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Abstract: The multilevel capacitated lot-sizing problem (MLCLSP) is a vital theoretical problem of 

production planning in discrete manufacturing. An improved algorithm based on the genetic algo-

rithm (GA) is proposed to solve the MLCLSP. Based on the solution results, the distribution of en-

ergy consumption in a synchronous production case is analyzed. In the related literature, the GA 

has become a much-discussed topic in solving these kinds of problems. Although the standard GA 

can make up for the defects of the traditional algorithm, it will lead to the problems of unstable 

solution results and easy local convergence. For these reasons, this research presents an adaptive 

genetic algorithm based on fuzzy theory (fuzzy-GA) to solve the MLCLSP. Firstly, the solving pro-

cess of the MLCLSP with the fuzzy-GA is described in detail, where algorithms for key technologies 

such as the capacity constraint algorithm and the algorithm of solving fitness value are developed. 

Secondly, the auto-encoding of decision variables for MLCLSPs is studied; within this, the decision 

variables of whether to produce or not are encoded into a hierarchical structure based on the bill of 

material; combined with external demand, the decision variables of lot-sizing are constructed. 

Thirdly, the adaptive optimization process of parameters of the GA for the MLCLSP based on fuzzy 

theory is expounded, in which membership function, fuzzy rule, and defuzzification of the MLCLSP 

is mainly presented. Experimental studies using the processed dataset collected from a synchronizer 

manufacturer have demonstrated the merits of the proposed approach, in which the energy con-

sumption distribution of the optimized production plan is given. The optimal lot-sizing is closer to 

the average value of the optimal value compared with the standard GA, which indicates that the 

proposed fuzzy-GA approach has better convergence and stability. 
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1. Introduction 

Production of automobile synchronizers is typical discrete manufacturing, which is 

characterized by a production process that can be decomposed into multiple tasks. Each 

task goes through a series of discontinuous processes to obtain semi-finished products, 

and finally the semi-finished products obtained from each task are assembled to obtain 

finished products. It can be seen from the characteristics of production that production 

planning belongs to multilevel planning. Against the background of information and in-

telligence of manufacturing, the optimization and automatic generation of production 

plans are beneficial to reduce production resource costs and improve production effi-

ciency. 

At present, the competition of the global manufacturing industry is becoming more 

and more intense [1]. Meanwhile, the energy issue has also become more prominent for 
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the manufacturing industry [2]. Therefore, on the premise of ensuring quality, reducing 

costs is an important way to improve the competitiveness of enterprises. Reasonable op-

erational planning is the core of reducing production costs [3,4] and can be divided into: 

workshop scheduling that is the core of manufacturing execution system, production lot-

sizing planning implemented by enterprise resource planning, and various combinations 

of these [5]. In most specific production scenarios, these problems are NP-hard problems, 

which have been proved by previous studies [6,7]. Moreover, rising energy prices are 

driving manufacturing companies to reduce their production energy consumption [8]. 

The optimization of the production plan can also improve energy efficiency, which could 

slow the cost increase in products caused by rising energy prices. 

In the presented article, we focus on the algorithm of the production lot-sizing prob-

lem. This problem can be defined as the problem of minimizing production total cost (in-

cluding production cost, inventory cost, and setup cost caused by the immediate setup of 

products on the same production line), while also meeting the customer demand under 

limited capacity [9–12]. Depending on whether the planning of the lot size is affected by 

the production capacity of the production resources, the lot-sizing problem can be divided 

into two groups: uncapacitated and capacitated. Lot-sizing problems can be divided into 

single level and multilevel according to the structure of the bill of material (BOM), which 

consists of subassembly, pieces, raw material, and finished products, and is a structured 

material list that describes the assembly relationship of components [13–15]. Since the sin-

gle-level uncapacitated lot-sizing problem, known as the Wagner–Whitin problem, was 

proposed, there have been single-level capacitated lot-sizing problems, multilevel unca-

pacitated lot-sizing problems, and multilevel capacitated lot-sizing problems. Of these, 

the MLCLSP is the most complex and presents the most problems. Moreover, the issues 

of introducing overtime, backorders, carryovers, etc., further extends the above lot-sizing 

problems. For a more comprehensive understanding of this topic, we refer interested 

readers to the survey in [6]. As the energy crisis is becoming a challenge, energy consump-

tion in industrial production has attracted increasing attention, such as in [16,17]. Hence, 

the fact that the energy consumption distribution of production is analyzed in the case of 

synchronizer application production.  
This study is motivated by the problem faced by an automobile gearbox supplier in 

the Chinese city of Xi’an. The supplier is a large-scale professional production enterprise 

that has been committed to developing, manufacturing, and selling several series of syn-

chronizers, including dozens of specifications of products. The synchronizer workshop 

production system of this supplier consists of parts production lines, assembly production 

lines, and production lot-sizing planning, which is a typical MLCLSP. The mathematical 

model of the MLCLSP is a mixed integer programming problem. The existing literature 

has proved that the MLCLSP is NP hard; the traditional methods include the branch and 

bound method, the heuristic method, and the search algorithm. These methods usually 

either take too long or the accuracy of the solution is not high enough. Obviously, the 

supplier is unable to adjust the production planning in time. In recent years, many bionic 

algorithms have been used to help solve the production planning problem, such as the ant 

colony algorithm, neural network algorithm, fruit fly algorithm, genetic algorithm, and so 

on [18–23]. Among them, the genetic algorithm has good efficiency and accuracy. How-

ever, the stability of the GA in solving the lot-sizing problem is relatively poor: when the 

algorithm is run many times in the same scenario, the results differ. 

Motivated by the above application background, we considered improving the sta-

bility of the GA using the fuzzy inference system, which has the ability to realize auto-

matic reasoning according to the rule of experience [24]. The major contributions of this 

study are listed as follows: firstly, the genetic algorithm based on fuzzy theory is used to 

deal with the MLCLSP for the first time. Secondly, the key technologies of the improved 

GA with the lot-sizing problem are studied, including the encoding method, a variable 

number of multipoint genetic operation methods, etc. Thirdly, fuzzy theory is used to im-

prove the adaption of the algorithm, and the adaptive parameters suitable for solving 
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MLCLSP are explored. Meanwhile, the distribution of energy consumption in the produc-

tion process is also explored. 

The remainder of this paper is organized as follows. Section 2 briefly reviews the 

existing literature. Section 3 demonstrates how the fuzzy-GA solves the MLCLSP, includ-

ing the problem statement and algorithm design. The experiment setup including experi-

ment data, the design hypothesis of experiments, and the performance evaluation metrics 

of the algorithm are described in Section 4. Then, Section 5 presents the results and dis-

cussion of the experiment. Section 6 concludes the paper. 

2. Literature Review—Existing Approaches for the MLCLSP 

2.1. Decomposition-Based Approaches 

The decomposition-based approaches divide the problem into submodules and tend 

to be more flexible than other procedures with respect to distributed computing. One can 

distinguish between problem-based decomposition methods and solution space-based 

decomposition algorithms. The former decomposes the original problem into subprob-

lems. The MLCLSP is decomposed into a sequence of capacitated lot-sizing problems 

(CLSP) in the literature [25], then the CLSP is solved by a modified Dixon–Silver heuristic 

method. The MLCLSP is considered to be a serial bill-of-material structure with item-spe-

cific resources. The authors of [26] treated the multilevel problem by constructing a sur-

rogate single-level problem, which is then solved by a greedy heuristic. Solution space-

based decomposition algorithms decompose the entire solution space into subspaces, 

such as the branch and bound algorithm, the branch and cut algorithm, and the branch 

and selection algorithm, all of which generate part-new disjoint subsets of the solution 

space during the “branching” part. The authors of [27] solve multi-item capacitated lot-

sizing problems with setup times using branch-and-cut, which gives strong valid inequal-

ities, and then they implement these inequalities successfully in a branch-and-cut algo-

rithm. The authors of [28] combine a data-driven process with the branching and selection 

process, solving a CLSP. One major research trend in the field of the solving methods of 

MLCLSP is the construction of heuristic methods. 

2.2. Traditional Heuristic Methods 

In heuristic methods, only parts of the solution space are explored and there is an 

attempt to find a good, feasible solution in a reasonable time; its purpose is to meet the 

requirement of a certain level of accuracy and to reduce the solution time. The authors of 

[29] implement three heuristic methods to generate a plan for the MLCLSP with availabil-

ity constraints; within these methods, binary variables and constraints are relaxed. A La-

grangian heuristic is used to relax a two-level CLSP into a continuous knapsack problem, 

which is easily solved using bounded variable linear programs [30]. A Lagrangian heuris-

tic is developed to solve the MLCLSP with linked lot sizes in [31]. To achieve high-quality 

solutions in reasonable computational time, [32] deals with the MLCLSP with backlog-

ging, in which the LugNP method is used to fix a subset of the binary variable vector to 

obtain quickly a feasible candidate solution by heuristic methods. The authors of [33] com-

bine variable neighborhood decomposition search and accurate mixed-integer program-

ming to solve the MLCLSP, which uses the exact LP/MIP solvers ILOG CPLEX, and then 

the variables can be fixed according to the neighborhood search rule. A fix-and-optimize 

approach is proposed for solving the MLCLSP, then a variable neighborhood search 

(VNS) approach further improves the solution in [34]. Rolling-horizon and fix-and-relax 

heuristics are used in the process of solving the MLCLSP with sequence dependence to 

overcome computational infeasibility in [35].  
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2.3. Bionic Algorithms 

Bionic algorithms denote the process of simulating natural phenomena or laws to 

solve problems, such as the bees algorithm, GA, and ant colony optimization algorithm 

(ACO), etc. The authors of [11] propose a hybrid algorithm of the bees algorithm and fix-

and-optimize algorithm, in which the bees algorithm is implemented to avoid local op-

tima. The authors of [36] combined an ant colony optimization algorithm with a fix and 

relax heuristic for solving the MLCLSP, in which ACO uses virtual pheromone concentra-

tions that have been built up during previous iterations to single out promising subsets 

for the next iteration. To solve the MLCLSP with backlogging in the [37], a hybrid multi-

population GA (HMPGA) is proposed, which combines a multi-population based on a  

fix-and-optimize heuristic and mathematical programming techniques. The authors of 

[38] propose a GA-based heuristic for CLSP with sequence-dependent setups, in which 

the rolling horizon heuristic improves genetic algorithm to overcome computational in-

feasibility. A GA hybridized with VNS solves CLSP with setup times indicated in [39], 

where GA generates the solutions and VNS improves the quality of solutions. The ACO 

algorithm is more suitable for searching paths on the graph and thus more inclined to deal 

with problems that can be translated into path optimization. In solving MCLSP problems, 

the bees algorithm is more suitable to improve other algorithms to avoid falling into the 

local extremum. GA is more suitable as the main algorithm to solve batch problems, as 

shown in references [37–39].  

2.4. A Brief Summary 

For a more comprehensive understanding of approaches to solving the MLCLSP, in-

terested readers are referred to the surveys in [6,40]. Decomposition-based approaches 

need to decouple the association between each sub-module in the implementation pro-

cess, and finding a decomposition method for specific instances of MLCLSP is often diffi-

cult. The traditional heuristic methods are mainly based on heuristic rules, in which the 

search of solution space is one-sided and leads to feasible solutions. However, the quality 

of solutions is bad, and finding specific heuristic rules for problems, which are often dif-

ficult to construct, is necessary. Although bionic algorithms are also heuristic algorithms, 

the search has a specific evolutionary orientation and randomness. Most solutions of 

MLCSLP implemented by bionic algorithms have better qualities. Genetic algorithms 

have been widely studied in solving production planning and scheduling problems. Alt-

hough GA worked quite effectively for the lot-sizing problem, the average value of mul-

tiple results is utilized as the effective result when the results of CLSP solved by a GA-

based algorithm are processed in [38,39]. The reason for this is to reach a local solution. 

Thus, reducing the difference of each running result is meaningful to improve the stability 

of the solution. This study uses fuzzy theory to enhance the probability of the crossover 

and mutation of GA, the algorithm’s adaptability, and the solution’s stability.  

3. The Proposed Fuzzy-GA for MLCLSP 

This section mainly describes the method of the fuzzy-GA for solving the MLCLSP. 

Fuzzy-GA denotes an adaptive genetic algorithm, which adjusts the crossover probability 

and mutation probability of parameters in GA by fuzzy theory in this study. The MLCLSP 

is described with the production process of the synchronizer, and the mathematical model 

of the MLCLSP is given. Two key techniques in the algorithm are emphasized. On the one 

hand, the coding method of the proposed algorithm based on hierarchy structure is ex-

plained. On the other hand, the adaptive optimization process of parameters based on 

fuzzy theory is expounded. 

3.1. Problem Statement 

This section starts with an example describing the synchronizers’ production process, 

a core component of the automobile gearbox, as shown in Figure 1. For the convenience 
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of describing the problem, only critical parts of the synchronizer are shown. The blank of 

the hub is sent into a processing workshop, which is composed of multiple non-equivalent 

machines. After processing, the synchronizer body can be used for assembly and stored 

in the buffer. In the same process, the gear ring and sleeve to be assembled are put into 

the buffer. The synchronizer body, gear ring, and sleeve are assembled in a particular 

proportion on the assembly line, composed of multiple non-equivalent machines. The fin-

ished products are put into storage for handling by next-level producers. 

 

Figure 1. Example of synchronizer production. 

In the production process of the synchronizers, the production plan for the next 

month should be made according to the demand, making the best weekly production lot-

sizing of each type of synchronizer and corresponding components to balance inventory 

and setup costs. The lot-sizing of every product per week is affected by external order 

requirements, product dependencies in BOM, and equipment production capacity. This 

problem can be described as an MIP model. Parameters and decision variables used in the 

model are defined as follows. 

By using the notation in Tables 1–3, the lot-sizing problem we considered in synchro-

nizer production can be formulated as follows: 

Min 𝑐𝑜𝑠𝑡𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = ∑ ∑ 𝑐𝑖𝑡𝑥𝑖𝑡
𝑛
𝑖=1

𝑇
𝑡=1 + ∑ ∑ 𝑠𝑖𝑡𝑌𝑖𝑡

𝑛
𝑖=1

𝑇
𝑡=1 + ∑ ∑ ℎ𝑖𝑡𝐼𝑖𝑡

𝑛
𝑖=1

𝑇
𝑡=1  (1) 

s.t. 

𝐼𝑖,𝑡−1 + 𝑥𝑖𝑡 − 𝐼𝑖𝑡 ≥ 𝐷𝑖𝑡 + ∑ 𝑅𝑖𝑗𝑥𝑖𝑡𝑗∈𝐸(𝑖) ∀𝑖, 𝑡  (2) 

∑(𝑐𝑡𝑘𝑖𝑡𝑥𝑖𝑡 + 𝑠𝑡𝑘𝑖𝑡𝑌𝑖𝑡)

𝑛

𝑖=1

≤ 𝐶𝑎𝑘𝑡∀𝑘, 𝑡 (3) 

𝐼𝑖𝑡 , 𝑥𝑖𝑡 ≥ 0∀𝑖, 𝑡  (4) 
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𝑌𝑖𝑡 = {0,1}∀𝑖, 𝑡  (5) 

Table 1. Indices and sets. 

𝑡 = 1,2, … , 𝑇 Planning period 

𝑖 = 1,2, … , 𝑛 Index for product 

𝑘 = 1,2, … , 𝑀 Equipment number 

𝐸(𝑖) 
Set of next-level products that need product 

𝑖 in the production process 

Table 2. Parameters. 

𝑐𝑖𝑡 Production cost unit product 

𝑠𝑖𝑡 Setup cost per production of lot-sizing 

ℎ𝑖𝑡 Inventory cost unit product  

𝐷𝑖𝑡 
External demand of product 𝑖 in the plan-

ning period 𝑡 

𝐶𝑎𝑘𝑡 
Production capacity of equipment resources 

𝑘 in the planning period 𝑡 

𝑅𝑖𝑗 

The quantity of product 𝑖 directly needed 

to produce one unit of product 𝑗 (gozinto 

factor) 

𝑐𝑡𝑘𝑖𝑡 

The time cost of unit production of the 

product 𝑖 in the equipment resource 𝑘 

during the planning period 𝑡 

𝑠𝑡𝑘𝑖𝑡 

Time cost of production setup of the prod-

uct 𝑖 in the equipment resource 𝑘 during 

the planning period 𝑡 

Table 3. Decision variables. 

𝑥𝑖𝑡: 
Output of product 𝑖 during the planning 

period 𝑡 

𝐼𝑖𝑡: 
Inventory of product 𝑖 during the planning 

period 𝑡 

𝑌𝑖𝑡: 

Whether the product 𝑖 is produced in the 

planning period 𝑡; 𝑌𝑖𝑡 = 1, if 𝑥𝑖𝑡 > 0, 𝑌𝑖𝑡 =

0 otherwise. 

3.2. Solving Model of MLCLSP with the Fuzzy-GA 

When using the fuzzy-GA to deal with lot-sizing production problems, the general 

idea is to relax first. The capacity constraints are relaxed initially, the initial solution is 

obtained using the demand relationship, and the genetic operation is carried out. Then, 

the capacity constraint algorithm eliminates the solution that does not meet the con-

straints. The solution with the highest fitness is obtained on this basis and iterated several 

times until the optimization criteria are satisfied. 

The MLCLSP solved in detail by the fuzzy-GA is given in Figure 2. First, the binary 

random variables 𝑌𝑖𝑡 are generated randomly, the initial lot-sizing is calculated, and 𝑌𝑖𝑡 

stored as a hierarchical structure. Then, the capacity constraint algorithm is used to elim-

inate the individuals that do not meet the capacity constraint in the population, which is 

shown in Algorithm 1. 
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Figure 2. Diagram of application of improved GA in lot-sizing production. 

Algorithm 1. Capacity constraint algorithm. 

Input: 𝑥𝑖𝑡, 𝑌𝑖𝑡; output: 𝑥𝑖𝑡 

1. According to production lot-sizing without capacity constraints, the demand 𝑄 of each equipment resource can 

be obtained. 

2. Using the result of Step 1 and the capacity 𝐶𝑎 of equipment resource, the difference between capacity and 

demand can be obtained 𝑄𝐶(𝑘, 𝑡) = 𝑄 − 𝐶𝑎, 𝑘 = 1, … , 𝐾, 𝑡 = 1, … , 𝑇. 

3. Let 𝑡 = 𝑇. 

4. According to the situation of 𝑄𝐶(𝑘, 𝑡) > 0, obtain the ordered set 𝐾𝑡(𝑛𝑘𝑡) of all the production equipment that 

does not meet the capacity constraints according to the serial number in the production stage 𝑡. 𝑛𝑘𝑡 represents the set 

of equipment numbers that does not meet the capacity constraint at period 𝑡.  

5. For  𝑘𝑗 ∈ 𝐾𝑡, 𝑗 = 1, … , 𝑛𝑘𝑡.  

5.1 If 𝑗 = 1, 

{production lot size 𝑥𝑖𝑡 of period t  is obtained without capacity constraints sort in ascending order 𝑋𝑢𝑝𝑘1𝑡. Then, 

find the minimum lot size 𝑋𝑢𝑝𝑡(1). 

Calculate 𝐶𝑟𝑘1
= |𝑄𝐶(𝑘1, 𝑡)| − 𝑎𝑘11𝑡𝑋𝑢𝑝𝑘1𝑡(1), 𝑖 = 1,  

Else calculate 𝐶𝑟𝑘𝑗
= |𝑄𝐶(𝑘𝑗 , 𝑡)| − (∑ 𝑎𝑘𝑗𝑚𝑡𝑋𝑢𝑝𝑡(𝑚)𝑖−1

𝑚=1 + 𝑎𝑘𝑗𝑖𝑡𝑥𝑖𝑡)  

if 𝐶𝑟𝑘𝑗
≤ 0.  

End this cycle and jump to Step 5 for the next cycle. 

End  

End  

5.2 While (𝐶𝑟𝑘𝑗
> 0), 

{the corresponding lot-sizing of 𝑋𝑢𝑝𝑡 (𝑖) is transferred to the production lot-sizing of 𝑡 − 1. Set the corresponding 

binary variable 𝑌𝑖𝑡 to zero. Cyclic variable 𝑖 = 𝑖 + 1. Calculate 𝐶𝑟𝑘𝑗
= 𝐶𝑟𝑘𝑗

− 𝑎𝑘𝑗𝑖𝑡𝑋𝑢𝑝𝑘𝑗𝑡(𝑖)}. 

5.3 Calculate 𝑥𝑖𝑡 =
𝐶𝑟𝑘𝑗

+ 𝑎𝑘𝑗𝑖𝑡𝑋𝑢𝑝𝑘𝑗𝑡(𝑖)
𝑎𝑘𝑗𝑖𝑡

⁄  as the production lot-sizing to be migrated to 𝑡 − 1. 

End  

6. 𝑡 = 𝑡 − 1. 

If 𝑡 > 0, jump to Step 4. 

Else, update 𝑄. If 𝑄𝐶 = 𝑄 − 𝐶𝑎 ≤ 0, output updated lot-sizing, setup variable as result, and end the whole procedure; 

Else, the solution cannot satisfy the capacity constraint and end the whole procedure.  

End 
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End  

For individuals that satisfy capacity constraints, fitness value is calculated as follows: 

Using the variables, 𝑌𝑖𝑡, 𝑥𝑖𝑡, and 𝐼𝑖𝑡 correspond to those meeting the capacity constraints 

to solve the target cost. The maximum value of all target costs in the population is selected 

and divided by the individual target cost as the individual fitness value. Algorithm 2 pro-

vides details of the algorithm. 

Algorithm 2. Algorithm of solving fitness value. 

Input: production lot-sizing x_it, inventory I_it, and setup variable Y_it; output: fitness value: f  

1. The individual production lot-sizing 𝑥𝑖𝑡 and inventory 𝐼𝑖𝑡 in the population are transformed into a hierarchical 

structure. 

2. By substituting the result of Step 1 into the objective function formula, the corresponding objective value of 

individuals in the population can be obtained 𝑜𝑏𝑗(𝑖), 𝑖 = 1,2, … , 𝑛 (𝑛 represents the number of chromosomes in 

the population). 

3. Get the maximum objective value 𝑚𝑎𝑥{𝑜𝑏𝑗(𝑖)} in the population.  

4. Calculate the fitness value 𝑓 = 𝑚𝑎𝑥{𝑜𝑏𝑗(𝑖)} 𝑜𝑏𝑗(𝑖)⁄ . 

On the one hand, individuals with the largest fitness value were selected as the best 

solution and judged whether the iteration condition was satisfied. If it was satisfied, the 

algorithm ends and provides the result. If not, the algorithm continues to convert the de-

cision variables of the hierarchy to single-layer binary strings hierarchical structure in 

preparation for genetic operations. On the other hand, the crossover and mutation prob-

ability was automatically adjusted according to fitness values combined with fuzzy the-

ory. Finally, the roulette method is used for selection operation. The crossover and muta-

tion operation adopts multipoint operation with the variable number of operation points 

determined by Formula (6). 

𝑛 = {
1

𝑟𝑜𝑢𝑛𝑑(𝛼𝑙𝑐)
𝑟𝑜𝑢𝑛𝑑(𝛼𝑙𝑐)=0
𝑟𝑜𝑢𝑛𝑑(𝛼𝑙𝑐)>0

, (6) 

where 𝑟𝑜𝑢𝑛𝑑() means to round to an integer, 𝑙𝑐 denotes the length of the chromosome 

to be interlaced or mutated, and 𝛼 is the proportional coefficient of operation point of 

mutation or crossover operation, which is a constant. 

When the proposed algorithm is used to solve MLCLSP problems, the length of chro-

mosomes is affected by the size of the production problem instance. Formula (6) ensures 

that the effects of crossover and mutation operations on population can be fully reflected 

when dealing with lot-sizing production problems of different scales. The fuzzy inference 

system obtains the mutation and crossover probability automatically during each itera-

tion. The process of mutation operation and crossover operation is shown in Figure 3. 

 

Figure 3. Schematic diagram of crossover and mutation. 
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Compared with the traditional GA, the fuzzy-GA first uses the fuzzy reasoning sys-

tem to calculate the crossover probability and mutation probability of an individual ac-

cording to the fitness value in each iteration cycle before carrying out the genetic operation 

to realize the automatic adjustment of crossover and mutation probability in the genetic 

operation of each iteration. 

3.3. Encoder Based on Hierarchical Structure 

According to the planning period and product type, the initial population with size 

𝑛 is randomly generated, and the chromosome in the population is the binary string with 

length 𝑖 × 𝑡 corresponding to the setup variable 𝑌𝑖𝑡. This binary string indicates whether 

the product 𝑖  is produced during the planning period 𝑡 . The specific relationship is 

shown in Figure 4. 𝑌𝑖𝑗 represents the product 𝑗 at the BOM structure level 𝑖. Individuals 

in the population are arranged in sequence according to the plan period and then from 

top to bottom according to the BOM structure to form a binary string. 

 

Figure 4. Relational graph of encoding and multilevel structure. 

The chromosome generated by 1 is stored as a hierarchical structure 𝑌𝑖𝑡 according to 

the product BOM. The conversion relationship of them is shown in Figure 4. The data of 

whether the product is ready for production in each planning period in the BOM are 

stored in each level. Taking 𝑌𝑖𝑡, quantity dependence 𝑅𝑖𝑗, and external demand 𝐷𝑖𝑡 as 

input variables, the lot-sizing algorithm constructed by demand relation (refer to Algo-

rithm 3) is used to calculate the production decision variables 𝑥𝑖𝑡. 
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Algorithm 3. Algorithm of a lot-sizing solution according to the demand constraints. 

Input: setup variable, product demand, and material quantity relationship 𝑌𝑖𝑡, 𝐷𝑖𝑡, 𝑅𝑖𝑗; output: production lot-sizing 

𝑥𝑖𝑡  

1. Get the number of layers L of the material structure by 𝑌𝑖𝑡 structure. 

2. Find the planning period 𝑡 of product 𝑖 corresponding to 𝑌𝑖𝑡 = 1, in the multilevel structure. Store the data 

from small to large in vector 𝑇𝑖(𝑗). 

3. If the number of layers of product 𝑖 is equal to 1, 

Use demand balance relation 𝑥𝑖𝑡(1, 𝑖, 𝑇𝑖(𝑗)) = ∑ 𝐷𝑖𝑡(𝑖, 𝑡)
𝑇𝑖(𝑗+1)−1

𝑡=𝑇𝑖(𝑗)  and solve production lot-sizing 𝑋𝑖𝑡 of product i at 

different planning periods.   

Else, 

use demand balance relation 𝑥𝑖𝑡(1, 𝑖, 𝑇𝑖(𝑗)) = ∑ 𝐷𝑖𝑡(𝑖, 𝑡)
𝑇𝑖(𝑗+1)−1

𝑡=𝑇𝑖(𝑗) + ∑ 𝑅𝑖𝑗𝑋𝑖𝑡(𝑙𝑖 , 𝑖, 𝑇𝑖(𝑗))𝑙−1
𝑙𝑖=1  and solve production lot-

sizing 𝑥𝑖𝑡. 

End 

4. 𝑖 = 𝑖 + 1. If 𝑖 is less than or equal to the total number of products, jump to Step 3; otherwise, end the program. 

3.4. Adaptive Optimization Process of Parameters Based on Fuzzy Theory 

The convergence and stability of the solution of traditional GAs are mainly affected 

by the crossover probability 𝑃𝑐 and mutation probability 𝑃𝑚. 𝑃𝑐 and 𝑃𝑚 are fixed before 

the traditional GA runs, but they cannot be changed during the running process. During 

the algorithm’s operation, the same mutation and crossover rates are used regardless of 

the fitness value of individuals in the population. However, from the characteristics of the 

genetic algorithm, in each genetic operation, for individuals with high fitness, appropri-

ately reducing the crossover rate and mutation rate is conducive to improving the conver-

gence speed of the algorithm. For individuals with low fitness, appropriately increasing 

the value of the two is conducive to the global search of the solution, reducing the possi-

bility of the solution converging to the local optimum. Aiming at the problem that the GA 

is easy to use to obtain an optimal local solution and unstable in solving lot-sizing pro-

duction problems, this section proposes to apply a fuzzy reasoning system to control 𝑃𝑐 

and 𝑃𝑚. In each genetic operation, the fuzzy inference system is used to infer different 

crossover and mutation rates for individuals with different adaptive values to improve 

the global search ability and convergence speed of the algorithm. 

Figure 5 shows the schematic diagram of the fuzzy reasoning system. In each itera-

tion of the proposed algorithm, the maximum fitness value of the chromosome in the pop-

ulation is different, leading to the uncertainty of the input value range during the fuzzy 

reasoning process. Differences in the input value ranges of fuzzy inference systems corre-

spond to different membership functions. To ensure that the input of the fuzzy reasoning 

process in each iteration has the same domain and is easy to be realized by programming, 

scale transformation mapping of input variables is needed. Therefore, when fuzzy reason-

ing is carried out in each iteration, combined with the characteristics of fitness value in 

each iteration, the following scale transformation formula is performed: 

𝑓: 𝑜𝑏𝑗𝑣𝑎𝑙𝑢𝑒
′ =

𝑜𝑏𝑗𝑣𝑎𝑙𝑢𝑒

𝑚𝑎𝑥{𝑜𝑏𝑗𝑣𝑎𝑙𝑢𝑒}
, (7) 

where 𝑜𝑏𝑗𝑣𝑎𝑙𝑢𝑒 represents the fitness value corresponding to the chromosome in the pop-

ulation of each iteration, 𝑚𝑎𝑥{𝑜𝑏𝑗𝑣𝑎𝑙𝑢𝑒} represents the maximum of all fitness values in 

the population, and 𝑜𝑏𝑗𝑣𝑎𝑙𝑢𝑒
′ ∈ [0,1] represents the output value after transformation. The 

same range of input variables is ensured in each reasoning process; they are all in the 

domain of [0, 1]. 
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Figure 5. Diagram of fuzzy reasoning system. 

In the second step, the variables of input and output are fuzzified into fuzzy language 

variables by fuzzy set, which uses the mapping of membership function to describe the 

variables so that the same variable can belong to multiple sets but have different degrees 

of membership. Fuzzification can be divided into fuzzy division and membership func-

tion determination. Fuzzy partition determines the number of fuzzy sets on the domain. 

The higher the number of sets is, the more precise the association between fuzzy sets and 

precise quantities is. However, fine division quickly increases the amount of calculation. 

According to input and output characteristics, three fuzzy sets are divided in the input 

and output domain, namely, PS, PM, and PB, which indicate that the value is small, mod-

erate, and large, respectively. The membership functions of all fuzzy sets are Gaussian 

functions commonly used in fuzzy reasoning, such as Formula (8), but different parame-

ters are selected. 

𝑚𝑓(𝑥,  𝑐1,  𝑐2) = 𝑒(𝑥− 𝑐2)2  𝑐1
2⁄ , (8) 

where 𝑥 is a variable in the domain, and parameters  𝑐1 and 𝑐2 determine the rapid and 

slow change and the central position of the function curve, respectively. 

In Formula (8),  𝑐1 = 0.2 and  𝑐2 = 0 are taken to obtain the small positive PS of the 

fuzzy language variable of input 𝑜𝑏𝑗𝑣𝑎𝑙𝑢𝑒
′ , which is represented by Imfs. Similarly, 𝑐1 =

0.2 and  𝑐2 = 0.5 can be substituted into Formula (8) to obtain the membership function 

Imfm corresponding to the positive middle PM of the input fuzzy language variable. The 

membership function Imfb of the fuzzy variable PM of the input can be obtained by mak-

ing  𝑐1 = 0.2 and  𝑐2 = 1 in Formula (8). 

In the proposed algorithm, the mutation probability value is small. Thus, in the fuzzy 

reasoning process, the range of mutation probability 𝑃𝑚 is [0, 0.003], [0, 0.03], or [0, 0.3]. 

The optimal range suitable for this problem will be determined by a trial method in Ex-

periment 2 of the paper. Then, taking different  𝑐1 and  𝑐2 values for Formula (8) in the 

experiment, we can obtain the membership function Omfmb, Omfmm, and Omfms corre-

sponding to fuzzy language variables PB, Pm, and PS of output 𝑃𝑚, respectively.  

The domain of output crossover probability 𝑃𝑐 in fuzzy inference system is [0, 1]. In 

Formula (8),  𝑐1 = 0.2. In Experiment 2, the  𝑐2 values of membership functions Omfcb, 

Omfcm and Omfcs corresponding to fuzzy language PB, and PM and PS for 𝑃𝑐 are dis-

cussed.  

Then, according to the fuzzy rules, the fuzzy input can obtain the fuzzy output 

through fuzzy reasoning. Finally, after defuzzification, the output can give the actual 

crossover probability and mutation probability output. The primary purpose of defuzzi-

fication is to transform the fuzzy output from fuzzy reasoning into the available actual 

production. In the algorithm, the centroid method is used as the defuzzification method, 

as shown in Formula (9): 

𝑝 =
∫ 𝑧𝜇𝑦(𝑧) 𝑑𝑧

𝑏
𝑎

∫ 𝜇𝑦(𝑧) 𝑑𝑧
𝑏

𝑎

,  (9) 
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where [𝑎, 𝑏] is the domain of output mutation or crossover probability. 𝜇𝑦(𝑧) is mem-

bership function of fuzzy sets in the domain. 𝑝 represents the output after defuzzifica-

tion. 

In the implementation process, fuzzy inference and the establishment of fuzzy rules 

are the core steps, which are the green boxes shown in Figure 5. 

Fuzzy rules are expert experiences or known rules expressed by fuzzy language var-

iables. Through observation, in the iteration process of the algorithm, when the fitness 

value 𝑜𝑏𝑗𝑣𝑎𝑙𝑢𝑒
′ , is small, slightly increasing the mutation rate 𝑃𝑚 or increasing crossover 

probability 𝑃𝑐 can improve the global search ability of the algorithm. When the fitness 

value is large, appropriately decreasing mutation rate 𝑃𝑚 or crossover probability 𝑃𝑐 can 

improve the convergence speed of the algorithm and improve the stability of the solution. 

The rules expressed by if−then are as follows: 

If 𝑜𝑏𝑗𝑣𝑎𝑙𝑢𝑒
′  is PS, then 𝑃𝑚 and 𝑃𝑐 are PB. 

If 𝑜𝑏𝑗𝑣𝑎𝑙𝑢𝑒
′  is PM, then 𝑃𝑚 and 𝑃𝑐 are PM. 

If 𝑜𝑏𝑗𝑣𝑎𝑙𝑢𝑒
′  is PB, then 𝑃𝑚 and 𝑃𝑐 are PS. 

A fuzzy control table can be obtained according to the above empirical rules, as 

shown in Table 4. 

Table 4. Rules of fuzzy inference. 

IF PS (𝒐𝒃𝒋𝒗𝒂𝒍𝒖𝒆
′ ) PM (𝒐𝒃𝒋𝒗𝒂𝒍𝒖𝒆

′ ) PB (𝒐𝒃𝒋𝒗𝒂𝒍𝒖𝒆
′ ) 

THEN PB (𝑃𝑚) PM (𝑃𝑚) PS (𝑃𝑚) 

THEN PB (𝑃𝐶) PM (𝑃𝐶) PS (𝑃𝐶) 

Fuzzy reasoning is the process of obtaining the fuzzy output of the system by using 

fuzzy logic operations, such as implication and synthesis according to the fuzzy rules. The 

fuzzy relation model 𝑅𝑚  and 𝑅𝑐  of output 𝑃𝑚  and 𝑃𝑐  that is based on the max−min 

composition rule can be expressed as follows: 

{
𝑅𝑚 = (Imfs ∩ Omfmb) ∪ (Imfm ∩ Omfmm) ∪ (Imfb ∩ Omfms)

𝑅𝑐 = (Imfs ∩ Omfcb) ∪ (Imfm ∩ Omfcm) ∪ (Imfb ∩ Omfcs)
, (10) 

where intersection ∩ represents the smaller value of two operands and union ∪ indi-

cates finding the maximum value of the two operands.  

Formula 10 is established with fuzzy rules in Table 4. The operation within rules 

takes intersection, and the operation between rules takes union. Fuzzy decision-making 

is performed by the fuzzy relation model, which determines the output of the fuzzy sys-

tem by combining the input of the fuzzy system with the fuzzy reasoning model. As 

shown in Formula (11), 

{
Omf(𝑃𝑚) =∪𝑜𝑏𝑗𝑣𝑎𝑙𝑢𝑒

′ [Imf( 𝑜𝑏𝑗𝑣𝑎𝑙𝑢𝑒
′ ) ∩ 𝑅𝑚]

Omf(𝑃𝑐) =∪𝑜𝑏𝑗𝑣𝑎𝑙𝑢𝑒
′ [Imf( 𝑜𝑏𝑗𝑣𝑎𝑙𝑢𝑒

′ ) ∩ 𝑅𝑐]
, (11) 

where Omf(𝑃𝑚)  and Omf(𝑃𝑐)  denote the membership function of output and 

Imf( 𝑜𝑏𝑗𝑣𝑎𝑙𝑢𝑒
′ ) denotes the membership function of the input. 

4. Experimental Setup 

4.1. Experimental Data and Design Hypothesis 

This study designs three experiments to verify the algorithm’s effectiveness, find the 

optimal parameters of the fuzzy reasoning algorithm, and illustrate the comprehensive 

performance of the algorithm. The experimental results are obtained in the environment 

of i5-7200U 2.71 GHz CPU and 4.00 GB memory, running MATLAB programming soft-

ware version R2014b and the commercial software lingo 11.0.0.20. 
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4.1.1. Experiment 1 Validation of Fuzzy-GA in Solving MLCLSP 

A two-level BOM material structure is constructed based on an actual production 

line of a synchronizer. The first level is composed of products 1 and 2. The second level is 

composed of products 3, 4, and 5. The proposed algorithm and the commercial software 

lingo were compared to verify the solution results. The production costs obtained from 

both methods are calculated to verify the algorithm’s effectiveness. Table 5 shows the pro-

duction demand of product 𝑖(𝑖 = 1, … ,5) in planning period 𝑡(𝑡 = 1, 2, 3, 4).  

Table 5. Product demand 𝐷𝑖𝑡. 

Product Number 𝒊\Planning 

Period 𝒕  
1 2 3 4 

1 28 14 9 32 

2 6 1 1 17 

3 1 9 4 11 

4 17 13 15 17 

5 18 2 4 10 

Table 6 shows the production capacity of the equipment 𝑘(𝑘 = 1, … ,9) in each plan-

ning 𝑡 period. Table 7 lists the quantity relationship between the secondary products and 

the primary products in the BOM. 

Table 6. Capacity of production devices 𝐶𝑎𝑘𝑡. 

Equipment Number k

\Planning Period t  
1 2 3 4 

1 5666 5483 5427 5539 

2 5332 5437 5213 5147 

3 5189 5088 5711 5225 

4 5891 5676 5367 5148 

5 5835 5274 5249 5982 

6 5442 5948 5618 5596 

7 5694 5944 5902 5961 

8 5498 5342 5072 5554 

9 5625 5717 5492 5336 

Table 7. Product assembly ratio 𝑅𝑖𝑗 in BOM. 

Level 2\Level 1 Product 

Number 
1 2 

3 2 1 

4 0 2 

5 1 1 

The production setup time and the unit production time of product 𝑖 on the equip-

ment 𝑘 at period 𝑡 are shown in Table 8. Other parameters of the example, unit produc-

tion cost, inventory cost, production setup cost, and initial inventory are given in Table 9. 
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Table 8. Time cost 𝑠𝑡𝑘𝑖𝑡\𝑐𝑡𝑘𝑖𝑡 of setup\production per unit. 

Equipment 

Number 𝒌  

Product 

Number 𝒊  

Planning Period 𝒕  

1 2 3 4 

1 

1 34\2 31\4 32\3 30\8 

2 32\9 33\7 32\6 35\9 

3 31\3 33\8 33\9 34\9 

4 31\4 33\5 31\6 32\8 

5 33\7 35\7 32\4 30\3 

2 

1 35\8 31\8 31\4 30\2 

2 30\2 33\5 33\5 33\6 

3 32\2 31\5 35\5 33\6 

4 34\4 34\2 35\2 35\9 

5 32\3 31\7 35\4 33\7 

3 

1 33\7 35\4 34\7 30\3 

2 34\3 30\6 30\2 32\4 

3 31\3 31\8 35\9 32\4 

4 30\7 34\4 31\5 31\2 

5 33\3 30\7 33\3 33\9 

4 

1 32\5 32\6 32\7 33\7 

2 34\3 30\4 30\6 30\7 

3 33\9 31\3 32\7 33\3 

4 33\3 33\9 30\9 34\7 

5 35\6 33\8 33\8 31\8 

5 

1 33\4 32\6 32\6 34\8 

2 33\8 31\2 32\2 33\5 

3 34\7 31\5 34\8 31\5 

4 31\4 33\4 34\5 31\9 

5 30\2 33\5 33\5 30\8 

6 

1 31\6 32\8 33\8 34\7 

2 31\6 34\5 31\4 31\4 

3 31\9 33\8 33\3 34\8 

4 31\3 31\9 33\3 34\3 

5 35\3 34\8 32\4 31\8 

7 

1 31\4 32\5 31\2 30\9 

2 34\5 33\3 32\3 32\5 

3 34\6 33\9 32\4 33\8 

4 32\3 32\3 35\4 34\3 

5 33\8 31\2 31\3 31\7 

8 

1 34\5 34\6 31\3 31\9 

2 33\8 31\7 32\7 33\6 

3 30\7 33\7 35\8 32\6 

4 30\2 32\6 32\6 31\2 

5 30\7 33\3 32\7 33\6 

9 

1 30\8 32\4 30\8 35\2 

2 30\5 34\3 32\4 35\7 

3 35\7 32\7 34\7 32\3 

4 33\7 34\5 31\3 32\5 

5 30\2 32\7 35\5 35\9 
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Table 9. Other model parameters. 

Parameters\ 

Production 

Number 

1 2 3 4 5 

Production 

cost 𝑐𝑖𝑡  
39 36 31 37 35 

Inventory cost 
ℎ𝑖𝑡  

59 48 32 53 40 

Setup cost 𝑠𝑖𝑡  123 110 117 104 127 

Initial 

inventory 𝐼𝑖0  
5 18 18 1 22 

Energy costs 1.5 1.2 2 2.2 1.8 

4.1.2. Experiment 2 Adaptive Parameters of the Fuzzy-GA 

In this experiment, the dataset from Experiment 1 is still used. The central parameters 
𝑐2 of the output membership function greatly influence the algorithm performance in the 

fuzzy reasoning system. Thus, the parameters 𝑐2  suitable for crossover probability 𝑃𝑐 

and mutation probability 𝑃𝑚 are determined in the process of solving the MLCLSP with 

the proposed algorithm. Multiple sets of 𝑐2 values are used to solve the problem. By com-

paring the results, the better operation parameters of the algorithm are given. 

Table 10 shows the specific values of the central control parameters 𝑐2 of the mem-

bership functions in the language variable set corresponding to the mutation probability 

in the fuzzy reasoning system in three cases, 𝑃𝑚1, 𝑃𝑚2, and 𝑃𝑚3, which represent parame-

ters of different orders of magnitude. 

Table 10. Parameters of mutation with different magnitudes. 

Fuzzy 

Sets\Magnitude 
𝑷𝒎𝟏 𝑷𝒎𝟐 𝑷𝒎𝟑 

PS 0.01 0.1 0.001 

PM 0.02 0.2 0.002 

PB 0.03 0.3 0.003 

Table 11 shows the specific values of the central control parameters 𝑐2 of each mem-

bership function in the language variable set corresponding to the crossover probability 

in the fuzzy reasoning system under three cases 𝑃𝑐1, 𝑃𝑐2, 𝑃𝑐3. A PM equal to 0.7 means that 

the chromosome crossover probability of the intermediate fitness value tends to be large 

in each iteration population. A PM equal to 0.3 means that the chromosome crossover 

probability of the intermediate fitness value tends to be small in each iteration population. 

A PM equal to 0.5 is between the two. 

Table 11. Parameters of crossover with different magnitude. 

Fuzzy 

Sets\Magnitude 
𝑷𝒄𝟏 𝑷𝒄𝟐 𝑷𝒄𝟑 

PS 0.1 0.1 0.1 

PM 0.7 0.3 0.5 

PB 0.9 0.9 0.9 

4.1.3. Experiment 3 Performance of Fuzzy-GA in Solving MLCLSP 

On the basis of the production examples of different scales, the MLCLSP was solved 

by GA and the proposed algorithm, and the superiority of the proposed algorithm was 
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verified. This experiment mainly verifies whether the algorithm’s speed, quality, and sta-

bility are improved for the proposed algorithm in solving the MLCLSP. The response 

speed of the improved algorithm is verified by comparing the solution time. The compar-

ison of the best solution is used to verify the quality of the solution. The difference be-

tween the average and the best solution is used to verify the stability of the solution.  

Computational experiments were conducted on three groups of test instances (i.e., 

N(5,10,20)-T5-M9, N20-T(5,7,10)-M9, and N20-T10-M(9,15,20), representing different 

problem scales, where the numbers represent products, periods, and machines, respec-

tively). These groups are similar to the data structure of Experiment 1. N(5,10,20) means 

N5, N10, and N20. Thus, each combination has three instances, producing seven instances 

in total. According to the synchronizer generation process, all instances have a two-level 

BOM structure. Although the real-life data are unavailable because of confidentiality, the 

setting of those instances was simulated from the practice in a production line of a syn-

chronizer assembly manufacturing company in China. 

4.2. Performance Evaluation Metrics 

Different performance characteristics require different methods to measure. This 

study mainly examined the effectiveness, optimal parameter selection, and stability of the 

algorithm. Thus, the corresponding measurement methods for these performance charac-

teristics are given below. 

The proposed algorithm is a random algorithm, which has a certain difference in the 

results of each solution for the same instance. The optimal total cost of the MLCLSP solved 

by the proposed algorithm is the expected value of n calculations as follows: 

𝐸(𝑓) =
∑ 𝑓𝑖

𝑛
𝑖=0

𝑛
 (12) 

Assuming that the optimal cost of the commercial software lingo solution is denoted 

as 𝑓
𝑙
, then the effectiveness of the proposed algorithm can be measured by Formula (13). 

𝑒1 =
|𝐸(𝑓)−𝑓𝑙|

𝐸(𝑓)
  (13) 

Adjusting the mutation probability can improve the defect that easily falls into the 

optimal local solution for the GA. Thus, the selection of the central parameters 𝑐2 of the 

output membership function of mutation rate takes the minimum value of the optimal 

cost under different parameters as the measurement index. Assuming that 𝑓(𝑃𝑚𝑖) is the 

optimal cost of the proposed algorithm in the case of 𝑃𝑚𝑖(𝑖 = 1, 2, 3), the measurement 

index can be written as follows:  

𝑒2 = 𝑚𝑖𝑛 {𝐸(𝑓(𝑃𝑚𝑖))} (14) 

Adjusting the crossover probability can improve the stability of the solution, which 

means the amplitude of the target value will weaken as the number of iterations increases. 

Thus, the central parameters 𝑐2 of the output membership function of crossover rate with 

the highest density of curves is selected as the best parameter, according to the different 

densities of curves in the figure of optimization target changing with the number of iter-

ations under the case of different 𝑃𝑐𝑖(𝑖 = 1, 2, 3).  

In Experiment 3, the optimal value of different scales takes the minimum objective 

value of multiple solutions as Formula (15). The average optimal value is the expected 

value of various solutions, which can be expressed by Formula (12).  

𝑓𝑜𝑣 = 𝑚𝑖𝑛{𝑓1, 𝑓2, … , 𝑓𝑛 } (15) 

The stability of the proposed algorithm can be expressed by the difference between 

the average value and the best value as Formula (16). 

𝑒3 = |𝐸(𝑓) − 𝑓𝑜𝑣| (16) 
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Assuming that elapsed time of the proposed algorithm denotes 𝑡𝑖, the proposed al-

gorithm’s computational speed is measured by the average speed of multiple algorithm 

solutions, as shown in Formula (17). 

𝑡𝑟𝑢𝑛 =
∑ 𝑡𝑖

𝑛
𝑖=0

𝑛
 (17) 

5. Results and Discussion  

5.1. Results and Discussion for Experiment 1 

The number of iterations is 100, and the population size is 30. The proportional coef-

ficient of mutation operation 𝛼𝑚 = 0.001, the proportional coefficient of crossover opera-

tion 𝛼𝑐 = 0.01, and 𝑃𝑚1 and 𝑃𝑐2 in the fuzzy reasoning system are selected. Using the 

proposed algorithm, the optimal value of comprehensive cost is 18,320 by running the 

example, and the corresponding lot-sizing production results are shown in Table 12.  

Table 12. Production lot-size 𝑥𝑖𝑡 under optimal objective value. 

Product Number 

𝒊 \Planning 

Period 𝒕  

1 2 3 4 

1 28 14 9 32 

2 7 0 1 17 

3 64 37 23 92 

4 31 13 17 51 

5 53 16 14 59 

Verifying that the production lot size 𝑥𝑖𝑡 can meet external demand in Table 5, and 

capacity requirements in Table 6 are easy, indicating the algorithm’s feasibility. The com-

mercial soft lingo is used for solving, and the optimal value is 18,203. The difference is 

150, and the relative error is 0.639% between the two, which shows the proposed algo-

rithm’s effectiveness. 

As shown in Figure 6, the legend number corresponds to the product number. The 

abscissa is the production planning period. The ordinate is the product production quan-

tity, which shows the production quantity change rule of various products in the same 

planning period. Figure 7 reflects the proportion distribution of energy consumption of 

different products in the total energy consumption in each period, where the different 

colors are consistent with Figure 6. Combining Figures 6 and 7, the distributions of energy 

consumption are consistent with the size of product lot-sizing but show some differences, 

such as products 4 and 5 in the fourth period, mainly caused by the difference in energy 

consumption costs between them. 
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Figure 6. Column diagram of production quantity of different planning periods. 

 

Figure 7. Energy costs of all products for: (A) planning period 1; (B) planning period 2; (C) planning 

period 3; (D) planning period 4. 

The legend number in Figure 8 corresponds to the production planning period, the 

abscissa is the product type number, and the ordinate is the product production quantity. 

Figure 8 describes the production quantity of the same product in a different production 
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period. Through the classified display of the two results, the lot-sizing distribution of dif-

ferent products in each planning period can be displayed clearly. Figure 9 shows the pro-

portion of energy consumption of each period in the total energy consumption for various 

products, in which the different colors are consistent with Figure 8. Comparing Figures 8 

and 9, different products have a large proportion of energy consumption in period 4. 

Thus, optimizing energy consumption can focus on the planning of period 4. 

 

Figure 8. Quantity column diagram of different productions. 

 

Figure 9. Energy costs of synchronizers for: (A) product 1; (B) product 2; (C) product 3; (D) product 

4; (E) product 5 in the planning horizon. 

5.2. Results and Discussion for Experiment 2 

The results in Figure 10 are randomly run five times and are drawn by taking the 

minimum target value in each case. Three smooth curves are the fitting results of three 

actual curves in the figure, obtained using a six-order polynomial function. The fitting 

curve 𝑃𝑚3 − 𝑓𝑖𝑡𝑡𝑖𝑛𝑔 shows that the variation trend of the solution tends to be flat and the 

worst effect of the optimal solution is when the magnitude of the mutation parameter is 

too small. When the magnitude of the mutation parameter is the largest, as shown in the 

curve 𝑃𝑚2 − 𝑓𝑖𝑡𝑡𝑖𝑛𝑔, the change of the target value has a sharp convergence with the 

number of iterations, and the overall target value tends to decrease. However, the final 

convergence result is poorer than curve 𝑃𝑚1 − 𝑓𝑖𝑡𝑡𝑖𝑛𝑔. When the mutation parameter 

takes the middle value, according to the curve 𝑃𝑚1 − 𝑓𝑖𝑡𝑡𝑖𝑛𝑔, the intensity of the overall 

trend of the target value is slightly worse than that of curve 𝑃𝑚2 − 𝑓𝑖𝑡𝑡𝑖𝑛𝑔, but the effect 
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of the optimal solution is the best of the three. Thus, when the proposed fuzzy-GA is used 

to solve a lot-sizing problem, 𝑃𝑚1 groups of parameters can be selected. 

 

Figure 10. Comparison of results with different parameters of mutation. 

Figures 11–13 show the parameters in the case of 𝑃𝑐1, 𝑃𝑐2, and  𝑃𝑐3. When the fuzzy-

GA is run many times, the target value changes with the number of iterations. Compared 

with 𝑃𝑐3, the trend of the curves 𝑃𝑐1 and 𝑃𝑐2 between the target value and the number of 

iterations is better. Although the optimal results are close to each other with different pa-

rameters, the curves are more concentrated in the case of 𝑃𝑐2, 𝑃𝑐1, and 𝑃𝑐3 and are rela-

tively scattered. Therefore, the fuzzy-GA algorithm has better stability for lot-sizing prob-

lem solving under the parameter of 𝑃𝑐2. 

 

Figure 11. Results with parameters 1cP  of crossover. 
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Figure 12. Results with parameters 2cP  of crossover. 

 

Figure 13. Results with parameters 2cP  of crossover. 

5.2. Results and Discussion for Experiment 3 

In this experiment, the parameter of the mutation probability membership function 

adopts 𝑃𝑚1, and the parameter of the crossover probability membership function adopts 

𝑃𝑐2. Table 13 shows the results of solving the MLCLSP by the general GA and the fuzzy-

GA, which includes different production scales indicated by product type, planning pe-

riod, and the number of devices. 
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Table 13. Comparison of results between GA and fuzzy-GA. 

Product 

Type N 

Planning 

Period T 

Number of 

Devices M 

 Traditional GA  Fuzzy-GA 

Optimal 

Value  

Average 

Optimal 

Value 

Iteratio

ns 

Running 

time(s) 

Optimal 

Value 

Average 

Optimal 

Value 

Iteratio

ns 

Running 

Time(s) 

5 5 9 90,101 94,619 95 4.5174 87,629 90,839 104 4.3237 

10 5 9 256,618 263,514 111 5.7030 242,461 246,960 105 5.5393 

20 5 9 999,289 1,061,107 94 7.0897 908,033 944,982 97 7.6957 

20 7 9 1,406,511 1,457,795 107 9.8041 1,349,712 1,378,720 93 9.2876 

20 10 9 1,950,637 2,115,856 100 12.7491 2,005,225 2,044,097 90 11.3101 

20 10 15 1,985,502 2,020,672 95 13.3185 1,888,792 1,905,142 85 12.2024 

20 10 20 2,515,585 2,596,667 112 16.4103 2,410,076 2,440,758 97 15.5662 

The iterations in Table 13 represent the average number of iterations for 10 runs of 

the algorithm. Iterations are the number of iterations based on the criterion that the opti-

mization objective has not been optimized for 50 consecutive times during the algorithm’s 

operation. The average optimal value and running time in Table 6 are the average value 

of the algorithm running 10 times. The optimal value is the minimum of 10 running re-

sults. The smaller the target value, the better the performance of the corresponding lot-

sizing solution. The table shows that, when the planning period and the number of devices 

are the same, with the increase in product types, fuzzy-GA’s optimal value is smaller than 

that of the traditional GA. Therefore, the improved genetic algorithm has better optimiza-

tion ability for different product types. The average optimal value of the fuzzy-GA is 

smaller when the production scale is the same, which indicates that the improved genetic 

algorithm still shows superior stability. At the same time, the number of iterations fluctu-

ates less, and the running time is less, which shows that the algorithm has better stability 

for the increase in product types in solving lot-sizing problems. Table 13 also shows that, 

when the product type and the number of pieces of equipment are fixed, compared with 

the traditional GA, the optimal value and average optimal value of the fuzzy-GA are 

smaller, which indicates that the result performance of the improved genetic algorithm is 

better when the scale of the planning period is increased. The iterations of the two algo-

rithms have slight fluctuation, and the running time is similar, which indicates that the 

running time of the two algorithms is relatively stable when the scale of the planning pe-

riod increases, but the running time of the improved algorithm is slightly shorter. When 

product types and planned periods are fixed, Table 13 shows that, with the increase in the 

number of devices, the improved genetic algorithm solution has a better effect, the itera-

tion times are more stable, and the algorithm runs faster. 

In general, with the increase in the number of products, planning periods, and de-

vices, compared with the traditional GA, the fuzzy-GA has a better effect on the optimal 

and average values of the target, more stable iterations, and less running time. 

Table 14 shows the optimal value and running time of calculation examples of differ-

ent scales under the proposed iteration stop condition, iteration 100 times, iteration 300 

times, and iteration 500 times, respectively. In order to reduce the influence caused by the 

randomness of the algorithm, the optimal value is the optimal value of 10 calculations, 

and the running time is the average of 10 calculations. As can be seen from Table 14, when 

the number of iterations is constant, the iteration time increases with the increase of pro-

duction scale. At the same scale, the optimal value becomes better and better with the 

increase of iterations, but calculation time is also increasing. Under different scales, the 

optimal value of the proposed stop condition of iteration is similar to the result perfor-

mance of 300 iterations, but requires less calculation time. 
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Table 14. Results of different iterations with fuzzy-GA. 

Product 

Type N 

Planning 

Period T 

Number 

of 

Devices 

M 

The Proposed 

Iteration Condition 
100 Times 300 Times 500 Times 

Optimal 

Value 

Runnin

g 

Time(s) 

Optimal 

Value 

Running 

Time(s) 

Optimal 

Value 

Running 

Time(s) 

Optimal 

Value 

Running 

Time(s) 

5 5 9 87,629 4.3237 88,748 3.3064 88,080 9.7639 86,276 16.6609 

10 5 9 242,461 5.5393 244,647 4.3638 247,769 13.0195 241,662 21.7165 

20 5 9 908,033 7.6957 975,467 6.4136 947,128 21.6976 918,993 33.2535 

20 7 9 1,349,712 9.2876 1,402,439 8.2405 1,345,295 24.7846 1,214,054 42.3357 

20 10 9 2,005,225 11.3101 2,081,146 10.7705 1,877,778 33.7112 2,074,800 54.1895 

20 10 15 1,888,792 12.2024 2,148,849 11.9693 1,984,062 37.0395 1,977,120 58.4784 

20 10 20 2,410,076 15.5662 2,663,989 12.7645 2,512,804 38.8569 2,330,056 66.2304 

Table 15 presents the performance comparison with other methods; the mean of iter-

ations indicates the average number of iterations the algorithm runs to obtain the best 

value in all calculation examples. This indicator reflects the search capability of the algo-

rithm. References [4,21] do not give the number of iterations of the algorithm. The mean 

of deviation is the expected ratio between the average and best values of the calculation 

examples in the dataset and the average values. This indicator can reflect the possibility 

of obtaining the optimal global solution of the algorithm. The smaller the value is, the 

greater the likelihood of obtaining the optimal solution during each algorithm operation. 

The range of variation indicates the difference between the maximum and the minimum 

values of the deviation, reflecting the fluctuation range of understanding. The smaller the 

value of the indicator, the more stable the solution. These two indicators together reflect 

the algorithm’s global search capability and stability. Table 15 reveals that each proposed 

algorithm indicator is superior to the algorithm in references [21,39] and the PSO algo-

rithm in reference [4]. Compared with the GLNPSO algorithm in reference [4], the global 

optimization ability of the proposed literature is slightly worse, but the stability of the 

solution is better. 

Table 15. Performance comparison with other methods. 

 GA-VNS [39] COA [21] PSO [4] GLNPSO [4] The Proposed Algorithm 

Mean of iterations 100 - - - 26 

Mean of deviation 0.185 0.062 0.038 0.017 0.024 

Range of variation 0.288 0.165 0.297 0.066 0.027 

6. Conclusions and Prospects 

This study realizes solving the MLCLSP by the fuzzy-GA, which analyzes the results 

of different values of parameters of mutation membership function and crossover mem-

bership function in the fuzzy-GA and gives the specific parameters suitable for the 

MLCLSP. In the different production scales, the GA and the fuzzy-GA are run, and the 

optimal solution, the average value of the optimal solution, the iterations, and the running 

time are recorded. Compared with the traditional GA, the proposed algorithm can im-

prove the solution speed, stability, and accuracy of the solution. The distribution of energy 

consumption is given for the case of the production of the synchronizer, which can pro-

vide a reference for relevant enterprises to reduce energy consumption. 

Although the setup time is considered in the MLCLSP, the setup carryover during 

the planning period is not considered in order to reduce the difficulty of problem-solving, 

which actually exists in the synchronizer production. Moreover, the scheduling optimiza-

tion in each planning period is also not considered when dealing with the MLCLSP in this 

study. Therefore, the proposed algorithm in this paper may not be effective for such cases. 



Sustainability 2022, 14, 5072 24 of 25 
 

Future work will focus on improving algorithms which can be used to solve the MLCLSP 

with setup carryover or scheduling optimization. 
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