation in humans with EEG classifiers during slow wave sleep

Fig. 2: Grand average classification accuracy of wake motor imagery (training and testing) using ERP 

features with a 80ms smoothing window and LDA classifier.

Conclusion

Fig. 8: Sleep ERPs using the most 

certain 200 trials. 

Fig. 10: Aligning the toi of 400ms of wake 

and exp shows the lateralised effect in sleep.

Using machine learning applied to EEG signals, we found indications that TMR might

lead to replay of right vs left hand imagery during SWS. We used two approaches, the

machine learning approach showed above chance classification in a 400 ms window

starting 1 sec after the TMR cue. The ERP analysis showed distinct signals for right and

left hand during the toi, since activation shows a lateralised effect similar to the imagery

task. A preliminary analysis of REM TMR suggests this may also be classifiable.

When does reactivation occur after a TMR cue in SWS?

Methods

Can we detect memory reactivation in REM sleep?

ERPs in the toi in exp and adp reflect a

lateralised effect similar to imagery only

for the exp night. Separation between

curves is better when only certain trials

are used compared to all trials.

Fig. 11: The effect in the REM group may be delayed compared to the SWS group. The

toi appears to be 1.25 to 1.5 sec. We will continue the analysis for the REM group to see

their classification performance.

We found a higher classification accuracy for left vs right hand than for faces vs objects. Therefore, we

conducted the analysis on right hand vs left hand imagery. A toi was chosen based on the time of the highest

classification rates. Thus, toi in wake data is chosen from 0.7 to 1.1 sec.

In a non-classifier approach, we took the

average ERP among subjects from two

channels (C5 and CP3) on the left

hemisphere and two on the right area (C6

and CP4). c1: left hand, c2: right hand.
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 Results 

 Detection of memory reactivation after TMR cues 

We trained our classification models using sleep data and then tested them on wake data.  This 

was done partly following Loui and Wilson (Louie & Wilson, 2001) who took a template from 

sleep data and slid it across wake to detect replay. Training a model on wake could have caused 

it to weigh features which are dominant in wake very highly even if those features were entirely 

absent from sleep. By training classification models on sleep data, we ensured that the features 

associated with reactivation were used by the models, and the models were thus able to look 

for these in the stronger, less noisy, signals recorded during wake.  

For classification, we used linear discriminant analysis (LDA) classifier in a time x time 

classification procedure (King & Dehaene, 2014), see methods for details. We repeated the 

classification process using the adaptation night to be certain that the classification was not 

caused by sound induced effect or EEG noise rather than reactivation of the encoded memory.  

We compared the results from the two nights, both to each other and to chance level. In the 

adaptation night, no significant clusters were detected vs. chance (area under the receiver 

operating characteristic curve (AUC) = 0.5), demonstrating that classification of this control 

condition did not differ from chance level.  By contrast, comparison of the experimental night 

against chance showed a significant effect (Figure 5.2a) which occurred about 1 to 1.2 sec. 

after the onset of the cue (Figure 5.2b).  Comparison of the experimental night to the adaptation 

night also showed a significant effect, described by a cluster in this timeframe (Figure 5.2a). 

This means that we can detect memory reactivation and discriminate between right- and left-

hand movements during REM sleep and this is evaluated against both control and chance level. 

 High theta activity mediates reactivation 

To test for a relationship between theta power and reactivation, we performed a median split 

on theta power, creating two groups of trials for each participant: those with high theta power 

and those with low theta power, see methods. This split was performed for both experimental 

and adaptation nights. We then compared the classification results of each half of the median 

split (high and low theta trials) in the experimental night to both chance level and to the 

equivalent high or low theta power trials in the adaptation night. For high theta trials, this 

showed a significant effect (Figure 5.2c), explained by a cluster occurring around the same 
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time as in the classification result using all trials, Figure 5.2a-b, (n = 14, p = 0.028), there was 

also a significant different against chance level, Figure 5.2d, (n = 14, p = 0.001). The low theta 

power trials showed no significant effect (Extended Data Figure 4). These findings demonstrate 

an association between high theta power and reactivation. To determine whether theta activity 

offered a preferred window for classification or if it was the actual feature causing the 

discrimination of classes, we band-pass filtered the signal in the theta band and re-ran our 

classification analysis. Interestingly, classification did not differ from chance in this filtered 

data (p > 0.4) suggesting that while high theta activity offers a preferred window for 

reactivation, theta activity itself does not discriminate the classes. To be sure that the recordings 

quality and any other noise were not causing the classification seen with high theta activity, we 

performed classification in different frequency bands. In this control, we used three different 

bands lower and higher than theta and a broad range of frequencies: [0.5 3] HZ, [9 16] HZ, and 

[0.5 30] HZ. We band pass filtered the signals in these bands and performed the same median 

split we performed on theta band, none of the classification using these bands produced 

significant cluster(s). This ensures that theta activity mediates reactivation and this is unique 

to theta band. 

 

 

 

 

 

a b Experimental vs. control Experimental vs. chance 
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Figure 5.2: Classification of left hand vs. right hand during REM sleep. a) A comparison 

between the classification performance of the experimental vs. adaptation night using all 

trials reveals a significant effect described by a cluster which shows a higher classification 

performance for the experimental night compared to the adaptation night (n = 14, p = 0.01), 

z-statistics values at every point is shown and cluster edges are marked with white after 

correcting for multiple comparisons with cluster based permutation (see methods for details). 

b) classification performance for the experimental night was also significantly higher 

compared to chance (AUC: 0.5) as shown by the corrected cluster (n = 14, p< 0.0001). c) A 

comparison between the experimental and adaptation night classification using trials with 

high theta power reveals a significant effect described by a cluster that shows a higher 

classification performance for the experimental night compared to the adaptation night (n = 

14, p = 0.028), z-statistics values at every point are shown and corrected cluster edges are 

marked with white. d) A comparison between the classification of experimental night using 

trials with high theta power and chance level shows a significant effect described by the 

shown corrected cluster (n = 14, p = 0.001). 

 Correlation of classification performance with behaviour 

We next tested for a relationship between classification performance and sequence specific 

improvement on the behavioural task using a spearman correlation, see methods for details.  

This revealed a positive correlation (n = 14, r = 0.74, Bonferroni corrected p = 0.01), (Figure 

5.3a) indicating that stronger detected reactivation was associated with greater overnight 

c d 
Experimental vs. control Experimental vs. chance 

Classification using trials with high theta power 
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sequence improvement. Importantly, this correlation only existed for the reactivated sequence 

(for non-reactivated: n = 14, r = 0.24, uncorrected p = 0.4). This finding suggests that the degree 

of detecting reactivation in REM positively predicts the extent to which sequence memory is 

improved over the night. Nevertheless, it is notable that REM TMR did not lead to any overall 

benefit in performance when considered without the classifier results (Koopman et al., 2020).   

 Analysis of temporal compression of reactivation 

Prior work has shown that reactivation in non-REM sleep is often temporally compressed with 

respect to wake (Euston et al., 2007; Ji & Wilson, 2007; Lee & Wilson, 2002; Nádasdy et al., 

1999). Recent finding showed that wake and N1 reactivation could be sometimes compressed 

and sometimes dilated within the same data (Eichenlaub et al., 2020). This motivated us to 

determine whether reactivation in REM lasts for the same amount of time as the original 

experience in wake, we performed an analysis of temporal compression. First, we applied our 

time x time classification method on EEG amplitude without any temporal smoothing. Thus, 

in this analysis we did not perform smoothing to get the precise temporal information. This 

non-smoothed analysis revealed that reactivation occurs more than once within the timeframe 

of the cluster we had originally identified (Figure 5.2a). Furthermore, both of the two sub-

clusters we identified were temporally compressed during sleep as compared to wake (Figure 

5.3b), for more details see methods. Specifically, the activation in wake is ~450 ms long and 

the two reactivations identified by this non-smoothed analysis are ~80 ms long and therefore 

last approximately 20% of the duration of activation in wake (Figure 5.3b). This suggests that 

reactivation of the memory in REM sleep is approximately five times faster than the activation 

in wake when the memory was encoded. 
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Figure 5.3: Characteristics of detected reactivation in REM sleep. a) Classification 

performance was positively correlated with behavioural improvement for the reactivated 

sequence (spearman correlation, n = 14, r = 0.74, Bonferroni corrected p = 0.01). b) 

Classification performance using EEG signals without smoothing showed two significant 

effects described by two clusters, around 1 second after the onset of the cue when compared 

to the adaptation night (n = 14, p = 0.008 for the earlier and, p = 0.025 for the later cluster). 

Z-statistic values are shown and cut with respect to clusters. Locations of significant effects 

and their temporal characteristics reveal that reactivations in REM sleep are approximately 

five times faster than the activation in wake. 

 

 Reoccurrences of reactivation 

Finally, we were interested to know if TMR cued reactivation in REM occurs multiple times 

within each trial, or if the apparent recurrence might instead be due to averaging, with 

reactivation only happening once during each trial (e.g. at ~1sec. or after 1sec, but not both). 

To address this, we evaluated the classification correctness of each sleep trial at the times of 

each of the two clusters (see methods for details). We then determined whether classification 

was correct for both clusters or just one cluster (Figure 5.3b). We found that a significantly 

higher proportion of trials show reactivation at both time points (early and late), than at just 

one time point (Wilcoxon signed-rank test, n = 14, p = 0.001). This shows that reactivation is 

a b 
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recurrent in the majority of trials, and could potentially repeat even more than twice if the 

duration of trials was longer. This is in keeping with observations from rodent data showing 

repeated reactivation after a TMR cue in non-REM sleep (Bendor & Wilson, 2012). 

 Discussion 

We showed that memory reactivation can be detected in human REM sleep using EEG 

classifiers. Such reactivation appears to be delayed by about one second after the sound cue 

onset. Reactivation is associated with high theta power, which appears to provide a preferred 

window for such activity, although it does not carry the discriminative information needed to 

actually detect reactivation. Interestingly, reactivations reoccur twice within a single trial (1500 

ms) and are temporally compressed approximately five times compared to wake. We also 

demonstrated that stronger detection of REM reactivation predicts greater overnight sequence 

improvement on our behavioural task, and this is specific to the reactivated sequence.  

Because our task was a motor one, we used motor channels for classification. This ensures that 

reactivation is related to the encoded motor memory and shows that reactivation retains the 

same features of wake. Moreover, comparison of classification results between experimental 

and control nights allowed us to confirm that classification is not derived by sound induced 

EEG noise.   

Reactivation after a reminder TMR cue is delayed during REM sleep as compared to wake. 

During wake, neural activity associated with our motor imagery task starts around 0.6 seconds 

after cue onset and lasts until the presentation of the next cue at 1.1 seconds. In REM, on the 

other hand, reactivation of this task starts around 1 second after the cue and ends at around 1.25 

seconds from onset. This delayed onset could potentially happen because the brain takes more 

time to process the information and reactivate the memory during REM sleep than during wake.  

In keeping with this suggestion, reactivation of a picture memory task in SWS has also been 

shown to be delayed, appearing about 2 seconds after cue onset (Cairney et al., 2018). This 

delayed SWS reactivation was also found in chapter 2, 3, and 4. 

Our results show that classification performance in REM positively predicts overnight 

sequence improvement. Similar correlations between classification performance and behaviour 

were found in non-REM TMR (Shanahan et al., 2018; Wang et al., 2019; Zhang et al., 2018) 



87 

 

and also spontaneous reactivation (M. Schönauer et al., 2017). These findings can lead one to 

speculate that more reactivation means more consolidation, and therefore better post-sleep 

performance. However the absence of a group-level REM TMR benefit in our behavioural 

performance (see (Koopman et al., 2020) for a full analysis of the behavioural data), as well as 

the fact that other studies have observed negative correlations between reactivation evidence 

and post-sleep improvement (Murphy et al., 2018) lead us to treat such interpretations with 

caution. 

REM sleep is dominated by theta activity, which is thought to support the consolidation process 

(Diekelmann & Born, 2010), and has been linked to reactivation (Louie & Wilson, 2001). Theta 

activity is linked to attention during wake (Biel et al., 2021; Gaillard & Ben Hamed, 2020; 

Keller et al., 2017) and is more prominent with higher executive control (Magosso et al., 2021). 

Wakeful theta is also associated with the encoding of new information and memory processing 

(Buzsáki, 2005; Kahana et al., 2001; Vertes, 2005). Furthermore, neuronal firing relative to 

theta phase has been shown to impact upon whether synapses are strengthened or weakened, 

since stimulation of the positive theta phase induces long-term potentiation and stimulation of 

the negative theta phase induces depotentiation (Hölscher et al., 1997; Huerta & Lisman, 1995). 

A similar pattern of phase dependent potentiation and depotentiation was shown in REM sleep 

(Poe et al., 2000), REM sleep reactivation and wakeful reactivation may be structured in a 

similar way (Battaglia et al., 2011; Jouvet, 1969; Kahana et al., 1999). In SWS, it has been 

shown that theta phase similarity is high with sleep suggesting the importance of theta phase 

as reactivation (Schreiner et al., 2018). It has also been shown that the increase of theta power 

is important for successful cueing during sleep (Schreiner & Rasch, 2015).   

Our data demonstrated that trials with higher theta power also show greater evidence of 

memory reactivation but theta band in isolation does not provide sufficient information to 

detect reactivation. Theta therefore appears to be a marker for reactivation but does not embody 

the reactivation in and of itself. This pattern of results requires more investigation but could 

potentially indicate that theta is providing some kind of timing function which determines the 

impact of reactivation, while the reactivation itself occurs at other frequencies.  

Studies in rats have shown that replay is temporally compressed with respect to run, or actually 

performing the task in question, and the rate of that compression varies between sleep and 

wake. For instance, replay in both wake and SWS has been shown to occur at a faster rate than 
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the original task (Davidson et al., 2009; Diba & Buzsáki, 2007; Lee & Wilson, 2002). However 

some studies of rodent non-REM sleep showed a compression of 6 to 7 times compared to 

wake (Euston et al., 2007), while other studies showed compression rates varying between 10 

and 20 times faster than wake (Ji & Wilson, 2007; Lee & Wilson, 2002; Nádasdy et al., 1999). 

Our analysis is in line with this literature, since it suggests that TMR reactivation in human 

REM sleep is temporally compressed by approximately 5 times with respect to wake.   

Schreiner et. al. (2018) showed that the reactivation elicited by TMR in human SWS reoccurs 

repeatedly within a single trial (Schreiner et al., 2018). A parallel study in rodents (Bendor & 

Wilson, 2012) also supports this by showing that TMR cued replay can continue to repeat for 

up to 10 seconds after the offset of the auditory cue, though this process appears to be 

interrupted by the presentation of a second stimulus. These observations of repeated replay are 

in keeping with the suggestion of a cortico–hippocampal–cortical loop. Memories are 

strengthened with a reverberation of replay between the cortex and hippocampus (Rothschild, 

2019), although one might potentially expect such reverberation to occur on a shorter timescale. 

We tackled the question of whether replay occurs repeatedly after a single TMR cue in REM 

and found two repetitions following a single TMR cue, which is in keeping with the results 

from previous studies (Bendor & Wilson, 2012; Schreiner et al., 2018).  Notably, our trials 

were just 1.5 seconds long, so it is possible that further reoccurrence would have been observed 

in our paradigm if the cues were spaced farther apart.  

 Characteristics of reactivations that happen in SWS, and REM sleep 

While there is already a large and growing body of literature about reactivation in non-REM 

sleep (Bendor & Wilson, 2012; Cairney et al., 2018; Ji & Wilson, 2007; Lee & Wilson, 2002; 

Rasch & Born, 2013; Schreiner et al., 2021; Wang et al., 2019; Wilson & McNaughton, 1994), 

our findings provide initial information about human reactivation in REM. As such, they 

suggest several parallels between reactivation in these two sleep stages. For instance, similar 

to non-REM (Cairney et al., 2018), reactivation in REM is delayed after cue onset compared 

to wake. Furthermore, reactivation in REM is somehow related to the oscillatory structure of 

sleep (e.g. theta activity), which parallels the known relationship between reactivation in non-

REM and graphoelements like SOs (Mölle et al., 2002; Valderrama et al., 2012), spindles 

(Antony et al., 2019; Cairney et al., 2018), and ripples (Zhang et al., 2018). Importantly, 

detected reactivations are reinstated in the same area of the brain that is related to the task and 
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the extracted features of reactivation are similar to wake activation which is why it is detectable 

with machine learning models. Reactivations in REM sleep appear temporally compressed by 

about five times in comparison to wake, which is close to the 6 to 7 times compression observed 

in non-REM (Euston et al., 2007).  

The question of whether memories reactivate in REM as well as non-REM sleep has been 

debated for some years now. REM reactivation was suggested by modelling (Hasselmo, 2008) 

and was shown in the rodent literature (Louie & Wilson, 2001).  Some evidence of learning 

dependent activation in human REM sleep were observed in humans (Maquet et al., 2000; 

Peigneux et al., 2003), however, null findings from human REM TMR studies (Rasch et al., 

2007; Rasch & Born, 2013) lead to scepticism in the community. Our current findings put such 

scepticism to bed by providing clear evidence of TMR cued reactivation in REM.  Furthermore, 

our analysis of this reactivation uncovers many important properties of this phenomena, 

showing strong parallels with non-REM reactivation. Further work is needed to explore this 

topic in detail, for instance determining how such reactivation links to behavioural and neural 

plasticity, and how this differs across a variety of cognitive tasks. 

 Methods 

 Participants 

EEG data and behavioural data were collected from human participants (n = 16) (8 females, 8 

males, and age mean: 23.6). One participant was excluded due to a technical problem (n = 15). 

Participants completed a SRTT before and after sleep, and spent an adaptation night in the lab 

the night before the task. All participants were right-handed and none of them reported 

familiarity with SRTT. All participants had normal or corrected-to-normal vision, normal 

hearing, and no history of physical, psychological, neurological, or sleep disorders. Responses 

in a pre-screening questionnaire reported no stressful events and no travel before commencing 

the study. Participants did not consume alcohol in the 12 hours before the study and caffeine 

in the 24 hours prior to the study or perform any extreme physical exercise or nap. This study 

was approved by the School of Psychology, Cardiff University Research Ethics Committee, 

and all participants gave written informed consents. The SRTT is used here, (Cousins et al., 

2014) and Chapter 2, with the cues delivered in REM sleep only.  
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 EEG pre-processing  

EEG signals were band-pass filtered in the frequency range from (0.1 to 50 HZ). Subsequently, 

trials were cleaned based on statistical measures consisting of variance and mean. Trials were 

segmented -0.5 sec. to 3 sec. relative to the onset of the cue. Trials falling two standard 

deviations higher than the mean were considered outliers and rejected if they show to be 

outliers for more than 25% of the channels. If trials were bad in less than 25% of the channels, 

they were interpolated using triangulation of neighbouring channels. Thus, 9.8% and 10.5% of 

trials were considered outliers and removed from the experimental night data and the adaptation 

night, respectively.  

Data was subsequently analysed with independent component analysis (ICA), to remove eye 

movement artifacts which can occur during REM. Components identified by the ICA were 

correlated with the signal from the eye electrodes, and components that were significantly 

correlated (corrected for multiple comparisons) were removed. In the final artifact rejection 

step, all channels for each participant were manually inspected. Because TMR will not be 

effective with all trials, we also rejected trials with low variance that do not differ from their 

mean across time since they are unlikely to contain a response. The number of clean trials kept 

after cleaning was consistent among participants such that they contribute equally to the group-

level analysis and that number was 366 trials, it was determined according to the participant 

with the lowest number of such trials. All cleaning was done on all trials irrespective of cue 

information and stimulation night to avoid bias. 

 Time x time classification with time domain features  

We adopted a time x time classification approach after smoothing the EEG signals using 100 

ms window such that every time point is replaced with the average of the 50 ms of both sides 

around it. Since we know that this task is motor-dependent we focused our classification on the 

motor area, thus we used four channels around the motor area for classification (C5, CP3, C6, 

and CP4). In the time x time classification, every time point from sleep was used to train LDA 

classifier, which was applied to all time points from wake in order to get one row of 

classification results in the time x time classification plot. The process was repeated until all 

time points after a sound cue in sleep were finished (trial length in sleep was: 1.5 sec. and 1.1 

sec. in wake) (Extended Data Figure 2). We use the area under the receiver operating 
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characteristic curve (AUC) as the performance measure in our binary classification, which is 

preferable in assessing the performance of classification over accuracy. Analyses were done 

using FieldTrip toolbox, MVPA-Light toolbox in Matlab, and customised scripts using Matlab 

2018a. 

 Training classifier models with sleep data 

We trained our classifiers on sleep data which allows the models to adapt to sleep data and 

weigh the features according to their discriminative ability in sleep given that there might be 

some spatial shifts between the best features of sleep and wake. Thus, by doing this, we ensure 

that the classification models adapt to the noisier sleep data and get a chance to adapt to the 

noise of sleep data. In LDA classifiers, between-class covariance is maximised, and within-

class is minimised, that within class covariance represents noise and thus the models see the 

noise of sleep data and are more sensitive to the differences between classes in sleep. We 

suggest that studies in the future adopt a similar approach and train classification models using 

sleep data. We should also address that this comes at a cost of making it harder to conduct post-

hoc analyses on sleep trials and analyse them (e.g., correct vs. incorrect trials as in the SO-

based classifier and spindle-based classifier in Chapter 3, thus training with wake was done in 

that Chapter) due to the fact that sleep is now the training set. 

 Theta power calculation 

We calculated theta power using band-pass filtering in the range (4 to 8 HZ) and Hilbert 

transform. The power of a trial is calculated as the average of all power of different time points 

of that trial and all channels. We then divided the trials based on the median power of all trials. 

This gave us the trials with high theta power (higher than median) and low theta power (lower 

than median). 

 Temporal compression of reactivation 

We analysed the temporal compression by applying the time x time classification using the 

EEG amplitudes without smoothing the EEG signals. We used the cluster we found from the 

first classification (around 1 sec.) as a clustering window, we used this window as a marker of 

time of interest because if the reactivation is compressed then it will be temporally short. 
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Duration of sleep reactivation is calculated as the average durations of the two sub-clusters in 

sleep time. Duration of wake activation was determined by the average durations of the sub-

clusters in wake time, Figure 5.3b. Analysis was done with customised scripts using Matlab 

2018a. 

 Correlation of classification performance with behaviour 

Classification performance was averaged inside the cluster. AUC values from the high theta 

power classification were tested for correlation with the behavioural improvement. The 

behavioural improvement was calculated as: [(random blocks after sleep - the best 4 blocks 

after sleep) – (random blocks before sleep – the best 4 blocks before sleep)] / (random blocks 

before sleep – the best 4 blocks before sleep). The result was corrected for other measures using 

Bonferroni correction. We extracted three behavioural measures: early blocks improvement, 

late blocks improvement, best blocks improvement (described above). Early blocks 

improvement was defined as: [(random blocks after sleep - the first 4 blocks after sleep) – 

(random blocks before sleep – the last 4 blocks before sleep)] / (random blocks before sleep – 

the last 4 blocks before sleep). Late blocks improvement was defined as: [(random blocks after 

sleep - the last 4 blocks after sleep) – (random blocks before sleep – the last 4 blocks before 

sleep)] / (random blocks before sleep – the last 4 blocks before sleep). 

 Reoccurrence  

We analysed whether the classification is reoccurring within the same trial or whether the 

reactivation is happening once while it only appears to be reoccurring as a result of averaging. 

For this, we under-sampled the length of the trial in wake, that is, we used wake time according 

to the two clusters in Figure 5.3b and under-sampled the wake trial to match the length of sleep 

cluster. Then, for every trial of sleep, we performed spearman correlation with all trials from 

wake such that we ended with one vector of correlation coefficients for every trial from sleep. 

Subsequently, we counted the number of times a trial from sleep positively correlated with 

wake trials of the same class, and the other class. A trial from sleep is then considered ‘correct’ 

if the number of positive significant correlations is higher for similar class than different class. 

Afterwards, we determined if reoccurrence is happening in sleep trial if it is correct during both 

the earlier and later clusters. Then we counted the number of trials with different types: 

recurrent, only earlier cluster, and later cluster. Afterwards, we normalised by the total number 
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of trials for every subject which gave a datapoint for every subject for every type. Subsequently, 

the number of trials for every type was compared to chance 0.333 and recurrent reactivation 

was the only type that showed higher than chance trial count (Wilcoxon signed-rank test, n = 

14, p = 0.001). On the other hand, earlier cluster only: (Wilcoxon signed-rank test, n = 14, p = 

0.0009) was below chance. Also, later cluster: (Wilcoxon signed-rank test, n = 14, p = 0.0015) 

was below chance. Analysis was done with customised scripts using Matlab 2018a. 

 Correcting for multiple comparisons 

Multiple comparisons correction was done using MVPA-Light toolbox in Matlab (Treder, 

2020) and customized scripts. Cluster-based permutation testing was used and a Wilcoxon 

based sample-specific testing with threshold of 0.05. Permutation test threshold for clusters 

was 0.05, and 10,000 permutations were calculated.  

 

 

  

Extended Data Figure 1: Illustration of the four images that appeared in the task: two faces 

and two objects. 
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Extended Data Figure 2: Example of time x time classification wherein one time point is used 

from sleep to build a classifier model and all wake time points were used for testing. 
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Extended Data Figure 3: Classification of left hand vs. right hand. a) Classification 

performance by training on sleep and testing on wake. b) Classification performance when 

classifiers were trained with the adaptation night sleep and tested on wake. c) Classification 

performance of training on sleep during the experimental night and testing on wake using 

trials with high theta power. d) Classification performance of training on sleep during 

adaptation night and testing on wake using trials with high theta power. 
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Extended Data Figure 4: classification with trials with low theta power and the correlation of 

performance with behaviour. a) Classification of left hand vs. right hand using trials with low 

theta power using the experimental night did not show significant difference against the 

chance level. b) Likewise, the classification using the adaptation night did not show 

significant difference against the chance level. c) Z-values of the comparison between the 

classification of the experimental and the adaptation nights when the trials with low theta 

power were used. 
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 General discussion and conclusion 

 

 

 

 

 Summary of findings  

In this work, we developed different pipelines with the aim of detecting memory reactivations 

of a motor memory during slow wave sleep (SWS) and rapid eye movement (REM) sleep. For 

this, we used TMR to associate motor memories with sounds and trigger those memories in 

sleep. TMR enabled us to feasibly evaluate the classification performance.  

In chapter 2, we showed that we can use time domain features and linear classification to detect 

SWS reactivation which appeared around 1 second from the onset of the cue. In the same 

chapter, we explored the possibility of detecting reactivation in REM, however, results in REM 

were more marginal and we could not draw a firm conclusion.  

In chapter 3, we further explored SWS reactivation. We found reactivation at two different 

timings, early after stimulus and around 1 second after. We then took a closer look at the results 

and found that the two peaks of classification are not reoccurring, and we do not get both 

reactivations after every TMR cue. Consequently, we started post-classification analyses which 

showed the active role of slow oscillations (SOs) and sleep spindles in predicting the detectable 

reactivations. In that chapter, we demonstrated that the up-going phase of the SO is the optimal 

timing for applying TMR cues in order to get detectable reactivations. Furthermore, we found 

that both peaks of classification showed different relationships to behaviour: early reactivation 

showed a negative correlation with pre-sleep reaction time, while late reactivation had a 

disruptive role for the memory of the task.  

Everything we do, every thought we've ever had, is 

produced by the human brain. But exactly how it 

operates remains one of the biggest unsolved mysteries, 

and it seems the more we probe its secrets, the more 

surprises we find. 

Neil deGrasse Tyson 
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In chapter 4, we were curious to investigate whether the early reactivation happened as a result 

of the stimulus at time 0 or whether the brain could predict the upcoming cues and thus 

reactivated the information of the upcoming cue before it took place. For this, we collected 

new data and jittered the timing of cue delivery. We found that reactivation pattern was 

different, and that the early reactivation did not appear. We think that the brain was predicting 

the upcoming cues of the reactivated sequence and that is why we detected early reactivation. 

We also noticed that by extending the duration of trials we could see two detectable 

reactivations, after 1 second and after around 2 seconds, the observation that we could not make 

in chapter 3 given the shorter trials (1.5 second). In chapter 4, we think that as a result of 

jittering, the temporal consistency of the sequence was disrupted and thus we did not find TMR 

benefit in the first follow up session. 

Eventually, in chapter 5, we wanted to see if we can use TMR and EEG classifiers to detect 

reactivation in REM sleep, which is a debated topic in the memory replay community. We 

developed a classification pipeline that adapts itself to sleep data and then we applied the 

trained classifier models on wake and were able to identify memory reactivation in REM sleep. 

We also found that trials with higher theta activity embody reactivation. Given the rodent 

literature, we performed post-classification analyses on recurrence and temporal compression 

of reactivation to find that reactivation in REM sleep is reoccurring more than once after TMR 

and is temporally compressed in comparison to wake. In the same chapter, we show that there 

is a positive relationship between the improvement of the memory and the extent we can 

classify reactivation. 

Now, we will discuss some points about classification, memory reactivation and its 

characteristics as seen in this work and literature.  

 

 A classification perspective on reactivation  

 Is it a pipeline that fits all? 

We would like to borrow a theorem that is famous in optimisation and machine learning, stated 

by David Wolpert in 1997 (Wolpert & Macready, 1997). We would borrow the gist of it and 

say that there will be no single pipeline that can be used to detect reactivations of all memories. 

The discussion on classification pipelines must be candid; we state that the problem in hand 
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controls the nature of the pipeline and extracted features. In other words, the classification 

pipeline is developed to tackle the classification problem of motor imagery in the SRTT 

experiment. This means that for classifying a different activation pattern, one ought to think 

about the kind of features to be extracted and fed to the classifier, also the channels from which 

to extract these features or the spatial filtering method to be performed. Consequently, the 

nature of the encoded memory guides the development of a valid and reliable classification 

paradigm.  

 

 A classifier should not overfit the training set 

Machine learning models could overfit the training data and this is a famous problem in 

classification. Overfitting might occur when developing a classification pipeline as a result of 

creating a complex classification model that could simply memorise observations and the 

whole training data rather than learning useful information. Such stringent models are very 

hard to generalize and test with unseen data and need to be updated or regularised. Given the 

differences of the oscillatory patterns and noise in wake and sleep, if we build a classification 

model using e.g., wake EEG pattern, we want that model to learn the EEG pattern that could 

generalise to sleep as well, without tailoring the model very stringently to wake data. This is 

the reason why we extract features that we think can generalise to unseen datasets that has 

different graphoelements. Under the same point, we are aware of some of the famous 

approaches adopted in the BCI literature for classifying motor imagery. We had a priori 

hypothesis that methods that rely on the transformation of data and the use of spatial filters in 

different frequency ranges will not yield optimal results with the task in hand that requires 

generalisable models across sessions. We think that our a priori hypothesis was correct because 

we did try some of the other methods in a paradigm trained on wake data from one session and 

tested on wake data from a different session and the results was not as good as the current 

pipeline. Adding more features (power, phase, etc.) is clearly possible but it could 

overcomplicate the model and lead to overfitting. Even if the classification was successful with 

more features, it would make it difficult to do post-classification analyses and interpret the 

important features for classification. Although, it is possible to analyse the weights that a 

classifier model gives to every feature, it would still be a mixture of different features. 

Additionally, EEG has low signal to noise ratio, thus, a complex nonlinear model could fit the 
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noise rather than the signal, so, cleaning EEG to isolate signal from noise as much as possible 

seems reasonable and then a linear classification can be employed.  

 

 The role of stage-specific graphoelements in reactivation 

 The active role of SWS spindles and SOs in applying TMR during SWS 

In this work, our results show that there is indeed an active role of SOs and sleep spindles in 

memory reactivation. During SWS, neurons enter a duration of silence during the 

hyperpolarised state during the down-going phase of the SO. On the contrary, depolarisation 

during the up-going phase of the SO is more reactive to stimulation. Thus, deilvering TMR 

during the up-going phase can lead to larger ERP responses and possibly different effects than 

stimulating the down-going phase (Schabus et al., 2012). Related to the same point, fast 

phenomena such as spindles, and gamma activity are more prominent in the SO up-going state 

than in the SO down-going state (Mölle et al., 2002; Piantoni et al., 2013; Valderrama et al., 

2012). A number of studies showed a relationship between replay in rodents and sharp-wave 

ripples (Kudrimoti et al., 1999; Nakashiba et al., 2009; O’Neill et al., 2008). Moreover, data 

from human epilepsy patients has shown that the SO upstate shows higher gamma oscillations 

(Van Quyen et al., 2010), and sharp-wave ripples, which have been shown to carry reactivation 

(Zhang et al., 2018). Thus, we think that the up-going state is the preferred time for delivering 

TMR. The results of chapter 3 and 4 met this expectation, where we analysed the phase of the 

SO during which the TMR was applied to find that the early reactivation found in chapter 3 

was related to the delivery of TMR on the up-going phase of the SO. Meanwhile, in chapter 4, 

delivering cues on the up-going phase of the SO triggered more classifiable pattern around 2 

sec. from TMR onset. This shows the importance of the SO stimulation phase and when we 

should target our cues. Our analyses in chapter 3, showed that we can use the ongoing pre-cue 

SO features and predict successful post-cue reactivation. This demonstrates the active role that 

SOs play in reactivating memories which goes in line with the literature supporting this idea. 

Since not all SOs are carrying reactivations, we think that by extracting the pre-cue SO features 

we were able to identify the footprint of some SOs that carry reactivation. 

We also see an important role for SWS spindles. In 2018, Cairney and colleagues showed that 

reactivation is mediated by the increase of spindle power and happens around 2 sec. from the 

onset of TMR (Cairney et al., 2018). A relationship was shown between spindles and detected 
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reactivation, where less pre-cue spindles predicted more post-cue reactivation (Wang et al., 

2019). Our results in chapter 3 and 4 go in line with what Wang and colleagues have shown. 

Specifically, we showed that the lack of pre-cue spindles yields a more classifiable post-cue 

reactivation. This effect happens for the late reactivation in chapter 3 (around 1 sec. from cue 

onset) and was also true in chapter 4 for both reactivations (after 1 sec. and at 2 sec. from TMR 

onset). This evidence demonstrates an active role of SWS spindles, it also helps in directing 

our TMR to successfully trigger detectable reactivation and helps in understanding the 

relationship between SWS spindles and memory reactivation. 

 The role of REM sleep theta in reactivation 

Now, let us consider REM sleep and its most prominent phenomenon which is theta activity 

(Boyce et al., 2016; Hutchison & Rathore, 2015; Nishida et al., 2009). Previous studies showed 

a relationship between theta activity and encoding of new information (Battaglia et al., 2011; 

Juergen Fell et al., 2011; Kahana et al., 1999; Vertes, 2005). Also, some studies showed a link 

between replay and theta activity (Louie & Wilson, 2001; Poe et al., 2000) which gave us 

reason to think that theta activity could be important for reactivation. In chapter 5, we showed 

that this assumption is correct. When we analysed theta activity, we found that REM sleep 

reactivation happens during the times of high theta activity. It is notable that we found that 

theta activity was offering a preferred timing for reactivation and theta activity itself is not the 

discriminative feature that the classifier uses to classify reactivation. We would be able to say 

that the classifier uses theta activity to classify reactivation if, for example, we extract theta 

power, and it was high for one class and low for the other. However, in chapter 5, we see that 

the oscillatory pattern in a wide frequency band is needed for successful classification. This 

evidence can help us understand the role of theta in facilitating reactivation and also when to 

deliver TMR cues to trigger reactivation.  

 Temporal characteristics of detected reactivation 

 The temporal information of the reactivated pattern is different from 

wake 

 A number of studies showed that it is possible to detect reactivation after TMR in humans 

(Belal et al., 2018; Cairney et al., 2018; Murphy et al., 2018; Schreiner et al., 2018; Shanahan 

et al., 2018). In our first attempts for detecting reactivation in Chapter 2, we showed that we 
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can use time domain features with linear classification on features from the motor area and 

successfully detect memory reactivation in human SWS. These results showed that the timing 

of reactivation is delayed compared to wake encoding. This temporal difference of reactivation 

goes in line with some studies that showed delayed reactivation after TMR in SWS (Cairney 

et al., 2018). The temporal difference between wake and sleep is shown in rodents, with replay 

repeating many times after a reminder auditory cues and up to 10 seconds or until the 

presentation of another cue  (Bendor & Wilson, 2012). We see a difference in timing between 

SWS reactivation and wake in chapter 3, where we found two classification peaks one 

immediately after the TMR cue and another around 1 second from the TMR onset. Additionaly, 

in chapter 4, we see that the reactivation pattern can be altered by jittering the timing of TMR 

delivery. The point remains that wake activation occurs at different timing from sleep 

reactivation. This was also the case for REM reactivation: in chapter 5 we show that TMR 

elicited reactivation around 1 second after TMR onset. All together, we can conclude that, in 

this work, reactivation was shown to be happening at different timing from wake activation, in 

accordance with the literature.  

 Is reactivation recurring after a stimulus?  

Recurrence of reactivation is an interesting property and was shown in human SWS sleep 

(Schreiner et al., 2018) and in rodents (Bendor & Wilson, 2012). Recurrence of replay is 

supported by a study suggesting a reverberation of replay between cortex and hippocampus 

(Rothschild, 2019). We wanted to tackle this issue in our data and see if the pattern of 

reactivation is genuinely recurrent or not. Consequently, we used an approach in which we 

compared the likelihood of having recurrence in a particular trial to getting only a single 

reactivation per trial. For SWS reactivation, we found that it is more likely for a trial to have 

one of the reactivations. Interestingly, for REM reactivation, it was more likely to get multiple 

reactivations after TMR cue compared to single reactivation. This suggests a difference 

between SWS reactivation and REM reactivation, even though the classification pattern may 

seem similar at a glance. It also shows that the reactivation pattern can show hidden features 

when we look at individual trials instead of the grand effect from many trials/participants. 
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 Temporal compression of reactivation 

Looking at another interesting temporal characteristic of reactivation, we see that detected 

reactivation in chapter 5 appears temporally compressed in comparison to wake activation. 

Temporal compression of replayed contents is supported by some rodent studies, they show 

that replay in both wake and SWS occur at a faster rate than the original task, (Davidson et al., 

2009; Diba & Buzsáki, 2007; Lee & Wilson, 2002). The rate of compression varied between 

studies; while some showed a compression in non-REM of 6 to 7 times faster than in wake 

(Euston et al., 2007), other studies showed it to occur 10 to even 20 times faster (Ji & Wilson, 

2007; Lee & Wilson, 2002; Nádasdy et al., 1999). Interestingly, it was also shown that there 

could be no compression compared to wake experience (Louie & Wilson, 2001). Another 

recent finding showed that replay in wake and stage 1 of NREM sleep could show the evidence 

of both temporal compression and temporal dilation simultaneously (Eichenlaub et al., 2020). 

These findings trigger our curiosity to check for temporal compression of reactivation in our 

REM sleep data. Thus, when we analysed the detected reactivation, we found evidence of 

temporal compression and the reactivation was 5 times faster than wake. This suggests a 

temporal difference between wake activation and REM sleep reactivation. We hope that future 

studies and investigations will chase this interesting point to know the mechanisms causing the 

replay to appear compressed and sometimes dilated. Also, whether this relates to the timing of 

stimulation or paradigm (TMR vs. spontaneous replay) or perhaps the task and how the brain 

reactivates it. 
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 Reactivation and behaviour 

Let us move on to the relationship between detected reactivation and behaviour. Interestingly, 

the detected reactivations in SWS correlated differently with behaviour which shows that 

different reactivations could have different impact on memory improvement. The early 

reactivation shown in chapter 3 showed higher successful classification when participants were 

faster with the task before sleep. This early reactivation could have occurred because the 

memory was formed strongly before sleep so it could reactivate easily in subsequent sleep. On 

the other hand, the late reactivation which could be initiated by a weaker memory trace has a 

disruptive characteristic and resulted in a decrease of task memory improvement. Notably, 

when we jittered the timing of the cues, this could have caused temporal unpredictability and 

thus a disruption of the sequence memory. The reason is that the temporal information of each 

sequence presentation is now different, and we think this is why we do not see a TMR benefit 

in chapter 4 while in chapter 3 there was a TMR benefit. In chapter 5, we showed that the extent 

we can classify REM sleep memory reactivation predicted memory improvement. These results 

suggest that there is a relationship between detectable reactivation and behaviour. However, 

more studies should be done to determine how different reactivations are initiated and how 

different memory traces are processed to understand why a detectable reactivation could have 

e.g., a disruptive role. 
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 Conclusion 

In this work, we explored different characteristics of detectable memory reactivation and found 

interesting properties that can offer a guidance on the timing of TMR delivery to best trigger 

reactivation. We think that the findings of SWS reactivations deepen our understanding of 

reactivation and show that even when we have multiple reactivations this does not mean that 

they are necessarily reoccurring after every cue. Furthermore, each reactivation has its own 

characteristics and correlation with behaviour. We also demonstrated that we could use pre-

cue SO and spindle features to predict correct classification. This emphasises the active role of 

SWS graphoelements. In addition to understanding reactivation, all these findings offer a 

mechanism by which we could build a closed loop stimulation paradigm to try and maximise 

detectable reactivation by delivering TMR in a more precise manner. The impact of this on 

memory improvement could be explored. We also show for the first time that memory 

reactivation of human REM sleep is possible and detectable with EEG classifiers. We 

demonstrated interesting properties of REM reactivation and how it differs temporally from 

wake and appears to be compressed and recurrent. We showed that theta activity in REM sleep 

is offering a preferred window for stimulation in order to trigger detectable reactivation.  
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