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Convolutional neural networks (CNNs) have significantly advanced computational modelling for saliency
prediction. However, accurately simulating the mechanisms of visual attention in the human cortex
remains an academic challenge. It is critical to integrate properties of human vision into the design of
CNN architectures, leading to perceptually more relevant saliency prediction. Due to the inherent induc-
tive biases of CNN architectures, there is a lack of sufficient long-range contextual encoding capacity. This
hinders CNN-based saliency models from capturing properties that emulate viewing behaviour of
humans. Transformers have shown great potential in encoding long-range information by leveraging
the self-attention mechanism. In this paper, we propose a novel saliency model that integrates trans-
former components to CNNs to capture the long-range contextual visual information. Experimental
results show that the transformers provide added value to saliency prediction, enhancing its perceptual
relevance in the performance. Our proposed saliency model using transformers has achieved superior
results on public benchmarks and competitions for saliency prediction models.
The source code of our proposed saliency model TranSalNet is available at: https://github.com/LJOVO/

TranSalNet.
� 2022 The Authors. Published by Elsevier B.V. This is an open access articleunder the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Visual attention represents an important mechanism of the
human visual system (HVS), which allows humans to select and
interpret the most relevant information in the visual scene [1].
Simulating visual attention in the form of an algorithm is regarded
as visual saliency prediction. Being able to automatically predict
saliency is beneficial to many research fields including computer
vision, robotics, healthcare, and multimedia [2–8].

Existing saliency prediction models can be categorised into two
types, traditional and deep learning-based models. Traditional
models [9–12] apply low-level visual features such as colour, lumi-
nance, texture, and contrast, to simulate the visually salient areas
in the scene. These models remain rather limited as higher-level
features such as objects are often omitted; but these features exhi-
bit significant determinants of visual saliency [13,14]. Although
some traditional models [15] have been extended with specific
higher-level features, e.g., faces and texts, there are still obstacles
in combining low-level and higher-level visual features. Rather
than designing handcrafted features, deep learning-based saliency
models automatically discover representations from images [16–
24]. These methods typically use convolutional neural networks
(CNNs) to construct feature encoders and decoders to generate
visual saliency maps. Deep learning-based visual saliency models
have achieved remarkable success, mainly due to the availability
of well-established deep CNNs [25–28] and large-scale datasets
relevant to human visual attention [29]. Fig. 1 illustrates examples
of visual saliency prediction using both traditional and deep
learning-based models, and the correspondences between the
ground truth (i.e., where humans look in an image) and prediction
(i.e., output of a computational saliency model).

Accurately predicting saliency as perceived by humans remains
an academic challenge. One way to improve the reliability of sal-
iency prediction is to incorporate the properties of the HVS in
the construction of computational models [9,30]. Despite the sig-
nificant progress made by the deep learning-based models, each
convolution kernel in CNNs only receives information from a local
subset of pixels in an image, which makes fully CNN-based models
deficient in obtaining long-range contextual information. When
humans view an image, foveal vision provides the highest resolu-
tion visual information, but in the meantime peripheral vision still
provides the HVS with non-detailed but long-range visual informa-
tion [31–33]. In other words, the HVS uses the long-range informa-
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Fig. 1. Examples of visual saliency prediction. The first row shows the images that stimulate the human eye to view freely. The so-called ‘‘Ground Truth” in the second line
refers to the fixation density maps, also called saliency maps, generated from the human fixation location. The third and fourth rows show the prediction results of the
traditional (GBVS [10]) and deep learning-based (SAM-ResNet [18]) saliency models, respectively. Image (a) and (b) are from MIT1003 dataset [61]; (c) and (d) are from
SALICON dataset [29]. It can be seen that both traditional and deep learning-based models are capable of capturing human viewing behaviour, but the deep learning-based
model provides better results in demanding scenes, such as (b) and (d) to a considerable extent.
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tion of an image to modulate the local maxima of saliency in the
visual field [30,34]. Therefore, the ground truth saliency map rep-
resents the perceptual spatial interactions of local and non-local
(i.e., long-range) information. This HVS property could be benefi-
cial for predicting visual saliency in a perceptually more relevant
manner so that the machine generated saliency map can faithfully
reflect human perception. Previous studies mainly attempted to
solve this problem through two approaches. One approach is cap-
turing multi-scale information through the CNNs [35,22,19,36,17],
which introduces image representations with different granulari-
ties to some extent. This approach may not provide the optimal
solution as it still lacks the ability to model the way visual informa-
tion is perceived by the HVS, e.g., some studies have used multi-
scale images or multi-scale representations to improve saliency
prediction [35,22,19,36,17], but challenges remains for models in
optimally fusing multi-scale information to mimic the functional-
ity of the HVS. Another approach is adding long-range modelling
capabilities to network structures to increase spatial representa-
tions. By using a Long-Short Term Memory (LSTM)-based architec-
ture [18,37], this approach has proven effective in handling local
and long-range visual information thus refining the accuracy of
saliency prediction. Although these studies have demonstrated
promising outcomes, much work is needed to close the gap
between saliency prediction and human perception. The trans-
former [38], which consists of a self-attention mechanism, pro-
vides an elegant solution to process long-range information. By
effectively modelling long-range dependency, the transformer
has proven efficacy in the field of natural language processing
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[39] and more recently achieved promising results in computer
vision tasks [40,41]. However, the use of transformers in visual sal-
iency prediction has not been fully explored until now.

To address the above-mentioned challenges and to build a
human-like saliency model, we propose a novel saliency prediction
model called TranSalNet, which integrates transformers into a
CNN-based architecture. Transformer encoders can learn spatially
long-range dependencies by using a self-attentive mechanism,
resulting in a perceptually more relevant saliency representation.
To the best of our knowledge, this is the first study to explore
the combination of CNNs and transformers to enhance saliency
prediction. Also, we demonstrate the benefits of transformer com-
ponents in saliency prediction. Our model achieves superior per-
formance not only on the MIT300 benchmark (the most widely
recognised dataset for saliency benchmark) but also on the SALI-
CON Saliency Prediction Challenge (the largest dataset available
for saliency prediction).
2. Related work

We contribute towards a perceptually more relevant saliency
prediction method using deep learning models with transformers.
This section provides a comprehensive review on deep learning-
based saliency prediction models, methods for evaluating saliency
models (especially evaluating the perceptual relevance of saliency
prediction), transformer applications in vision tasks, and multi-
scale and long-range information in visual saliency prediction.
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2.1. Deep learning-based visual saliency prediction

A number of deep learning-based visual saliency prediction
models have been proposed in recent years. The Ensembles of Deep
Networks (eDN) [42] represents one of the first models that adopts
shallow CNNs to detect the visual saliency of natural images. The
saliency features are extracted by CNNs and combined by a linear
classifier to create saliency maps. Since then, with the application
of deep neural networks and large-scale saliency datasets, deep
learning-based saliency prediction has achieved further remark-
able successes. DeepGaze and DeepGaze II [23], which are based
on AlexNet [25] and VGGNet [26], respectively, successfully build
pre-trained networks as feature extractors to train deeper net-
works for saliency prediction. By comparing VGGNet, AlexNet,
and GoogleNet [43], Huang et al. [35] found that VGGNet detects
saliency more effectively than the other two models. Many visual
saliency prediction models based on VGGNet have since been pro-
posed [16,17,19]. EML-NET [20] focuses on exploring the use of
more sophisticated feature extractors (i.e., a parallel two-stream
CNN-based encoder) to enhance the performance of saliency pre-
diction. By comparing ResNet-50 with DenseNet [28] and NASNet
[44], it is argued that in the field of saliency prediction, the widely
used ResNet-50 could still be ‘‘shallow” for the large-scale saliency
datasets, such as SALICON. Similarly, DeepGaze II-E discusses the
contribution of different backbones to saliency prediction. It is
found that appropriately concatenating multiple backbones pre-
trained on ImageNet [45] is effective in improving the performance
of saliency models.

In addition to the efforts mentioned above, there are several
studies that adopt multi-scale or long-range information to
improve visual saliency prediction. We discuss this issue below
in Section 2.4.

2.2. Evaluation methods for saliency models

A number of metrics have been proposed to measure the agree-
ment between the predicted saliency map and the ground truth
produced by human eye movements. By investigating commonly
used metrics, Bylinskii et al. [46] found that under general assump-
tions the Linear Correlation Coefficient (CC) and Normalized Scanpath
Saliency (NSS) metrics could be used as representative metrics for
benchmarking saliency models. More importantly, they also sug-
gested different evaluation metrics should be used for different
applications, for example, metrics that are more appropriate for
evaluating the capability of salient object detection may not be
necessarily useful for the evaluation of saliency prediction of other
vision applications [46,47]. Li et al. [48] found that only a limited
number of evaluation metrics, i.e., NSS, CC, and Similarity (SIM)
are in close agreement with human judgements through a large-
scale subjective experiment. Similarly, Yang et al. [47] found that
CC and SIM are the most in line with human evaluation of saliency
maps. Kummerer et al. [49] also demonstrated that it is difficult for
a saliency model to perform equally well on all popular saliency
evaluation metrics. They proposed a novel approach that allows a
saliency model to generate different ‘‘saliency maps” according to
the characteristics and behaviours of different metrics; and the
model that adopts this evaluation method is referred to as a ‘‘prob-
abilistic model.” As a distinction, without targeting any specific
evaluation metric, a saliency model that generates a single saliency
map for a given image is referred to as a ‘‘classical model”. Since
our aim is to generate a single saliency map for each image that
can faithfully reflect human perception, we evaluate models in
the ‘‘classical model” framework. In evaluating models, we apply
all commonly used evaluation metrics to quantify model perfor-
mance, but make a clear distinction between ‘‘perception-based
metrics (i.e., NSS, CC, and SIM)” and ‘‘non-perception-based met-
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rics”, as defined in [46]. By doing so, the perceptual relevance of
the predicted saliency maps can be appropriately measured.

2.3. Transformer in visual tasks

The transformer was first introduced to the tasks of natural lan-
guage processing (NLP) [38]. Because of its powerful long-range
dependency modelling capabilities, the transformer has achieved
remarkable success in the field of NLP. Consequently, a number
of studies in the field of computer vision are also exploring the
effectiveness of the use of transformer.

The vision transformer is one of the first pure transformer archi-
tectures for image processing, which uses a vanilla version of the
transformer to form a network that achieves performance compa-
rable to that of state-of-the-art CNN-based models. After this work,
several models, such as DeepViT [50] and Swin Transformer [51],
have achieved further success in visual tasks by using the
transformer.

Currently, the transformer has also demonstrated excellent per-
formance in the field of salient object detection [52], which is
related to the current work, even though it is a substantially differ-
ent task [53]. Salient object detection aims to segment salient
objects from an image and generate a binary map [54]. However,
in visual saliency prediction, the aim is to predict the density
map of human fixations (i.e., the spatial deployment of visual
attention).

In summary, the previous studies have shown the powerful rep-
resentation capabilities of the transformer, particularly for captur-
ing long-range information, which could have potential
contributions to predicting gaze. However, the use of transformers
in visual saliency prediction has not been fully explored until now.
In this paper, we will investigate the benefits as well as application
of transformer components in saliency prediction.

2.4. Multi-scale and long-range information in visual saliency
prediction

By using multi-scale image representations to simulate differ-
ent perceptual scales, successful results have been achieved in
vision tasks such as image segmentation [55], human pose estima-
tion [56], and salient object detection [57]. In the filed of visual sal-
iency prediction, Huang et al. [35] and Fan et al. [22] proposed
CNN-based models that extract multi-scale features from images
of different resolutions separately and concatenate the results to
obtain salient semantic objects with different granularities hence
to optimise saliency prediction. In order to obtain multi-scale con-
textual information, Deep Visual Attention (DVA) [17] constructs
three decoders of different granularities to generate multi-scale
saliency estimates for saliency prediction. EML-NET [20] also uses
multi-scale feature maps from encoder networks to obtain holistic
scene features for saliency prediction. MSI-Net [19] adopts convo-
lutional layers with different dilation rates to augment multi-
scale information for saliency prediction. GazeGAN [36] is a gener-
ative adversarial network for saliency prediction, which uses a
modified U-Net [55] with multi-scale information by using skip-
connections to construct its generator. UNISAL [21] adopts skip-
connections to provide the decoder network with multi-scale fea-
tures. These studies have demonstrated that multi-scale informa-
tion is beneficial to visual saliency prediction.

Similarly to other vision tasks [52,58], visual saliency prediction
has also benefitted from neural networks with long-range mod-
elling capabilities to simulate the spatial attentional mechanisms.
DSCLSTM [37] extracts local feature maps by using CNNs first,
and then incorporates non-local scene contexts into the local fea-
ture maps by using LSTM-based components to predict human
eye fixation points in natural scenes. Cornia et al. [18] developed
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visual saliency models that integrate an LSTM module into the
CNN-based network to simulate explicit properties of the human
attention mechanism. Similarly, Fang et al. [59] used LSTM to
obtain pseudo sequential information to simulate the human
visual attention shift. These studies suggest that modelling the rel-
evant dependence between spatial information can refine the sal-
iency prediction models.

In this paper, we combine these two strategies. More specifi-
cally, we integrate transformer encoders into a CNN-based archi-
tecture to provide multi-scale image representations with
enhanced long-range contextual information, resulting in percep-
tually more relevant visual saliency prediction.

3. The proposed model

The schematic overview of our proposed TranSalNet model is
shown in Fig. 2. Firstly, a given image is fed into a CNN encoder.
In order to obtain multi-scale image representations, three sets
of feature maps with different spatial sizes are extracted from
the CNN encoder. Due to the inherent inductive biases of CNN
encoder architectures, the extracted image representations lack
long-range contextual information, which potentially makes a sal-
iency model less humanlike (note the human visual system is pro-
ficient in capturing both local and long-range visual information).
Therefore, to obtain perceptually more relevant visual saliency pre-
diction, these feature maps are passed through three transformer
encoders, yielding long-range context-enhanced feature maps.
Then the CNN decoder fuses these feature maps for saliency
prediction.

3.1. The CNN encoder

Previous research has shown that the use of CNN-based net-
works to extract features for saliency prediction is effective. Like-
wise, we used a CNN encoder as the feature extractor in this study.

The CNN models used in this study were initially constructed
for image classification. In order to provide image feature maps
to the downstream networks, the fully connected layer at the
end of these CNNs is removed to form a viable CNN encoder. We
extract feature maps with three sets of different spatial sizes from
the CNN encoder. Given an input image with size w� h� 3, the
Fig. 2. Schematic overview of TranSalNet. Assume that the spatial size of inputs is w� h.
multi-scale feature maps have spatial size of w

8 � h
8 ;

w
16 � h

16, and
w
32 � h

32, respectively. Th
encoders. The predicted saliency map is generated by the CNN decoder, which uses s
context-enhance feature maps. The illustration of the transformer encoder is shown bel
(MSA) and Multi-layer Perceptron (MLP) blocks.
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spatial dimensions of the extracted feature maps are w
8 � h

8 ;
w
16 � h

16,
and w

32 � h
32, respectively.

In this study, two feature extraction networks are adopted to
construct two versions of TranSalNet models. One version uses
ResNet-50 [27] as an encoder, which is a feature extraction net-
work widely used in saliency prediction. This version of the model
is referred to as TranSalNet_Res. The CNN body of ResNet-50 is
composed of five convolutional blocks that are denoted as conv1
and conv2 x to conv5 x. We extract feature maps from the deeper
conv3 x, conv4 x, and conv5 x blocks. However, [20] suggests that
ResNet-50 itself as an encoder is probably relatively ‘‘shallow.”
Therefore, we use DenseNet-161 [28], which has higher perfor-
mance on the ImageNet benchmark, as the CNN encoder to build
another version referred to as TranSalNet_Dense. For DenseNet-
161, it mainly consists of four ‘‘Dense Blocks” denoted as Dense-
Block 1 to 4. We extract feature maps from the deeper DenseBlock
2, DenseBlock 3, and DenseBlock 4.

Although previous work [35,16,17,19,36] showed that adopting
multi-scale feature maps is beneficial to saliency prediction, our
experiments found that using feature maps from shallower net-
work blocks, i.e. the conv1 and conv2 x, may cause undesired arte-
facts to appear in the saliency maps. Therefore, we exclude feature
maps from the shallower network blocks.
3.2. The transformer encoder

The three sets of multi-scale feature maps are respectively fed
into three transformer encoders to enhance the long-range and
contextual information. The details of transformer are depicted at
the bottom of Fig. 2. Let x1;x2, and x3 be the feature maps that have
spatial dimensions of w

32 � h
32 ;

w
16 � h

16, and
w
8 � h

8, respectively, first, a
1� 1 convolution layer (Conv1�1) is used to reduce the computa-
tional cost and align with the acceptable input size of the trans-
former encoder. More specifically, both x1 and x2 are reduced to
768 dimensions, and x3 changed to 512 dimensions. Following this,
as there is no relative or absolute position information in the fea-
ture maps, it is necessary to utilise position embedding (POS) to
enable position-awareness before feeding the input into the trans-
former encoders. Therefore, the absolute POS [40] is implemented
before feeding input into the transformer encoders, which per-
After the input image is processed by the CNN encoder, which provides three sets of
en the contextual information of these feature maps is enhanced by transformer
kip-connection (orange arrows) and element-wise production to fuse multi-scale
ow the architecture diagram, which consists of standard Multi-head Self-Attention
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forms an element-wise addition to the input and a learnable
matrix with the same shape as the input. Each transformer encoder
contains two same layers of standard Multi-head Self-Attention
(MSA) and Multi-layer Perceptron (MLP) blocks [40]. In our model,
we apply 12-heads attention in transformer encoder 1 and 2, and
8-heads in encoder 3. The MLP block contains two layers with a
GELU activation function. Besides, Layer Normalization (LN) and
residual connection are applied before and after each block respec-
tively. The processing in each transformer encoder can be repre-
sented as:

z0 ¼ Conv1�1ðxiÞ � POSi; i ¼ 1;2;3 ð1Þ

z0l ¼ MSAðLNðzl�1ÞÞ � zl�1; l ¼ 1;2 ð2Þ

zl ¼ MLPðLNðz0lÞÞ � z0l; l ¼ 1;2 ð3Þ
where zl is the output feature maps of the l-th layer in transformer
encoder, and xi is the input feature maps from the CNN encoder. The
feature maps that are passed through transformer encoder 1, 2, and
3 are context-enhanced and denoted as xc

1;x
c
2, and xc

3 respectively.

3.3. The CNN decoder

A CNN decoder is used to fuse the long-range context-enhanced
feature maps from the transformer encoders and restore the orig-
inal image resolution. The CNN decoder is a fully CNN network
containing block 1 to block 7, which is used to implement pixel-
level classification to predict saliency maps. Batch normalization
(BN) and the activation function (ReLU for block 1 to block 6; Sig-
moid for block 7) are applied after each 3� 3 convolution opera-
tion (Conv3�3), where the former is used to promote the
convergence and the latter is used to increase the nonlinear factor
of the model. Since the input image is 32-scale downsampled by
the encoder network, a 2-scale upsampling that adopts nearest-
neighbor interpolation is performed to the feature map in block 1
to block 5 to obtain a saliency map of the same size as the input. In
order to enhance the long-range and multi-scale context of the fea-
ture map during the decoding process, the upsampled feature map
and the transformer’s output from the corresponding skip-
connection are fused by an element-wise product operation. The
processes from block 1 to block 6 can be expressed as:

x̂f
i ¼ ReLUðBNðConv3�3ðxf

i ÞÞÞ; i ¼ 1;2; . . . ;6 ð7Þ

where xf
i and x̂f

i are the input and output features of the i-th block.
The output block, i.e., block 7, is used to reduce the dimensionality
of the feature maps to a 2D map for pixel-level classification. There-
fore, the sigmoid activation function is applied to the feature map:

ŷ ¼ sigmoidðConv3�3ðx̂f
6ÞÞ; ð8Þ

where ŷ is the predicted saliency map.

3.4. Loss function

Recent saliency prediction studies [18,20,36] have shown that
taking advantage of the saliency evaluation metrics to define the
loss function can significantly improve the performance of saliency
prediction models.

Following a similar idea, we adopt a linear combination of four
metrics as the loss function to train our model, including the Nor-
459
malized Scanpath Saliency (NSS), Kullback–Leibler divergence
(KLD), Linear Correlation Coefficient (CC), and Similarity (SIM).
Let ys; yf , and ŷ be the ground truth saliency map, fixation map,
and predicted saliency map, and i indicates the ith pixel of ys and
ŷ, our loss function is defined as:

Lðys; yf ; ŷÞ ¼ k1LNSSðyf ; ŷÞ þ k2LKLDðys; ŷÞ þ k3LCCðys; ŷÞ
þ k4LSIMðys; ŷÞ; ð9Þ

where k1; k2; k3, and k4 are the weights of each metric, and

LNSSðyf ; ŷÞ ¼ 1X

i

yf
i

X

i

ŷi � lðŷÞ
rðŷÞ yf

i ; ð10Þ

where rð�Þ and lð�Þ stand for standard deviation and mean
respectively;

LKLDðys; ŷÞ ¼
X

i

ys
i logð�þ

ys
i

�þ ŷi
Þ; ð11Þ

where � is a regularization constant and set to 2:2204� 10�16;

LCCðys; ŷÞ ¼ covðys; ŷÞ
rðysÞrðŷÞ ; ð12Þ

where covð�Þ is the covariance and rð�Þ is standard deviation;

LSIMðys; ŷÞ ¼
X

i

minðys
i ; ŷiÞ: ð13Þ

In LKLD; LCC and LSIM; ys, and ŷ are normalized so thatP
iy

s
i =

P
iŷi = 1.

Since the higher NSS, SIM, and CC values and the lower KLD
value represent the better agreement between predicted saliency
maps and ground truth, we set k1; k3, and k4 to negative and k2 to
positive. In order to balance the impact of different sub-loss func-
tions on the module result, we determine the weights of individual
sub-loss functions based on TranSalNet’s performance on the SAL-
ICON validation set. In our experiments, the weights are adjusted
to ensure these sub-loss functions (note the ranges of output val-
ues are different for these functions) contribute relatively equally
to the model outcome. This is achieved by training and validating
TranSalNet on the SALICON training and validation sets each time
by a single sub-loss function. According to the recorded minimal
loss values on the validation set, weights are initially assigned to
the sub-loss functions so that their contributions to the combined
loss are relatively equal. In a second step, these weights in a com-
bined loss are further adjusted to achieve balanced results on all
evaluation metrics. As per our empirical studies, the default
weights k1; k2; k3, and k4 of the combined loss function are set to
�1, 10, �2, and �1, respectively.

4. Experimental results and discussion

4.1. Datasets

Four commonly used benchmark saliency datasets are used to
train and evaluate our proposed saliency model and variants.

� SALICON [29] contains 10,000 training, 5,000 validation, and
5000 testing images. The ground truth annotations of its test
set are unpublished and used for a challenge named LSUN
20171 to test the performance of the saliency models. Different
from other benchmark datasets, it employs mouse clicks instead
of an eye tracker to record human visual attention.

https://competitions.codalab.org/competitions/17136
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� CAT2000 [60] contains 2,000 publicly available images of 20 cat-
egories such as action, art, cartoon etc, where each category
includes 100 images. Each image is associated with its eye-
tracking data of 24 observers.

� MIT1003 [61] consists of 1,003 natural indoor and outdoor
images with eye-tracking data of 15 observers.

� MIT300 [62] includes 300 natural indoor and outdoor images.
The eye-tracking data is unpublished, it is used as the test set
of the MIT/Tübingen benchmark [63].

4.2. Evaluation metrics

Various metrics have been proposed to evaluate the agreement
between the predicted saliency map and the ground truth. In gen-
eral, these metrics can be described as location-based and
distribution-based metrics depending on how the ground truth is
represented [46]; the former adopts the fixation map (i.e., in the
form of a binary image) and the latter uses the saliency map (i.e.,
in the form of a gray-scale image) as the ground truth for visual sal-
iency evaluation. Six popular metrics are widely used to quantify
the general performance of saliency models, including CC, SIM,
KLD, NSS, AUC (Area under ROC Curve), and sAUC (Shuffled AUC).
Details of these metrics can be found in [46]. The first three are
distribution-based metrics, and the remaining three are location-
based metrics. For KLD, the closer the value is to zero, the better
the agreement between prediction and ground truth. For the other
five metrics, higher values represent higher consistency.

Now, in this paper, we aims to evaluate the general perfor-
mance of our proposed model, but in the meantime the perceptual
relevance of the saliency model is the focus of our study. To this
end, on the basis of the study of [46], we classify the six metrics
into two categories based on their capability of being in close
agreement with human judgements of saliency maps:
‘‘perception-based metrics”, which include NSS, CC, and SIM; and
‘‘non-perception-based metrics”, which include sAUC, AUC, and
KLD [46]. Note, ‘‘non-perception-based metrics” do not necessarily
mean they are not measuring the gaze behaviour, they may focus
on specific properties of viewing behaviour, such as detecting sali-
ent objects in the visual field. It is stated in [46] that ‘‘AUC, KL are
appropriate for detection applications, as they penalize target detec-
tion failures. However, where it is important to evaluate the relative
importance of different image regions, such as for image-retargeting,
compression, and progressive transmission, metrics like NSS or SIM
are a better fit.” This provides sufficient grounds for building per-
ceptually more relevant saliency prediction models, which is the
primary goal of our work.
4.3. Setup

By following a similar procedure in the state-of-the-art
[23,35,17,19,18], a model should be first initialised by the weights
pre-trained on ImageNet [45], then trained on the 10,000 images of
the SALICON training set to reduce the risk of overfitting. Conse-
quently, the best model on its validation set should be selected
for further testing on the SALICON test set and training on
MIT1003 and CAT2000.

To obtain fair results in each dataset, k-fold cross-validation
(k ¼ 10) is applied for each model. More specifically, each dataset
is divided into 10 non-overlapping subsets. For MIT1003, each sub-
set contains around 100 images; For CAT2000, each subset con-
tains 200 images (10 from each category). Each time, one subset
is kept as a test set, one as a validation set, and the remaining eight
subsets altogether are used as the training set. To eliminate ran-
domness, each test set corresponds to a fixed validation set and
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training set. We report the overall performance of 10 times test
results.

To reduce the computational cost while aligning with the aspect
ratio (4:3) of the images in SALICON, all input images are resized
and padded to a same size of 384�288 pixels. A consistent stan-
dard is followed in all training phases. The Adam optimizer [64]
is used to minimize the loss function. The learning rate is set to
1� 10�5, which is then multiplied by 0.1 for every 3 epochs. Mod-
els are trained with a batch size of 4 for 30 epochs with a stop
patience of 5 epochs.
4.4. Ablation study

Ablation experiments are conducted to investigate the contri-
bution of three key components in our modelling: (1) Transformer
encoders (E1;E2, and E3 denote Transformer encoder 1, 2, and 3 in
Fig. 2, respectively), (2) Skip-connections (SC), (3) Combined loss
function (LCB). To this end, nine model variants are constructed to
demonstrate the added value of one or more of the above compo-
nents, as shown in Table 1. Among them, BaseNet is constructed as
a baseline that adopts the widely used ResNet-50 as the CNN enco-
der, removes all transformer encoders and skip-connections except
for the Conv1�1 layer before transformer encoder 1, and is trained
by the BCE loss function. BaseNet + adds the transformer encoder
1 based on the BaseNet. SkipNet is equipped with skip-
connections based on the BaseNet. TranSalNet_Res_BCE adds the
transformer encoder 1, 2, and 3 based on the SkipNet, which uti-
lises ResNet-50 as the CNN encoder and is identical in architecture
to the proposed TranSalNet (demonstrated in Fig. 2) but is trained
by the BCE loss. The model variants trained by the combined loss
that are consistent with the architecture of the above four model
variants are denoted as BaseNetðLCBÞ, BaseNet+ðLCBÞ, SkipNetðLCBÞ,
and TranSalNet_Res, respectively. TranSalNet_Dense replaces
ResNet-50 with DenseNet-161 as the CNN encoder. The overall
performance of these model variants on the MIT1003 and
CAT2000 datasets is shown in Table 2. The illustration of saliency
maps of four images from these two datasets can also be found
in Fig. 3.

By comparing BaseNet/BaseNetðLCBÞ and BaseNet+/BaseNet
+ðLCBÞ, it can be found that adding a transformer encoder improves
the overall performance, i.e., BaseNet+/BaseNet+ðLCBÞ outperforms
BaseNet/BaseNetðLCBÞ in the majority of instances. Especially, on
the perception-based metrics, i.e., CC, SIM, and NSS, BaseNet+/
BaseNet+ðLCBÞ give consistently better performance than BaseNet/
BaseNetðLCBÞ, suggesting that the transformer encoder contributes
to the perceptual relevance of saliency prediction. Besides, the ben-
efits of enhancing saliency prediction by providing multi-scale
image representations through skip-connections have been
demonstrated in previous studies. Similarly, by adding skip-
connections to BaseNet/BaseNetðLCBÞ, the performance of model
variants SkipNet/SkipNetðLCBÞ improves on most instances in the
ablation study.

By uniting transformer encoders and skip-connections, the
decoder network can obtain multi-scale feature maps with long-
range context enhanced by transformer encoders. As a result, the
performance of TranSalNet_Res_BCE/TranSalNet_Res is further
boosted on all instances of perception-based metrics as well as
most instances of non-perception-based metrics. This provides
additional evidence that the transformer is of added value for
visual saliency prediction. Also, this demonstrates the effectiveness
of the TranSalNet architecture, which integrates transformer enco-
ders into CNN-based models via skip-connections to obtain multi-
scale representations with enhanced long-range visual
information.



Table 1
Model variants purposely constructed for ablation study to explore the contribution of skip-connections (SC), transformer encoders (E1 to E3), and combined loss function (LCB).

Model variants E1 E2 E3 SC Loss function Backbone

BaseNet – – – – LBCE ResNet-50
BaseNet+ U – – – LBCE ResNet-50
SkipNet – – – U LBCE ResNet-50
TranSalNet_Res_BCE U U U U LBCE ResNet-50
BaseNetðLCBÞ – – – – LCB ResNet-50
BaseNet+ðLCBÞ U – – – LCB ResNet-50
SkipNetðLCBÞ – – – U LCB ResNet-50
TranSalNet_Res U U U U LCB ResNet-50
TranSalNet_Dense U U U U LCB DenseNet-161

Table 2
Ablation study: performance of nine model variants purposely constructed for ablation study to explore the contribution of skip-connections, transformer encoders, and the
combined loss function based on MIT1003 and CAT2000 datasets. and font indicate the best and 2nd best performance, respectively.

Fig. 3. Comparison of the saliency prediction performance of nine model variants in our ablation study. The images of top two rows are from the MIT1003 dataset and the
bottom two rows are from the CAT2000 dataset. It can be seen that by adopting transformer encoder, skip-connection to provide multi-scale information, and combined loss
function, the generated saliency maps are significantly refined relative to the ground truth.
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Table 2 also demonstrates the practical plausibility of training
the proposed model with the linear combination of sub-loss func-
tions. Compired with the model variations trained by LBCE (i.e.,
BaseNet, BaseNet+, SkipNet, and TranSalNet_Res_BCE), the model
variations trained by LCB (i.e., BaseNetðLCBÞ, BaseNet+ðLCBÞ,
SkipNetðLCBÞ, and TranSalNet_Res) achieve higher performance on
the majority of saliency metrics. In particular, the TranSalNet_Res
outperforms the TranSalNet_Res_BCE on all instances in the abla-
tion study. In summary, the effectiveness of the transformer enco-
der, the TranSalNet architecture, and the combined loss function
has now been demonstrated in this ablation study.

In addition, previous research [20,24] has shown that using
backbones with greater representational capability could improve
saliency prediction. Similarly, by simply replacing the backbone
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from the widely used but comparatively ‘‘shallow” ResNet-50
(used by TranSalNet_Res) with DenseNet-161 [28], TranSalNet_-
Dense has been further improved as shown in Table 2.
4.5. Comparison with state-of-the-art methods

4.5.1. On MIT1003 and CAT2000 datasets
Seven state-of-the-art deep learning-based saliency models that

adopt multi-scale representations or attention mechanisms,
including FastSal [65], UNISAL [21], MSI-Net [19], SAM-VGG [18],
SAM-ResNet [18], ML-Net [16], and Deep Visual Attention (DVA)
[17] are selected for the general performance comparison on the
MIT1003 and CAT2000 datasets. In order to ensure a fair compar-
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ison, the same k-fold Cross-Validation (k ¼ 10 for MIT1003 and
CAT2000) strategy and the dataset splitting method used in TranS-
alNet are employed for fine-tuning and testing of these models.
The corresponding pre-trained weights on the SALICON dataset is
loaded for each fine-tuning instance. For MIT1003 and CAT2000
datasets, the overall performance of 10 times test results is
reported in Table 3.

It can be seen that our models (both TranSalNet_Res and TranS-
alNet_Dense) achieve the best performance on all perception-
Table 3
Performance comparison of state-of-the-art saliency models on MIT1003 and CAT2000.

Fig. 4. Comparison of saliency maps generated by our models (TranSalNet_Res and TranS
are from the MIT1003 dataset, and the images from (e) to (h) are from the CAT2000 da
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based metrics in both MIT1003 and CAT2000, while producing
competitive results on non-perception-based metrics (i.e., being
best or 2nd best in most instances in the comparative study). It
should be noted that our TranSalNet_Res and the five state-of-
the-art models all use ResNet-50 or VGGNet (representing similar
network capacity) as the feature extraction network. TranSalNe-
t_Res achieves the best performance on most instances (except
for sAUC and KLD in CAT2000), implying the contribution of
enhanced long-range information to saliency prediction using
and font indicate the best and 2nd best performance, respectively.

alNet_Dense) and other state-of-the-art saliency models. The images from (a) to (d)
taset.
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transformers. Moreover, the performance our TranSalNet_Res
could be further enhanced by replacing ResNet-50 by a network
with higher capacity, namely DenseNet-161. Fig. 4 shows saliency
maps generated by our models and other models for images
including common contexts such as objects, portraits, natural,
indoor, social, and cartoon scenes. By visually assessing these sal-
iency maps, our models are in closer agreement with the ground
truth than other models.
4.5.2. On MIT300 competition
For the MIT300 competition, we use the MIT1003 to train an

optimal model, in which 703 images are randomly selected as a
training set and the rest as a validation set. The optimal model is
submitted to and tested by the MIT/Tuebingen Saliency Benchmark
[63]. It should be noted that the benchmark evaluates models by
different standards, i.e., models must be explicitly claimed as
either probabilistic or non-probabilistic models, so they can be
fairly evaluated within the category they belong to [46]. In this
paper, same as the original MIT Saliency Benchmark [46], we ‘‘do
not assume that our model is probabilistic”. Note that for evaluat-
ing probabilistic models, metric-specific adaptations are applied
using regularization and scaling of saliency values, hence, a proba-
bilistic model generates optimal saliency maps for individual met-
rics [49]. But a non-probabilistic model only outputs a single
saliency map for all metrics. So it is nontrivial to compare a non-
probabilistic (i.e., classical) model to a probabilistic model [46].
To avoid unfair model comparison under different assumptions,
Table 4 shows only non-probabilistic classical saliency models on
the leader-board of [63]. It can be seen that our models (both
TranSalNet_Res and TranSalNet_Dense) consistently rank in the
top 1st or 2nd positions on the perception-based metrics (note
the only exception is for TranSalNet_Res on NSS, but its perfor-
mance score is fairly comparable to the 1st or 2nd scores as shown
in Table 4). On the non-perception-based metrics, our models exhi-
bit competitive performance on sAUC and AUC, with the perfor-
mance scores comparable to the results in the 1st and 2nd
positions. In addition, even though we include top probabilistic
models such as DeepGaze II-E [24], MSI-Net [19], UNISAL [21], Sal-
FBNet [67], and DeepGaze II [23] for performance comparison, our
model can still remain competitive in perception-based metrics
(results available on website of [63]).
Table 4
MIT300 competition for saliency models. Th
by the Benchmark [66]. and
performance, respectively.
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4.5.3. On LSUN’17 competition
Although our aim is to predict the spatial distribution of human

fixations, the human attention measured by mouse tracking can
still reflect eye movement behaviour to a certain extent [29]. SAL-
ICON provides so far the largest-scale saliency dataset (via mouse
tracking), which allows the opportunity to examine the saliency
models from the perspective of being ‘‘data rich”. Moreover, for
LSUN’17 competition (on SALICON test set), a unified evaluation
process is adopted, i.e., the saliency models are not treated differ-
ently because of their type of being probabilistic or classical. In the
competition each model submitted should generate one single sal-
iency map for each image. Therefore, in order to provide a comple-
mentary comparison of state-of-the-art saliency models, Table 5
reports the results of models submitted to the competition based
on the 2017 version (i.e., the latest version). It can be seen that
our TranSalNet_Res and TranSalNet_Dense achieve superior per-
formance on the perception-based metrics and promising results
on other non-perception-based metrics. This shows that our model
are competitive on the LSUN 2017 leaderboard, in particular for
prediction saliency in a perceptually relevant manner.

4.5.4. Discussion
It is crucial to note that metric selection for saliency model eval-

uation should be based on specific modelling assumptions and
specific target applications [46]. The study in [46] concludes that
‘‘under the assumptions of non-probabilistic modelling, NSS and CC
provide the fairest comparison”; ‘‘if evaluating probabilistic models,
KLD is recommended”; and ‘‘specific tasks and applications also call
for a difference choice of metrics”. In [48], researchers have verified
that ‘‘NSS, CC and SIM best correspond to human perception”. In a
recent study [47], it is found that CC and SIM are the most appro-
priate saliency evaluation metrics for image quality assessment
applications. Therefore, as the results demonstrated in Table 3,
Table 4, and Table 5, the proposed saliency models (TranSalNe-
t_Res and TranSalNet_Dense) could be the best ‘‘human-like” mod-
els (i.e., based on perception-based metrics CC and SIM) to evaluate
the relative importance of different image regions for the applica-
tions such as image re-targeting, image compression and transmis-
sion, and visual quality assessment.

Using skip-connections to provide multi-scale features from
encoder to decoder has been shown in previous studies to be an
effective method for computer vision tasks. For example, the
e results are administered and reported
font indicate the best and 2nd best



Table 5
LSUN’17 competition (on SALICON test set) for saliency models. Results are
provided by the authors. and font indicate the best and 2nd best
performance, respectively.

Fig. 5. The column on the righthand side illustrates the salinency maps with undesired artefacts caused by adding skip-connections to TranSalNet_Res to connect shallow
encoder blocks with decoder block_4 and block_5. From left to right, the remaining three columns are: stimuli, ground truth saliency maps, and saliency maps generated from
TranSalNet_Res, respectively.

Fig. 6. Illustrations of the impact of the head number of MSA on the performance of
TranSalNet. Values in brackets (i, j, k) indicate the head numbers of transformer
encoder 1, 2, and 3 are set to i, j, and k respectively.
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widely used U-Net [55] style networks usually connect feature
maps of each spatial size to the decoders from shallow to deep
encoder blocks. However, as can be seen in Fig. 5, using skip-
connections to connect shallow encoder blocks (i.e., the blocks pro-
vide feature maps with spatial sizes of w

4 � h
4 and

w
2 � h

2) with decoder
blocks (i.e., block_4 and block_5 in the decoder) may lead to some
shapes of objects and texts appearing in the predicted saliency
maps, which are not consistent with the ground truth. This implies
that adding low-level features from the encoder directly to the
decoder may interfere with the saliency prediction of TranSalNet.

Multi-head Self Attention (MSA) is part of the transformer enco-
der. Previous research has shown that the number of heads of MSA
could affect the model’s performance [68]. According to the sug-
gestions from [46], we use CC and SIM as the performance metrics
to illustrate the impact of the head number of MSA on our pro-
posed TranSalNet in Fig. 6. For each head number combination,
the model is trained on the SALICON training set, validated with
2000 images of its validation set, and tested on the rest of the val-
idation set three times. The demonstrated results are the mean
results. As can be seen in Fig. 6, the scores of CC and SIM tend to
increase with the increase in the head number of MSA. However,
when the transformer encoders 1 and 2 (E1 and E2) adopt 12 heads
464
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each, and transformer encoder 3 (E3) adopts 8 heads of MSA, the
performance of the model tends to be saturated in the CC-SIM per-
formance space. Therefore, considering the trade-off between com-
putational resource consumption and model performance, we
chose 12 heads for the transformer encoder 1 and 2, and 8 heads
for the transformer encoder 3 in this study.
5. Conclusion

In this paper, we have proposed a novel saliency model for pre-
dicting saliency maps that are perceptually in close agreement
with the ground truth. By integrating transformers into CNNs, sal-
iency models can significantly benefit from capturing long-range
spatial information at multiple perceptual levels. An ablation study
has demonstrated the contributions of the transformer encoders to
a CNN model, especially the added value of transformers in
enhancing the perceptual relevance of saliency prediction. Experi-
mental results show that the proposed models have achieved supe-
rior performance on the public benchmarks and competitions for
saliency models, particularly having yielded notable results on
perception-based saliency evaluation metrics. The perceptually
more relevant saliency models have the potential to advance many
image processing applications.
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