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ABSTRACT
The uniform minimum variance unbiased estimator (UMVUE) is, by definition, 
a solution to removing bias in estimation following a multi-stage single-arm 
trial with a primary dichotomous outcome. However, the UMVUE is known to 
have large residual mean squared error (RMSE). Therefore, we develop an 
optimisation approach to finding estimators with reduced RMSE for many 
response rates, which attain low bias. We demonstrate that careful choice of 
the optimisation parameters can lead to an estimator with often substantially 
reduced RMSE, without the introduction of appreciable bias.
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1. Introduction

Phase II oncology trials are typically designed assuming a primary dichotomous outcome variable and 
using a multi-stage single-arm trial design (Grayling et al. 2019). Among these designs, Simon’s two- 
stage design (Simon 1989) is the most commonly employed. Whilst many authors have extended 
Simon’s original proposal to allow for more flexible designs (see, e.g., Chen (1997); Jung et al. (2004); 
Mander and Thompson (2010); Mander et al. (2012); Law et al. (2022)), there is also a large literature 
on how to analyse data on completion of such a trial. This literature exists because it has long been 
known that the naive maximum likelihood estimator of the response rate is biased. Biased assessment 
of treatment benefit is of grave concern in any clinical setting, but it may be particularly problematic in 
phase II oncology where critical decisions need to be made on whether to continue a treatment’s 
development. The estimated effect may be central to any such decision, particularly when several 
treatments must be selected between, and an incorrect choice can have major implications. Incorrectly 
terminating development of an efficacious therapy could deprive future patients of a valuable treat-
ment option, while incorrectly continuing development of an inefficacious therapy could incur 
substantial costs (both financially and to the future patients given this treatment). Furthermore, the 
estimated treatment effect may be central to the estimate of the required sample size of any subsequent 
study. As such, biased estimation may enhance the possibility of conducting an under/over-powered 
trial, both of which lead to a waste of resources. This motivates the need for authors to propose 
methodology for computing alternative estimators with arguably improved performance (Chang et al. 
1989; Guo and Liu 2005; Jung and Kim 2004; Koyama and Chen 2008; Li 2011; Pepe et al. 2009; Tsai 
et al. 2008). These have been effectively compared in the two-stage setting in work by Porcher and 
Desseaux (2012).

Among the various proposed estimators, of particular note is the uniform minimum variance 
unbiased estimator (UMVUE) (Girshick et al. 1946; Jung and Kim 2004). That is, the estimator with 
uniformly minimum variance among all unbiased estimators. In the case of a multi-stage single-arm 
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trial, however, there is in fact only a single unbiased estimator (Girshick et al. 1946). One may look 
to conclude that the UMVUE should be considered the best estimator of the response rate following 
a multi-stage single-arm trial. However, it is known that it can have large residual mean squared 
error (RMSE). As noted, attaining zero bias is usually a critical consideration for an estimator, but 
having low RMSE can also be of great importance, as it implies the estimated effect should usually be 
close to the true value. Therefore, trialists are faced with a decision of whether the UMVUE’s large 
RMSE is a worthy price to pay for its unbiasedness. Alternative established estimators arguably offer 
little in the way of a solution to this issue, as their bias can be large. Of potential utility would be an 
estimator that maintains low bias for most values of the response rate, preferably in some sense the 
‘likely’ response rates, which has lower RMSE compared to the UMVUE across such likely response 
rates. That is, an estimator that trades off bias for certain response rates, to the effect of reduced 
RMSE for others.

In this work, we focus on the development of methodology to determine such estimators. We make 
no restriction on the number of study stages, meaning that our approach is applicable to more 
commonly utilised two-stage designs, as well as to more complex designs such as those with three 
stages (see, e.g., Chen (1997)) or involving curtailment (see, e.g., Law et al. (2022)). We propose an 
objective function, for subsequent optimisation, which allows the flexible specification of response 
rates for which bias and RMSE is of greater concern. We demonstrate a selection of constraints that 
can be placed on the optimised estimators to ensure their resultant estimates are not unreasonable. 
Using design parameters motivated by a number of recent oncology trials (see, e.g., Schoffski et al. 
(2017); Jain et al. (2014); Collen et al. (2014); Lendvai et al. (2014); Shim et al. (2016)), we then 
demonstrate that our proposal can identify estimators that have substantially lower RMSE compared 
to the UMVUE across a wide range of response rates, whilst simultaneously achieving very low bias 
across these response rates. In some sense, our work can be considered similar to that of Kunzmann 
and Kieser (2018), who recently developed procedures for optimising confidence intervals on comple-
tion of an adaptive two-stage single-arm trial, but with our focus on point rather than interval 
estimation.

2. Methods

2.1. Multi-stage single-arm designs for dichotomous outcomes

We briefly describe the multi-stage single-arm designs for which estimators are constructed. It is 
assumed that outcome xi from patient i is distributed as Xi,BernðπÞ, where π 2 ½0; 1� is the response 
rate to treatment. The end goal is to test H0 : π � π0. Here, π0 is a pre-specified null response rate, 
typically nominated as the anticipated response rate for the current standard of care. The type-I error- 
rate is controlled to at most α when π ¼ π0, and the type-II error-rate to at most β when π ¼ π1 > π0, 
where π1 is the clinically relevant response rate. Inference on H0 is based on sm ¼

Pm
i¼1 xi. Specifically, 

we let J indicate the maximum number of stages in the trial (so there are potentially J analyses 
conducted) and suppose that nj, ej, and fj are the number of patients in stage j, the interim efficacy 
bound utilised at analysis j, and the interim futility bound utilised at analysis j, respectively for 
j ¼ 1; . . . ; J. For brevity we set ~nj ¼ n1 þ � � � þ nj, e ¼ e1; . . . ; eJð Þ, f ¼ f1; . . . ; fJð Þ, and 
n ¼ n1; . . . ; nJð Þ. Thus, the range of index i after stage j is i ¼ 1; . . . ; ~nj. The study’s decision rules 
are then as follows

• For j ¼ 1; . . . ; J � 1
- If s~nj � fj, terminate the trial for futility, not rejecting H0.
- Else if s~nj � ej, terminate the trial for efficacy, rejecting H0.
- Else continue to stage jþ 1.
• For j ¼ J
- If s~nJ � fJ , do not reject H0.
- Else if s~nj � eJ , reject H0.
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To ensure that a decision is made about whether to reject H0, it is common to specify that 
eJ ¼ fJ þ 1. Note that interim termination for futility or efficacy can be prevented by setting f1 ¼ � � � ¼

fJ� 1 ¼ � 1 or e1 ¼ � � � ¼ eJ� 1 ¼ 1 respectively. Design of such a trial requires methodology for 
choosing f , e, and n for specified π0, π1, α, and β. As discussed, many papers have focused on such 
methodology and we refer the reader there for further information (Chen 1997; Jung et al. 2004; Law 
et al. 2022; Mander and Thompson 2010; Mander et al. 2012; Simon 1989).

2.2. Point estimator performance

A point estimation procedure for a multi-stage single-arm design of the above type must nominate 
estimates for π for all possible numbers of responses and sample sizes that could be seen on trial 
termination. That is, for all possible values of the variable ðSM;MÞ. Given the specified decision rules, it 
is possible to compute the set Te;f ;n such that SM;Mð Þ 2 Te;f ;n. For example, when J ¼ 2 with f1 � 0 
and e1 ¼ 1 (i.e., a Simon two-stage type design), we have 

Tðe1¼1;e2Þ;ðf1�0;f2Þ;ðn1;n2Þ ¼ fð0; n1Þ; . . . ; ðf1; n1Þ; ðf1 þ 1; n1 þ n2Þ; . . . ; ðn1 þ n2; n1 þ n2Þg:

We will denote the point estimate for ðSM;MÞ ¼ ðs;mÞ by π̂ðs;mÞ.
Having nominated an estimator, key factors to evaluate in assessing its performance are its bias and 

RMSE. These can be computed as 

Biasðπ̂jπÞ ¼ Eðπ̂jπÞ � π;

MSEðπ̂jπÞ ¼ Varðπ̂jπÞ þ Biasðπ̂jπÞ2;

RMSEðπ̂jπÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSEðπ̂jπÞ

p
;

Varðπ̂jπÞ ¼ Eðπ̂2jπÞ � Eðπ̂jπÞ2;

Eðπ̂xjπÞ ¼
X

s;mð Þ2Te;f ;n

π̂ðs;mÞxpðs;mjπÞ:

Here, pðs;mjπÞ is the probability of the trial terminating with ðSM;MÞ ¼ ðs;mÞ, conditional on π. This 
can be computed as (Schultz et al. 1973) 

pðs; n1jπÞ ¼ bðsjn1; πÞ;

pðs; ~njjπÞ ¼
Xminðej� 1� 1;sÞ

i¼maxðfj� 1þ1;s� njÞ

pði; ~nj� 1jπÞbðs � ijnj; πÞ; j ¼ 2; . . . ; J;

where bðs;mjπÞ ¼ m
s

� �

πsð1 � πÞm� s is the probability mass function of a Binðm; πÞ random 
variable.

2.3. Optimised estimators

As discussed earlier, a desirable estimator typically has both low bias and low RMSE. If the only 
concern is minimisation of bias, i.e., the preference is for an unbiased estimator such that Biasðπ̂jπÞ ¼
0 for π 2 ½0; 1�, the UMVUE is the optimal estimator. It sets (Jung and Kim 2004) 
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π̂UMVUEðs; ~njÞ ¼

P
ði1;...;ijÞ2Cðs;~njÞ

n1 � 1
i1 � 1

� �
n2
i2

� �

� � �
nj
ij

� �

P
ði1;...;ijÞ2Cðs;~njÞ

n1
i1

� �
n2
i2

� �

� � �
nj
ij

� � ;

where Cðs; ~njÞ ¼ fði1; . . . ; ijÞ : i1 þ � � � þ ij ¼ s; fk þ 1 � i1 þ � � � ik � ek � 1; k ¼ 1; . . . ; j1g. 
However, the UMVUE’s well-known, large RMSE may mean there is a sizeable price to pay in practice 
if one wishes to attain unbiasedness. This may lead trialists to consider whether an alternative 
estimator, that trades off some bias for reduced RMSE, is possible.

In this section, we describe how an optimised estimator of this kind could be determined. Firstly, an 
objective function to optimise is required. In the Results, we assume that the objective function that 
evaluates estimator π̂ is of the following form 

oðπ̂jw; μ; σÞ ¼ w
ð1

0
jBiasðπ̂jπÞjdðπjμ; σÞ dπ þ ð1 � wÞ

ð1

0
RMSEðπ̂jπÞdðπjμ; σÞ dπ � 0;

dðπjμ; σÞ ¼
ϕ π� μ

σ

� �

σ Φ 1� μ
σ

� �
� Φ 0� μ

σ

� �� � ;

Here, w 2 ½0; 1� is a weight parameter that can altered to impact the relative desire to minimise the two 
factors that make up the objective function. The two factors are weighted averages of the absolute bias 
and the RMSE over π 2 ½0; 1�. We choose these factors as they exist on the same scale/dimension. 
Similarly, the squared-bias and the MSE could have been used; in the Supplementary Materials we 
consider what happens if the optimality criteria was formed in this way instead. Our preference for the 
absolute bias and RMSE is because their gradients are smaller in magnitude as a function of π relative 
to the squared-bias and MSE, which our investigations reveal may lead to a smoother transition in 
performance as w is altered.

In the above, the weighting is performed by the function dðπjμ; σÞ. Thus, dðπjμ; σÞ can have 
a significant effect on the optimal estimator. Here, we assume that the functional form for the 
weighting function is given by the density of the truncated normal distribution TNðμ; σ; 0; 1Þ, 
μ 2 ð� 1;1Þ, σ � 0. We choose a truncated normal distribution as it can be readily made to be 
defined on ½0; 1�, like π, and provides through μ and σ a flexible way of specifying which values of π to 
give more weight to when evaluating the objective function. Furthermore, in comparison to the Beta 
distribution, which could have been an alternative choice, it has finite density on ½0; 1� for any values of 
the shape parameters (which may make numerical integration more stable), and is based on the 
normal distribution, which is more widely known. This last consideration may make elicitation of the 
weighting function (i.e., elicitation of μ and σ) in practice a simpler process. Nonetheless, we do 
contrast in the Supplementary Materials results given here to those for certain weights formed from 
Beta distributions.

As an example, the choice μ ¼ 0:2 for small σ would mean that the values of the absolute bias and 
RMSE in the region around π ¼ 0:2 contribute more to the value of the objective function, and thus to 
the optimal estimator. In this way, we hope to trade off bias for certain values of π to reduce the RMSE 
at others.

Our optimisation problem, for a design with parameters e, f , and n, is thus in its most general form 

minimise oðπ̂jw; μ; σÞ;

subjectto π̂ s;mð Þ 2 0; 1½ �; > s;mð Þ 2 Te;f ;n:

4 M. J. GRAYLING AND A. P. MANDER



For brevity, we will denote the solution to this problem by π̂w, leaving the dependence on μ and σ 
implied and making their values clear when important. Before we proceed to determine such 
optimised estimators, we discuss some additional constraints that could be placed on the optimisation 
problem

• Ordering compatible estimates: In a sequential design, there are numerous possible ‘orderings’ of 
the sample space (which are used, e.g., to construct p-values and confidence intervals). Each ordering 
states which values of s0;m0ð Þ 2 Te;f ;n are considered more extreme to ðs;mÞ. One may choose to 
ensure that the returned optimal estimates are compatible with this ordering. That is, that 
π̂ðs0;m0Þ> π̂ðs;mÞ if ðs0;m0Þ is more extreme than ðs;mÞ. This compatibility requirement amounts to 
linear inequality constraints on the estimates. For example, in the case where J ¼ 2 with e1 ¼ 1 and 
f1 � 0, compatibility with the stage-wise ordering (Armitage 1957; Fairbanks and Madsen 1982; 
Siegmund 1978; Tsiatis et al. 1984) would require 

π̂ð0; n1Þ< π̂ð1; n1Þ< � � � < π̂ðf1; n1Þ< π̂ðf1 þ 1; n1 þ n2Þ< π̂ðf1 þ 2; n1 þ n2Þ< � � � π̂ðn1 þ n2; n1
þ n2Þ:

In our results below, we however do not consider restricting the estimates in this way as our 
preliminary investigations suggested they may severely impact the ability to identify viable alternative 
estimators to the UMVUE. Intuition for why this is the case can be seen by considering the fact that 
π̂ðf1; n1Þ< π̂ðf1 þ 1; n1 þ n2Þ for consistency with the stage-wise ordering. Suppose that then, e.g., 
f1 ¼ 1, n1 ¼ 5, and n2¼ 106. This requirement would mean that π̂ð1; 5Þ< π̂ð2; 5þ 106Þ. Given the 
MLEs in these two scenarios would be 1=5 ¼ 0:2 and 2=ð5þ 106Þ � 0:000002, it is clear that 
consistency with the stage-wise ordering could place arguably unreasonable restrictions on the values 
of the estimates. A relaxed requirement, termed partial ordering, which we do require in our results, is 
that 

π̂ðs1;mÞ< π̂ðs2;mÞ; s1 < s2:

That is, no restriction is placed on the relationship between the estimates π̂ðs1;m1Þ and π̂ðs2;m2Þ

if m1�m2.
• Test compatible estimates: It may be reasonable to ensure that, for j ¼ 1; . . . ; J, π̂ðs; ~njÞ > π0 when 

s � ej. That is, that when H0 is rejected, the estimate for π is greater than the boundary of the null 
hypothesis π0. In our results, we require that the optimal estimator conforms to this requirement.

• Confidence interval constrained estimates: In the optimisation problem above, we require only 
that π̂ðs;mÞ 2 ½0; 1�. In general, it may be desirable to constrain π̂ðs;mÞ further. This may assist not 
only with determining the optimal estimator in the search procedure (see below), but ensure that the 
optimal estimates do not become what may be considered practically unreasonably small/large based 
on ðs;mÞ. In our results below, we constrain π̂ðs;mÞ for s;mð Þ 2 Te;f ;n such that 

lðs;mÞ< π̂ðs;mÞ< uðs;mÞ;

where lðs;mÞ and uðs;mÞ are, respectively, the lower and upper limits of the ‘exact’ 95% confidence 
interval based on the stage-wise ordering proposed by Jennison and Turnbull (1983).

Thus, in our results below, we identify solutions to the following revised optimisation problem 

minimise oðπ̂jw; μ; σÞ;

subjectto l s;mð Þ< π̂ s;mð Þ< u s;mð Þ; > s;mð Þ 2 Te;f ;n;

π̂ðs; ~njÞ> π0; s � ej; j ¼ 1; . . . ; J;

π̂ s1;mð Þ< π̂ s2;mð Þ; > s1;mð Þ; s2;mð Þ 2 Te;f ;n; > s1 < s2:
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Observe that this is a constrained non-linear optimisation problem, for which many algorithms are 
available for identifying solutions. For our results, we use a genetic algorithm via the package GA in 
R (Scrucca 2017). GA implements functions for optimisation using genetic algorithms. A genetic 
algorithm is a stochastic search method inspired by the principles of natural selection and how it 
results in genetically superior individuals over many generations of a population. Specifically, 
a population is constructed (i.e., a set of candidate estimators). Then, the fittest (i.e., best scoring in 
terms of the objective function) individuals (i.e., estimators) are evolved (i.e., modified/combined in 
terms of their π̂ðs;mÞ) over generations (i.e., iterations of the algorithm) to result in genetically 
superior individuals (i.e., estimators with lower objective function scores). At the end, the most 
genetically superior individual (i.e., the estimator with the lowest objective function score) is the 
one selected (i.e., taken as the solution of the optimisation problem). We favour this approach because 
this package provides native support for parallelisation of the search procedure, which helps reduce 
run time. In addition, it allows candidate π̂ to be suggested at the beginning of the search; we utilise 
this here to suggest previously proposed estimators (i.e., those discussed in Porcher and Desseaux 
(2012)). Intuitively, this can be expected to focus the search from the outset on more ‘reasonable’ 
estimators. Furthermore, the nature of genetic algorithms means that they are well suited to perform-
ing a search over a complex search space with potentially many local minima. Simultaneously, though, 
this means that the downside of using GA is that it is not guaranteed to return the global optimal 
solution. However, evaluation of the objective function for candidate π̂ can be achieved in fractions of 
a second and consequently it is not computationally expensive to (a) repeat the search procedure for 
several random starting points to assess convergence or (b) place strict tolerances on the termination 
of a given search.

2.4. Examples

In the Supplementary Materials, we present findings for the case where J ¼ 2, π0 ¼ 0:5, π1 ¼ 0:7, 
α ¼ 0:05, and β ¼ 0:2, motivated by, e.g., the trial presented in Shim et al. (2016). We base the results 
given here on the scenario in which π0 ¼ 0:1, π1 ¼ 0:3, and α ¼ β ¼ 0:1 (i.e., a desired type-I error- 
rate of 10% for a response rate of 10% and a desired power of 90% for a response rate of 30%). We 
choose these parameters as a recent review determined these to be often assumed in practice (Grayling 
and Mander 2021). For example, among a number of other studies

• Schoffski et al. (2017) assumed these parameters when assessing the activity of crizotinib, via 
RECIST (Eisenhauer et al. 2009), in patients with advanced clear-cell sarcoma with MET alterations.

• Jain et al. (2014) assumed these parameters when conducting an evaluation of the oral MEK 
inhibitor selumetinib in advanced acute myelogenous leukemia, as above choosing response as their 
primary outcome.

• Collen et al. (2014) assumed these parameters in a study of stereotactic body radiotherapy to 
primary tumor and metastatic locations in oligometastatic non-small cell lung cancer patients, 
selecting complete metabolic response as their primary outcome.

• Lendvai et al. (2014) assumed these parameters in a single-centre study of carfilzomib with in 
relapsed multiple myeloma patients, assessing efficacy via the response rate.
We then present results for two types of design. The first is the design for J ¼ 2 with e1 ¼ 1 that 
minimises the expected sample size when π ¼ π0 (i.e., what is often referred to as Simon’s optimal 
design); this has e ¼ 1; 6ð Þ, f ¼ 1; 5ð Þ, and n ¼ 12; 23ð Þ. The second is the version of this design that 
incorporates non-stochastic curtailment for either efficacy or futility. This has J ¼ 35 with 

e ¼ 15; 630ð Þ;

f ¼ � 110; 0; 1; � 117; 0; 1; 2; 3; 4; 5ð Þ;

6 M. J. GRAYLING AND A. P. MANDER



n ¼ 135;

where xy ¼ x; x; . . . ; xð Þ is a 1� y vector.
Below, we present results on the optimal estimators for w 2 f0:65; 0:7; 0:75; . . . ; 1g. Note that the 

optimal estimator when w ¼ 1 is always the UMVUE, as this is the unique estimator such that 
oðπ̂j1; μ; σÞ ¼ 0, regardless of the choice of μ and σ. Additional findings for w 2
f0; 0:05; 0:1; . . . ; 0:6g are given in the Supplementary Materials; we omit them here to increase clarity 
in the figures and as it is clear they often lead to very large bias (e.g., � 0:1) that may render them 
unsuitable in practice.

For μ, we focus on results when μ 2 fπ0; 0:5ðπ0 þ π1Þ; π1g ¼ f0:1; 0:2; 0:3g. We make this choice 
as it is logical, in our opinion, to give largest consideration to estimator performance in the case that π 
is in the region around the effects specified in the design calculation, π0 and π1. As, in this case, 
effectively attaining a reliable estimate of the response rate may be particularly critical to decision- 
making on the intervention under investigation; for small π, poor estimation is less likely to impact 
subsequent development as the treatment will not have shown sufficient promise even if π is over- 
estimated. Similarly, for large π, the treatment is likely to be developed further even if, e.g., the true 

Figure 1. Two-stage design. The distribution of the differences between the optimised estimates, π̂wðs;mÞ, and the UMVUE 
estimates, π̂UMVUEðs;mÞ, are shown for several combinations of μ and σ, as a function of w. Points corresponding to particular 
ðs;mÞ are coloured by the value of π̂UMVUEðs;mÞ.
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value of π was under-estimated. These statements can only possibly hold true though if the bias and/or 
RMSE does not become exceedingly large for extreme π. In addition, effective estimation across π may 
retain importance for several other reasons, including ascertaining whether to consider the interven-
tion as part of a combination therapy, inclusion of the study’s results in a meta-analysis, or powering 
subsequent trials. Estimator bias and RMSE for more extreme π can, intuitively, be controlled by the 
choice of σ, which determines the degree of weight given to values of π away from μ. Here, based on 
preliminary investigations of how estimator performance varies in σ, we give results 
for σ 2 f0:05; 0:075; 0:1; 0:15; 0:2g.

3. Results

3.1. Two-stage design

We begin with results for the case where e ¼ ð1; 6Þ, f ¼ ð1; 5Þ, and n ¼ ð12; 23Þ. Figure 1 presents the 
difference between the optimised estimates, π̂wðs;mÞ, and the UMVUE estimates, π̂UMVUEðs;mÞ, for 
the considered combinations of μ and σ, when w 2 f0:65; 0:7; 0:75; . . . ; 1g. It colours points corre-
sponding to particular ðs;mÞ by the value of π̂UMVUEðs;mÞ. Through this, it is clear that the difference 

Figure 2. Two-stage design. The bias of the optimal estimators, Biasðπ̂wjπÞ, is shown for several combinations of μ, σ, and w, as 
a function of π
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in the optimised estimates and that of the UMVUE does not clearly depend on the value of 
π̂UMVUEðs;mÞ. The range of differences between the optimised and UMVUE estimates is seen to be 
highly dependent on μ and σ. For example, in the case of μ ¼ 0:3 and σ ¼ 0:05, the differences are 
large, which has implications for the bias and RMSE of these estimators (see below). For sent the 
corresponding results to the differences are by comparison very small; typically the optimised 
estimates modify the UMVUE by less than 0:01.

Figures 2–3 present the performance of the optimised estimators in terms of their bias and RMSE 
respectively. It is clear that careful choice of μ and σ is required to determine an optimised estimator 
that has performance that may be considered preferable to the UMVUE. Particularly for σ ¼ 0:05, 
several of the estimators exhibit large bias for values of π only a small distance from μ. Whilst for 
σ 2 f0:15; 0:2g, the performance of the optimised estimators is very similar to the UMVUE, indicating 
they provide little benefit. The same is true when μ ¼ 0:1; only for μ 2 f0:2; 0:3g is performance 
substantially different from the UMVUE observed.

Particularly positive results are seen for σ ¼ 0:1 when μ ¼ 0:3. We focus on the sub-case where 
w ¼ 0:7. The optimised estimator in this case maintains an absolute bias below 0:01 when 
π 2 ½0:119; 0:806�. For the cost of the larger bias introduced outside of this region, it has a lower 
RMSE than the UMVUE when π 2 ½0:049; 0:910�. In particular, when π ¼ 0:2 and π ¼ 0:3, it reduces 

Figure 3. Two-stage design. The RMSE of the optimal estimators, RMSEðπ̂wjπÞ, is shown for several combinations of μ, σ, and w, as 
a function of π.
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the RMSE compared to the UMVUE by 19.7% and 9.4% respectively. Table 1 presents the values of 
π̂UMVUE and π̂0:7 in this case. From this, it is clear that it achieves the efficiency gains whilst only 
making minor modifications to the UMVUE estimates for most values of ðs;mÞ. Largest differences 
between π̂UMVUEðs;mÞ and π̂0:7ðs;mÞ are seen for smaller s; when the effect of the interim analysis on 
the final sample size is most pronounced. When the trial terminates in stage one (i.e., s � 1) the 
optimised estimator adjusts the estimates upward compared to the UMVUE; effectively treating the 
interim termination as a ‘random low’. When the trial terminates in stage two with a low number of 
responses (i.e., 2 � s � 6) the optimised estimator adjusts the estimates downward in a pronounced 
manner compared to the UMVUE; effectively treating the continuation past the interim analysis as 
a ‘random high’.

3.2. Non-stochastically curtailed design

Figures 4–6 present the corresponding results to Figures 1–3, but for the non-stochastically curtailed 
design. As before, Figure 4 displays no clear trend in the way the optimised estimators modify the 
UMVUE estimates. In this case, high bias is observed for larger values of w than for the two-stage 

Table 1. The UMVUE and example optimised estimates are given for the two-stage design with e ¼ 1; 6ð Þ, f ¼ 1; 5ð Þ, and 
n ¼ 12; 23ð Þ, and it’s non-stochastically curtailed extension. For the two-stage design, the optimised estimates correspond to 
w ¼ 0:7, μ ¼ 0:3, and σ ¼ 0:1. For the non-stochastically curtailed design, the optimised estimates correspond to w ¼ 0:8, μ ¼ 0:3, 
and σ ¼ 0:1. All values are given to 3 decimal places.

Two-stage design Non-stochastically curtailed design

ð0; 12Þ 0.000 0.066 ð6; 6Þ 1.000 0.808
ð1; 12Þ 0.083 0.148 ð6; 7Þ 0.833 0.744
ð2; 35Þ 0.167 0.028 ð6; 8Þ 0.714 0.674
ð3; 35Þ 0.177 0.052 ð6; 9Þ 0.625 0.614
ð4; 35Þ 0.189 0.087 ð6; 10Þ 0.556 0.559
ð5; 35Þ 0.203 0.140 ð0; 11Þ 0.000 0.042
ð6; 35Þ 0.219 0.183 ð6; 11Þ 0.500 0.513
ð7; 35Þ 0.236 0.222 ð1; 12Þ 0.091 0.114
ð8; 35Þ 0.255 0.248 ð6; 12Þ 0.455 0.467
ð9; 35Þ 0.276 0.269 ð6; 13Þ 0.417 0.421
ð10; 35Þ 0.299 0.295 ð6; 14Þ 0.385 0.396
ð11; 35Þ 0.323 0.320 ð6; 15Þ 0.357 0.363
ð12; 35Þ 0.349 0.348 ð6; 16Þ 0.333 0.340
ð13; 35Þ 0.375 0.372 ð6; 17Þ 0.313 0.311
ð14; 35Þ 0.402 0.403 ð6; 18Þ 0.296 0.294
ð15; 35Þ 0.430 0.429 ð6; 19Þ 0.282 0.283
ð16; 35Þ 0.458 0.459 ð6; 20Þ 0.270 0.259
ð17; 35Þ 0.486 0.486 ð6; 21Þ 0.261 0.251
ð18; 35Þ 0.514 0.514 ð6; 22Þ 0.252 0.241
ð19; 35Þ 0.543 0.543 ð6; 23Þ 0.245 0.233
ð20; 35Þ 0.571 0.571 ð6; 24Þ 0.239 0.230
ð21; 35Þ 0.600 0.598 ð6; 25Þ 0.234 0.217
ð22; 35Þ 0.629 0.629 ð6; 26Þ 0.229 0.223
ð23; 35Þ 0.657 0.657 ð6; 27Þ 0.225 0.217
ð24; 35Þ 0.686 0.683 ð6; 28Þ 0.221 0.217
ð25; 35Þ 0.714 0.713 ð6; 29Þ 0.218 0.216
ð26; 35Þ 0.743 0.740 ð6; 30Þ 0.215 0.213
ð27; 35Þ 0.771 0.769 ð6; 31Þ 0.213 0.216
ð28; 35Þ 0.800 0.797 ð2; 32Þ 0.167 0.064
ð29; 35Þ 0.829 0.817 ð6; 32Þ 0.211 0.212
ð30; 35Þ 0.857 0.840 ð3; 33Þ 0.179 0.070
ð31; 35Þ 0.886 0.862 ð6; 33Þ 0.208 0.218
ð32; 35Þ 0.914 0.885 ð4; 34Þ 0.191 0.138
ð33; 35Þ 0.943 0.911 ð6; 34Þ 0.206 0.219
ð34; 35Þ 0.971 0.935 ð5; 35Þ 0.205 0.170
ð35; 35Þ 1.000 0.962 ð6; 35Þ 0.205 0.223

10 M. J. GRAYLING AND A. P. MANDER



design setting (compare Figures 2 and 5). Here, the results for each considered μ are similar across the 
various values of w and σ. However, μ ¼ 0:3 typically results in slightly larger regions in which the bias 
remains small, and thus we now focus on this setting again.

Consider the optimal estimator for σ ¼ 0:1 and w ¼ 0:8. This estimator has an absolute bias of less 
than 0.01 for π 2 ½0:079; 0:527�. It attains an RMSE lower than the UMVUE when π 2 ½0:024; 0:860�; 
in particular when π ¼ 0:2 and π ¼ 0:3, it reduces the RMSE compared to the UMVUE by 8.6% and 
2.4% respectively.

4. Discussion

Point estimation following a multi-stage single-arm trial is important to subsequent decision-making 
on a treatments development, to the inclusion of study results in to meta-analyses, and to the design of 
future trials. Whilst the UMVUE for such designs is well-established, it unfortunately can suffer from 
large RMSE compared to alternative estimators. However, these alternative estimators often have 
unsuitably large bias. Therefore, in this work we proposed methodology for finding estimators that are 

Figure 4. Non-stochastically curtailed design. The distribution of the differences between the optimised estimates, π̂wðs;mÞ, and the 
UMVUE estimates, π̂UMVUEðs;mÞ, are shown for several combinations of μ and σ, as a function of w. Points corresponding to particular 
ðs;mÞ are coloured by the value of π̂UMVUEðs;mÞ.
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optimal for a particular objective function. Careful choice of the parameters that influence the value of 
the objective function was demonstrated for examples motivated by recent oncology trials (Collen 
et al. 2014; Jain et al. 2014; Lendvai et al. 2014; Schoffski et al. 2017; Shim et al. 2016) to result in an 
estimator that may be considered preferable to the UMVUE. The highlighted estimators retained low 
bias across a wide range of response rates, specifically those that should be more realistic based on the 
specified π0 and π1, and reduced the RMSE for certain response rates by a large amount compared to 
the UMVUE. Especially strong performance was seen in the two-stage setting, where the RMSE of the 
optimal estimator with μ ¼ 0:3, σ ¼ 0:1, and w ¼ 0:7 reduced the RMSE by as much as 
35.2% (π ¼ 0:107).

We note some limitations to our work. Firstly, we consider only three possible sets of design 
parameters e, f , and n. Whilst there is no reason to assume optimised estimators that can rival the 
UMVUE in terms of their properties cannot be determined for other possible parameter combina-
tions, there is also no reason to assume that they can. In addition, we focused on an objective function 
composed of the the marginal absolute bias and RMSE. Conditional bias and RMSE may also be of 
concern in general (Fan et al. 2004; Liu et al. 2004; Shimura et al. 2018; Troendle and Yu 1999). Our 
objective function, of course, could be readily modified to take conditional bias and RMSE in to 
consideration if desired, though. Furthermore, in the Supplementary Materials, we also consider the 

Figure 5. Non-stochastically curtailed design. The bias of the optimal estimators, Biasðπ̂wjπÞ, is shown for several combinations of μ, 
σ, and w, as a function of π.
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use of squared-bias and MSE. Finally, our determinations assume that the planned design will be 
realised in practice. Of course, this may not always be the case, and while effective procedures are now 
available to control the type-I error-rate in this case (Englert and Kieser 2015), our work does not assist 
in determining the best estimator when the design is likely to under/over-run.

Arguably the biggest barrier to the use of our approach in practice is how to specify the values of μ, 
σ, and w, such that the estimator is well justified. As noted, a possible solution is to elicit values of μ 
and σ based on available expertise on the anticipated response rate of the treatment under investiga-
tion (or the parameters of an appropriate Beta distribution; see the Supplementary Materials). 
A potentially preferential approach is to simply treat μ, σ, and w as nuisance parameters. By specifying, 
e.g., a range of values for π over which it is desired for the absolute bias to be constrained to some 
maximal amount, and similarly particular target reductions in the RMSE over the UMVUE for given 
values of π, one could simply perform a further optimisation over μ, σ, and w to determine the 
estimator with the best performance.

Given our work is motivated by a desire to see the increased utilisation of adjusted estimators, we 
end with a brief discourse on communicating why this is an important problem and how it may be 
handled to non-statistical stakeholders. Fundamentally, as discussed, the inclusion of an interim 

Figure 6. Non-stochastically curtailed design. The RMSE of the optimal estimators, RMSEðπ̂wjπÞ, is shown for several combinations of 
μ, σ, and w, as a function of π.
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analysis will bias the results of trial inference if appropriate adjustments are not made. The estimated 
treatment effect is not only critical to deciding the development plan for the current treatment under 
investigation, but also potentially to other treatments investigated downstream. Thus, some adjust-
ment should be made. Unfortunately, Grayling and Mander (2021) recently demonstrated that very 
few phase II oncology trials currently make such adjustments, meaning many reported effects may be 
subject to appreciable bias. On specifically how to adjust, we would argue it is not important for non- 
statistical stakeholders to understand exactly how adjusted estimators ‘work’. They can, and arguably 
should, however, feed in to the decision on which adjusted estimator to use; simple explanations of 
bias and RMSE can let them help guide that factor is of larger concern. Then, whatever method is used, 
a table like that given here (Table 1) can always be produced for any trial before its completion. Thus, 
even for more complex estimators the actual estimation remains as simple as reading from a pre- 
prepared table.

In conclusion, the proposed methodology for determining optimised estimators may allow the 
determination of an estimator that has low bias for many possible, arguably more likely, values of the 
response rates whilst providing reduced RMSE compared to the UMVUE across these response rates. 
For certain values of the response rate, this reduction in the RMSE may be sizeable.
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