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THESIS SUMMARY 
 
 

The presented thesis endeavoured to establish the impact that the variability in electrical 

conductivity of human head tissues has on electrical brain imaging research, particularly 

transcranial direct current stimulation (tDCS) and electroencephalography (EEG). A 

systematic meta-analysis was firstly conducted to determine the consistency of reported 

measurements, revealing significant deviations in electrical conductivity measurements 

predominantly for the scalp, skull, GM, and WM. Found to be of particular importance was 

the variability of skull conductivity, which consists of multiple layers and bone compositions, 

each with differing conductivity. Moreover, the conductivity of the skull was suggested to 

decline with participant age and hypothesised to correspondingly impact tDCS induced 

fields. As expected, the propositioned decline in the equivalent (homogeneous) skull 

conductivity as a function of age resulted in reduced tDCS fields. A further EEG analysis 

also revealed, neglecting the presence of adult sutures and deviation in proportion of 

spongiform and compact bone distribution throughout the skull, ensued significant errors in 

EEG forward and inverse solutions. Thus, incorporating geometrically accurate and precise 

volume conductors of the skull was considered as essential for EEG forward analysis and 

source localisation and tDCS application. This was an overarching conclusion of the 

presented thesis. Individualised head models, particularly of the skull, accounting for 

participant age, the presence of sutures and deviation in bone composition distribution are 

imperative for electrical brain imaging. Additionally, it was shown that in vivo, individualised 

measurements of skull conductivity are further required to fully understand the relationship 

between conductivity and participant demographics, suture closure, bone compositions, skull 

thickness and additional factors. 
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NOTATION 
 
Throughout the thesis (and unless otherwise stated), scalars are denoted by 
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multidimensional arrays) as bold-face uppercase letters.  
 
!	  current density 
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!"  return (secondary) current 
#  conductivity 
#  rank-2 conductivity tensor 
$  current 
%  voltage 
&  resistance 
ρ  charge density 
'  time 
(  electric field 
)  magnetic field 
*  tissue permeability 
+#  electric constant 
,  electric potential 
,$  singularity potential 
,%&''  correction potential 
-  position 
.  moment 
/  Dirac delta distribution 
Ω  head domain 
Γ  head boundary (i.e., scalp surface) 
23  unitary vector normal to head boundary 
4  abstract source term (dependent on source model) 
5  test function 
6  suitable space in EEG-FP variational formulation 
7  number of mesh nodes 
8  stiffness matrix 
9  vector of potential values on mesh nodes 
:  column (load) vector of source terms 
;(  reference electrode  
<  lead field matrix 
=  selection matrix 
>)  number of EEG electrodes 
>*  number of source dipoles 
?  forward model vector measurement  
@  additive noise 
A  signal matrix containing superposition of dipole signals for potential data 
B  matrix representation of EEG data 
C  data fidelity term 
D  regularisation function 
⋋  minimising regularisation parameter 
F  identity matrix 
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J  tDCS current injection pattern vector 
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GENERAL INTRODUCTION 
 

The human brain is one of the most complex systems we know of. Neuroimaging techniques 

allow us to explore the brain anatomy and physiology and their relationship to biological 

processes. Of these, structural neuroimaging such as Magnetic Resonance Imaging (MRI; 

Dale et al., 2015), and computed tomography (CT; Cervantes, 2016) enable visualisation of 

specific head structures. Furthermore, electrical impedance tomography (EIT) can be utilised 

to infer the electrical conductivity field within the head (Holder, 2004). Contrastingly, 

functional neuroimaging measures a particular brain function to ascertain their relationship 

with behaviour or disease. This includes functional MRI (fMRI), which measures the blood 

oxygenation level dependent (BOLD) effect, and electro/magneto-encephalography (E/MEG) 

which is sensitive to the electromagnetic activity of the brain (Hari & Puce, 2017). 

Neuromodulation techniques, such as transcranial direct current stimulation (tDCS) and 

transcranial magnetic stimulation (TMS), on the other hand, aim to alter brain activity 

through delivery of an electric or magnetic stimulus (Knotkova & Rasche, 2014). 

 

Each technique has varying spatial and temporal resolution, as depicted in Figure 0.1. 

Notably, electromagnetic methodologies (as E/MEG and TMS/tDCS) have high temporal 

resolution (1 – 5 ms) but particularly low spatial resolution (limited to brain regions, i.e., on 

the order of cm; Darvas et al., 2004). These modalities are therefore able to capture rapid 

activity, such as electrical impulses between neurons that are essential for communication 

throughout the brain, executive and automatic functioning, stimuli response and features of 

cognition, emotion, and perception. Understanding the electrical signals within the brain, 

through measurement (i.e., E/MEG) and modulation (i.e., tDCS/TMS), provides insight into 

these processes for both research and clinical applications.  
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Figure 0.1: Representation of brain imaging modalities and their respective temporal (in log 

seconds) and spatial (in log mm) resolutions for techniques most frequently referred to as structural 

(red), functional (blue) or modulatory (green) acquisition. 

 

Determining the spatial localisation of E/MEG activity and the TMS/tDCS stimulation, 

however, is dependent on many parameters and requires additional computational techniques. 

This includes the forward problem (FP) which determines the observable electromagnetic 

measurements from a known current source and assumes the domain as perfectly known. In 

EEG, the inverse problem (IP) then consists of reconstructing the activity from a given 

electromagnetic signal, whilst in EIT the objective is to estimate electrical conductivity from 

the given FP. The IP in tDCS comprises determining the optimal current injection pattern on 

the scalp that produces the most ideal estimate of the desired current density at the location. 

The EEG-FP computes the electric potential generated from a known source in the conductor, 

relying on an accurate head domain (geometry of the tissues of the head, such as the scalp, 

skull, and brain) and electrical conductivity field. These parameters, both of which vary 

throughout participants, are essential for determining the propagation of current from the 

source to the scalp. Correct tissue conductivity knowledge is particularly essential where, for 

example, the electrical current will travel more readily through the highly conductive 

cerebrospinal fluid (CSF) than the highly resistive skull. 
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Given the computationally modelled current from a known source, the IP then aims to 

localise the electrical activity by determining the best fit between the modelled (FP solution) 

and the observed data (i.e., that measured with EEG). The IP, however, does not have a 

unique solution and is therefore known as an ill-posed problem (Hämäläinen et al., 1993). 

This is due to the fact a sole solution does not exist to explain the observable data. As an 

illustration, posed by Keller (1976), when asking the question “what is the question to which 

the answer is 4?”, there are many possible solutions. These include mathematical options 

such as “what is 2 + 2?”, “what is 1 x 4?” etc., whereas the true question may have been 

“how many legs does a giraffe have?”. Without further information, it is impossible to 

determine the question being asked. This is true when generating the source of electrical 

activity within the brain, as infinite source combinations allow to explain identical 

measurements (Gylys-Colwell, 1996). Without an accurate FP solution, which is dependent 

on precise and accurate knowledge of head anatomy and tissue conductivity, an accurate IP 

solution and therefore source localisation is impossible. 

 

The presented thesis thus chose to focus on spatial localisation of electrical activity within the 

brain, particularly as modulated with tDCS (i.e., exogeneous) and measured with EEG (i.e., 

endogenous). The contribution of relevant parameters, specifically head anatomy, and tissue 

conductivity, to tDCS stimulation propagation and EEG source analysis was explored. The 

importance of accounting for variation in head tissue conductivity and geometry according to 

participant demographics was highlighted. This was undertaken through simulation studies 

with particular emphasis on conductivity variation of the skull, the most highly resistive 

tissue, as a function of age.   
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Overview of Thesis 

 

Chapter 1. Brain Activity.  

This chapter introduces the neurophysiological basis of brain activity and the neuroscientific 

origins of EEG and tDCS. The fundamental understanding of neuronal activity is described, 

including the production of electric and magnetic activity and thus how these are measurable 

and modulated by the discussed techniques. The basic protocols for EEG and tDCS are also 

described. Finally, the anatomy of the human head is discussed to understand the relevance of 

head geometry. 

 

Chapter 2. Forward and Inverse Problems. 

Mathematical formulation of the forward and inverse solutions relevant for EEG and tDCS 

are provided in this chapter. This begins with the fundamental equations describing 

electromagnetic fields preceding forward problem construction. Head and source modelling 

techniques are also discussed in detail, with various methods described. This leads to defining 

the lead field matrix – mapping cortical activity to electromagnetic measurements. The basic 

principles of the inverse solution are discussed, and various dipole fitting methods 

mentioned. The formulae are finally related to tDCS current propagation.  

 

Chapter 3. Head Tissue Conductivity Variation. 

Chapter 3 outlines the importance of accurate conductivity values for electromagnetic 

techniques. A systematic meta-analysis is provided to assess the significant and important 

factors effecting conductivity variation in 15 different head tissue types (ranging from 

different skull to brain tissues). This variation included those as a result of measurement 

technique (such as direct measurements, E/MEG, diffusion tensor imaging (DTI) and EIT), 

other methodology parameters (e.g., temperature, frequency, etc.) and participant 

demographics (such as age and pathology). The results highlight significant variation in 

electrical conductivity of the scalp, whole-skull, the layered-skull, grey matter (GM), and 

white matter (WM), which could be attributed to a combination of differences in 

methodology and demographics. 
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Chapter 4. Impact of Age on tDCS Induced Fields. 

The previous three chapters highlighted the role tissue conductivity plays in electromagnetic 

distribution within the head and how these values vary throughout the literature, employed 

methodology and participant demographics. An important contributing factor was revealed to 

be the relationship between skull conductivity and participant age, which remains unclear. 

This chapter explored the impact that changing skull conductivity as a proposed function of 

age effected tDCS induced fields via a simulation study. The motivation for the research is 

first explained and the methodology outlined. This includes generation of the head models 

and proposed homogeneous, age-dependent conductivity values and the resultant tDCS 

induced field calculations and additional parameters. The results emphasised significant 

deviations in electric fields as a function of age and provided suggestions for adjusted tDCS 

dose across the lifespan. Further research for individualised head anatomy and in vivo skull 

conductivity were recommended.  

 

Chapter 5: Skull Conductivity and EEG Source Localisation 

The first two chapters outlined the necessity for accurate head geometry and tissue 

conductivity in electromagnetic source analysis. Following from this, Chapter 3 indicated 

how such conductivity values, particularly that of the skull, vary throughout participants and 

the literature. Proposed skull conductivity deviation as a function of age was revealed to 

impact tDCS induced electric fields in Chapter 4. Uncertain skull conductivity and head 

geometry was therefore hypothesised to additionally impact EEG forward and inverse 

solutions. Chapter 5 compares inhomogeneous skull conductivity models, accounting for 

bone composition differences and the presence of adult sutures against homogeneous models 

neglecting such details for EEG-FP and IP solutions. The presented simulation study aimed 

to determine the impact of adult sutures and varying proportion of spongiform bone on EEG 

source localisation, particularly when also accounting for age.  

 

Chapter 6. General Discussion 

The final chapter concludes the main contribution of the presented thesis. Firstly, a thesis 

overview is provided summarising the previous chapters and the respective important 

findings. Propose future research is also outlined and final conclusions as well as a take-home 

message are discussed. 
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CHAPTER 1: BRAIN ACTIVITY 
 

1.1. Overview  

 

This chapter introduces the neurophysiology underlying EEG and tDCS methodologies. The 

fundamental characteristics of neuronal activity are discussed, including the structure and 

function of neurons, the electrochemical processes involved in signal generation and 

transmission and the resultant electromagnetic activity. These are related to the origins of 

EEG measurements and the typical protocols and parameters are considered. The 

mechanisms underlying the neuromodulation of electric activity via tDCS are further 

discussed. Finally, the importance and relevance of accurate head geometry for EEG source 

localisation and tDCS optimisation are mentioned and the basic anatomy explored. 

  

1.2. Neurophysiology  

 

The average human brain contains approximately 86 billion neurons and as many glial cells 

(necessary for maintaining ion concentration, structure support and transporting nutrients; 

Azevedo et al., 2009). Information-processing neurons comprise a cell body, dendrites, and 

an axon. The cell body, or soma, is where the cell nucleus resides and is responsible for 

synthesising vital proteins. The dendrites are long filaments extending from the cell body that 

receive inputs from connecting neurons. The axon (a longer branched cellular filament) 

attaches to other neurons or organs and is covered with a myelin sheath, formed from 

oligodendrocytes, that insulates the nerves fibres, and accelerates signal transmission. An 

axon terminal occurs at the end of the axon, farthest from the soma, and contains the 

synapses where neurotransmission occurs (Debanne et al., 2011). An example of a neuron 

can be seen in Figure 1.1. Each neuron is connected to thousands of others, with trillions of 

synaptic connections.  

 

Neurotransmission is the fundamental force for information transfer across the brain, 

regulating inhibitory and excitatory processes and underlying sensory and executive, 

automatic functions. Efficient neurotransmission occurs from a repetitive cycle of transfer 

and retrieval across synaptic regions (Bean, 2006). Differences between intra-and 

extracellular ion concentrations (sodium [Na+], potassium [K+] and chloride [Cl-]) maintain 
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voltage gradients across neuron membranes (approximately -60 to -70 mV). Ionic pumps and 

selective membrane permeability stabilise the unequal distribution of these electrically 

charged ions (particularly Na+ and K+). Stimuli can cause specific ion-channels within the 

cell membrane to open. This results in an influx of ions changing the membrane potential and 

‘exciting’ the cell. If the voltage change reaches a certain threshold, an action potential 

(electrical impulse) is fired, travelling from the neuron’s soma, along the axon, to the 

dendrites. The speed of conduction depends upon the presence of the myelin sheath and 

ranges from 1 to 100 m/s. Nodes of Ranvier interrupt the insulated sheath and allow the 

action potential to be regenerated (Miller et al., 2017). The action potential amplitude 

remains constant at 100 mV due to the so-called all-or-none principle, which states that, – if a 

neuron responds at all, it responds completely (Lucas, 1909). The synapse, near the end of the 

axon allows electrical impulses to pass from the presynaptic cell via diffusion of transporter 

molecules (neurotransmitters) across the synaptic cleft (physical space between two neurons). 

Some molecules then bind to receptor proteins on the postsynaptic cell membrane (Figure 

1.1). Molecule binding in turn opens specific ion channels, allowing the resultant charge flow 

to alter the membrane potential in the receiving cell – termed the post-synaptic potential 

(PSP). This causes an electrical field and current to flow either into the cell, depolarising it 

and hence producing an excitatory PSP (EPSP). Conversely the current can flow out of the 

cell, hyperpolarising and therefore inhibiting it (IPSP). These extracellular field potentials are 

frequently referred to as local field potentials (LFPs; Miller et al., 2017; Hari & Puce, 2017).  
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Figure 1.1: Schematic diagram of a neuron and it’s synapse. The figure depicts neurotransmission 

from an axon terminal of one neuron to the dendrite of the receiving neuron, across what is termed 

the synapse. Following application of stimuli and if changes in cell voltage reach a certain threshold, 

an action potential is released and travels from the neurons soma along the axon, accelerated due to 

the myelin sheath, to the axon terminal (depicted to the right). At the axon terminal, neurotransmitter 

transporters allow electrical impulses to pass from the presynaptic to postsynaptic cell dendrites via 

diffusion across the synaptic cleft. Here, molecules can then bind to receptor proteins and open 

specific ion channels, in turn altering the membrane potential of the receiving cell (depicted to the 

left). This either hyper- or de-polarises the cell and contributes to the extracellular field. Adapted 

from Pickel & Segal (2013).  

 
All excitable membranes contribute to the extracellular field, which is the superposition of all 

ionic processes. The largest involvement, however, comes from synaptic activity of PSPs. 

The local de- or hyperpolarisation of the postsynaptic membrane following neurotransmitter 

release creates a potential cell membrane gradient and current. EPSPs generate an active sink 

at the extracellular synapse and a passive source along the cell. IPSPs on the other hand 

generate an active source at the synaptic level (non-excited cell body membrane) and a 

passive sink along the cell (at the dendritic membrane; Henry, 2006). A current flow between 

the source and sink is thus produced by the difference in potential. Due to the LFP sink-

source derivation, the electric field surrounding one neuron is usually modelled as a current 
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dipole oriented along the dendrite (de Munck & Peters, 1993; Hämäläinen et al., 1993). A 

mathematical dipole consists of two adjacent oppositely charged sites, where positive current 

(i.e., sodium and calcium) flows from one end (the sink) to the other (the source). Although 

dendritic current can flow in both directions (producing a quadrupole source), the majority of 

the current flows toward the postsynaptic cell body and due to the asymmetric geometry of 

the cortical layer one component is dominant and thus considered a current dipole, not 

quadrupole (Brette & Destexhe, 2012). However, quadrupoles can arise from two dipoles 

located close together, or from specific folding of the cortex (Beltrachini, 2018). The current 

through the synapse can be calculated from the voltage change. This equivalent pointwise 

current dipole may therefore be used to approximate the electrical activity generated from the 

centre of an active area. The electrical potential change triggered by the intra- and 

extracellular ion flow induces the electromagnetic field propagation within the tissue (an 

example of potential field generation and corresponding dipole is depicted in Figure 1.2). 

Following the electric charge conversion law, this produces a primary current that 

predominantly travels within the neuron (and are thus intracellular) due to the high resistance 

of the cell membrane. Some primary current, however, continuously flows out of the cell to 

produce secondary (a.k.a. return or Ohmic) currents in the opposite direction that close the 

current path in extracellular space (Hämäläinen et al, 1993; Rutecki, 1992).  

 

1.3. Electroencephalography 

 
Electroencephalography is a non-invasive electrophysiological modality that records 

electrical activity on the scalp stemming from the macroscopic brain activity beneath the 

signals. It has the advantage of being relatively low in cost and easily transferable and thus is 

used worldwide. Alongside this, EEG has high temporal resolution (of several milliseconds), 

allowing invaluable insights into dynamic cognitive processes. EEG exploits the current 

voltage changes in synapses to measure the electrical activity in brain neural cell assemblies 

(de Munck & Peters, 1993; Hämäläinen et al, 1993).  

 

EEG employs a distribution of multiple scalp electrodes to passively and non-invasively 

measure the voltage fluctuations (the secondary current flow) arising from ionic current flow 

of thousands of synchronously active neurons. Typically, between 2 and 512 (as used in 

Ryynänen et al., 2004) electrodes are placed along the scalp boundary, at least 2 cm from 
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brain tissue. The volume conduction of ionic current flow generates a wave of ions which can 

reach electrodes distributed on the scalp and effect electrons on the metal in the electrodes.    

Differences in this effect, and thus the electrical potential, between any two electrodes can be 

measured using a voltmeter (usually in µV). The product of these recorded voltages over time 

results in the observable EEG measurements (Tatum, 2021).  

 

Scalp electrodes cannot detect the small electric field generated by one neuron alone. This is 

particularly considering that the electric field additionally travels from brain tissue, through 

the CSF, skull and scalp and thus impeding the current, the amplitude of which would be 

generated by a single neuron. Hence, thousands of synchronously active neurons are required, 

generating synchronous extracellular PSPs, resulting in a detectable extracellular potential 

field (Nunez & Srinivasan, 2006). The potential field travels from the source of activity, 

within the brain, through the layers of the head (depicted in Figure 1.2) to reach the scalp, 

where the signal is then perceived. Most of these signals are thought to be generated from 

pyramidal neurons due to their spatially aligned and unique orientation. Their dendrites are 

perpendicular to the surface and parallel to one another. This amplifies their extracellular 

potential and thus electric field surrounding the neuron, frequently represented as a current 

dipole (Figure 1.2; de Munck et al., 1988). The electrical field surrounding a pyramidal cell 

corresponds to a dipole as the long-elongated axis results in evident membrane potential 

differences at either end. The resultant activity represents the sum of all EPSPs and IPSPs of 

cortical pyramidal neurons to typically produce a vertical dipole perpendicular to the scalp, 

due to their orientation, and thus measurable through EEG (Da Silva, 2009).  
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Figure 1.2: Schematic diagram of pyramidal neurons generating a potential field. The EEG electrode 

resides on the surface on the scalp and is attached to an EEG amplifier, detecting changing electric 

fields within the brain (purple layer). The positive and negative potential field is generated from 

thousands of active synapses across spatially aligned pyramidal neurons (red diagrams) within the 

brain. This electric field travels from the brain across various layers of the head, including the pia 

mater (light blue), subarachnoid space (white with orange lines), arachnoid mater (dark blue), dura 

mater (white with black lines), skull (beige, representing two compact bone layers and a sandwiched 

layer with red circles indicating spongiform bone) to reach the scalp (yellow layer) electrode. See 

section 1.6 for further descriptions of each head layer. Note that the size and relative width of each 

layer is not proportional and is for illustration purposed only. Figure adapted from Bear et al., 

(2001). 
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1.3.1. EEG Interpretation 
 
The polarity of surface EEG recordings depend upon synaptic activity location within the 

cortex. Upward deflections, as recorded in EEG, are a result of EPSPs in superficial cortical 

layers or IPSPs in deeper layers. Whereas downward deflections are a consequence of deep 

layered EPSPs or superficial layered IPSPs (Kirschstein & Köhling, 2009). This produces a 

graphical waveform of rhythmic activity and transients, representing neurotransmission 

signal variations within the brain. The measured EEG oscillations illustrate synchronised 

neuronal activity at varying frequencies and is described as the rhythmic activity. Many of 

these frequencies are characteristic selections with spatial ranges associated with different 

brain functions and diseases (e.g., sleep stages, epilepsy, schizophrenia, among many others; 

Figure 1.3).  

Figure 1.3: EEG oscillation examples during wakefulness and sleep. The waveforms represent 

synchronised neuronal activity of four different frequency ranges over approximately 2.5 seconds. 

The frequencies, beta, alpha, theta, and delta coincide with awake and active, awake and resting, 

asleep and deep sleep states, respectively.  

 
EEG, in a clinical setting, is most commonly employed to diagnose epilepsy. Focal 

epileptiform activity is signified by rapid, synchronous potentials in hundreds of neurons in a 

distinct brain area. Dispersed epileptic activity can also be synchronously distributed 

throughout the entire brain, with a localised epicentre, termed generalised epilepsy. Epilepsy 

can thus be diagnosed with an EEG, when other potential causes, such as syncope or drugs 

and alcohol are ruled out. Ictal EEG recordings can also be obtained during a seizure (as 

opposed to inter-ictal – between seizures) when further information is required for diagnosis 
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or treatment. EEG can additionally aid in treatment by localising the source of epileptogenic 

activity when resection or surgery is required (Engel, 2013). Methodologies with higher 

spatial resolution, however, are typically employed due to the low spatial resolution of scalp 

EEG (source localisation is discussed in detail in Chapter 2). For example, stereo EEG, where 

depth electrodes are implanted by neurosurgeons and allow lower voltage (due to the current 

not being shielded by the high resistivity of the skull) and faster brain activity components to 

be detected (Henry, 2006). Aside from epilepsy, EEG can also be beneficial for diagnosing 

and treating stroke, sleep disorders, brain tumours, damage or dysfunction and brain death, 

among others. 

 

Additionally, EEG is extensively used within a research setting, for example for exploring 

memory, language, motor function, sleep, emotional processing and regulation, perception, 

spatial awareness etc. It is further utilised as a tool for research and treatment of multiple 

psychological, developmental, and physiological disorders, such as autism, attention deficit 

hyperactivity disorder (ADHD), Parkinson’s Disease, and mood, anxiety, and psychotic 

disorders. 

 

1.3.2. EEG Systems 
 
A typical EEG measurement system comprises of electrodes, a multichannel amplifier (to 

reinforce weak signals) and a data acquisition system (to record, display and store data). Each 

EEG electrode recording represents a spatially smoothed form of the LFP.  

 

EEG electrodes attach to the scalp using conducting electrode gel, traditionally in the 

standard 10-20 position scheme and embedded within a head cap. Dry electrodes also exist 

which do not require application of a conductive gel and therefore have a faster preparation 

time and can be efficiently applied by non-experts (Fiedler et al., 2014). The international 10-

20 system denotes the distances between neighbouring electrodes. This is either 10 or 20% of 

the total nasion (on the bridge of the nose, between the two eyebrows) to inion (at the centre 

of the base of the skull, the tip of the occipital bone) to right to left skull dimension (left and 

right preauricular). The traditional 10-20 system has a total of 21 electrodes (Towle et al., 

1993). When a higher number of EEG electrodes are employed, extra electrodes are placed 

according to the 10% division, halfway between the existing 10-20 electrodes. These 

additional electrode placement systems include, for example the 10-10 system (with 81 
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electrodes based on 10% fractions of the nasion-inion and interauricular lines) and the 10-5 

system (with 345 electrodes, based upon 5% fractions; Oostenveld & Praamstra, 2001). 

Variations on these three placements also exist, for example including 32, 64 and 164 

electrodes in total, this is also dependent on the specific EEG cap manufacturer (Hari & Puce, 

2017). Each electrode is connected to an input of a differential amplifier (one amplifier per 

pair of electrodes), which amplifies the corresponding voltages between the active electrode 

and the reference (discussed below). 

 

Voltages recorded at each electrode in EEG are relative to measurements at other electrodes. 

Consequently, a reference electrode that acts as a ‘baseline’ for the remaining channels is 

essential. The reference electrode should ideally be placed where no neural activity 

contributes to the measurement, however no place in the human body is electrically silent. 

The reference is thus popularly placed in areas farthest from the region of interest (ROI), 

such as the nose, earlobe, or mastoid. Often, EEG caps have pre-defined reference positions, 

frequently in the right frontal region (termed Fz) and the top centre of the scalp (Cz), which 

do not amplify the signal in one hemisphere versus the other (Hari & Puce, 2017). An 

average reference montage can additionally be used, where the output of all the amplifiers is 

totalled and averaged and provided as the collective reference. A Laplacian montage, on the 

other hand, uses the difference between one electrode and the weighted mean of its 

surrounding electrodes (Nunez & Pilgreen, 1991). 

 

Classically, EEG is acquired in regular research or clinical rooms. However, measurements 

inside Faraday cages, or MEG shielded rooms (made of aluminium and mu-metal, 

to reduce high and low-frequency noise, respectively [Burgess, 2020]), to avoid external 

electrical interference, can be performed. Transportable EEG devices also exist (Usakli, 

2010). 
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Figure 1.4: Schematic representation of an EEG system. The 10-20 electrode position system is 

displayed on a human scalp, using the appropriate typical naming system to indicate the pre-frontal 

(Fp), frontal (F), temporal (T), parietal (P) occipital (O) and central (C) regions. The nasion, inion 

left (A1) and right (A2) preauricular is also displayed on the scalp for reference. The electrodes are 

connected to a jackbox and the electrode montage selected, this includes calibration of the electrodes. 

The acquired signals are amplified, filtered, and converted from analog to digital. The oscillograph 

records the EEG oscillations and a computer programme allows representation of EEG signals, as 

displayed in the example EEG chart. The EEG data example is taken from the openly available 

database described in Shoeb (2009). 

 

1.3.3. Strengths and Limitations 
 
As briefly discussed, an advantage of EEG, particularly over other imaging methods, is the 

significantly lower hardware and administration costs. Alongside the base apparatus, a 

specialist environment is not necessary, unlike MEG and MRI, and can be carried out in a 

quiet room. EEG is also portable and relatively small in size, allowing it to be easily 

transferred between use. Taken together, this allows EEG equipment to be easily accessible 

and applied in clinical and research settings worldwide. Another main advantage is that EEG 

has relatively high temporal resolution (on the order of milliseconds) and can thus capture 

rapid information such as stimuli response and epileptic seizures. Some characteristics of 

EEG also allow for specific analysis such as recording activity in participants with no or 
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limited motor response (Secco et al., 2021), relative stability to participant movement, 

distinguishing covert processing (where a response is unnecessary) and detecting activity to 

inattentive stimuli. It also provides benefits for auditory processing (due to EEG being 

relatively silent), and for determining processing stages (as opposed to the final response; 

Lochy et al., 2015) and life stages (for example specific characteristic of brain development 

through sleep analysis [Campbell et al., 2012]). There also exist fundamental advantages of 

EEG compared to other imaging modalities, including its non-invasive nature (e.g., compared 

to stereo EEG), non-exposure to radiation and high-intensity magnetic fields and non-

augmentation of claustrophobia (for example compared to most CT and MRI systems). 

 

Despite these benefits, EEG has several limitations. A significant disadvantage is its 

relatively low spatial resolution (see Figure 0.1). As discussed within the General 

Introduction (and throughout the thesis), determination of a unique current source for a given 

EEG signal (i.e., the EEG inverse problem solution) is highly dependent on accurate forward 

problem simulations. This is computationally expensive and relies on correct and precise 

head volume conductors (and, consequently, complimentary structural imaging data). 

Furthermore, EEG is less sensitive to deep sources, such as dendrites residing within the sulci 

or those emitting tangential currents to the skull and is instead most perceptive to superficial 

layers (in the cortex) and radial currents (Ahlfors et al., 2010; Haueisen et al., 2012; 

Srinivasan, 1999). EEG is additionally limited to capturing dendritic currents and non-axonal 

action potentials. Following this, due to the preference for pyramidal neuron activity, the 

contribution of other neuronal populations to EEG signals is restricted (Murakami & Okada, 

2006). EEG additionally has relatively low signal-to-noise ratio, meaning advanced data 

analysis is necessary and, for research purposes, a large number of participants is required to 

enable meaningful conclusions. 

 

1.4. Transcranial Direct Current Stimulation 

 
Non-invasive neurostimulation modulates nervous system activity by exploiting 

electromagnetic approaches. Typical non-invasive methods include TMS and tDCS which 

stimulate brain areas through magnetic fields or electric currents respectively. Other 

techniques exist such as transcranial alternating current stimulation (tACS), electroconvulsive 

therapy (ECT), transcutaneous electrical nerve stimulation (TENS) and invasive procedures, 
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such as deep brain stimulation (DBS) and vagus, peripheral or occipital nerve stimulation 

(VNS, PNS and ONS respectively) but the focus remains on tDCS for the presented thesis. 

 

For tDCS, a fixed, low direct current (approximately 0.5 – 2 mA) is delivered using a battery-

powered device via an electrode encased in a relatively large (25 – 35 cm2) saline-soaked 

sponge. The current is ramped up to the desired intensity, over a specified time period (on the 

order of seconds). A positively charged electrode (so-called anode) is placed over the desired 

stimulation region on the scalp to induce intracerebral current flow. A negatively charged 

electrode (termed cathode) sponge is placed elsewhere (typically bihemispherically). This 

completes the circuit and allows current to flow from the anode, through the conductive head 

tissue, to the cathode. The electrical current penetrates the scalp and skull to modulate 

spontaneous neural activity by changing the neural resting membrane potentials and hence 

neuronal excitability (Nitsche et al., 2008). Positive ions within the head flow toward the 

cathode, whilst negative ions flow toward the anode. This modulation can alter brain function 

and can thus be utilised to provide information regarding brain activity or for various 

therapies (Nitsche et al., 2008). Typically, anodal stimulation increases the neuronal 

excitability, whereas cathodal decreases the excitability of the target region. Alongside the 

standard setup equipment, control software can be employed to automate the stimulation 

protocol.  

 

1.4.1. Systems and Protocols 
 

The electrode positions determine the targeted brain region, most frequently compiled with 

the 10-20 EEG system (Nitsche et al., 2008). For this, the participants head is firstly 

measured (i.e., from the inion to the nasion and from the left to right pre-auricular) and used 

in conjunction with the 10-20 system to determine the ROI. Accurately placing the electrodes 

within the desired region is essential for effective tDCS stimulation. Placement can be 

enhanced by employing complementary structural imaging data (such as MRI) to determine 

the location of interest beforehand (Nitsche et al., 2008). This can be done with the support of 

a neuronavigational software. The target electrode is placed on the scalp over the ROI, 

guided by the 10-20 system or neuronavigational methods. The reference is typically located 

opposite to the anode, where a larger distance between them (suggested as greater than 8 cm) 

is expected to increase cortical modulation (Wagner et al., 2007). Placing the two electrodes 

too close together may result in current being shunted through the highly conducted CSF, or 
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across the scalp, rather than through the cortex (Moliadze et al., 2010). The reference can 

alternatively be placed extracephalically (i.e., not on the scalp) which limits the effect the 

cathode has on cortical modulation (Nitsche & Paulus, 2011). Differences in electrode 

placements (extra or intracephalically) can alter the current direction. Consequently, 

determining their positions based on the research hypothesis or clinical goal beforehand is 

imperative. Dual stimulation can also be obtained where the location of both electrodes is 

essential to excite one region (anodal current) and inhibit another (cathodal current).  

 

The size of electrodes typically varies between 25 (5 x 5) – 35 (5 x 7) cm2, where smaller 

electrodes result in a more focal target site. The most appropriate size can depend on the ROI 

for stimulation. To ensure limited stimulation of the reference electrode, a small focal 

stimulation and a larger reference electrode can be employed (Thair et al., 2017). The 

anatomy of the head is an additional factor which influences stimulation site and optimum 

electrode size. For example, using the same electrode size on an adult versus an infant (who 

have notably smaller head geometries) may result in a larger current spread and reduced 

focality in infants compared to adults. 

 

As with electrode position, the stimulation intensity and duration vary depending on the 

clinical or research goals. The majority of applications range between 5 – 30 minutes at 1 – 2 

mA (Thair et al., 2017), intensities above and below this have additionally been utilised, for 

example in stroke patients. The stimulation duration regulates the return of cortical 

excitability to baseline, i.e., the after-effects (a longer duration increases the after-effect 

time). The relationship between duration and intensity, however, is not necessarily linear. For 

example, high intensity or high duration can induce an inhibitory (as opposed to excitatory) 

effect for anodal stimulation and vice versa for cathodal stimulation (Batsikadze et al., 2013). 

Furthermore, although it is generally assumed higher intensities translate to an increased 

effect, this trend is also not necessarily linear and can be influenced by many factors such as 

head anatomy and size, electrode size, participant demographics, etc. Brain stimulation  

simulation tools such as Simulation of Non-invasive Brain Stimulation (SimNIBS; Thielscher 

et al., 2015) allow for exploration of specific tDCS parameters and quantification of how 

factors influence current flow and hence induced electric fields. SimNIBS for example 

produces realistic calculations of the electric field induced by TMS and tDCS. This software 

employs and integrates with MRI segmentation tools FreeSurfer (Fischl, 2012) and FSL 

(FMRIB [John Radcliffe Hospital] Software Library; Jenkinson et al., 2012) as well as open-
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source meshing tools for creating the head mesh. The induced electric field is determined 

using finite element method (FEM) calculations (discussed further in Chapter 2 and in 

Thielscher et al., 2015). 

 

Aside from the two cortical modulation procedures (anodal and cathodal), a control condition 

that uses sham stimulation can be employed for research purposes. A brief current is emitted 

at the start and end of the protocol to mimic tDCS sensations (i.e., tingling), but is off for the 

remainder of the stimulation period. No cortical modulation occurs during a sham 

experiment, and it can be used to determine whether experimental outcomes are a placebo 

effect or a result of cortical stimulation.  

 

Figure 1.5: Schematic representation of a tDCS system. Here, the 10-10 electrode position system is 

displayed on a human scalp, using the appropriate typical naming system to indicate the pre-frontal 

(Fp), frontal (F), anterior-frontal (AF), temporal (T), frontal-temporal (FT), parietal (P), temporal-

parietal (TP), occipital (O), central (C) regions, central-parietal (CP) and frontal-central (FC) . The 

nasion (Nz) and midline central (Cz) positions are also displayed on the scalp for reference. The 

anodal electrode (yellow rectangle) is positioned over C3 and the cathodal electrode (blue rectangle) 

over AF4, this is typical of motor cortex stimulation (see Chapter 4, section 4.3.2). The head mesh 

and electrode placements were generated with SimNIBS v3.1.2.  Both electrodes are connected to the 

tDCS stimulation device where current strength (in mA), stimulation duration (in minutes) and 

ramping time period (in seconds) are controlled.  

  

 

Anode (+)

Cathode (-)

1mA

10 min 10 sec

[Current 
strength (mA)]

[duration 
(mins)]

[Ramp 
time (secs)]

On Off
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1.4.2. Mechanism of Action 
 

tDCS is a neuromodulatory interaction, working by altering membrane potentials, rather than 

directly inducing targeted neuronal action potentials (as with TMS). When a negative 

stimulation (cathodal tDCS) is delivered, a weak, constant, electrical current flows from the 

anodal to cathodal electrode polarising brain tissue. An electron pool gathers around the 

cathodal electrode, increasing negative charge and in turn hyperpolarising (inhibiting) the 

cathodal targeted area. This decreases neuron excitability and decreases spontaneous cell 

firing. Conversely, the opposite occurs during positive (anodal) stimulation, which 

depolarises (excites) the anodal targeted area and increases spontaneous cell firing (Nitsche et 

al., 2008). The intensity (mA), electrode size (cm2), density (mA/cm2), position and 

stimulation duration effect the cortical excitability and magnitude and is therefore altered 

dependent on research/clinical treatment aims.  

 

Although the mechanisms behind tDCS stimulation are widely attributed to membrane-

potential polarity shift, a complete understanding is unknown. For example, research has 

revealed tDCS modifies synaptic microenvironments such as N-methyl-d-aspartate (NMDA; 

excitatory) receptors, and gamma-Aminobutyric acid (GABA)-ergic (an inhibitory 

neurotransmitter) activity (Liebetanz et al., 2002). Further to this, tDCS is proposed to 

promote cortex meta-plasticity, indicated by a build-up of Ca2+ within the cortex following 

tDCS stimulation, which increases the pH environment. Generation of OH- and H+ alongside 

this, alters the intracellular environment, both contributing to the induced plasticity (Monai et 

al., 2016). Furthermore, tDCS can achieve cortical changes long after the stimulation has 

ceased. These effects are thought to be dependent on protein synthesis and associated 

intracellular calcium concentration alterations. Thus, tDCS has also been suggested to 

promote long term potentiation (LTP) and long-term depression (LTD), a persistent 

strengthening or weakening, respectively, of synapses and thus synaptic activity and PSPs 

(Nitsche et al., 2008). This phenomenon also underlies synaptic plasticity. 

 

The neuromodulatory tDCS technique has demonstrated beneficial effects for a range of 

psychological and neurological disorders, such as depression (Nitsche et al., 2009), addiction 

(Lapenta et al., 2018) and schizophrenia (Agarwal et al., 2013), Alzheimer’s disease, stroke, 

chronic and movement disorders (Flöel, 2014) as well as cognitive enhancement for healthy 

and clinical populations (Hsu et al., 2015). Further to this, tDCS is also extensively utilised 
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within research, for example, in memory and learning, particularly involving plasticity 

(Ridding & Ziemann, 2010). 

 

1.4.3. Strengths and Limitations 
 
One advantage of tDCS is its cost effectiveness, requiring limited equipment and no 

specialist environment. This also allows the modality to be easily transportable between 

settings and accessible worldwide. Alongside this, tDCS is relatively simple to utilise, 

meaning, highly specialist training is unnecessary. These strengths also allow tDCS to be 

carried out within participants’ homes, particularly beneficial for treatment purposes. The 

advantages are particularly evident when compared to other neuromodulatory techniques, 

such as TMS. Furthermore, tDCS is generally considered safer than TMS as it is less likely to 

induce seizures and has no serious adverse effects (Stagg & Nitsche, 2011). For research 

purposes, sham tDCS, compared to sham TMS is also more indistinguishable than the 

respective control and is thus superior when exposing placebo effects. Another main 

advantage of tDCS is the potential for treatment of several disorders non-invasively, without 

the need for drug intervention. This is particularly attractive when the use of pharmaceuticals 

is limited, for example due to cost, allergies, or drug interactions. Similarly, tDCS allows for 

temporary and reversible cortical modulation, as opposed to the potentially long-term effect 

of drugs and surgery. In a research setting, tDCS can therefore be employed to determine 

brain-behaviour relationships through modulation without invasive procedures or expensive 

and time-consuming equipment.  

 

Conversely, although there are many advantages of tDCS, it is also subject to multiple 

disadvantages. Due to its low cost and ease-of-use tDCS does have the potential to be 

misused, for example if unsupervised medically and for recreational or unethical use (i.e., 

enhancing memory or learning when studying). Furthermore, although tDCS is widely 

recognised as being a relatively safe brain stimulation methodology, detrimental effects can 

still occur. For example, tDCS can increase the skin temperature and induce chemical 

reactions following stimulation that cause skin lesions. These can occur due to changes in 

skin impedance as a function of stimulation intensity and duration. To avoid this, the applied 

voltage should therefore be regulated to preserve the required current across variable 

impedances (Frank et al., 2009). Mild adverse effects have also been associated with tDCS 

such as tingling, fatigue, itching, headache, nausea, and transient redness (Poreisz et al., 
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2007). However, these effects are safe and generally well tolerated by most participants 

(Nitsche et al., 2008).  

 

A major limitation of tDCS is the relatively low spatial resolution (see Figure 0.1 in the 

General Introduction). The resolution is generally dependent on electrode size (which are 

relatively large as a proportion of whole head volume) and the prerequisite of including a 

reference electrode. A large region of brain, outside the ROI is consequently stimulated. 

Alongside this, many factors influence tDCS induced current propagation. These include the 

anatomy and size of the head, skull and scalp thickness and the electrical conductivity of the 

various head tissues. These factors are further discussed in Chapter 3 (variation in head 

conductivity) and Chapter 4 (tDCS induced fields as a function of age). One way to optimise 

the current injection pattern to deliver the required current within a target region is to model 

the tDCS induced fields from the scalp. Such computations involve solving the tDCS forward 

problem to predict the electric field strength and distribution induced by tDCS (Datta et al., 

2013). The precise geometry of participant head volumes can be obtained via a structural 

imaging method such an MRI and the residing tissues assigned variable conductivity values 

to model an accurate representation on an individual basis. Precise head geometry and tissue 

conductivity are essential as current follows a path of least resistance and is thus highly 

influenced by, for example, hard bone and CSF distribution. Individualisation of tDCS 

protocols and computational modelling are discussed in Chapter 4. The methodology 

involved in solving the forward problem and calculating tDCS induced fields is further 

discussed in Chapter 2.  

 

1.5. EEG and tDCS Reciprocity 

 
The electric potential at the scalp from a known dipolar current source within the brain is 

complementarily related to the electric field at the position of the aforementioned source,  

generated by an applied current on the scalp. This is known as the reciprocity principle. The 

principle represents a duality between EEG and tDCS and their forward problems, which can 

be efficiently combined for source analysis. An analogous duality exists between MEG and 

TMS (Malmivuo & Plonsey, 1995). As such, the reciprocity principle can be utilised to 

determine optimal current injections when EEG-FP solutions are available. For an array of 

electrodes that can both measure electric potentials and stimulate electrical currents, the 

potentials are a linear superposition of multiple current sources, whilst the stimulation current 
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generates an electric field. The reciprocity principle states a relationship between these 

associations – i.e., the electrical flow is parallel from electrode-to-source as from source-to-

electrode (Fernández-Corazza et al., 2016). This relationship can be operationalised to 

generate a strong electric field at active sources and therefore tune tDCS stimulation at 

appropriate targets. The duality involves applying a minimum-norm least squares estimation, 

where the electric field produced by multiple return currents is proportional to the minimum-

norm source estimate of the cortical activity. This mathematical formulation and its 

application is further dicussed in Chapter 2, Section 2.7.  

 

1.6. Basic Head Anatomy 

 
Understanding the complex anatomy of the human head is essential for brain stimulation 

parameters and protocols, as well as for localising the source of generated EEG activity. 

Electrical current penetrates through the many layers of the head, with varying compositions, 

to or from the brain. Understanding the path this takes is imperative for determining the 

location of brain activity from EEG and tDCS induced fields and stimulated area. The 

anatomy of the human head is therefore discussed in detail in this section. In one of its 

simplest forms, the head is typically composed of the scalp, skull, and brain. These three 

layers can be further segmented into a more refined head model, allowing realistic and 

personalised representations of electric current propagation from the brain to the scalp 

surface.  

 

1.6.1. The Brain and in-skull 
 

The brain is enclosed within the skull and consists of the cerebrum, cerebellum, and 

brainstem. The brainstem is the distal part of the brain connecting it with the spinal cord and 

regulates essential functions such as heart rate, temperature and breathing (Arnould-Taylor, 

1998). The cerebellum is at the base of the brain and is responsible for coordinating voluntary 

movements as well as balance and posture. The cerebrum is the largest uppermost section and 

contains two hemispheres, separated by a central fissure, and processes all higher order 

executive functioning. The cerebral cortex is the outermost layer of the cerebrum, consisting 

of GM, which contains neuronal cell bodies and dendrites. The neuronal axons connecting 

multiple GM areas with one another, and the WM resides beneath the GM (Arnould-Taylor, 

1998). The cortical layers of neurons comprise the majority of cerebral GM, whilst the WM 
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consists of deeper subcortical areas of myelinated axons. For maximum size within a 

confined volume, the cerebral cortex is a folded surface (gyri) with many grooves (sulci), 

which aid into the division of four lobes: the frontal, parietal, occipital, and temporal. These 

are classified as such based on their overlying neurocranial bones (Arnould-Taylor, 1998). 

The cortex is further mapped into approximately 50 functional regions, termed Brodmann’s 

areas, such as the primary motor and sensory cortex, visual and auditory cortex (Garey, 

1999). Blood vessels lie within the brain, where oxygenated blood is supplied to its front via 

carotid arteries and the back via vertebral arteries. They join between the midbrain and pons 

(located within the brainstem) and branch throughout the whole brain (Hirsch, 2009). 

 

Surrounding the brain and spinal cord, attached to the inner wall of the skull, is the dura 

mater, a thick membrane of dense irregular connective tissue that helps protect the brain from 

trauma. The arachnoid (less dense meninge) and pia mater (delicate inner layer meninge) are 

the remaining two meninges, located beneath the dura layer, between which lies the 

subarachnoid space (Gagan et al., 2007). Here, CSF circulates to support the brain, deliver 

nutrients, and perform waste removal. CSF is produced in the ventricles, areas of 

interconnected cavities within the brain. See Figure 1.7 for a schematic representation.   

 

1.6.2. The Skull 
 

The skull is the primary focus of the current thesis and is thus described and referred to in the 

most detail. The skull is a bone structure consisting of two key segments: the neurocranium 

and viscerocranium. The main skull bones and skull sutures can be seen in Figure 1.6. The 

viscerocranium, or facial skeleton, houses several sensory structures such as the eyes, nose, 

mouth, and ears and include the lacrimal, mandible, maxilla, nasal and zygomatic bones. The 

neurocranium encases the brain and CSF and is composed of two portions: the membranous 

flat bone structures for the upper part (cranial vault) and the cartilaginous part 

(chondrocranium) forming the lower base of the skull. The four major flat bones of cranial 

vault that surround the brain include the frontal, two parietal bones and the upper most part of 

the temporal and occipital bones. The chondrocranium, which grows to envelop the rapidly 

developing embryonic brain, consists of the two sphenoidal bones, the ethmoid bone, and the 

lower part of the occipital bone (Sadler, 2018). Bones are fused together across the suture 

lines, rigid joints formed by ossification (direct laying down of new bone material; Tang et 

al., 2008). Initially, in the early stages of human development, upper skull bones are 
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separated by fontanelles, dense connective soft tissue, to allow for skull growth and 

remodelling. During progression through childhood, the fontanelles close and are replaced by 

bone to create the adult sutures. This occurs at different stages, for example, the frontal 

fontanelle typically fuses between 3-9 months old (Vu et al., 2001), whilst the 

sphenosquamosal usually closes by 6 years, but can take as long as 10 (Idriz et al., 2015). The 

adult sutures also fully close at different ages across the lifespan, for example, the coronal, 

sagittal, lambdoid and squamosal sutures do not close until approximately 45, 50, 55 and 70 

years of age, respectively (Russell & Russell, 2018; Idriz et al., 2015; Singh et al., 2004; 

Nakahara et al., 2006).  

 

Figure 1.6: Schematic diagram of the main skull bones, the neurocranium  (black labels) and 

viscerocranium (red labels), as well as the main skull sutures (blue labels). The sagittal suture is 

visible as occurring across the top of the parietal bone. The coloured skull diagram is publicly 

available under the Pixabay License. 

 

The composition of the bone itself includes three layers; two outer compact bone layers with 

a spongiform layer sandwiched in between, both of which vary in thickness at different points 

(Akhtari et al., 2002; Tang et al., 2008). The compact layers are much denser than 

spongiform bone and form a hard external layer consisting of osteons, a linear matrix aligned 

parallel to the long axis of the bone. Blood vessels are distributed along the compact bone to 

supply blood to the various areas. Unlike spongiform bone, this is present across the cranium 
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(Akhtari et al., 2002). Spongiform (or cancellous) bone, on the other hand, is an open cell 

porous network not containing osteons, but instead consisting of trabeculae aligned as plates 

or rods. This reduces the density and allows for compression and growth.  

 

Alongside differences in skull structure due to the presence of fontanelles (in infants) and 

sutures (in adolescents and adulthood), which vary throughout development and between 

participants, skull morphology changes throughout the lifespan. The skull continues to 

undergo microstructural, density and histological changes until death. For example, an 

increase in calcium content, and thus ‘hardening’ of the bone, with age has been revealed 

(Peyman et al., 2001; 2007). The majority of foetal bones also contain red marrow (with 

active haemocytoblasts – capable of producing blood cells) which has a higher water content 

than the yellow bone marrow (haemocytoblasts replaced with fat cells) commonly present in 

adult bones. Furthermore, skull thickness has been suggested to deviate with participant age – 

from 2-3 mm at birth to 3-6 mm during early adulthood (Hansman et al., 1966; Despotovic et 

al., 2013). This increase however is non-linear, slowing down towards 3 years of age, and is 

non-uniformly distributed throughout the skull, with higher thickness in occipital than frontal 

and parietal regions (Li et al., 2015). Total cranial thickness in adults has further been 

discovered to increase with age (Todd, 1924; Ross et al., 1998), notably related to an increase 

in spongiform thickness (Hatipoglu et al., 2008; Sabancıoğulları et al., 2012; Delye et al., 

2015). One study accompanied this with inner and outer compact thinning (Skrzat et al., 

2004). However, other results have been inconsistent, finding no such relationship between 

skull thickness and age (Pensler & McCarthy, 1985; Ishida & Dodo, 1990; Lynnerup, 2001; 

Lynnerup et al., 2005). The relationship between age and the skulls’ structure, morphology 

and, importantly, electrical conductivity is not yet fully understood throughout the literature. 

A main focus of the presented thesis is to disentangle this relationship and the impact it has 

on tDCS (Chapter 4) and EEG (Chapter 5). 

 

1.6.3. The Scalp 
 

The scalp is an anatomical boundary covering the head which consists of five layers; the skin, 

connective tissue (dense layer of fat and fibrous tissue), epicranial aponeurosis (dense fibrous 

layer), loose areolar connective tissue (collagen containing matrix) and the pericranium 

(membrane covering outer surface of bones). Blood vessels are also positioned throughout 

the scalp to allow for blood supply distribution. 
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Figure 1.7: Figure displaying the various tissue compartments of the head and a subfigure of the 

detailed layers of the scalp, skull, and brain, labelled accordingly.  

The importance of accounting for a realistic and accurate head model, with particular focus 

on electrical conductivity values of the tissue layers and composition of the skull is discussed 

throughout the remainder of the thesis. The contribution to the underlying physics is 

addressed in Chapter 2 (particularly section 2.3), whilst an exploration of tissue conductivity 

is presented in Chapter 3 and corresponding influence on tDCS and EEG in Chapters 4 and 5, 

respectively. 

 

1.7. Chapter Summary 

 
Chapter 1 introduced the basic neurophysiology underlying brain activity, notably that which 

contributes to electromagnetic brain imaging methods. The principal neurological origins and 

application protocols of these methods, EEG and tDCS, were described. The importance of 

human head anatomy was additionally highlighted. In summary: 

 

• Postsynaptic synchronous activity of thousands of spatially aligned pyramidal neurons 

within the cortex produces an observable electrical current within the brain. 

• EEG is a non-invasive modality that measures the electrical activity stemming from 

current voltage changes in synapses. This electrical activity is frequently modelled as 

a dipole. EEG enables diagnosis of neurological disorders, such as epilepsy, and can 

inform understanding of several brain processes, including sleep, memory, and vision. 
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• EEG is cost-effective, portable, easily accessible and has high temporal resolution, 

however, has relatively low spatial resolution (on the order of cm) and requires 

computationally expensive forward and inverse solutions for source localisation. 

• Non-invasive tDCS modulates the neuronal activity within the brain by applying a 

low direct electrical current, to the scalp via two electrodes – anodal (positive current) 

and cathodal (negative current). It can be used for many clinical treatments such as 

depression, anxiety, stroke rehabilitation and Parkinson’s Disease. 

• tDCS, as with EEG, is inexpensive, easily transportable, and administrable making 

application within homes and hospitals possible worldwide. However, tDCS has low 

spatial resolution, similarly to EEG and accurate determination of the target site 

requires forward modelling and precise head geometries and conductivities. 

• tDCS target site optimisation can benefit from the EEG and tDCS reciprocity 

principle which states that the electrical flow from electrode-to-source (i.e., following 

tDCS stimulation) is equivalent to that from source-to-electrode (i.e., EEG signals). 

• Accurate representation of human head geometry is essential for understanding 

propagation of electric current and magnetic fields, necessary for EEG source 

localisation and tDCS optimisation.   

• Important features of head anatomy involve, but are not limited to, inclusion of the 

brain (consisting of GM and WM), CSF, the skull (compact bone, spongiform bone, 

and sutures) and the scalp. 
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CHAPTER 2: FORWARD AND INVERSE PROBLEMS 
 

2.1 Chapter Overview  

 
The previous chapter introduced the neurophysiological basis and mechanisms behind EEG 

and tDCS. This chapter focuses on the essential mathematical modelling of these processes in 

more detail, needed to understand the importance of the parameters involved. The governing 

equation is firstly derived from the general Maxwell equations. The forward problem is then 

discussed in detail and analytical and numerical methods comprising different head models 

are briefly reviewed. The forward operator, the lead field, is then provided and multiple 

solutions to the ill-posed inverse problem to reconstruct EEG sources are explored. Finally, 

the mathematical processes involved in tDCS are outlined and the reciprocity theorem, 

linking EEG and tDCS electric fields, and its use for optimising tDCS electrode placement is 

discussed.  

 

2.2. Underlying mechanisms 

 
Localising the source of electrical activity generated from EEG provides valuable knowledge 

for brain function origin and diagnosis of neurological disorders, such as epilepsy 

(Georgopoulos et al., 2007; Michel et al., 2004; Rowley & Roberts, 1995). Alongside this, 

understanding electrical current propagation from tDCS brain stimulation informs its 

application and treatment parameters. Estimating the neural generators of an acquired EEG 

signal and electrical propagation – the so-called inverse problem – however, has no unique 

solution (discussed in the general introduction). Moreover, the search for a solution requires 

knowledge of the many parameters of the head, such as its geometry and tissues’ electrical 

conductivities. Current travels from a source, within the brain, through the head’s many 

tissue compartments (as described in Section 1.6), typically following a path of least 

resistance. This is highly dependent on the tissues’ electrical conductivities. For example, 

current will transmit more readily through the CSF, a liquid, than the hard compact bone of 

the skull. Hence, accurate and precise a priori knowledge of head geometry and conductivity 

is essential for electromagnetic neuroimaging methods.   

 

To solve the inverse problem, the measured current (associated with variation in electric 

fields) must first be computationally modelled from known current dipole generators inside 
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the head, known as the forward problem. The best fit between the modelled and measured 

data is then determined, intending to localise the source of electrical activity; this is the 

inverse problem solution (Sanei & Chambers, 2013).  

 

2.2.1. From Maxwell to Poisson Equations 
 

The complete electric current inside the head, i.e., the current density !, can be described as 

the sum of the primary current !!, and the return (or secondary) current !" 	(Hämäläinen et al., 

1993). The primary current is the electrical current that flows through and across neurons and 

is embedded within the conductive medium (i.e., brain tissue). The return current is the 

current distribution outside of the source and is the product of the medium’s conductivity, # 

(a rank-2 tensor), and electric field vector, (. This is described in the microscopic version of 

Ohm’s law ! = #(. Thus, the total current, where the extracellular (passive) current satisfies 

Ohm’s law, can be written as: 

 

! = !! + #(.           (1) 

 

Electric current follows the principle of “charge conservation”, stating that the total (net) 

electric charge in a system remains unchanged and is represented by the continuity equation 

(Purcell & Morin, 2013). This states that the electric charge quantity within a volume only 

fluctuates by the electric current extent flowing out of or into the space via its boundaries. 

Applying Gauss’s Law, where the divergence of the current density ! is equal to the negative 

rate of change of the charge density ρ, with time ', this can be written in differential form as 

 

∇ ∙ !	 +	+,
+-
= 0.         (2) 

 

When the conductivity and current source are known, the continuity equation and the 

following Maxwell Equations can be employed. These equations relate the electric field (, 

with magnetic field ) and the current density !, over time ' (Nunez & Srinivasan 2006):  

 

Gauss’s Law    ∇ ∙ ( = 	 ,
.!

      (3) 

Guass’s Law for Magnetism   ∇ ∙ ) = 0     (4) 
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Maxwell-Faraday equation   ∇ × ( = − +/

+-
     (5) 

Ampere-Maxwell Law   ∇ × ) = *#! +	*0+#
+1

+-
.	   (6) 

 

The Maxwell equations are first reduced by observing that head tissue permeability equals 

permeability of free space (* = *#). The quasistatic approximation can also be used, where, 

when computing the electric (() and magnetic field ()), the time derivatives 	+1
+-

 and 
+/

+-
 are 

overlooked (Baillet et al., 2001). As sources change sufficiently slowly it can be assumed the 

structure is constantly at equilibrium because the temporal scale is considerably smaller than 

information propagation velocity. Time derivatives must also be small compared to ohmic 

current for the quasistatic approximation to be valid. Considering the human head diameter is 

small (<1 m) and the majority of neuronal frequencies are <100 Hz, the time derivative of ) 

to the electric field intensity is insignificant, meaning the quasistatic equation is valid. Hence, 

∇	× 	( = 	0, from equation 5.      

 

The electric field can be further expressed as a function of a scalar potential, ,, at position - 

since its curl is zero and thus irrotational, i.e., 

 

( = 	−∇,(-).                     (7) 

 

Employing equations 1 and 7, the current density becomes: 

 

! = !! − #∇,(-).          (8) 

  

The current flowing into an infinitely small volume equals that leaving the volume as current 

cannot accumulate in the extracellular space (except for the primary source). Hence, once 

applying the divergence operator to both sides and since the current density is divergent-free 

in the quasistatic approximation, we get: 

 

∇ ∙ ! = 0,          (9) 

 

where the unit of  ∇ ∙ ! is A/m3. This relates the electric potential and primary current by a 

Poisson equation, a generalisation of Laplace’s equation that describes general electrical 
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activity at a given point in time. Under the assumption that each EEG electrode is a passive  

point in the head, the point electrode model can be employed and the EEG-FP reduces to 

finding ,(W) satisfying 

 

∇ ∙ X#∇,(W)Y = 	∇ ∙ !!(9).        (10) 

 

2.2.2. Current Dipole 
 
 
As mentioned in Section 1.2, the generation of electrical activity within the brain can be 

approximated as an equivalent current dipole (Brette & Destexhe, 2012; de Munck et al., 

1988). This represents a source of oriented current situated at a specific location, -# with 

dipolar moment . (a unit vector with magnitude and orientation). Mathematically, it takes the 

form  

 

!!(9) = ./(- − -2),         (11) 

 

where, /, is a Dirac delta distribution, a generalised function mapping every function to its 

value at zero (Hosseini et al., 2016). 

 

2.3. The EEG Forward Problem 

 
For any primary current distribution !!(,), the electric potential on and outside the head can 

be obtained, a problem coined as the EEG forward problem. The EEG-FP computes the 

generated electric potential at the scalp for the head domain Ω (geometry of several head 

tissues), where the primary current, !!(-), and conductivity field, #, are provided 

To solve for the electric potential at the scalp, a numerical solution thus requires knowledge 

of the conductivity, geometries, and the current generator, modelled as single (or multiple) 

current dipoles. Analytical solutions can be employed when the head geometry is simple. The 

simplest utilises an infinite homogeneous model, where conductivity is assumed as constant 

across the whole medium. More realistic models, such as with layered spherical geometries, 

represent the electrical conductivity as homogeneous and isotropic within each tissue layer of 

the head. A range of approximations also exist, where conductivity can be represented as 

inhomogeneous and anisotropic (de Munck & Peters, 1993). 
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2.3.1. Infinite Homogeneous Medium 
 

Within a homogeneous volume with a unique homogeneous conductivity value, 

approximating the primary current as a current dipole becomes a Poisson equation: 

 

∆,(-) = 	 3
4
. ∙ ∇/(- − \).        (12) 

 

For a homogeneous, unbounded medium, ,(-) can be computed by utilising the fundamental 

solution of the Poisson equation:  

 

,(-) = 	∫ ^5(-)∇ ∙ !!(-′)`a′,       (13) 

 

where ^5(-) = 	−
3

67‖9‖
 (Wolters et al., 2007). 

 

However, air does not conduct electricity, therefore an infinite conductor field is impractical 

for EEG measurements. A boundary condition stating current does not flow externally from 

the head, should therefore constrain the forward solution. The EEG-FP is thus 

mathematically stated by (Hallez et al., 2007):  

 

b
# +:(9)

+=>
= #c,(-) ∙ 23 = 0																	d7	ef	

	c ∙ X	#c,(-)Y = 4 = c ∙ !!(-)				g7	f.
      (14) 

 

Here, 23 is the unitary vector normal to the head’s boundary and 4 is an abstract source term 

that depends on the source model (see section 2.3.2).  

 

2.3.2. Concentric Spherical Models 
 
The human head cannot be accurately represented as a homogeneous sphere and consists of 

many layers of differing conductivities (see section 1.6 for detailed description of typical 

head geometry). An analytical solution can still be utilised, proposed by de Munck (1988), 

where head tissues are represented by concentric spherical surfaces, each with different and 

anisotropic conductivities. For a three-shell model, an inner sphere represents the brain, an 

intermediate layer signifies the skull, and an engulfing layer embodies the scalp. The 



 

    
 

34 

diameter of the outermost sphere can either be matched with the diameter of a human head 

(Rush & Driscoll, 1968) or fixed (Clerc et al., 2012). 

 

For a layered concentric volume conductor, a semi-analytical solution of Poisson’s equation 

is applied. In EEG, the dipole thus has a potential , as a function of the position, radial and 

tangential component, outer, inner, and intermediate layer radius, scalp and brain 

conductivity, ratio between the skull and soft tissue, distance between dipole and centre, and 

polar angle of surface point (Mosher et al., 1999). 

 

Despite this inclusion, spherical models deviate from a realistic head shape and can result in 

substantial forward problem errors (Cuffin & Cohen, 1977). Non-spherical models have been 

proposed, such as the use of ellipsoids in place of spherical shells (i.e., in Fieseler, 1999 and 

Kariotou, 2004), for which analytical solutions can still be derived. Eccentric spheres or 

differently shaped spheroids can additionally be employed (Meijs & Peters, 1987; Vatta et 

al., 2005). Independent spherical volume conductors have alternatively been utilised for each 

sensor, which can be locally fitted to each surface neighbouring the corresponding sensor 

(Ilmoniemi, 1985).  

 

2.3.3. Realistic Head Models 
 

Realistic models aim to describe the head tissues in greater detail, accounting for additional 

layers than a three-layer spherical model and variants in geometry, i.e., not assuming 

spherical or ellipsoidal layers. Solutions to the forward problem using realistic models require 

numerical, rather than analytical methods, such as the Boundary Element Method (BEM) and 

FEM.    

 

2.3.3i. Boundary Element Method 
 

The BEM computes the surface potentials based on the discretisation of the equivalent 

integral equations on the surfaces separating volumes with different electrical parameters 

(Kybic et al., 2005). Of a piecewise homogeneous isotropic volume conductor interfaces 

separate compartments of differing conductivities, whilst the boundary separates the outer 

surface and non-conductive air. Surface meshes for the interfaces are generated and each 

region between interfaces is assumed to be isotropic. The solution is bounded by the Cauchy 
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boundary conditions ensuring that the potential and perpendicular component of the current is 

continuous across each interface. For the outermost boundary, the perpendicular component 

is zero, and the original boundary condition is imposed. The potential is approximated on 

realistic compartment boundaries, the simplest being a three-shell model including the brain, 

skull, and scalp (Stenroos et al., 2014; Stenroos & Nummenmaa, 2016). These 2D interface 

layers are discretised into small elements, most commonly, triangles. For example, the 

interfaces are digitised with triangles and the potentials within each triangle calculated. The 

integral over the triangles is then calculated of that surface (Kybic et al., 2005; Stenroos & 

Nenonen, 2012). 

 

The forward problem can be solved iteratively or directly, with finer grids requiring iterative 

solvers due to memory limitations. Solutions are still computationally expensive as they 

involve all mesh nodes. Boundary discretisation is also important when constructing BEM 

models, where mesh refinement can increase localisation precision. For example, it has been 

shown for deep sources at least 0.5 triangles/cm2 is required, whereas for shallow dipoles 2-6 

triangles/cm2 is necessary for comparable results (Yvert et al., 1997). Additionally, Haueisen 

and colleagues (1997) revealed triangular size should be <10 mm or below the distance 

between boundary and source. 

 

Following this, a limitation of the BEM is as the triangle size becomes comparable to the 

distance from source to boundary, the localisation accuracy decreases. A symmetric 

formulation (Kybic et al., 2005) reduces this error by classifying functions on the equivalent 

of a smooth bounded surface with discontinuous conductivity. Furthermore, for 

inhomogeneous and non-symmetric or non-linear problems, wholly populated system of 

equations will often occur in BEM, making it increasingly computationally expensive. 

Additionally, including the CSF requires representation of the cortex surface with 15-20 K 

nodes, substantially increasing BEM computation time and making the inclusion difficult 

(Vorwerk et al., 2012). Distinguishing between compact and spongiform skull bone is also 

relatively challenging as the compartments are not nested. Most importantly, BEM is 

incapable of considering anisotropy for general conductivity fields of the head. The electrical 

conductivity of some brain tissue regions, particularly WM, is accepted as anisotropic, and 

conduct electrical current preferentially in directions according to tissue structure (Geddes & 

Baker, 1967; Haueisen et al., 1996; Wolters et al., 2006). Exclusion of tissue anisotropy 

significantly effects forward potential computation (Haueisen et al., 2002; Wolters et al., 
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2006). Generally, BEM is more frequently used for MEG source modelling, for which tissue 

conductivities are assumed to have less of an impact than EEG (Cuffin, 1990; Koulouri, 

2014).  

  

2.3.3ii. Finite Element Method 
 

The FEM is a further numerical method for solving partial differential equations (PDE). It 

consists of discretising the PDE into finite elements and approximating the solution within 

each of them by employing a basis function set (generally polynomial). Such a discretisation, 

in this case, will consist of a set of elements spanning the entire head geometry, each with its 

corresponding conductivity tensor. As such, the FEM can incorporate anisotropy of the head 

volume, not achievable with other methods, such as the BEM. The FEM is generally 

preferred to other techniques due to its ability to incorporate arbitrary geometries and 

anisotropic and heterogeneous conductivity fields (Beltrachini, 2019) as well as including 

non-layered and complex structures such as the CSF and differing bone composition. Within 

each element a 3D parameterised (Ansatz) function defines the electrical potential as a 

function of the solutions at the surrounding nodes. By further considering the boundary 

condition (equation 14) and accounting for numerical singularities, a system of sparse high-

dimensional linear equations is reached. Such sparsity allows for an efficient computation, 

despite its size. The current is thus calculated from numerical derivation of the potential and 

the magnetic flux density computed using the Biot-Savart Law. FEM is employed for the 

current thesis; thus, this is formulaically described in more detail below.  

 

As discussed, the EEG-FP involves finding the electric potential ,(-) due to a current dipole 

(or multipole) source defined over the head domain Ω with boundary Γ (i.e., the scalp 

surface). Assuming sources in EEG volume conductor modelling as dipoles (or multipoles), 

however, causes a singularity, where the standard finite element (FE) methods cannot be 

applied when the Dirac delta functions are involved. This prevents a guarantee for the 

existence and uniqueness of the solution. Different approaches for representing source 

dipoles have thus been suggested. The simplest is to epitomise a dipole as a pair of stable 

voltages with opposite polarity on two neighbouring nodes (Schimpf et al., 2002). A further 

approach represents a current dipole as a summation of many current monopoles across 

adjacent nodes, a variant of the St-Venant principle and referred to as the blurred dipole 

model (Wolters et al., 2002). The subtraction approach, however, is generally applied as the 
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most numerically sound method (Beltrachini, 2018; 2019; Wolters et al., 2007). Here the 

field is separated into two parts. First, the analytically known singularity potential (,$), a 

standard field produced by an ideal dipole in an infinite homogeneous domain with constant 

conductivity across the whole head domain (	#$). This is calculated in equation 13 (Wolters 

et al., 2007). Second, a solution in the closed source-less domain under boundary conditions 

that corrects for current movement across boundaries with different conductivity regions (the 

singularity-free correction, ,?0((). This can be numerically approximated using an FE 

approach, where 	#?0(( is zero in the subdomain. Combining both parts and accounting for 

the Neumann boundary conditions means the solution is then singularity free due to the 

homogeneity condition stating 	#?0(( =	 	#$ −	# = 0	within the head domain (Beltrachini, 

2019; Bashar, 2011; Wolters et al., 2003; 2007). The electric potential is thus expressed as 

the sum of the two terms: , = 	 	,%&'' +	,$.		The problem then consists of approximating the 

correction potential using a numerical method for which ,$ is subsequently added.   

 

Each approach has advantages and disadvantages, the subtraction approach has been revealed 

to perform best for both radial and transverse dipoles, followed by the Laplace method for 

radial dipoles (Schimpf et al., 2002), whilst the Saint-Venant representation has been deemed 

the most appropriate in other studies (Haueisen et al., 1995; Wolters et al., 2007). The 

subtraction approach is considered the most rigorous method, as it exhibits existence and 

uniqueness of the solution with standard basis functions (Beltrachini, 2019; Wolters et al., 

2007). However, it is more computationally expensive compared to other methods such as the 

St. Venant’s approach. Iterative solvers are thus often used, with varying techniques and 

algorithms proposed to reduce time and increase efficiency. For example, the preconditioned 

conjugated gradient (PCG) algorithm is frequently employed which is an iterative algorithm 

using LU (lower-upper) factorisation as preconditioners. The analytical subtraction approach, 

a variation of the subtraction method minimising the numerical integration errors in 

tetrahedral domains, is utilised for solving the EEG forward problem in the current thesis. A 

more detailed description of its derivation is provided in Beltrachini (2019), where a 

MATLAB implementation is also publicly available through the provided FEMEG GitHub 

toolbox.   

 

To approximate the EEG-FP solution the variational formulation of the subtraction version is 

firstly found. Here, the corresponding differential equation (a continuous operator problem) is 
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converted to a discrete problem by applying linear constraints, determined by finite sets of 

basis (test) functions. Briefly, the differential equation is multiplied with a test function 5, 

belonging to a suitable space (6) and then integrated over the domain Ω (Beltrachini, 2019). 

The divergence (integral form of Gauss’s) theorem, which connects the current flux of a 

closed surface to divergence over its volume, is then applied and the boundary conditions 

utilised. 

 

The variational formulation results in finding ,(-) ∈ K, so, for all 5(-) ∈ K, satisfies 

j(,, 5) = k(5), where j ∶ 6	 × 6 → 	ℝ is the bilinear form defined as  

 

j(,, 5) = 	∫ 〈#(-)∇,(-), ∇5(-)〉dr,
@

      (15) 

 

(the stiffness matrix) and k ∶ 6	 → 	ℝ is the linear form given by 

 

k(5) = 	−s 〈#?0(((-)∇,$(-), ∇5(-)〉dr,
@

 

																− ∫ 5(-)〈#$∇,$(-), 23(-)〉dr.			
A

      (16)  

 

The unknown potential function ,(-)	can thus be expressed as a linear combination of the 

basis functions multiplied by the value of the solution at the corresponding node. This can be 

described as:  

 

,(-) = 	∑ ,B5B(-)C
BD3 ,        (17) 

 

where, {5E}ED3C  is the set of test functions, generally chosen as piecewise polynomial 

functions, with 7 number of mesh nodes. Each function is equivalent to unity at each 

computational point and zero at all other points. This leads to solving the discretised system 

of equations 

 

8 ∙ 9F299 = :.          (18) 

 

Here, 8 ∈ ℝC	×	C	is the stiffness matrix with elements 	8EB = j(5E(-), 5B(-)), that 

incorporates the conductivity and geometry of the volume. : ∈ ℝC	×	3 is the column (load) 
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vector of the source terms and vector 9F299 ∈ ℝC represents the potential values at 7 mesh 

nodes (Beltrachini et al., 2018; Haueisen et al., 1995; Wolters, 2003). Quadratic shape 

functions can be employed (second-order FEM), however linear functions are most 

frequently used (first-order FEM).  

 

For FEM, the volume conductor is generally discretised into tetrahedral or hexahedral 

elements (an example of a head model is provided in Figure 2.1). Hexahedral elements are 

advantageous as they completely match imaging voxel shapes, whilst tetrahedral elements are 

versatile to represent arbitrary shapes. Elements can also vary in size depending on tissue 

segmentation or be represented as uniform elements (e.g., 1 mm3 voxels).  

 

Figure 2.1: Example of head model discretisation (mesh) with in 6.8M elements and 1.1M nodes, 

displayed five layers; scalp (purple), skull (dark green), CSF (white), GM (blue) and WM (green). 

The axial (left) and coronal (right) views are shown. 

 
2.4. Lead field Matrix 

 
The lead field matrix (<) is a collection of solutions for dipolar sources distributed within the 

brain, with unitary amplitude. It is a linear operator that maps potentials on a surface from the 

activation within sources and is thus the solution at the electrodes. For the FEM, each row 

consists of solving a system of equations as in equation 18. Each unit norm source on the 

EEG electrodes supplies to the equivalent column on the lead field matrix. The >) × >* 
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(number of EEG electrodes × number of source dipoles) lead field matrix can thus be 

represented as  

 

<IIJ = =IIJ8	4K :	4.         (19) 

 

Here 8	4K  denotes the pseudoinverse of the stiffness matrix (computed once the head 

geometry, conductivity values and element basis functions are fixed), which is solved 

iteratively, and w	4 represents the source vector, expressed as a linear combination of 

conductivity independent matrices. =IIJ is the selection matrix which selects or interpolates 

the potentials only at electrode positions. 

 

2.5. The EEG Inverse Problem 

 
The inverse problem in EEG utilises measured electric potentials to reconstruct the source of 

the generated current that best explains such measured values. The inverse source estimation 

problem, however, does not have a unique solution and is not well-posed. As discussed in the 

general introduction, the solution is ill-posed as, firstly, results can be unstable due to 

increased noise compared to the power of the acquired signals. This means that it is possible 

that no current distribution explains the data. Secondly, multiple source distributions can 

explain identical EEG measurements (Gylys-Colwell, 1996). For example, some current 

distributions within a conductor generate no external electric potentials (i.e., are electrically 

silent). Hence, accurate reconstruction is not possible solely from the external measurements. 

Thirdly, small changes in measurements can drastically change the solution, i.e., large 

changes in currents from sources far from surface measurements can result in much smaller 

surface changes (Grech et al., 2008). Solutions therefore require a detailed head volume 

conductor model as well as a source model with distribution constraints. This allows 

computation of meaningful solutions by approximating a well-posed problem.  

 

Following from lead field calculations, the forward model with assumed known and fixed 

source orientations can also be written as 

 

? = 	∑ xE9E + @ = xE + @E         (20) 
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Here, ? ∈ ℝL" is a vector measurement with additive noise @ ∈ ℝL", 9E ∈ ℝL# is a source 

amplitude vector for the g-th source, and x is the lead field matrix, as >) 	× >*.Thus, the 

inverse problem then consists of finding the best estimate for dipole magnitude and position 

that best explains the vector measurements with additional noise, modelled as Gaussian 

(Beltrachini et al., 2013). Noise can include external electrical, environmental sources that 

convert to EEG measurements such as that from power lines and electronic equipment. 

Further contributions to noise include physiological measurements such as cardiac signals, 

movement artifacts and ocular signals (for a review on noise removal see Chatterjee et al., 

2020).  

 

An overview of both the EEG-FP and IP is provided in Figure 2.2. Here, the signal matrix, 

A ∈ ℝL#, contains the superposition of all source dipole signals (for >* sources) of the 

electric potential data, recorded at >) electrodes of an EEG sensor array. The lead field 

matrix (forward operator), < ∈ ℝL"	×	L#, characterises the propagation of the signals in the 

head volume conductor, dependent on Ω and #. The EEG-IP in turn, aims to estimate the 

unknown sources, A, from the measurements B.  

 

Figure 2.2: Illustration of the EEG forward and inverse problems with relevant equations. In the 

forward problem (green arrow), the propagation of the signals in the head volume conductor (!) 

associates the source signals (") to the EEG measurement data (%), for &! electrodes and &" 
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sources. The ill-posed inverse problem (blue arrow) then maps the modelled data (FP solution) with 

the observed EEG data to estimate the source of activity. The head diagram is publicly available from 

medical illustrator Patrick J. Lynch under the copyright Attribution 2.5 License 2006. The EEG data 

example is taken from the openly available database described in Shoeb (2009). 

 

Solutions describe neuronal currents as known source terms in many ways, which can be 

divided into two main categories. The first estimates a best fit of the dipoles to the 

measurements using a small number of dipoles, which have unknown locations and 

orientations, and then solving with least squares, i.e., the Dipole Fit Model (Scherg & 

Ebersole, 1993; Oostendorp & van Oosterom, 1991). The second, i.e., the Distributed Source 

Model (DSM), employs a larger number of sources, with fixed locations and sometimes fixed 

orientations, which are distributed across a larger area and calculates a distribution of dipole 

moments at each point (Ding & Yuan, 2012). These methods are described in more detail 

below. 

 

2.5.1. Dipole Fitting Approach 
 

This approach assumes that measurements can be explained by the activity generated by a 

single dipole source with unknown position and moment (magnitude and orientation). This 

provides an optimal dipole for the given location and can be solved for a fixed source. 

Several active dipoles can be fitted through generalisation to this method, where the solution 

non-linearly determines the optimal dipoles by altering the position parameters. A large 

limitation of this approach, however, is that it is exponentially complex and hence can only 

assume a small number of dipoles. Additionally, the number of sources needs to be 

predefined and if this number is incorrect, localisation can fail. Typically, a maximum of two 

dipoles can be utilised for this approach and results become more accurate when the dipoles 

are spatially separated (Grech et al., 2008). When sources have overlapping fields (most often 

the case), this technique also fails. For this reason, it is often only employed when the source 

of brain activity is concentrated to a small volume. Alternatively, the addition of temporal 

information can provide better determination of the solution (Ou et al., 2009; Koulouri, 

2014). 
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2.5.2. Pre-defined Dipoles  
 

When the location of the dipole(s) is pre-defined, for example when the cortex area of a 

particular brain function has been extensively pre-assessed, so-called scanning methods can 

be used. 

 

Beamforming is one such approach that uses a sensor array to combine measurements at all 

locations to increase the signal-to-noise ratio (and resolution) and focus the array on a 

specific pre-defined area. Most frequently, beamforming algorithms scan ROIs voxel by 

voxel (Van Veen et al., 1997; Robinson & Vrba, 1999). Alternatively, they can apply 

anatomical constraints, for example, restricting sources to cortical GM with perpendicular to 

the surface orientation (Fuchs, 2002; Hillebrand & Barnes, 2003). One example of 

beamforming employs linearly constrained minimum variance (LCMV) and spatial filtering 

to minimise the estimated variance using an optimisation solution. It is assumed that sources 

are uncorrelated with one another and noise and source amplitudes are a random variable. A 

downside of this method is that multiple time samples are required, and noise and signal 

covariance matrices are pre-requisites, estimated from the available data. Additional 

beamforming techniques can be found in Sekihara and Nagarajan, (2015).  

 

A similar method, MUltiple SIgnal Classification (MUSIC) separates all measurement space 

into two mutually orthogonal spaces: the signal and the noise space. A single dipole is 

scanned within the source volume (3D head) and the forward problem for a dipole at each 

location is estimated against the signal subspace. Positions where the source model represents 

the optimal prediction to the signal subspace corresponds to the dipole site (Schmidt, 1979). 

Contrasting to beamformers, MUSIC does not require sources to be uncorrelated, nor the 

inversion of the signal covariance matrix and it also has improved endurance for 

interconnected time sources (although it does require a sufficient number of time samples; 

Mosher et al., 1992). Additions to MUSIC have been proposed, for example Recursively 

Applied MUSIC (RAP-MUSIC), which avoids multiple dipoles describing equivalent signals 

by extracting a single maximum and subtracting the signal involvement of this source from 

the data (Mosher & Leahy, 1998). A development, Truncated RAP-MUSIC (TRAP-MUSIC) 

remedies the concealed limitation that prevents precise estimation of the correct number of 

sources. For more specific applications, synchronous activity can be located using source 
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clustering (POP-MUSIC; Liu & Schimpf, 2006) and ExSo-MUSIC locates extended sources 

(Birot et al., 2011).  

 

2.5.3. Distributed Source Models 
 

For DSMs, dipoles can be positioned on the cortex surface mesh. Solutions to DSM inverse 

problems apply different a priori assumptions and constraints to ensure reliability and 

accurately reflect brain activity properties. The current thesis utilised a DSM method 

(specifically sLORETA, see below) and is thus discussed in more detail.  

 

The variational regularisation method determines two different functionals. One which 

measures the distance between the vector measurements and the lead field matrix, termed the 

data fidelity term (C(-)) and the second, a regularisation function (D(-)), where - denotes 

the volume coordinates in the brain. This appropriately minimises resolutions with non-

optimal assemblies (Benning & Burger, 2018). Hence: 

 

-y = argmin
9

C(-) + D(-)	.        (21) 

A Euclidean norm is often used to denote C(-) as Gaussian noise is most frequently used for 

actual EEG measurements. 

 

Tikhonov regularisation (Hämäläinen & Ilmoniemi, 1994), based upon Euclidean norm 

regularisation, is the most universally employed method. MNE evaluates the dipole 

distribution to meet the potential values with the smallest complete power. A minimising 

regularisation parameter ⋋ is commonly used to regulate the contribution of both the data 

fidelity term and regularisation function (the higher ⋋, the more regularised the solution is) 

so  

 

-y⋋ = argmin
9

‖? − <-‖NN +⋋ ‖-‖NN.       (22) 

 

Here, ‖? − x-‖NN is the fidelity term assuming Gaussian noise and &(-) = 	 ‖-‖NN is the 

regularisation of the Euclidean norm. This has a unique closed form solution 

 

-y⋋ =	<O(<<O +	⋋ F)P3?,        (23) 
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where F is the identity matrix and the superscript G indicates the transpose of the 

corresponding matrix. < can also be represented as its singular value decomposition 

(factorisation of the matrix) < = Ä=ÅO ,	and the identity matrix as F = 	ÄÄO. Thus, -yÇ⋋ =

	<OÄ=⋋P3ÄO?, where É⋋P3 is a diagonal matrix with ith diagonal element  	 3

4&
'K	⋋

, {#E}E. From 

this, with ith element of a vector or column of a matrix, 

 

-y⋋ = ∑ 3

4&
'K	⋋

[ÄOÖ]E9EE 	.        (24) 

 

Hence, the solution can be calculated as the weighted sum of singular vectors 9E. 

 

MNE, however, frequently locates deep sources as residing on the surface of the cortex. 

Instead of the source amplitude, the linear transform, H-, can be regularised, for example to 

reduce the predisposition to superficial sources. This can be represented as a depth weighting 

matrix (Lin et al., 2006) -yÇ⋋ = argmin
9

‖? − x-‖NN +⋋ ‖H-‖NN. Low Resolution 

Electromagnetic Tomography (LORETA) is one such method that calculates the smoothly 

distributed electric activity whilst assuming synchronous and simultaneous neuronal firing of 

adjacent neurons (Pascual-Marqui, 2002), using H as a discrete spatial Laplacian operator. A 

limitation of this method, however, is that it results in superficial sources to be near zero.  

 

A similar formulation, the standardised LORETA (sLORETA; Pascual-Marqui, 2002), 

assumes no noise and computes the source position as the maximum measurements of the 

standardised power and utilises diagonal elements of a resolution matrix I	(a source 

covariance matrix), where H = IP3/N. The diagonal elements of the resolution matrix relate 

the sensitivity of each estimated source to itself, whilst the off-diagonal elements indicate the 

sensitivity to the remainder of brain sources. For EEG, inverse solutions for off-diagonal 

elements typically incur leakage (Farahibozorg et al., 2018) and can result in false positives 

and imaging artifacts (Matsuura & Okabe, 1995), especially for focalised sources. Additional 

methods have been introduced to reduce this effect, such as the Focal Under-determined 

System Solver (FOCUSS) which estimates focal sources using interactions of the weighting 

matrix (Gorodnitsky & Rao, 1997; Gorodnitsky et al., 1995) and a priori thresholding 

(Maksymenko et al., 2017). However, non-linear solutions that use the sparse k3 norm 
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regularisation are more often employed. The current thesis utilised sLORETA for EEG 

inverse calculations due to the assumption of no noise and it being a widely used application. 

 

2.6. tDCS Induced Fields 

 
As with EEG, bioelectromagnetism underlies the tDCS stimulated induced electric field. The 

quasi-static approximations can be applied, to simplify the field solutions, as the electric 

permittivity and magnetic permeability for biological tissues is relatively low (Wagner et al., 

2007). An electric field (, is related to the current density vector !, with conductivity #, by 

Ohm’s law, as in equation 1. Following the quasistatic condition, ( is the negative gradient of 

the scalar potential ,(-) (equation 7) which in combination results in a Poisson partial 

differential equation (equation 10). Hence, this describes the field distribution within the head 

after tDCS stimulation. The connection between the external stimulation and estimated 

potentials is defined by the Neumann boundary conditions (equation 14). As with EEG, the 

electric field can then be attained through numerical methods in a realistic head model using, 

e.g., FEM.  

 

2.6.1. tDCS Forward Problem 
 

More specifically, the tDCS forward solution solves for the electric potential distribution on 

the scalp as a result of the current injection pattern, where the electrical conductivities are 

assumed as known. The current injection on the scalp can thus be structured as the linear 

combination of a complete array of independent current injection patterns, with >)	 number 

of electrodes and >)	 − 1 patterns. This is a quasistatic problem with Neumann boundary 

conditions (Fernández-Corazza et al., 2013) 

 

à
	c ∙ (#(	-)c,(-) = 0												g7	f	
	#(-)âc,(-)ä ∙ 23 = !(-)				g7		ef.

       (25) 

 

Here, ! represents the normal component of the current density on the boundary, which is 0 

everywhere except for the current injection sites. As with EEG, this problem is thus reduced 

to a linear system of equations (equation 18, 8 ∙ 9 = :). Here, : contains the current injection 

information, ã is the stiffness matrix 8 ∈ ℝC	×	C,	incorporating the conductivity, geometry of 

the volume and impedance and 9 is the unknown electric potential at each mesh node. The 
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FEM with first order tetrahedral elements and the point electrode model can thus be utilised. 

For every head volume tessellation element (K), the electric field can be computed for each 

injection pattern, J to form å, a 3K	 ×	(>)	 − 1)	transfer matrix. The tDCS FP is therefore 

solved for a complete set of >)	 − 1 forward solutions with an >)	 electrode montage 

(Dmochowski et al., 2017; Saturnino et al., 2019). For a standard tDCS application (one 

anode/cathode), the input current density at the anode/cathode on the boundary of the head is 

selected and zero current flow perpendicular to the scalp at all other regions imposed.  

 

2.6.2. tDCS Inverse Problem 
 
The application of tDCS can be optimised for scalp location and current intensity by 

employing the so-called tDCS inverse solution. This can also be reframed to maximise the 

desired directional current density at the target whilst minimising its effect elsewhere in the 

brain and in other directions. Similar to the EEG inverse solution (section 2.5.3, equations 21 

and 22, without the regularisation function), the vector of individual current injection 

currents, JF, in each electrode generating the electric field spatial profile (, can be 

analytically represented as 
 

JF = argmin
R(	

‖éJF 	− (‖N = (èSè)P3èS (.     (26) 

 

For the EEG inverse solution, the number of unknowns is greater than the number of 

electrodes (equations) and is underdetermined, hence the problem is ill-posed and requires 

regularisation. On the other hand, the number of unknowns for tDCS is less than the number 

of electrodes (dependent on simulation region area) and is thus overdetermined, resulting in a 

solution not requiring regularisation (Sekihara & Nagarajan, 2008).  

 

Solutions to the presented tDCS inverse problem thus determine optimum electrode 

placement. Methods for solving this analytical problem include Least Squares, weighted 

Least Squares and Linearly constrained minimum variance, among others (more detailed 

derivation of these methods are summarised in Dmochowski et al., 2011). These are 

discussed briefly. Firstly, the least squares optimisation method assigns a comparatively large 

electric field close to the target and zero at unaffected areas. The squared error between the 

required electric field and the attainable field computed as the linear superposition of the 
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induced electric fields across the electrodes is thus aimed to be minimised. For this 

formulation, the number of total nodes is considerably high (so as to accurately compute 

FEM solutions), whereas the number of target nodes is comparatively small. To regulate the 

balance between reaching the desired intensity within a minimal (focal) field, the weighted 

sum of squares can be employed to both (weighted least squares method). Here, a scalar 

constant can control the compromise, where a low constant accentuates a zero field at non-

target areas and a high constant prioritises achieving the required intensity at the ROI. The 

current must also be constrained to a maximum value within the safety range (typically 2 – 

2.5 mA). This either involves limiting the sum of all positive currents, or restricting the 

current at each individual electrode, utilised in a weighted least squares with individual 

constraint approach. This method is particularly useful when the electrodes are considerably 

far apart or when two electrodes reside on one side of the head (which may increase the local 

current). It is necessary to iteratively adjust the applied constant (as used in standard 

weighted least squares) until the required intensity is reached, which can be computationally 

expensive. A further method, linearly constrained minimum variance, lessens this cost by 

employing a hard linear constraint (i.e., to accomplish a precise electric field at a single 

node). The current distribution satisfying this restraint with the lowest total electric field 

across the volume can then be specified. A limitation of this, however, is that the maximum 

field cannot be demonstrated at the ROI with certainty and high fields at non-target regions 

can occur. Furthermore, if the target intensity is too high, the applied current safety criteria 

may be violated, thus a lower target intensity can be specified. A complete outline of tDCS 

inverse solutions is unnecessary for the current thesis, thus a more detailed formulation of the 

discussed schemes is provided in Dmochowski and colleagues (2011).  

 

2.7. EEG and tDCS Reciprocity 

 
As discussed in section 1.5 and outlined by Malmivuo and Plonsey (1995), the reciprocity 

coupling EEG and tDCS theories that for a dipole at -, with dipolar moment ., the difference 

between the electric potential ,, between two points on the scalp (j and ê) is: 

 

,(j) − ,(ê) = 	 ∇
UU⃗ :)*(9)∙	X

Y+,
.        (27) 
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Here, the injected electric current ℎZ[, between j and ê results in the electric potential 

,Z[(-), at location -. This is greatest at - and thus the imposed potential gradient at - and the 

dot product of . are also maximal, when the two points are the poles of the scalp forward 

potential generated by a dipole .. The desired current injection ℎZ[ into the EEG poles thus 

also maximises the directional current density ! on the position -: 

 

j, ê = argmax	
Z,[

{,(j) − ,(ê)}		  

								= 	argmax	
Z,[

í∇])*(9)
Y)*

	 ∙ 	.ì 	⟺		 . ∙ ∇,Z[(-) ∙ .	gï	ñj;gñjk    (28) 

  

The solution, point pair j, ê on the scalp, maximises the potential gradient , at location -, 

along the required orientation ., and thus based on the reciprocity theorem are the ideal 

points for tDCS application. More details on this formulation can be found in Malmivuo and 

Plonsey (1995), Wagner et al. (2016) and Fernández-Corazza and colleagues (2016). This 

duality has been employed to reduce compuation time in EEG lead field calculations 

(Wolters et al., 2004; Hallez et al., 2007), but less so for tDCS optimisation. Such application 

is beyond the scope of the current thesis, however is discussed more thoroughly in Salman 

and others (2015) and multiple methodolgies for optimum tDCS placement based on the 

reciprocity priniciple are provided in Fernández-Corazza et al. (2016). 

 

2.8. Chapter Summary 

 
Chapter 2 provides an overview of the underlying mathematical mechanisms involved in 

EEG source localisation and tDCS field propagation. Several forward and inverse solution 

methods were reviewed, and a summary of important points are discussed below:  

 

• The Maxwell equations can be employed to calculate the electric field within the 

head. This requires accurate and precise knowledge of the head domain (geometry) 

and electrical conductivity of the head tissues. 

• Realistic head models are the most appropriate and accurate representation which 

require numerical methods to solve the EEG forward problem. The Finite Element 

Method (FEM) is generally preferred by discretising the head volume and solving a 

system of linear equations. 
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• The lead field matrix, a linear forward operator mapping electrical potential on a 

surface from the activation source, is subsequently computed in the EEG forward 

problem. 

• The inverse problem is ill-posed and can have an infinite number of solutions. There 

exist many solutions, each of which are based on specific a priori hypotheses. 

• Of these, minimum norm estimates are the most widely utilised methods which 

evaluate the distribution of a dipole to account for the potential values with the 

smallest complete power. An example is standardised Resolution Electromagnetic 

Tomography (sLORETA) which is utilised in the current thesis. 

• The field distribution within the head after tDCS stimulation is described as a Poisson 

partial differential equation, as with EEG, and the association between the estimated 

potentials and external stimulation is defined by boundary conditions. 

• The reciprocity principle, linking the EEG electric potential and tDCS induced fields 

allows computation for optimum tDCS electrode placement based on a provided 

desired current intensity and target region. 
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CHAPTER 3. HEAD TISSUE CONDUCTIVITY VARIATION 
 

3.1 Chapter Overview  

 
The previous two chapters highlighted the importance of accurate and precise head geometry 

and tissue electrical conductivity for EEG source localisation and tDCS induced fields. This 

chapter focuses on how the electrical conductivity of head tissues varies throughout the 

literature and thus has the potential to effect electrical source characterisation and field 

propagation. A meta-analysis was conducted to determine significant variation and any 

influential factors. This included measurement methodology such as technique, condition, 

frequency and temperature and participant demographics such as age and pathology. 

 

3.2. Motivation  

 
As discussed in Chapters 1 and 2, necessary parameters for determining electrical source 

localisation and induced fields are accurate and precise head tissue electrical conductivity 

values. Electrical conductivity of biological tissues predominantly results from the movement 

of hydrated ions, constrained, and impeded by anatomical microstructure. The differences in 

extracellular ion concentration, tissue cell size, orientation, membranes, and channels 

contribute to the variability in electrical conductivity between biological tissues. CSF, a 

liquid with high free movement of ions, for example, has a higher electrical conductivity than 

brain tissue, consisting of 70-80% water which in turn is more conductive than hard skull 

bone (Plonsey & Barr, 2007).  

 

As mentioned in the previous chapters, erroneous head tissue conductivities can impact 

significantly in electric surface potential estimations as well as magnetic field strength 

(Cohen & Cuffin, 1983a; Haueisen et al., 1995; Okada et al., 1999). This, in turn, can 

introduce systemic errors for both EEG and MEG forward problems (Gonçalves, et al., 

2003a; Gonçalves et al., 2003b) and thus inaccurate source localisation (Akhtari et al., 2002; 

Haueisen et al., 2002; Pohlmeier et al., 1997; Vatta et al., 2002). Furthermore, inappropriate 

conclusions inferred from EEG data for brain function, pathology and disease treatments can 

stem from tissue conductivity misspecification (Wendel et al., 2006). This includes, for 

example, insights into psychiatric and neurological disorders (Frantseva et al., 2014; Park et 
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al., 2002; Schlosser et al., 2007) and epilepsy treatment implications (Akhtari et al., 2006; 

Fabrizi et al., 2006). 

 

Head tissue conductivity values, however, are frequently assumed from previous literature, 

which vary and are inconsistent, as shown below. Considerable differences in conductivity 

have been revealed within and between reports (Faes et al.,1999; Gabriel et al., 1996a; 

Geddes, & Baker, 1967). Such variation can be dependent on participant demographics, such 

as age and pathology, as well as measurement condition (i.e., in vivo, ex vivo or in vitro), 

applied frequency, tissue temperature and employed methodology. Differing methodologies, 

such as directly applied current (DAC), EIT, E/MEG and DTI, can produce diverse 

conductivity values. DAC refers to any invasive method where current is directly applied to 

the medium and electrical conductivity is determined from the resulting potential difference 

between a pair of electrodes. For EIT, alternating current at single or multiple frequencies is 

applied to the scalp via two or more conducting surface electrodes. The electrical 

conductivity can then be inferred from the resulting potential difference between the 

remaining electrodes, not involved in current injection (Holder, 2004). E/MEG data can also 

be used to iteratively estimate the optimum equivalent electrical conductivities given the 

acquired E/MEG measurements (Baysal & Haueisen, 2004). DTI, on the other hand, 

transforms diffusion tensor eigenvalues, measured using diffusion-weighted MRI, to 

electrical conductivity tensor eigenvalues with various estimation methods (further discussed 

in Section 3.5.5i). 

 

Methods are often chosen due to their respective strengths and weaknesses for determining 

different tissue (i.e., soft tissues vs bone) conductivities (summarised in Table 3.1). 

Advantages for DAC methods are that they can analyse conductivity of all tissue types, are 

relatively cost effective, with a low acquisition time, easily portable and without requiring a 

computational head model. Simplified assumptions regarding the neurobiology and dynamics 

of the human head, however, are consequently often introduced. Furthermore, DAC is 

invasive and may depend on post-mortem samples or excised tissues which are subsequently 

not often under natural biophysical conditions. For example, post-mortem tissues undergo 

biochemical processes initiated by death, such as changes in cell membrane polarisation and 

ion mobility, which consequently effect conductivity (Opitz et al., 2017). Opitz and 

colleagues (2017) validated differences between post-mortem and live intracranial electrical 

fields, despite controlling for confounding variables (i.e., temperature). Comparably, excised 
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tissues endure numerous extracting and preservation procedures (i.e., saline soaked, time 

since excision, etc.). Such practices can change the electrolyte concentration (Akhtari et al., 

2002) and hence influence conductivity. Conversely, EIT, E/MEG and DTI methods are non-

invasive and occur in vivo, and thus advantageously remain under natural conditions. EIT and 

E/MEG are cost effective with low acquisition times and portable, compared to DTI methods 

which are more expensive with high acquisition times, and which are non-portable. EIT and 

E/MEG, however, have lower spatial resolution than DTI and require the use of a 

computational head model (detailed strengths and weakness of EEG specifically are provided 

in section 1.3.3.). DTI, however, employs MRI, making skull conductivity non-accessible 

due to weak MR signal towards bone layers. A further advantage of DTI is the ability to 

classify anisotropic and heterogenous conductivity values of soft tissues (Johansen-Berg & 

Behrens, 2013). Conversion from diffusion measurements to conductivity, however, also 

depends upon basic assumptions and can differ throughout applications (Rullmann et al., 

2009; see also Section 3.5.5ii).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.1. Summary of the strengths and limitations for the four included methods; direct applied 

current (DAC), electrical impedence tomography (EIT), electro/magnetoencephalography (E/MEG) 

and diffusion tensor imaging (DTI). 

 

Method Strengths Limitations 

DAC - no need of head model 

- can classify all tissues 

- portable 

- cost effective  

- low acquisition time 

- invasive 

- unnatural conditions if not 

in vivo 

- homogeneous 

EIT - non-invasive 

- in vivo 

- portable 

- cost effective 

- low acquisition time 

- head model required 

- low spatial resolution 

- low signal-to-noise 

- homogeneous 

E/MEG - non-invasive 

- in vivo 

- portable 

- cost effective 

- head model required 

- low spatial resolution 

- homogeneous 

DTI - non-invasive 

- in vivo 

- high spatial resolution 

- anisotropic 

- heterogeneous 

- non-portable 

- relatively expensive 

- weak MR signal in skull  

- high acquisition time 
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Assuming conductivity from previous literature is insufficient when accurate and precise 

values are required. Significant and important factors affecting this variation, however, are 

currently unknown. Knowledge of influential variables, such as tissue segmentation, 

methodology employed, sample temperature or participant pathology can provide insights 

into the stability of tissue conductivity values and methodology, as well as suggest areas for 

future research. This chapter therefore systematically and extensively investigated all 

published reports of human head tissue electrical conductivity to i) evidence any significant 

variations in conductivity values of different head tissue types and ii) determine any 

significant factors contributing to variation. Chapter 3 thus outlines a systematic meta-

analysis, restricted to human head tissue, to identify relevant papers and reveal significant 

factor variables via a multiple regression.  

 

3.3. Meta-Analysis Methods 

 
3.3.1. Literature search 
 
Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement 

guidelines (Moher et al., 2009) were followed and a PRISMA checklist and flow diagram 

completed (Appendix A.) An extensive literature search, spanning three databases (PubMed, 

Scopus, and Web of Knowledge), was conducted to retrieve published and peer-reviewed 

studies exploring electrical conductivity (or equivalent) of the human head (or equivalent). 

The keywords utilised for the systematic literature search are provided in Appendix B. 

Article titles were systematically searched using relevant and/or equivalent keywords, 

unrestricted by year of publication, language, or design. Reference lists of included papers 

were hand-searched to identify additional papers. Duplicates following the initial literature 

search were removed. 

 

3.3.2. Selection criteria 
 
Papers met the inclusion criteria if they i) provided at least one defined conductivity measure 

(or equivalent from which conductivity could be calculated), of the ii) human iii) head, where 

both iv) employed methodology and v) tissue type were available. Reviews were only 

included as an information source to the original reference, where data was thus extracted. 

Exclusions were made if any of the five inclusion criteria were absent or ambiguous, or if an 

English version was unavailable after extensive search. In addition to conductivity value, 
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methodology and tissue type, reports were collected on measurement condition (i.e., in vivo, 

ex vivo, or in vitro), applied frequency to determine the conductivity, tissue temperature, as 

well as participant’s age, gender, and pathology. Missing information for one or more of 

these variables did not result in exclusion. Studies applying frequencies above approximately 

1 kHz were excluded from analysis on the grounds this frequency is besides the scope of 

typical brain activity recorded in EEG and enhanced in tDCS.  

 

All identified titles resulting from the literature search, following removal of duplicates, were 

initially screened for applicability and/or immediate exclusion. Remaining abstracts were 

further assessed, and full texts of potentially relevant papers were obtained to determine if 

they consequently met the inclusion criteria. The papers and respective analysis comprised in 

this chapter include studies conducted before publication of the associated research paper in 

2019. Studies reporting conductivity values, and meeting inclusion criteria, published after 

this meta-analysis are presented in a GitHub Repository (see Section 3.4.2.).  

 

3.3.3. Data extraction and Synthesis 
 
All conductivity, resistivity or impedance values were extracted from each paper and 

converted to S/m for standardisation. The sample mean and standard deviation were 

subsequently calculated for every differentiation in methodology within each paper and 

characterised according to the aforementioned variables.  

 

3.3.4. Variable Definitions and Classification  
 
3.3.4i. Tissue Types 
 
Tissues were separated into four major compartments, each comprised of sub-compartments: 

the scalp (skin, fat, muscle), the skull (spongiform, inner, and outer compact bone and 

sutures), CSF and the brain (GM, WM, the dura layer, blood, epileptogenic zone [EZ]). 

Conductivity values were assigned according to tissue type as reported. Tissues were 

classified as whole-scalp, whole-skull, or whole-brain (assumed as GM and WM) when no 

conductivity values for their sub-compartments were reported, similarly whole-compact bone 

was assigned if no values for the inner and outer compact bone were provided. If given, WM 

was further segmented into WM oriented in parallel (WM_par) or perpendicular (WM_perp) 

to the applied current. See Figure 1.6 for a detailed representation of all tissue compartments. 
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Additionally, when available, the brain to skull conductivity ratio (BSCR) was reported as a 

nominal ratio without units. BSCR was included as multiple existing studies involving 

E/MEG source localisation have employed a piecewise homogeneous head model, consisting 

of three compartments (the brain, skull, and scalp). For neural source localisation utilising 

these models, where the brain and scalp have additionally been assumed to have the same 

conductivities, the relative strength of the source only has commonly been of interest. Thus, 

the ratio between the scalp (and brain) and skull conductivities is essential for BEM 

calculations (Clerc et al., 2005; Oostendorp et al., 2000; Zhang et al., 2006).  

 
3.3.4ii. Measurement Conditions 
 
Conditions were separated into three main categories: 

 

In vivo – “within the living”; experiment conducted on or in whole living organisms/cells. 

Electrical conductivity values obtained within a living head were considered in vivo.  

 

Ex vivo – “out of the living”; experiment in or on tissue from an organism in an external 

environment, but with minimal alteration of natural conditions, e.g., cultured cells derived 

from biopsies. Experiments where tissue was excised but kept within conditions similar to the 

human head were characterised as ex vivo. 

 

In vitro – “within the glass”; experiment within a controlled artificial environment outside of 

a living organism, isolated from their usual biological surroundings e.g., in a test tube/dish. 

Measurements where tissue was excised and stored in environments unlike the human head 

were classified as in vitro. 

 

3.3.4iii. Measurement Methods 
 
Data acquisition techniques were categorised into four groups: 

 

DAC - invasive method of determining electrical conductivity, where a current was directly 

applied to the tissue, either via implanted electrodes in the head, or onto excised samples. The 

resulting electric potential difference from the applied current is measured via additional 

(implanted or applied to excised tissue) electrodes to calculate the electrical conductivity. 
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Studies where electrical current was directly and invasively applied to the head tissue were 

characterised as DAC. 

 

EIT – a non-invasive medical imaging technique where alternating current at single or 

multiple frequencies is applied to the skin through two or more conducting surface 

electrodes. The resulting potential difference between the remaining measuring electrodes is 

then recorded. From this the electrical conductivity, permittivity and impedance can be 

inferred to create a tomographic image (Barber & Brown, 1984; Henderson & Webster, 

1978). Papers indicating an applied current of less than 1 kHz, injected through any number 

of electrodes and the resulting voltage were classified as EIT.  

 

E/MEG – electromagnetic data recorded from E/MEG employed to iteratively estimate the 

equivalent electrical conductivity that best matches the computed source localisation given 

the obtained E/MEG data (Baysal & Haueisen, 2004). Articles estimating conductivity by 

employing data from E/MEG (of any set up) were characterised as E/MEG. 

 

DTI – diffusion-weighted MR images of the brain are acquired to measure the diffusion 

tensor eigenvalues, from which the electrical conductivity tensor eigenvalues are directly 

calculated (Sekino et al., 2005; Tuch et al.,1999; Tuch et al., 2001). Transformation from 

diffusion to conductivity was conducted manually for papers which did not explicitly 

mention conductivity values. Texts using diffusion imaging (of any protocol) to explicitly 

estimate the electrical conductivity tensor map were considered as employing DTI 

methodology. This included any method for estimating conductivity from the diffusion 

tensor.  

 

3.3.4iv. Frequency 
 
Frequency of applied or injected current (if applicable). Frequency was not extracted from 

papers where this was not specified.  

 

3.3.4v. Temperature 
 
Classified according to whether the tissue sample was measured at/near body temperature 

(37oC) or room temperature (18-25oC). Unknown values were not reported for analysis.  
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3.3.4vi. Participant’s Age 
 
When available, mean, and standard deviation of participant’s age were calculated for each 

paper. Age at time of death was recorded for deceased participants. If specific age was 

unavailable, age was characterised as adult (all participants were over the age of 18), 

paediatric (all participants were under the age of 18), or both (participants were a mixture of 

over and under the age of 18).  

 

3.3.4vii. Participant Pathology 
 
Participants were characterised as healthy if they had no neurological, developmental, or 

psychological deficits, as reported in the research paper. Pathology was categorised as 

epilepsy for studies recruiting patients that presented with any classification of epileptic 

seizure. Similarly, tumour was assigned to papers where patients displayed any type of 

tumour in the tissue under question, and neuro to patients with any type of neurological 

disorder that was not otherwise classifiable. Further pathologies included Parkinson’s 

Disease, and stroke. All conductivity values were assumed to originate from healthy tissue, 

within the classified pathology, unless otherwise stated. Pathology was reported as unknown 

if not available in the literature. 

 

3.3.5. Quality Analysis 
 
Drawing robust conclusions from systematic reviews and meta-analyses requires 

consideration of the systematic and random errors introduced in each included study. 

“Assessing the methodological quality” must be carried out in order to estimate “risk of bias” 

(Moher et al., 1996; Verhagen et al., 2001). Various tools are available for assessing study 

quality and addressing the systematic errors in each study. None, however, specifically assess 

the quality of studies measuring the electrical conductivity of the human head. This meta-

analysis, therefore, made use of the Cochrane Collaboration recommended Quality 

Assessment of Diagnostic Accuracy Studies (QUADAS) checklist (Whiting et al., 2003). 

Each item was adjusted for relevance, and any additional applicable items were added. A 

scaled numerical value was further assigned according to the studies compliance with each 

item; any irrelevant items were ignored. The sum, divided by the number of items, was 

subsequently calculated to provide a final Quality Assessment Score (QAS), with an absolute 

maximum value of one (the closer the score is to one, the more reliable the study was 
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considered). To ensure reliability of the QAS’s, papers were chosen at random and QAS’s 

calculated by two researchers, any discrepancies were discussed and if not resolved the mean 

QAS was assigned. The employed Quality Assessment Protocol and three examples are 

provided in Appendix C.  

 

In addition to accounting for systematic errors within each study, random errors produced 

from inherently unpredictable variation in methodology were accounted for. This was 

adapted from the guidelines provided by Rosenthal (1991) and Borenstein and colleagues 

(2011) for meta-analysis weighting. Confidence values for each measurement were calculated 

to indicate the confidence each value of conductivity was 100% accurate. Firstly, the relative 

error was calculated for each conductivity value. This was taken as the standard deviation 

percentage of a multitude of values for a single tissue type for each participant. If the method 

is 100% precise, each value for the same tissue should be the same. Alternatively, if 

unavailable, the error attributed to the measurement protocol was employed – both described 

as a decimal. If both the standard deviation and measurement error were provided, the 

standard deviation was used to calculate the relative error. The relative error was then 

subtracted from one (where one indicates complete confidence the conductivity value is 

100% accurate) to obtain a final confidence value. The maximum value is one. For example, 

a reported conductivity value with an associated standard deviation percentage of 8% will 

receive a confidence value of 0.92. Alternatively, when the standard deviation was not 

provided, the experimental error was utilised instead, e.g., a study with a methodological 

error of 0.05 would receive a confidence value of 0.95.  

 

To incorporate both the systematic and random errors associated with each study, the Quality 

Assessment Score of each study and the confidence values of each conductivity value were 

combined to provide a “weight”. This weight was calculated by multiplying the QAS by the 

confidence value (both with a maximum of one). The maximum associated weight each value 

has towards the analysis is therefore one. Values assigned weights closer to one were 

therefore regarded as being more accurate. 

 

3.3.6. Statistical Analysis 
 

Data was pooled and grouped according to tissue type, in order to determine i) the variation 

in conductivity for each tissue, ii) which significant variables account for differences in 
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conductivity, iii) whether mean conductivity values for each tissue type are statistically 

different depending on employed methodology and participant demographics, and iv) reveal 

any statistical relationship between conductivity and reported variables. 

 

Boxplot diagrams, presenting the range, median and mean of conductivity measurements for 

each tissue type were created to demonstrate variation in conductivity within different tissues. 

For each tissue with more than three results in at least two variables, a weighted multiple 

regression was carried out using SPSS (Corp, 2013). The dependent variable (DV; i.e., 

conductivity) was regressed against every independent variable (IV; i.e., measurement 

condition, method, frequency, temperature, age, and pathology). This was done collectively, 

to determine the proportion of variance accounted for by all factors, and individually to 

discover significant factors predicting variation in conductivity. Weights for each 

conductivity value were assigned according to the QAS described above (section 3.2.5). A 

two-tailed t-test (when comparing two independent variables) or a one-way Analysis of 

Variance (ANOVA, when comparing more than two independent variables) was conducted to 

reveal differences in conductivity for each tissue according to categorical IV’s. A Pearson 

correlation analysis was alternatively conducted for continuous IV’s accounting for 

significant variation to reveal any statistical relationships.  

 

3.4. Results 

 
3.4.1. Search Results 
 
Following removal of duplicates, 3121 studies were identified through the literature and 

reference list search, of which 382 abstracts were screened for relevance and 211 full text 

articles were obtained and assessed for eligibility. A total of 170 papers were excluded (see 

Appendix A).  

 

3.4.2. Included Studies 
 
A total of 41 studies (342 participants) were included in the quantitative synthesis (Table 

3.2). Seventeen different tissue types were identified (in addition to BSCR), using 4 

methodologies and 3 measurement conditions. Conductivity was measured in vivo in 27, in 

vitro in 7 and ex vivo in 8 research papers. Measurements were obtained using DAC in 14 

studies, EIT in 11, E/MEG in 8 and DTI in 9 papers. Conductivity was acquired at 
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frequencies varying between 0 Hz and 1005 Hz, and tissue temperatures between 18.5 and 

37.5oC. Of the 20 articles that specified, total participant age ranged from 4 months to 87 

years old. The remainder classified subjects into adults or children. Twenty-nine papers 

reported on healthy participants, participants from 10 studies were diagnosed with epilepsy, 

whilst separate papers included patients with various neurological disorders, Parkinson’s 

Disease, and stroke. A summary of all included papers is presented in Table 3.2. Descriptive 

statistics for each tissue type are provided in Table 3.3, in addition to a boxplot displaying 

variation in conductivity values for different tissue types (Figure 3.1). A GitHub Repository 

was created to provide continual updates, for any measurements of human head electrical 

conductivity values (https://github.com/Head-Conductivity/Human-Head-Conductivity.git). 

This resource provides information on all values from the current literature mentioned in this 

chapter as well as further results since publication in 2019.  

 

The average mean was calculated for each tissue type, where all conductivity values 

contributed equally to the mean. A weighted average mean was additionally calculated to 

take into consideration the quality of each study and provide a recommended value that was 

obtained under suitable and realistic conditions. The weighted average mean and standard 

deviation (in S/m) for the main tissue types were: scalp = 0.4137± 0.176, whole skull = 0.016 

± 0.019, spongiform skull layer = 0.048 ± 0.0735, whole compact skull layer = 0.0046 ± 

0.0016, outer compact = 0.0049 ± 0.0029, inner compact = 0.0068 ± 0.0036 CSF = 1.7358 ± 

0.17, GM= 0.3787 ± 0.16, WM = 0.1462 ± 0.11, BSCR = 50.4 ± 39. A boxplot evidencing 

the average weights assigned to each study according to the employed methodology is further 

demonstrated (Figure 3.2). Average study weights were revealed to be significantly different 

depending on methodology [F(3, 41) = 3.121, p=.022]. 
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Author Method Design Freq. Part. N. Age Path. Weight 
(Burger & van Milaan, 
1943) 

DAC ex vivo 0 1 adult healthy 0.8 

(Rosenthal & Tobias, 
1948) 

DAC ex vivo 1000 1 adult healthy 0.36 

(Burger & Van Dongen, 
1961) 

DAC ex vivo 1000 1 adult healthy 0.44 

(Rush & Driscoll, 1968)  DAC ex vivo  1 adult healthy 0.83 
(Cohen & Cuffin, 1983b)  E/MEG in vivo 0.3-300 2 (m) adult healthy 0.71 
(Eriksen, 1990)  E/MEG in vivo 40 4 adult healthy 0.22 
(Law, 1993)  DAC in vitro 100 1 adult healthy 0.87 
(Pierpaoli et al., 1996)  DTI in vivo  8 adult healthy 0.34 
(Baumann et al., 1997)  DAC in vitro 10 – 

1000 
7 (3m) 6.6 neuro 0.69±0.

05 
(Sorensen et al., 1999)  DTI in vivo  1 adult stroke 0.81 
(Uluğ and Van Zijl, 
1999) 

DTI in vivo  5 adult healthy 0.36 

(Oostendorp et al., 2000)  DAC in vitro 10-100 1, 2 (1m) adult healthy 0.77 
(Akhtari et al., 2000) DAC in vitro 20 1 adult healthy 0.86 
(Akhtari et al., 2002)  DAC ex vivo 10, 90 4 (2m) 56±26.7 epilepsy 0.93 
(Hoekema et al., 2003) DAC in vitro, 

ex vivo 
10 1 (f), 5 68, 34±1 healthy 0.86 

(Gonçalves et al., 2003b)  EIT in vivo 60 6 (3 m) 32.3±7 healthy 0.62 
(Gonçalves et al., 2003a)  EIT & 

E/MEG 
in vivo 60 6 (3 m) adult healthy 0.5 

±0.01  
(Baysal & Haueisen, 
2004) 

E/MEG in vivo 4 10 (5m) 30±13 healthy 0.37±0.
37 

(Gutiérrez et al., 2004) E/MEG in vivo 2 2 (1m) 32.5±10.6 healthy 0.52±0.
08 

(Clerc et al., 2005) EIT In vivo 110 1 adult healthy 0.64±0.
009 

(Sekino et al., 2005)  DTI in vivo  5 adult healthy 0.67±0.
02  

(Lai et al., 2005) EIT in vivo 50 5 (4m) 10±2 epilepsy 0.54 
(Zhang et al., 2006)  EIT in vivo 50 2 paediatric epilepsy 0.66 
(Akhtari et al., 2006)  DAC ex vivo 5-1005 21 (12m) 13.5±15.1 epilepsy 0.95 
(Tang et al., 2008)  DAC in vitro 1000 48 (38m) 47.6 healthy 0.999 
(Gattellaro et al., 2009)  DTI in vivo  20 (10m) 61±12 healthy, 

PD 
0.34 

(Rullmann et al., 2009)  DTI in vivo  1 0.916 epilepsy 0.98 
(Akhtari et al., 2010)  DAC ex vivo 6 - 1005 15 (8m) 7.93±6.04 epilepsy 0.95 
(Gullmar et al., 2010)  DTI in vivo  1 (m) 30 healthy 0.41 
(Wang et al., 2010)  DTI in vivo  71(39m) 41.8±14.5  healthy 0.36 
(Dannhauer et al., 2011)  E/MEG in vivo  4 25±4.6 healthy 0.34 
(Aydin et al., 2014)  E/MEG in vivo  1 (f) 17 epilepsy 0.86  
(Ouypornkochagorn et 
al., 2014)  

EIT in vivo  1 adult healthy 0.77±0.
01 

(Dabek et al., 2016)  EIT in vivo 2 9 (4m) 32.5±10 healthy 0.63±0.
04 

(Akhtari et al., 2016)  DAC in vitro 10 24 paediatric epilepsy 0.7±0.2 
(Acar et al., 2016)  E/MEG in vivo  2 (m) 21.5±2.12 healthy 0.72±0.

02 
(Koessler et al., 2017)  EIT in vivo 50 15 (10m) 38±10 epilepsy 0.64±0.

048 
(Huang et al., 2017)  EIT in vivo 1 - 100 10 adult epilepsy 0.61 
(Fernández-Corazza et 
al., 2017)  

EIT in vivo 27 4 (m) 49±4.8 healthy 0.59±0.
08 

(Arumugam,  2017) EIT in vivo 27 10 adult healthy 0.3 
(Chauhan et al., 2018)  DTI in vivo 10 2 (m) adult healthy 0.94 
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Table 3.2. Summary of papers included in the meta-analysis. This includes the authors name(s), 

employed methodology (direct applied current (DAC), electrical impedance tomography (EIT), 

electro- or magneto-encephalography (E/MEG), diffusion tensor imaging (DTI)) and measurement 

condition. As well as, frequency (Hz), number of participants (number, including gender (m=male)), 

age (years, either as mean ± standard deviation or classified into adult/paediatric), pathology (where 

neuro = neurological disorder and PD = Parkinson’s Disease) and average assigned weight (± 

standard deviation) according to the QAS described in section 3.3.5.  

 

Table 3.3. Summary of the electrical conductivity values for each tissue. From the literature, the 

minimum, maximum, mean, weighted mean (according to the QAS described in section 3.3.5), 

standard deviation (st. dev.), number of values, number of studies and number of participants for each 

tissue type is provided.  

 

 

 

 

Tissues Min Max Mean Weighted 

mean 

St. Dev. n. of 

values 

n. of 

studies 

Part. 

n. 

Scalp 0.137 2.1 0.5345 0.4137 0.1760 44 10 44 

Muscle 0.1482 0.4167 0.3243 0.3243 0.1526 3 1 1 

Whole skull 0.0018 1.718 0.0708 0.0160 0.019 99 20 121 

Spongy 0.0012 0.2890 0.0559 0.048 0.0735 16 4 10 

Compact 0.0024 0.0079 0.0045 0.0046 0.0016 8 4 54 

Outer Compact 0.0008 0.0078 0.0047 0.0049 0.0029 10 2 5 

Inner Compact 0.0028 0.0129 0.0067 0.0068 0.0036 10 2 5 

Sutures 0.0078 0.0735 0.0273 0.0266 0.0239 6 2 49 

CSF 1.39 1.799 1.611 1.7358 0.1731 20 3 11 

Whole Brain 0.054 13.75 1.3519 0.3841 0.1017 44 6 30 

GM 0.06 1.13 0.4083 0.3787 0.1549 46 11 140 

WM 0.0646 0.6412 0.1455 0.1462 0.1054 71 8 71 

WM_perp 0.0620 0.4390 0.1216 0.1175 0.0495 41 3 49 

WM_par 0.0543 0.9150 0.1352 0.1226 0.0929 41 3 49 

Blood 0.433 0.7622 0.5799 0.5737 0.106 14 3 3 

EZ 0.2320 0.5278 0.2994 0.2949 0.0737 15 1 15 

Dura  
 

0.461  
 

1 1 2 

BSCR 11 290 58.69 50.4 38.93 51 10 47 
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Figure 3.1. Boxplot displaying the inter-quartile range (first to third quartile as solid box), the median (solid blue line), minimum and maximum (solid 

whiskers) of all available conductivity values (S/m) for all tissues and BSCR, corresponding to the respective paper
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Figure 3.2. Boxplot displaying the mean value of the assigned weights for each study (indicated by a 

cross) dependent on the employed methodology. The inter-quartile range (box), mediam (solid blue 

horizontal line), maximum and minimum (upper and lower whiskers respectively) of all weights 

displayed for each method. 

 

Following visual inspection, it can be seen conductivity values vary considerably within and 

between tissue types. Insufficient data was available to calculate regression statistics for 

muscle, fat, blood, the epileptogenic zone and the dura layer. 

 

3.4.3. Scalp  
 
A weighted multiple regression revealed scalp conductivity variation was insignificantly 

predicted by the IV’s collectively (p>.05). Although insignificantly different, a comparison 

between employed method (as shown in Figure 3.3) was made to graphically display any 

elevated values and further demonstrate variation despite statistical insignificance. Figure 3.3 

further reveals less deviation within values for EIT than for E/MEG. Huang and colleagues 

(2017) yielded conductivity measurements significantly above the inter-quartile range. 

Additionally, Baysal and Haueisen (2004) revealed highly elevated conductivity values 

beyond the axis range displayed in Figure 3.3, with standard deviation >5000% (see section 

3.5.1 for further explanation of outliers).  
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Figure 3.3. Boxplot displaying inter-quartile range (box), medium (solid blue horizontal line), 

maximum and minimum (upper and lower whiskers respectively) of scalp conductivity (S/m) 

according to method for each available paper. Each circle corresponds to a conductivity value as 

measured in the respective paper and the size of the data points indicates relative weight of each 

value. 

 
3.4.4. Skull 
 

3.4.4i. Whole-skull 
 

A weighted multiple regression revealed deviation in whole-skull conductivity could be 

significantly predicted by the methodology, condition, temperature, frequency, pathology, 

and age collectively [R2(6, 36) = .827, p <.001]. A one-way ANOVA revealed conductivity 

of the whole skull varied significantly according to employed methodology [Figure 3.4; F(2, 

96) = 4.088, p=.020]. Differences in conductivity values for the whole-skull were statistically 

different according to method, where values obtained using EIT were significantly lower than 

those obtained with DAC and E/MEG. 
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Figure 3.4. Boxplot displaying variation in whole-skull conductivity (S/m) according to method. The 

inter-quartile range (box), medium (solid blue horizontal line), maximum and minimum (upper and 

lower whiskers respectively) is graphically depicted. Each circle corresponds to a conductivity value 

as measured in the respective paper and the size of the data points indicates relative weight of each 

value. 

 

3.4.4ii. Spongiform Bone Skull Layer 
 

A weighted multiple regression revealed variation in conductivity values of the spongiform 

bone layer of the skull was significantly predicted by condition, temperature, frequency, 

pathology and age [R2(5, 6) = .832, p =.026]. Spongiform conductivity measurements were 

significantly different according to condition [Figure 3.5; F(2, 15) = 11.357, p=.001] and 

temperature [t(16)=2.449, p=.001].  
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Figure 3.5. Boxplot displaying variation in conductivity (S/m) of the spongiform bone layer of the 

skull according to condition. The inter-quartile range (box), medium (solid blue horizontal line), 

maximum and minimum (upper and lower whiskers respectively) is graphically depicted. Each circle 

corresponds to a conductivity value as measured in the respective paper and the size of the data 

points indicates the relative weight of each value. 

 

3.4.4iii. Compact bone skull layer 
 
None of the IV’s significantly predicted variation in conductivity values of the whole 

compact layer, the inner compact bone layer or the outer compact bone layer according to the 

weighted multiple regression analysis. Despite insignificant results, a graphical representation 

of conductivity for the different compact bone layers revealed clear diversions within and 

between each of the layers (Figure 3.6). 
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Figure 3.6. Boxplot displaying variation in conductivity (S/m) of the compact layers according to 

condition. The inter-quartile range (box), medium (solid blue horizontal line), maximum and 

minimum (upper and lower whiskers respectively) is graphically depicted. Each circle corresponds to 

a conductivity value as measured in the respective paper and the size of the data points indicates the 

relative weight of each value. 

 
3.4.5. Cerebrospinal Fluid  
 
Significant differences [t(36) = 2.695, p=.006] in measurements obtained at body (~1.79 S/m) 

and room (~1.45 S/m) temperature were revealed, as previously found by Baumann and 

colleagues (1997). Variability in CSF conductivity at room temperature was discovered to be 

insignificantly explained by the weighted multiple regression model.   

 

3.4.6. Brain 
 
Differences in whole-brain conductivity values were not significantly predicted by the 

independent variables according to the weighted multiple regression analysis. Figure 3.7 

reveals the variation in data obtained for conductivity values of the whole-brain for each 

methodology, suggesting no one method generates a stable result for conductivity of the brain 

as a whole compartment.    
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Figure 3.7. Boxplot displaying variation in whole-brain conductivity (S/m) depending on method. The 

inter-quartile range (box), medium (solid blue horizontal line), maximum and minimum (upper and 

lower whiskers respectively) is graphically depicted. Each circle corresponds to a conductivity value 

as measured in the respective paper and the size of the data points indicates the relative weight of 

each value. 

 

3.4.6i. Grey Matter 
 

Variation in GM conductivity was not significantly explained by the weighted multiple 

regression model. However, a two-tailed t-test determined significant differences in GM 

conductivity according to method [Figure 3.8; t(16) = 2.12, p<.05], where results obtained 

with DTI were significantly higher than EIT. A variation was also seen in pathology (Figure 

3.9). 
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Figure 3.8. Boxplot displaying variation in GM conductivity (S/m) depending on method. The inter-

quartile range (box), medium (solid blue horizontal line), maximum and minimum (upper and lower 

whiskers respectively) is graphically depicted. Each circle corresponds to a conductivity value as 

measured in the respective paper and the size of the data points indicates the relative weight of each 

value. 

Figure 3.9. Boxplot displaying variation in GM conductivity (S/m) depending on pathology (PD; 

Parkinson’s Disease). The inter-quartile range (box), medium (solid blue horizontal line), maximum 

and minimum (upper and lower whiskers respectively) is graphically depicted. Each circle 

corresponds to a conductivity value as measured in the respective paper and the size of the data 

points indicates the relative weight of each value. 
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3.4.6ii. White Matter 
 

A weighted multiple regression analysis revealed variation in isotropic WM conductivity was 

significantly explained by methodology, condition, frequency, pathology and age collectively 

[R2(5, 36) = .696, p <.001], where values varied significantly according to method [Figure 

3.10; F(3,65) = 12.3, p<.001], condition [F(2, 66) = 13.8, p<.001], pathology [F(2, 101) = 

34.437, p<.001) and temperature [t(45) = 1.71, p<.05]. Furthermore, pathology and age 

collectively explained a significant proportion of variation in WM conductivity measured 

perpendicularly [R2(2, 14) = .459, p =.014] and in parallel [R2(2, 14) = .677, p <.001]. Where 

perpendicular WM values varied according to condition [F(2, 38) = 36.828, p<.001], 

temperature [t(39) = 1.105, p=.031] and participant age [r(41)=.638, p=.006], whilst parallel 

WM measurements differed with condition [F(2, 38) = 9.78, p<.001] and age [r(41) = .520, 

p=.032].   

Figure 3.10. Boxplot displaying variation in WM conductivity (S/m) according to method. The inter-

quartile range (box), medium (solid blue horizontal line), maximum and minimum (upper and lower 

whiskers respectively) is graphically depicted. Each circle corresponds to a conductivity value as 

measured in the respective paper and the size of the data points indicates the relative weight of each 

value. 

 

 



 

    
 

73 

3.4.7. Brain to Skull Conductivity Ratio (BSCR) 
 
Variation in BSCR calculations were significantly predicted by methodology, frequency, 

pathology and age collectively, in the weighted regression analysis [R2(4, 26) = .302, p 

=.046]. Figure 3.11 displays the variation of BSCR according to method, although a 

comparison of means revealed no significant differences between employed technique. 

Additionally, BSCR values correlated positively with participant age [Figure 3.12; r(51) = 

.376, p = .014]. 

Figure 3.11. Boxplot displaying variation in BSCR depending on method. The inter-quartile range 

(box), medium (solid blue horizontal line), maximum and minimum (upper and lower whiskers 

respectively) is graphically depicted. Each circle corresponds to a value as measured in the 

respective paper and the size of the data points indicates the relative weight. 
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Figure 3.12. Scatter diagram displaying BSCR as a function of participant’s age. Each circle 

corresponds to a value as measured in the respective paper and the size of the data points indicates 

the relative weight of each value. 

 

3.5. Discussion  

 
This chapter systematically investigated variation in conductivity of 17 different head tissues 

and the BSCR as reported in 41 research papers, identified through a literature search of three 

relevant databases. The mean, standard deviation, minimum and maximum were calculated 

for each tissue type (Table 3.3). In addition, the weighted average mean was computed, 

which provided an optimum (and therefore suggested) value when conductivity is unable to 

be obtained on an individual basis. The weighted average means and standard deviation (in 

S/m) for each tissue type were scalp = 0.4137± 0.176, whole skull = 0.016 ± 0.019, 

spongiform skull layer = 0.048 ± 0.0735, whole compact skull layer = 0.0046 ± 0.0016, outer 

compact = 0.0049 ± 0.0029, inner compact = 0.0068 ± 0.0036 CSF = 1.7358 ± 0.17, GM= 

0.3787 ± 0.16, WM = 0.1462 ± 0.11, WM perpendicular = 0.12 ± 0.05, WM parallel = 0.12 ± 

0.09, blood = 0.57 ± 0.11 and BSCR = 50.4 ± 39. The differences between values for each 

tissue were statistically tested against methodological and participant demographical 

variables to reveal significant predictors. Inadequate data was available for muscle, fat, 

blood, the epileptogenic zone, or the dura layer to carry out a multiple regression. 

Collectively, the independent variables (related to both methodology and demographics) 
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insignificantly explained variation in the scalp, the compact layers of the skull, CSF, the 

whole-brain, and GM. In contrast, variation in whole-skull conductivity could significantly 

be explained by all the IV’s collectively, where values were revealed to specifically differ 

significantly depending on method. Variation in the conductivity of the spongiform bone 

layer of the skull was significantly predicted by condition, frequency, pathology, and age, 

where values were meaningfully different according to condition and temperature. Despite 

insignificant results for regression analysis, GM notably differed depending on method and 

pathology. Variation in isotropic WM electrical conductivity was further predicted by 

methodology, condition, frequency, pathology, and age collectively in the regression model, 

where values diverged according to method, condition, pathology, temperature, and 

frequency. A significant proportion of variation in WM conductivity measured 

perpendicularly and in parallel was further explained by pathology and age collectively. 

Specifically, perpendicular WM values differed with condition, temperature, and age, whilst 

parallel WM measurements fluctuated with condition and age. Lastly, the meta-regression 

revealed the BSCR could be significantly attributed to variation in methodology, frequency, 

pathology, and age collectively, revealing a positive correlation between the ratio and 

participant’s age.  

 

3.5.1. Data Exclusions 
 

Explanations for the presence of outliers and reasons for any data exclusion in the meta-

analysis are further discussed. Firstly, data acquired at frequencies notably higher than 1000 

Hz were removed. These conditions were deemed unnatural, considering the bandwidth of 

most neuronal signals is 1 Hz – 1 kHz, with resonant frequencies of <100 Hz for the brain 

(Groppe et al., 2013) and <1000 Hz for the skull (Håkansson et al., 1994). This also included 

exclusion of papers utilising Magnetic Resonance EIT (MREIT) to reconstruct conductivity 

from induced magnetic flux as this employed frequencies above 1 kHz. Conductivity results 

obtained from Baysal and Haueisen (2004) employing a conventional least-squares estimator 

(LSEE) on E/MEG data were further revealed, and as stated by the authors, as being 

“unrealistic [negative resistivities] and unstable” (Baysal & Haueisen, 2004). These unstable 

results were evident from the large standard deviation percentage (>5000% for the scalp, 

>200% for the skull and >240% for the brain). The authors suggested such inaccuracies 

occurred from the use of LSEE linearisation in a highly non-linear problem, and hence were 

omitted from their own analysis. Furthermore, skull conductivity values reported by 
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Hoekema et al., (2003) were elevated approximately ten-fold, suggested to be “as expected 

[due to measurements] in non-physiological circumstances” (namely, saline-coated cadaver). 

These values, however, were not excluded from the current analysis as methodology was in 

line with previous cadaver studies and therefore should produce similar results. Huang and 

colleagues (2017) yielded significant outliers for the scalp, skull, whole-brain, GM, and WM, 

where median optimal conductivity was obtained by fitting model outputs (from literature) to 

recordings. These deviations may be explained by the use of an optimisation EIT approach 

where “best-fit” values were free to compensate for all inaccurate/simplified sources, tissue 

segmentation errors, changes in electrode location, etc. They therefore cannot reflect “true” 

conductivity values. Outliers were additionally revealed for the spongiform (but not compact) 

skull layer by Fernández-Corazza and colleagues (2017), which employed boundary EIT 

(bEIT) for reconstructing the electrical conductivity for a subset of the regional tissue 

parameters. The authors acknowledged low sensitivity of bEIT to spongiform variations, due 

to the relatively small proportion of spongiform to head volume and concluded such 

approximations may be difficult for unbiased bEIT estimators but remain valid for compact 

bone estimates. The quality analysis utilised in the current chapter attributed a confidence 

weighting to each value and is thus deemed acceptable to consider the large standard 

deviations leading to outliers. All outliers were therefore included in order to fully account 

for and explore reasons for variation in values.  

 

3.5.2. Scalp 
 

Additional eccentric values, although not classified as outliers, were revealed from Gutiérrez 

et al., (2004) for the scalp, where maximum likelihood estimation (MLE) was used to 

estimate the electrical conductivity from E/MEG measurements. Such results may be due, in 

part, to the necessity of accurate source location and head geometry knowledge to avoid 

estimation bias. The authors suggest the use of a Bayesian approach, which permits 

incorporating a priori information on conductivity distribution to reduce bias. Realistic 

measurements (excluding outliers and deviations, as discussed) of scalp conductivity, for 

example, ranged between 0.25 S/m and 0.435 S/m, which could not be attributed to any of 

the IV’s. Such variation can be relevant in source localisation based on E/MEG. In particular, 

dipole sources close to measurement electrodes are sensitive to scalp conductivity (Gençer & 

Acar, 2004; Gonçalves et al., 2003). These results coupled with those of the current meta-

analysis indicate that assuming scalp conductivity from the literature is not only inaccurate 
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but can lead to E/MEG source mislocalisation. These errors do not appear to be explainable 

by anything other than individual variability and hence personalised models of scalp 

conductivity should be considered to improve electromagnetic source localisation.  

 

3.5.3. Skull 
 

According to the meta-regression, variation in whole-skull conductivity can be accounted for 

by differences in all of the IVs (methodology, condition, temperature, frequency, pathology, 

and age), with specific variances between methodology and condition. Such significant 

results, however, may be due to overfitting of the data and meta-regression parameters 

employed. Future research could utilise machine learning techniques in order to refine the 

regression analysis and determine the most influential variables. This analysis was beyond 

the scope of the current chapter and ideally would require more data which is not presently 

available.  

 

Values obtained from excised tissue in non-physiological circumstances after undergoing 

various processing, may change the electrolyte concentration and therefore skull conductivity 

(Akhtari et al., 2002). Considering the contrast between a saline-soaked processed cadaver 

and live skulls that remain in natural conditions between the scalp and meninges, differences 

in conductivity values post-mortem should be expected. Early research determined 

conductivity of rat femurs to decrease by a factor of 2.5 - 3 from live-to-50 hours post-

mortem (Kosterich et al., 1983; 1984). This was further corroborated in the human skull, 

indicating a scaling factor of 2.5 – 4 from live-to-post-mortem (Wendel et al., 2006). These 

results are validated by Rush and Driscoll’s (1969) mathematical model which states skull 

conductivity somewhat depends on the fluid (i.e., saline vs blood/CSF naturally positioned 

between meninges) permeating it. This suggests a live skull has higher conductivity than a 

saline-soaked cadaver skull (where saline conductivity is 1 S/m). It is consequently 

unsurprising in vitro values of skull conductivity differ from in vivo values – predicting 

increased conductivity in vivo (Akhtari et al., 2000; Law, 1993). The results from the 

previous literature coupled with the current meta-analysis, therefore indicate that skull 

conductivity should be measured in vivo (i.e., at body temperature, within the live head, etc.) 

to avoid bias and increase reliability. 
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Within in vivo reports, despite all being under similar conditions, skull conductivity values 

obtained using E/MEG appeared to be elevated compared to those employing EIT. These 

results may be explained by the use of statistically constrained estimation algorithms for 

E/MEG measurements. Here, conductivity was optimally estimated from E/MEG arrays 

acquired during electrical nerve stimulation. Furthermore, whole-skull conductivity was 

found to vary as a function of frequency, although the nature of the relationship was unclear. 

Previous literature has examined skull conductivity in wider frequencies, revealing a positive 

association. This was especially at frequencies higher than 10 kHz (Gabriel et al., 1996b; 

Tang et al., 2008), and suggest skull conductivity may exponentially increase at high 

frequencies. Within the relevant range for brain activity, skull conductivity increased by 

~6.7% from 11-127 Hz (Dabek et al., 2016) and ~13% from 10-90 Hz (Akhtari et al., 2002), 

of which the authors developed a non-linear model for frequency dependence of different 

skull layers (Akhtari et al., 2003). Variation as a function of frequency may be expected due 

to interactions between mobile electrolytes (i.e., sodium and chloride) and relatively 

immobile molecules (i.e., proteins and blood components). This effects the relaxation rate of 

conductivity, dependent on the currents’ frequency (Akhtari et al., 2002; Latif et al., 2010). 

Importantly, such frequency dependence has been implicated in causing the volume 

conductor to act as a low pass filter, which potentially contributes to E/MEG forward 

solutions errors and may therefore reduce accuracy in E/MEG source localisation.  

 

Furthermore, results exploring differences according to age in the BSCR (see Figure 3.12) 

have implications for skull conductivity variation. Research has indicated skull, rather than 

brain, conductivity plays a larger role in BSCR values (Gonçalves et al., 2003), consequently 

suggesting skull conductivity varies with age. These results are discussed further in Section 

3.5.3i (layered skull conductivity) and 3.5.6 (BSCR).  

 

3.5.3i. Layered Skull 
 

The majority of previous studies simplified the skull as a homogeneous layer, not accounting 

for differences in conductivity between the compact (upper, lower) and spongiform layers of 

the skull. Distinct conductivities for the three layers of the skull have previously been 

indicated (Akhtari et al., 2000; 2002; Fernández-Corazza et al., 2017; Tang et al., 2008), as 

supported by the current meta-analysis (see Figure 3.1). This is unsurprising considering the 

higher prevalence of fluid filled pores and cavities in spongiform (and hence higher 
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conductivity) compared to compact bone. Importantly, neglecting inhomogeneous 

estimations for a tri-layer skull has yielded significant errors in source localisation 

irrespective of model parameters (Dannhauer et al., 2011; Haueisen et al., 1999; 2002; 

Ollikaineet et al., 1999; Pohlmeier et al., 1997). These authors have thus concluded realistic 

modelling of the skull layers to be necessary for accurate EEG source localisation. The 

current meta-analysis, however, revealed that variations exist between individuals even 

whilst considering a tri-layer skull. Variation in the electrical conductivity of the spongiform 

skull layer was revealed to be significant and attributed to deviations in condition, 

temperature, frequency, pathology, and age. Suggesting true values for conductivity of the 

spongiform layer will not only depend on methodological parameters but also individual 

demographics. Likewise, although the compact layers of the skull were insignificantly 

predicted by any of the parameters, large variation was still evident. This further elucidates 

the hypothesis that conductivity values fluctuate between individuals and support the 

suggestion for personalised models of skull conductivity.  

 

Interestingly, a relationship with age was to be expected, regardless of homogeneity. This is 

due to presence of the fontanelles and open sutures which may remain unfused for several 

years as well as changes in skull microstructure throughout development, as discussed in 

greater detail in section 1.6.2. As such, differences between the neonatal and adult skull 

conductivity was to be expected. Previous studies have revealed higher skull conductivity for 

infants compared to adults, (Gibson et al., 2000; Pant et al., 2011) and an inverse correlation 

between skull conductivity and thickness with increasing age (Gibson et al., 2000). 

Additionally, paediatric skull tissue ordinarily contains greater quantities of ions and water, 

compared to calcified cranial bones of adults, hence higher conductivity may be expected 

(Schönborn et al., 1998). Further support from animal studies, although at different frequency 

ranges, have revealed skull conductivity to decrease with age, for example, in the rat 

(Peyman et al., 2001), pig (Peyman et al., 2007) and cow (Schmid & Überbacher, 2005). 

Although this expectation was not confirmed in the current meta-analysis, for accurate 

electromagnetic source localisation and current propagation, skull conductivity variations 

with age should be taken into consideration. Specifically, both EEG and MEG require 

individualised, or in the least an infant-specific volume conductor model to accommodate for 

relevant developmental changes (Bystron et al., 2008; Flemming et al., 2005; Rakic, 2006; 

Song et al., 2013).  
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Following from this, development of the human skull does not cease after infancy, but 

continues to undergo remodelling, microstructural, density and histological changes until 

death, further impacting conductivity. Firstly, total cranial thickness has been observed to 

increase with age (Todd, 1924) notably related to increase in diploë thickness (Hatipoglu et 

al., 2008; Sabancıoğulları et al., 2012), which in one study was accompanied with inner and 

outer compact thinning (Skrzat et al., 2004). Antonakakis and colleagues (2018) revealed a 

trend between participant age and skull conductivity but noted the small sample size (n=15) 

and large inter-subject variability rendered robust conclusions difficult and inadequate. Their 

recent study however, revealed a significant decline in conductivity with participant age 

(Antonakakis et al., 2020). Further results have also been inconsistent in determining the 

relationship between skull thickness, specifically, and age, finding no such association 

(Ishida & Dodo, 1990; Lynnerup, 2001; Lynnerup et al., 2005; Pensler & McCarthy, 1985; 

Sullivan & Smith, 1989). The presence of suture lines, not limited to infants, was furthermore 

shown to increase conductivity of the skull sample, by providing a path of high conductance 

(Law, 1993; Tang et al., 2008). Additionally, the percentage of spongiform bone within the 

skull was positively correlated with skull conductivity (Tang et al., 2008), whilst, skull 

thickness, which is non-uniform within and between individuals (Lynnerup, 2001; Lynnerup 

et al., 2005), was inversely correlated with scalp potentials (Chauveau et al., 2004). One 

paper, for example, revealed that a 20% and 40% decrease in skull thickness resulted in a 5-

10% and 20-25% decrease in conductivity, respectively (Lai et al., 2005). Insufficient results 

were available to analyse the influence of sutures or skull thickness in the presented chapter; 

however, the discussed structural deviations further illuminate the importance of employing 

individualised models of head conductivity.  

 

The influence of skull conductivity and segmentation inaccuracies has been explored 

extensively, revealing overwhelming source localisation errors for EEG (Lanfer et al., 2012; 

Montes-Restrepo et al., 2014; Wolters et al., 2006) and MEG (Cho et al., 2015; Lau et al., 

2016) of up to 2 cm. Aydin and colleagues (2017) recently developed a multimodal 

technique, of which they emphasised the importance of individualised high-resolution finite 

element head models with WM anisotropy modelled from DTI and individually calibrated 

skull conductivity, alongside combined E/MEG and MRI information. Importantly, they note 

creating such realistic head models may not always be feasible, and therefore recommend, at 

minimum, skull conductivity to be individually adjusted to improve combined E/MEG source 

analysis. Variations in skull conductivity have been found to impact transcranial electric 
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stimulation focality and dose (Santos et al., 2016; Schmidt et al., 2015; Wenger et al., 2015), 

with one study revealing an error of 8% in dose (Fernández-Corazza et al., 2017). Such 

inaccuracies are clinically relevant, particularly regarding source estimation for refractory 

epilepsy (Brodbeck et al., 2011) and determining electrical current dose required for 

treatment of epilepsy (Berényi et al., 2012; Liebetanz et al., 2006), depression (Kalu et al., 

2012) and other psychiatric disorders (Brunoni et al., 2013). Of note, Dannhauer and 

colleagues (2011) investigated variations in layered skull structures for EEG forward 

modelling and revealed inhomogenous but not isotropic modelling to be of most importance. 

For optimum skull modelling, they recommended assigning each skull voxel to a tissue type 

(compact or spongiform bone) with individually estimated or measured conductivity values. 

The relevance of skull conductivity on tDCS current propagation and EEG source 

localisation are discussed in more detail in Chapters 4 and 5, respectively.   

 

3.5.4. Cerebrospinal Fluid 
 

The results of the current meta-analysis are in line with previous report from Baumann and 

colleagues (1997), displaying significant variation in CSF conductivity dependent on 

temperature. They revealed 23% higher conductivity at body (37oC), approximately 1.79 

S/m, than room (25oC) temperature, which corresponded to the temperature coefficient of 2% 

per 0.1 ml of potassium chloride (comparable to CSF conductivity and ion concentration 

(Fishman, 1992; McGale et al., 1977; Wu et al., 1991). The result from Baumann et al.’s 

(1997) study is frequently considered as a reference value for CSF conductivity. However, 

the current meta-analysis has revealed some variation in measurements, potentially 

suggesting instability in CSF conductivity between individuals. Deviating from Baumann’s 

approximation (1.79 S/m), Cohen and Cuffin (1983b) reported a considerably lower 

conductivity for CSF (1.39 S/m). These results may be explained by their use of optimum 

estimation, rather than direct measurements, where conductivity was adjusted so the 

maximum potential in a theoretical EEG map matched the experimental equivalent. 

Considering the variation due to methodological error, CSF appears to be relatively stable 

between individuals, with an average conductivity converging around Baumann’s results 

(1.79 S/m). Deviation in CSF conductivity may not significantly affect E/MEG forward and 

inverse modelling solutions. Future work could therefore employ a sensitivity analysis to 

explore the influence CSF conductivity has on electromagnetic source localisation and 

determine the necessity of individualised models. 
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3.5.5. Whole-Brain 
 
The meta-regression failed to explain variation in conductivity of the brain as a homogeneous 

compartment, however values were revealed to significantly vary according to the employed 

method. Despite these significant results, variation between acquisition techniques were 

minimal, where large dissimilarities within each method remained evident. This further 

supports the suggestion that individual values of conductivity should be obtained. However, 

assuming homogeneous conductivity over the whole brain is generally considered a vast 

oversimplification and highly inaccurate. Such an assumption fails to consider differences 

between GM and WM conductivity, as well as structural disparity of GM/WM proportion in 

the brain. Early research determined GM to contain higher proportions of water than WM 

(Stewart-Wallace, 1939), demonstrating expected higher electrical conductivity for GM, 

compared to WM. Additionally, extensive literature has shown GM and WM volume to vary 

with development (Giorgio et al., 2010; Groeschel et al., 2010; Miller et al., 1980) and 

pathology; i.e. multiple sclerosis (Sastre-Garriga et al., 2005), Alzheimer’s Disease (Salat et 

al., 1999), schizophrenia (Douaud et al., 2007) and ADHD (McAlonan et al., 2007), among 

others. These observations further support the use of individualised models of head volume 

and conductivity profiles for the most accurate representation of the human head.  

 

3.5.5i. Grey Matter 
 

The significant variation in GM conductivity may be somewhat explained by increased DTI 

values relative to EIT. Firstly, the Tuch et al. (1999) model derived the conductivity tensor 

from the water diffusion tensor through differential effective medium approximation (EMA), 

which uses an electromagnetic depolarisation factor to consider the impact of cell geometry 

to overall conductivity. This depolarisation factor was originally developed for WM 

structure, consisting of myelinated pyramidal cells, and therefore may not be completely 

translational to GM. Tuch and colleagues’ later paper (2001), however, utilised the EMA 

method to show there exists a strong linear relationship between the conductivity and 

diffusion tensors, regardless of tissue type. They generated a conductivity tensor image, 

where conductivity could be assigned to three groups: GM, WM parallel or WM 

perpendicular to the fibre tract. Their results indicate the EMA method is appropriate for GM 

conductivity estimation, despite having lower anisotropy than WM. The established linear 

relationship mapping the diffusion to electrical conductivity tensor (Tuch et al., 1999; 2001) 
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has been further validated in a silk yarn phantom (Oh et al., 2006). However, Rullmann et al., 

(2009) detected the use of Tuch’s scaling factor would have generated values 3.5 times 

greater than isotropic values (taken from Ramon et al., 2006). For this reason, they chose to 

employ a volume constraint approach with scaling factor 0.21 (compared to 0.844) which 

minimised differences between isotropic and anisotropic EEG forward modelling in their 

study. Similarly, Sekino et al. (2005) estimated the effective GM conductivity from only the 

fast diffusion component (attributed to extracellular fluid), rather than both the fast and slow 

(attributed to intracellular fluid) components. The produced conductivity maps were therefore 

not simply linearly scaled diffusion maps, and hence may explain their considerable low GM 

conductivity measurement (0.06 S/m). Importantly, the deviations in GM conductivity, 

dependent on the chosen diffusion tensor method, are acknowledged, emphasising the non-

trivial nature of relating the diffusion and electrical conductivity tensors. Future studies 

should examine this relationship, in order to accurately determine a realistic scaling factor to 

improve conductivity tensor estimations.  

 

Additionally, Rullmann and colleagues (2009) results were limited to one paediatric 

participant with epilepsy, of which their age may have influenced the increased brain 

conductivity. Higher conductivities in paediatric brains are perhaps expected due to the 

general abundance of water in GM (Dobbing & Sands, 1973). The current meta-analysis 

failed to find a significant correlation between GM conductivity and age. However, 

considering normal GM development and the frequently observed decrease in mean 

diffusivity of GM with age (Pal et al., 2011), further research may expose such a relationship.  

 

In line with this observation, participant pathology significantly affected GM conductivity, 

but was not a significant predictor in the regression model. Large variation can be seen within 

and between different participant pathologies (Figure 3.9), but no clear conclusion could be 

made. This is perhaps due to the limited number of values available for each classified 

pathology, reducing the statistical power. Previous literature has indicated abnormalities in 

GM volume, structure, myelination and topography in Multiple Sclerosis, Parkinson’s 

Disease, Alzheimer’s Disease, and other forms of dementia (Compta et al., 2012; Frisoni et 

al., 2007; Geurts & Barkhof, 2008). As well as abnormalities in psychiatric and 

developmental disorders (Greimel et al., 2013; Job et al., 2005; Wise et al., 2017). It is 

therefore unsurprising that GM conductivity varied with participant pathology. Due to the 

unknown nature of this variation with disease and age, the use of individualised models of 
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head conductivity that are inhomogeneous and anisotropic are especially essential for 

electromagnetic source imaging (Birot et al., 2014). Increasing the feasibility and 

accessibility of this could be explored with further research involving DTI parameters.   

 

3.5.5ii. White Matter 
 

The meta-analysis failed to explain variation in anisotropic WM conductivity. However, this 

may be due to the limited sample size available for analysis. The crucial consideration of 

anisotropic conductivities has been more recently determined. Neglecting WM anisotropy 

produced EEG localisation errors of ~1.6 - 5.1 mm and 4.72 - 8.8 mm for radially and 

tangentially oriented sources, respectively (Anwander et al., 2002; Güllmar et al., 2010). One 

study additionally reported a maximum error of 26.3 mm (Hallez et al., 2005). Furthermore, 

disregarding anisotropy had a large influence on the induced electric fields from TMS (De 

Lucia et al., 2007). Inclusion of WM anisotropy also influenced the electrical potential 

distribution following application of deep brain stimulation (Butson et al., 2007; McIntyre et 

al., 2004). Uncertainty in WM conductivity had a further, significantly large, effect on tDCS 

stimulation amplitudes and current density estimations, which were especially pronounced in 

the auditory cortex, implying orientation to be a determining factor in tDCS applications 

(Schmidt et al., 2015).  

 

Isotropic WM conductivities however were found to vary dependent on method, 

measurement condition, pathology, and age, additionally diverging with temperature and 

frequency. DTI values produced largely differing results. As previously discussed by 

Rullmann and colleagues (2009), elevated conductivity values from DTI may be a result of 

an overestimated scaling factor from the diffusion tensor to the conductivity tensor, proposed 

by the authors. In line with this, Akhtari and colleagues (2006) failed to verify this 

relationship and instead revealed an inverse linear relationship with a scaling factor of -0.367, 

and considerable variability between values. For this reason, Güllmar and others (2010) 

compensated for isotropic variation. They normalised the conductivity tensors (by calculating 

the anisotropy ratio between eigenvalues) in one model and used fixed artificial anisotropy 

ratios to preserve diffusion tensor orientation, in another model (volume constraint model). 

By comparing both models with Tuch’s, employing the latter significantly affected MEG and 

EEG forward computations differently by changing the mean scalar representation of 

isotropic tensors. This chapter, alongside previous investigations, emphasised the importance 
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of modelling anisotropy, but has also insinuated further, more detailed research should 

explore the linear relationship between the diffusion and electrical conductivity tensors.    

 

Moreover, differences were revealed between perpendicularly- and parallelly-oriented WM 

conductivities that are due to the results being obtained from different papers. Of note, the 

minimum WM-par conductivity value (0.0543 S/m) is less than the minimum WM-perp 

value (0.0620 S/m), with only small differences reported between the means. These results 

are not indicative of WM conductivity themselves, but instead highlight the variation in 

values between studies. This may reflect the differences between the methods employed for 

approximating the conductivity tensor from the diffusion tensor, due to the fact that WM is 

more anisotropic than these results indicate. One paper (Wu et al., 2018) reviewed the current 

anisotropic conductivity models of WM based on DTI. The linear relation model (i.e., Tuch’s 

model) was discussed as not directly considering the impact of geometrical brain tissue 

structure. Conversely, the Wang-constraint (Wang et al., 2008) and volume-constraint 

models, both of which assume diffusion and conductivity tensors share the same eigenvalues 

(similar to Tuch’s model), ignore brain tissue heterogeneity but can relate anisotropy and 

physiological structure. The equilibrium model (Sekino et al., 2005), which decomposes 

extracellular and intracellular diffusion, can be less accurate as extracellular diffusion may 

result difficult to quantify (Jones et al., 2018). Wu et al. (2018) determined that obtaining the 

conversion coefficient between the anisotropic conductivity tensor and the diffusion tensor 

eigenvalues to be of most importance. Further, they concluded the optimum model to be the 

electrochemical model, which calculates the conversion coefficient according to the 

concentration of charged particles in interstitial fluid. It has the added benefit of being able to 

calculate a conversion coefficient for GM and avoids having to consider the effect WM 

structure has on water molecules and electrical charges. They noted however, that the models 

are not contradictory, but instead complement each other to inform the relationship between 

conductivity and diffusion tensors. This emphasises the need for more research to elucidate 

the prime conversion coefficient before robust conclusions can be made. Exploration and 

evaluation of different diffusion-to-conductivity methods were beyond the scope of the meta-

analysis. However, considering the variable results in combination with Wu et al.’s (2018) 

analysis, caution should be taken when applying conversion algorithms between conductivity 

and diffusion tensors. 
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Furthermore, as formerly discussed, measurements obtained in vitro or ex vivo, as well as at 

room temperature, are likely to differ from in vivo results due to the non-physiological 

conditions. It is therefore recommended that investigations should be completed at body 

temperature, in vivo and at frequencies in line with resonant frequencies of the brain (<300 

Hz). Subsequently, a significant correlation between WM conductivity and applied frequency 

may have only be revealed due to values obtained at 500 Hz. A large pool of conductivity 

values were obtained at this frequency, whilst the remainder of values were measured <150 

Hz. Hence, elevated conductivity values at a considerably higher frequency than all other 

results may have skewed the data to reveal a positive relationship. Additional conductivity 

values measured with frequencies between 150 Hz and 500 Hz are needed to further elucidate 

the presence or not of a significant relationship. 

 

WM conductivity values were further revealed to vary with pathological condition. However, 

insufficient results were available to extract clear conclusions. Such a variation with 

pathology is nevertheless, expected. For example, intracranial pathology from epilepsy 

patients potentially alters cytoarchitecture of affected and non-affected areas, such as cortical 

neuronal disorganisation and surplus WM cells (Mathern et al., 1999). Akhtari and colleagues 

(2006) suggested pathological changes in myelin and diseased-active cells may disrupt cell 

geometry organisation. When coupled with histological demyelination and cell population 

alterations, this may increase proton diffusion as it is no longer constrained by myelin walls 

or tight organisation. Interestingly, a significant relationship between fluctuations in DTI 

eigenvalues and histological alterations in temporal lobe epilepsy has been found (Kimiwada 

et al., 2006). Furthermore, extensive research has revealed marked differences in WM 

structure in numerous diseases and pathologies, such as Multiple Sclerosis, Alzheimer’s 

Disease, Schizophrenia and Parkinson’s Disease (Bozzali et al., 2002; Burton et al., 2006; 

Kubicki et al., 2005; Kutzelnigg et al., 2005). Conductivity and anisotropy surrounding 

diseased tissues is subsequently likely to affect the generated electrical and magnetic fields 

from a source, compared to such distributions in healthy individuals (Park et al., 2002; 

Youn). 

 

Although no significant correlation was revealed, WM conductivity as a function of age was 

found to contribute to the meta-regression model. This observation is unsurprising 

considering the well-researched nature of WM development with age, suggesting a decline in 

WM integrity, WM volume, myelination, and diffusivity, etc. (Gunning‐Dixon et al, 2009; 
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Guttmann et al., 1998; Salat et al., 1999; Schmithorst et al., 2002). The degeneration of WM 

with age allows for higher CSF and liquid concentrations within the WM, therefore 

increasing conductivity of the tissue. Considering the large variation of WM with 

methodology, pathology, and participant demographics, assuming conductivity of WM from 

the literature is clearly insufficient for accurate head conductivity profiles.  

 

Combining the current results for WM and GM conductivity values, a clear discrepancy 

exists between both tissues, indicating the heterogeneity of the brain. Assuming the brain to 

have homogeneous and isotropic conductivity is therefore insufficient for accurate 

conductivity profiles. Such assumptions can consequently result in considerable EEG and 

MEG source localisation errors (Acar et al., 2016; Awada et al., 1998; Cohen & Cuffin, 

1983b). 

 

3.5.6. Brain-to-skull Conductivity Ratio 
 

The ratio between the brain and skull conductivity values was significantly different for 

epilepsy compared to healthy participants. However, all BSCR values with epileptic 

pathology were obtained from paediatric samples. In accordance with this observation, BSCR 

was revealed to increase with age, suggesting paediatric samples, and hence epilepsy in the 

current review, to have lower conductivity ratios. In support of previous literature examining 

the influence of age on skull conductivity, such a relationship is expected, considering 

increased conductivity and decreased thickness of paediatric skulls. In contrast, paediatric 

brain tissue contains relatively higher water content and lower myelin deposition than adults 

(Knickmeyer et al., 2008; Peterson et al., 2003), indicating higher conductivity. Together, 

higher conductivity of both the skull and the brain in paediatric samples would suggest the 

brain-to-skull ratio to remain relatively stable throughout age. However, this would require 

an equal rate of decline for both tissues, which is unlikely the case. The role of skull 

conductivity for BSCR calculations was elucidated by Gonçalves et al. (2003), who 

concluded their BSCR discrepancies to be a consequence of skull, as opposed to brain, 

conductivity variation. Their results indicated brain conductivity to be of less importance 

when calculating BSCR, rendering decline in brain conductivity, whether equal or not to 

skull conductivity decline, irrelevant. 
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In contrast, assuming isotropic and homogeneous properties of the skull may contribute to 

variations in brain-to-skull estimations. For example, current injection at different locations 

may result in differing impedance distribution within the skull, hence altering BSCR 

estimations when isotropic compared to anisotropic skull models are used (van den Broek et 

al., 1998). However, it is noted that more recent papers acknowledge the importance of 

segmenting the skull layers, hence the use of skull anisotropy to optimise estimates of layered 

skull conductivity may not be required. Additionally, the heterogeneity in the skull will 

evidently introduce conductivity variation when homogeneous models are used, hence 

contributing to variation in BSCR values. These observations similarly apply for brain 

homogeneity and anisotropy, which would consequently effect BSCR estimations and 

contribute to variation. Considering BSCR estimations are clearly dependent on accurate 

conductivity of the skull and brain, which are subject to large variability, it is suggested 

personalised models of whole-head conductivity are essential to accurately determine the 

brain-to-skull conductivity ratio. 

 

3.6. Chapter Summary 

 

Chapter 3 outlines a meta-analysis that systematically investigated variation in reported 

human head electrical conductivity values for 17 different tissue types and the BSCR. 

Adhering to the hypothesis, conductivity was revealed to significantly vary throughout the 

literature, specifically for the scalp, different layers of the skull, the whole-brain, grey matter, 

white matter, and the brain-to-skull conductivity ratio. Important “take-home” messages from 

the meta-analysis were as follows: 

 

• To decrease variation and increase stability of conductivity estimates, values should 

be obtained at body temperature, at frequencies less than 100 Hz and in natural, in 

vivo conditions.   

• Due to variation between participants personalised models of head electrical 

conductivity should be obtained for each participant. 

• When personalised models are unavailable, weighted average means from the current 

meta-analysis are suggested: 0.4137 S/m for the scalp, 0.016 S/m for the whole skull, 

or when better modelled as multiple compartments, 0.048 S/m for the spongiform 

layer, 0.007 S/m for the inner compact and 0.005 S/m for the outer compact. As well 
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as 1.7358 S/m for the CSF, 0.3787 S/m for the grey matter, 0.1462 S/m for WM and 

50.4 for the BSCR. 

• One important finding was that electrical conductivity significantly correlated with 

participant’s age for the skull, WM and BSCR. Potential explanations for this have 

been provided.   
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CHAPTER 4. IMPACT OF AGE ON TDCS INDUCED FIELDS 
 

4.1. Chapter Overview  

 
The previous chapter emphasised how electrical conductivities of head tissues vary 

throughout the literature with employed methodology and participant demographics. In 

particular, participant age was revealed as an important factor for skull conductivity and 

BSCR deviations. The specific relationship between age and skull conductivity, however, 

remains relatively unclear. Accurate representation of head tissue conductivity, of which the 

skull may deviate due to age, plays a key role in the resulting electrical fields following tDCS 

stimulations, as discussed in the first two chapters. The current chapter thus explored how 

variations in skull electrical conductivities, particularly as a suggested function of age, 

affected tDCS simulated induced electric fields. Simulations were utilised to compare tDCS 

outcomes for different intensities across head atlases of varying age. To demonstrate differing 

skull conductivity, values were extracted from three databases revealing a correlation 

between age and conductivity. The tDCS induced electric fields were compared across all 

three databases with varying skull, as well as GM, WM, and scalp conductivities.   

 

4.2. Motivation  

 
As discussed in Chapter 1, tDCS involves a constant low direct current delivered via two 

electrodes: a positive (anodal) electrode placed above the target region, and a negative 

(cathodal) electrode placed contralaterally, facilitating depolar- and hyperpolarisation of 

neurons, respectively (Kobayashi & Pascual-Leon, 2003; Nitsche et al., 2008). The effect and 

application of tDCS on brain function is dependent on the applied region, frequency, 

duration, and intensity of stimulation. Altering these parameters allows individualised 

therapeutic and investigative intervention (Peterchev et al., 2015). Understanding the current 

flow to target brain areas is therefore essential for determining brain stimulation parameters 

and hence desired clinical outcomes.  

 

Computational models are standardised tools for predicting current flow throughout the brain 

during neuromodulation (Datta et al., 2011). Current flow estimation depends, between other 

parameters, on the electrical conductivity of head tissues, as is shown in Chapter 2. Uncertain 

electrical conductivity, specifically of the skull, has been revealed to influence tDCS 
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electrical fields and substantially alter optimal tDCS stimulation protocol predictions 

(Schmidt et al., 2015). Moreover, head model simplifications play an important role in the 

determination of optimal tDCS doses. For example, Wagner et al. (2013) found that including 

the (traditionally neglected) spongiform bone compartment within the skull altered tDCS 

current flow. Geometrical simplifications have been previously employed due to the 

additional information required for accurate segmentation (e.g., CT scans, as in Fernández-

Corazza et al., 2017). However, recent studies, for example from Antonakakis et al. (2020) 

have developed methods for modelling spongiform bone using T2 weighted MRI. 

Nevertheless, some of the most utilised software packages, such as SimNIBS (Thielscher et 

al., 2015) and ROAST (Huang et al., 2015) do not have the flexibility to exploit such 

segmentation. These generalisations, as a result of previous literature segmentation 

limitations, thus alter skull conductivity values and impact the simulated electrical currents. 

Supplementing this, Fernández-Corazza et al. (2017), using EIT, revealed that skull 

conductivity was largely overestimated when not distinguishing between compact and 

marrow bone. Such overestimation resulted in higher transcranial electrical stimulation 

current intensities than when employing a realistic skull conductivity value. Furthermore, 

when the presence of spongiform bone was neglected, thinner skull regions resulted in higher 

field strengths (Opitz et al., 2015). When including the spongiform layer, however, the 

induced electric field through thicker skull regions was comparable to that of thinner skulls 

(i.e., high induced field strength) without spongiform bone. This therefore highlights the 

importance and impact of bone composition. Accompanying the discussed research, using 

generalised polynomial chaos expansion, Saturnino et al. (2019) revealed tDCS induced 

electric fields were significantly impacted by scalp and skull conductivity uncertainties. This 

suggests the importance of skull conductivity and geometry accuracy is not minimal for tDCS 

field simulations.  

 

As revealed in Chapter 3, one important modulator of conductivity variation is participant’s 

age. Disparity in skull conductivity with age can be partially attributed to differences in skull 

composition during development, as mentioned in detail in Sections 1.6, and 3.5.3i. In 

support of this, neonatal skulls were estimated to have higher conductivity in EEG simulation 

studies (Odabaee et al., 2014). Furthermore, a decline with age was indicated when directly 

measuring skull pieces removed during surgery (Hoekema et al., 2003) and in E/MEG 

(Gonçalves et al., 2003). Chapter 3 also revealed deviation in whole-skull conductivity values 

could be partially predicted by participant age and BSCR particularly significantly increased 
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with age. This was critically interpreted to be primarily due to deviations in skull, rather than 

brain conductivity. It is additionally noted that skull thickness (Antonakakis et al., 2020) and 

the percentage of spongiform bone (Tang et al., 2008) may further play a role in skull 

conductivity variation, particularly as a function of age (Gonçalves et al., 2003). 

 

Comprehending the influence of age on brain stimulation is particularly important to 

understand treatment and research outcomes for different age groups. For example, tDCS has 

been employed within older adult populations as a treatment for mild cognitive impairment 

(MCI) and Dementia (Elder & Taylor, 2014; André et al., 2016). Further treatments for 

ADHD (Weaver et al., 2012; Bandeira et al., 2016) and autism (Amatachaya et al., 2014; 

Oberman et al., 2015; 2016) have been applied across children and adolescents. More general 

applications, for example, treatments for depression and anxiety, are also increasingly applied 

from both paediatric to geriatric populations (Iriarte & George, 2018) However, the potential 

influence participant age has on tDCS treatment effects is seldom considered.  

 

Despite evidence that skull conductivity deviates with age and may contribute to electric field 

dispersions, values are often assumed stable. For example, various papers have noted 

differences in induced tDCS fields with age (Moliadze et al., 2015; Kessler et al., 2013; 

Ciechanski et al., 2018; Antonenko et al., 2021; Rezaee & Dutta, 2020). However, none 

considered the additional impact of skull conductivity variation. This has been noted as a 

limitation of the respective studies (Moliadze et al., 2015; Kessler et al., 2013; Ciechanski et 

al., 2018) and differences are often assumed to be due to geometry alone. Furthermore, these 

existing papers are either limited by participant numbers (Croarkin et al., 2011), only 

considering one age group (Bandeira et al., 2016; Rezaee & Dutta, 2020), or separate ages in 

a few pools only rather than continuously (Ciechanski et al., 2018; Antonenko et al., 2021). 

The following chapter therefore attempts to bridge this gap by characterising the influence 

that various estimated age-appropriate skull conductivity ranges have on tDCS induced fields 

using age-specific atlases to represent population heads. Alongside this, different tDCS 

intensities were considered to highlight the potential importance of individualising tDCS dose 

as a function of age. 
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4.3. Materials and Methods 

 
4.3.1. Head Models 
 

Standard structural T1 and T2-weighted MRIs were obtained from the publicly available 

Neurodevelopmental MRI Database. This consisted of age-appropriate average MRI 

templates ranging from 2 weeks to 89 years old created from different databases of over 400 

participants (Richards et al., 2016; Sanchez et al., 2012; Evans, 2006; Richards et al., 2015; 

Fillmore et al., 2015). The data is publicly available for experimental and clinical research 

and is shared under a Creative Commons Attribution-NonCommercial-Noderivs 3.0 

Unported License (CC BY-NC-ND 3.0; http://creativecommons.org/licenses/by-nc-

nd/3.0/deed.en_US). Six age templates were chosen for the current study at 10, 20, 30, 40, 50 

and 60 years old. These templates are based on more than 1000 images, over a large age-

group, with an approximately equal number of males and females. They were verified for 

accuracy and repeatedly visually inspected and manually corrected throughout generation 

(see the respective papers referenced above for details). Age-specific templates were 

additionally evaluated to provide more accurate tissue segmentation compared to standard 

MNI atlas priors (Fillmore et al., 2015). The quality of the templates was further analysed by 

comparing volumetric measures to literature data, finding similar values, and supporting their 

correctness and usefulness (Fillmore et al., 2015). Furthermore, the atlases were recently 

employed in a tDCS computational (Rezaee et al., 2020) and transcranial photobiomodulation 

simulation (t-PBM; Yuan et al., 2020) study and validated for use in individual modelling to 

demonstrate aging tDCS effects. 

 

A volume conductor FEM head mesh was created for each model with the SimNIBS v3.1.2. 

(Thielscher et al., 2015; Nielsen et al., 2018) ‘headreco all’ pipeline which runs all the 

reconstruction steps, including volume meshing (Nielsen et al., 2018; Saturnino et al., 2019; 

Penny et al., 2011; Geuzaine et al., 2009). The default parameters of the headreco pipeline 

were utilised. Mesh density was set as 0.5 (nodes per mm2), with bias regularisation factor for 

T2 correction as 0.01 and downsampling factor in the statistical parametric mapping (SPM) 

segmentation as 3. This pipeline segments the head into seven compartments: eyes, scalp, 

skull, CSF, GM, WM, and air cavities (paranasal sinuses), without cutting at the base of the 

skull (Callejón-Leblic et al., 2021). Each generated head model consisted of an average of 

3.4M tetrahedra of size 1 mm3 (for visualisation of each head model see Figure 4.3). 
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Generated head segmentations were overlayed onto the base MRI to inspect the accuracy of 

the produced head models. They were visually examined for inhomogeneities and 

irregularities to ensure normality of brain characteristics (Figure 4.2 details the base MRI of 

each atlas). To aid in the justification of atlases, head compartment volumes for each in-skull 

tissue were calculated using the Matlab processing toolbox ISO2Mesh (Fang et al., 2009) and 

compared to literature values. The volumes are provided in Table 4.1 and the comparisons to 

previous literature discussed briefly in Section 4.4.1 and more extensively the Section 4.5.1. 

Electric field results were also compared to existing studies utilising individual participant 

MRIs to confirm they were within expected ranges (specifically ensured comparable to 

Saturnino et al., 2019, and Antonenko et al., 2021). Corroboration between outcomes 

employing atlases and those with individual MRIs provided further support for the generated 

templates.  

 

The average whole skull thickness was also computed for each age atlas. First, a ROI was 

defined as the skull region, within a 20 mm radius, directly below the tDCS anode (C3, as 

described in Section 4.3.2). The skull thickness of the ROI, defined for each head model, was 

estimated following a procedure outlined in (Antonakakis et al., 2020). Briefly, the skull 

compartments of each model were extracted, and outer and inner surfaces determined. The 

normal vectors and centre of gravity (CG) were established at each node of the skull 

segmentation. A positive scalar product of these indicated the corresponding node belonged 

to an outer surface skull point, whilst a negative product indicated the node belonged to an 

inner skull point. The thickness of the ROI was thus determined as the average value across 

the minimum Euclidean distance between each node of the outer surface and all nodes of the 

inner surface. The ROI whole-skull thicknesses for each head model are presented in Table 

4.1. 

 

4.3.2. Conductivity Assignment 
 

The existing literature was extensively searched for all papers reporting both skull 

conductivity and participant age. From these values, skull conductivity was modelled as a 

function of age based on three existing datasets: Gonçalves et al. (2003a, 2003b), 

Antonakakis et al. (2020), and Hoekema et al. (2003). These papers were chosen as they were 

the only studies to report both participant age and skull conductivity, measured at body 

temperature, for at least five values, whilst also revealing a relationship between age and 
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conductivity. These studies were deemed accurate based on a sound method employed in the 

meta-analysis of Chapter 3 which accounted for methodological and standardised error using 

an extensive checklist (QAS, Section 3.3.5.). Therefore, the three chosen papers were 

regarded as providing representative values of skull conductivity within the literature, the 

differences between them further highlighting conductivity variation. To extract these three 

studies, five was chosen as the minimum number of measurements presented so a function 

was able to be determined with the available data. Measurements from each dataset were 

separately employed to model aging skull conductivity, as the same method was used within 

each study. This allowed consideration of deviation between values to be due to participant 

demographics rather than methodology. In addition, these papers represent values measured 

by the three most employed methodologies (EIT, E/MEG and DAC), again enabling 

thorough representation of possible conductivity measurements throughout the literature. 

Gonçalves et al. (2003b) utilised two different techniques, EIT and E/MEG. For comparison 

purposes and to avoid discrepancies due to methodology (as previously stated), values 

extracted with EIT only were included. An additional paper found from Dabek et al. (2016) 

was not included to model the relationship between age and skull conductivity, as they 

revealed no clear dependencies on age (see Section 4.5.4.). Each value was assigned a 

weight, reflecting a quality assessment outlined in Chapter 3’s meta-analysis (Section 3.3.5.). 

Two outliers were excluded from the Antonakakis et al. dataset as the authors reported them 

as outliers in the original paper (Antonakakis et al., 2020) and they were at more than two 

standard deviations from the mean of the corresponding model. 

 

Following the removal of outliers, for each of the three datasets, an exponential model of the 

mean as a function of age was determined. An exponential function within the Curve Fitting 

toolbox of Matlab was employed to fit a mean exponential curve for all values of each 

dataset. Each value was weighted according to that described in Section 3.3.5. and thus, 

accounted for limitations in methodology or variation within the extracted paper. Alongside 

this, a corresponding range that incorporated the majority of all recorded values was 

estimated (Figure 4.1). This was considered as an average minimum and maximum range for 

each dataset using all presented conductivity values. An exponential curve was similarly 

fitted, as described above, but amended to incorporate all values from each dataset and thus 

representing a range falling between the two exponential fits. One value from the 

Antonakakis et al. dataset fell outside of the exponential range, however, was incorporated in 

the generation of the model and exponential fit (see Figure 4.1b). This was the only value that 
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did not fall within the computed minimum and maximum range of conductivity values, for all 

the datasets. The exponential model was considered a best fit of the provided data. It ensures 

non-negative values and follows the described literature where conductivity is theorised to 

decline more rapidly from birth to adolescence and then slower (Wendel et al., 2010). An 

exponential relationship was also utilised by Wendel et al. (2010) from Hoekema et al.’s 

(2003) measurements. This function provided the distribution of skull conductivity with age 

for each corresponding dataset.  

 

The SimNIBS software’s uncertainty quantification (UQ) function was used to determine 

divergences in the tDCS induced electric fields due to variation in conductivity (uncertainty 

parameters). This software makes use of the generalised polynomial chaos (gPC) expansion. 

Briefly, the UQ quantifies the uncertainty of input variables using a probability distribution. 

A polynomial representation of the output variable (i.e., the electric field), given the input 

variable (conductivity), was computed using the gPC expansion. An adaptive approach 

allows for fast convergence, where the iteration stops when a tolerance is reached. The error 

at each iteration step was evaluated using a K-means cross validation scheme. For a detailed 

explanation of the UQ, see Saturnino et al. (2019). The UQ input variable was informed by 

the three conductivity distributions determined from each database. Minimum and maximum 

(given that the available data do not allow to make further assumptions) values were firstly 

extracted from the exponential fit range (as discussed in Section 4.3) for each age (see Table 

4.1). These ranges were then utilised as the minimum and maximum parameters for a 

uniform conductivity distribution in the UQ. These are thus referred to as “proposed age-

appropriate skull conductivities” (see Figure 4.1). These values represent the variation in 

skull conductivity as a function of age, according to three chosen datasets.  

 

The UQ was calculated for the automatic standard simulation as provided in SimNIBS for 

motor cortex tDCS stimulation. This was to provide a frequently employed protocol that 

would thus represent and be transferable to many stimulation studies. This is using a 5x5 cm2 

anode placed over C3 and a 5x7 cm2 cathode placed over AF4, the right supraorbital region 

(the mostly commonly used electrode size in experiments; see, e.g., Thair et al., 2017). The 

placement of these electrodes was visually checked using the SimNIBS GUI to ensure the 

location on head models were as expected. Four different intensities were utilised for all UQ 

simulations and ages: 0.5, 1, 1.5, and 2 mA. 
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4.3.3. Experiments 
 

Two sets of UQ tDCS simulations were carried out. The first employed the proposed age-

appropriate skull conductivity ranges with all other tissues fixed. The second also utilised the 

proposed age-appropriate skull conductivity ranges but with scalp, GM and WM also varied 

and CSF conductivity fixed. Three final simulations, not using UQ, were conducted where all 

tissue conductivities had a fixed value. All simulations were carried out on each age atlas and 

for all four intensities. Each experiment is outlined in more detail below. 

 

For the first set of simulations, the proposed age-appropriate skull conductivity ranges for 

each of the three datasets were employed as the UQ input variable. The electrical 

conductivities of the scalp, CSF, GM, and WM were fixed to 0.4137, 1.7358, 0.3787 and 

0.1462 S/m respectively. These were the weighted mean measurements as assigned in 

Chapter 3 and provided in the GitHub page in Section 4.3.2. and were therefore regarded as 

the most appropriate values within the available research. This first experiment elucidates the 

effect that changes in skull conductivity alone, according to participant age, has on tDCS 

induced electric fields, when all other tissue conductivities are fixed. 

 

The second set of UQ simulations were conducted using the proposed age-appropriate skull 

conductivity values for each dataset and fixed CSF conductivity (1.7358 S/m, as above), but 

with differing scalp, GM, and WM values. These were assigned as uniform distributions with 

minimum and maximum values from Chapter 3 using the same methodology as described in 

Section 4.3.2. Any deviation between values was therefore more likely to be due to 

participant variation rather than methodology. The ranges (as provided by EIT methods) were 

0.25 – 0.42, 0.22 – 0.29, and 0.16 – 0.23 S/m for scalp, GM, and WM, respectively. CSF 

conductivity was fixed as it has been revealed to minimally deviate between participants (see 

Section 3.5.4.). The second experiment aimed to show the effect that the proposed age-

appropriate skull conductivity has on tDCS induced fields, whilst soft tissue is also unknown 

(a more realistic representation). As deviations in soft tissues are identical across all ages, any 

significant differences between ages would therefore be attributed to changing skull 

conductivity and head geometries. 

 

The final three, non-UQ simulations utilised non-age-appropriate skull conductivities 

recommended in the literature: 0.0055 S/m (Fernández-Corazza et al., 2017), 0.01 S/m 
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(Dannhauer et al., 2011) and 0.016 S/m (Chapter 3, published and thus termed in this thesis 

as McCann et al., 2019). All other tissues were assigned the weighted mean from Chapter 3, 

as above. The results from these simulations allowed comparison to the previous two UQ 

simulations and thus highlighted the importance of adjusted and realistic conductivities for 

the most accurate representation. Differences between peak fields utilising the three standard 

skull conductivities (remaining stable for all ages) and the proposed age-appropriate model 

also allowed disentanglement of geometry and conductivity. 

 

 
 

   
Skull conductivity ranges (S/m) 

Age 

(years) 

Skull 

thickness 

(mm) 

Tissue Compartment 

Volume (x 106 mm3)  
Gonçalves et al. 

Antonakakis et 

al. 
Hoekema et al. 

GM WM CSF Min Max Min Max Min Max 

10 5.63 0.6291 0.5597 0.2273 0.01 0.0167 0.0058 0.0152 0.0803 0.095 

20 7.21 0.6347 0.5546 0.2165 0.0066 0.0137 0.0041 0.0123 0.0629 0.0784 

30 6.84 0.5497 0.5858 0.222 0.0043 0.0112 0.0029 0.0106 0.0492 0.0647 

40 6.67 0.5618 0.5687 0.257 0.0029 0.0092 0.0021 0.009 0.0386 0.0534 

50 6.26 0.556 0.5775 0.2721 0.0019 0.0075 0.0015 0.0078 0.0302 0.044 

60 5.93 0.5606 0.5807 0.3374 0.0012 0.0062 0.001 0.0067 0.0237 0.0364 

 
Table 4.1: Summary of tissue compartment volumes (in mm3) for each head atlas model and proposed 

age-appropriate skull conductivity values (in S/m) corresponding to each employed dataset.  
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Figure 4.1: Distribution of skull conductivities according to the Gonçalves et al. (4.3a), Antonakakis 

et al. (4.3b) and Hoekema et al. (4.3c) datasets. Circles represent values from the respective papers, 

whilst squares are outliers as identified by the corresponding publication. The solid red line signifies 

the weighted exponential mean, whilst the dashed line denotes the weighted range (minimum and 

maximum) incorporating all values. 

 
4.3.4. Analysis 
 

For each age atlas, tDCS intensity and conductivity configuration, 1000 UQ calculated values 

were randomly extracted of the peak electric field at the 99th percentile in GM (measured in 

V/m). The 99th percentile was chosen as the representative value of the peak field since is it 

the most employed in the literature (Saturnino et al., 2019; Antonenko et al., 2021) that 

displays the average of the peak field used (i.e., between the 95% and 99.9% percentile). This 
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was repeated for GM volume (measured in mm3) with an electric field greater than 75% of 

the peak value (referred to as focality [Saturnino et al., 2019]). A skipped Pearson correlation 

analysis was carried out to explore any significant relationships between age and peak field 

or focality, as well as with CSF, GM, and WM volumes. This is a non-parametric method, 

accounting for heteroscedasticity effects, as part of the Robust Correlation Toolbox (Pernet et 

al., 2013). The significant alpha level was set to 0.05 (p<0.05 rejects the null hypothesis). 

Differences between these extracted values for each age atlas and conductivity configuration 

were determined using an ANOVA (Tukey et al., 1949). The p-values for both correlational 

analysis and ANOVA, were adjusted for multiple comparisons using the Benjamin-Hochberg 

false discovery rate (FDR) method, with the critical value equally set to 0.05 (Benjamini et 

al., 1995).  

 

To determine which tissue’s conductivity variation contributed most to the electric field 

uncertainty, the magnitudes of the global derivative-based sensitivity coefficients were 

calculated. The global derivative-based sensitivity coefficients quantify the average change in 

electric field with respect to each tissue’s conductivity variation. They are calculated by 

means of the gPC coefficients and the respective basis functions’ partial derivatives. The 

sensitivity coefficients are provided as an outcome variable within the UQ analysis. Further 

details on their determination can be found in (Saturnino et al., 2019). The respective 

sensitivity coefficients of peak fields at the GM 99th percentile were calculated according to 

scalp, skull, GM and WM conductivity variation for each dataset and tDCS intensity. 

Coefficients were extracted as the respective absolute magnitude for the 99th percentile for 

each tissue. These sensitivity values were thus an evaluation of the sensitivity of electric field 

deviation due to varying tissue conductivity. Any differences between the sensitivity 

coefficients according to tissue type were determined by employing ANOVA and skipped 

Pearson correlation analysis, corrected for multiple comparisons (as in the method described 

above). This allowed determination of the most influential tissue for deviation in tDCS 

electric field with respect to changes in participant age and stimulation intensity. 
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4.4. Results 

 
4.4.1. Head models 
 

Following the assessment of head mesh quality, the original head model for the 10-year-old 

atlas was seen to generate thicker scalp regions than the MRI. This was manually corrected 

by employing a higher threshold for scalp segmentation, before the surface and volume 

meshing steps of ‘headreco’ (Nielsen et al., 2018). All resultant final overlayed meshes were 

accurate compared to the MRI (Figure 4.2), and all volumes were as expected, i.e., there was 

no cortical smoothing, large CSF areas, or otherwise irregular appearances deemed to impact 

any subsequent analysis. Head meshes for all atlases are provided in Figure 4.3. Electrode 

placement on the head models was also deemed normal and not impeded by scalp 

segmentation. Brain volumes were calculated for the original MRI atlases to assess the ability 

of age-appropriate templates to represent previous findings of the aging brain (see Table 4.1). 

Before tDCS simulation, the brain volumes in the current study were assessed for normality 

as presented in previous literature (Giorgio et al., 2010; Good et al., 2001; Gur et al., 2002; 

Ge et al., 2002; Smith et al., 2007; Groeschel et al., 2010; Sowell et al., 2003; Evans et al., 

2012). All volumes were found to be within the normal ranges as reported in the literature, a 

thorough discussion of this comparison can be found in Section 4.5.1. Of note, for the 30-

year-old head mesh, the right side displayed a thicker region (as can be seen in Figure 4.3). 

Although this was an abnormal presentation, the artifact was not considered to effect 

consequential tDCS induced field calculations due to no tDCS electrodes being placed above 

this irregular region. 
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Figure 4.2: Base MRI for each age atlas, 10-60 years respectively, for the coronal, axial, and sagittal 

volume, visualised using the brain imaging software package Freeview for FreeSurfer. The segmented 

tissues are outlined by a thin grey line.  
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60 years
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Figure 4.3: Axial views of the generated finite element head meshes for each head atlas, 10-60 years, 

respectively, visualised using Matlab (Natick, USA). The five head tissues are represented for the 

scalp (purple), skull (blue), CSF (yellow), GM (pink) and WM (grey). The 10-year-old model 

consisted of 3.8M tetrahedra of size 1mm3 and 6.81 x 105 nodes. The 20-year-old model had 3.33M 

tetrahedra and 6 x 105 nodes. For the 30-year-old mesh, there were 3.35M tetrahedra and 6.14 x 105 

nodes. The 40-year-old model contained 3.41M tetrahedra and 6.25 x 105 nodes. For the 50-year-old 

mesh, there were 3.42M tetrahedra and 6.25 x 105 nodes. Lastly, the 60-year-old model consisted of 

3.38M tetrahedra and 6.21 x 105 nodes.  
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4.4.2. Peak fields 
 

A negative correlation between tDCS induced electric peak fields at the 99th percentile and 

age using solely proposed age-appropriate skull conductivity was revealed for all tDCS 

intensities and datasets. The average skipped Pearson correlation (termed r) for all intensities 

were -0.9060, -0.8578 and -0.9544 for the Gonçalves et al., Antonakakis et al. and Hoekema 

et al. datasets, respectively (Figure 4.4a, c, and e). The correlational p-value was significant 

following multiple comparison correction. For all datasets, there was additionally a 

significant difference (one-way ANOVA p<0.001 for all, after multiple comparison 

adjustment) and positive correlation between peak field and intensity for all ages. This 

decreased with age (see Figure 4.4a, c and e; r > 0.82, r > 0.80, and r > 0.99 for Gonçalves et 

al., Antonakakis et al., and Hoekema et al. datasets, respectively, for all ages). On average, 

for the Gonçalves et al. dataset (for all intensities), peak fields declined by a factor of 0.7806 

per decade. As an example, peak fields for a 60-year-old atlas were analogous to peak fields 

in a 10-year-old atlas using triple the stimulation dose (1.5 mA in 60 years vs 0.5 mA in 10 

years). For the Antonakakis et al. dataset, peak fields typically decayed by a factor of 0.7985 

per decade. Here the peak field for a 10-year-old was comparable to that of a 60-year-old 

when employing one third of the dose (0.5 mA to 1.5 mA for 10 vs 60-year-old atlas). The 

decline per decade for the Hoekema et al. dataset was reduced with a factor of 0.8892, and 

similar peak fields for a 10- and 60-year-old employing twice the intensity (0.5 mA vs 1 mA 

and 1 mA vs 2 mA). Across all three datasets the average decline per decade was thus 0.82. 

 

There were additionally significant differences between the three standard and proposed age-

appropriate skull conductivities for all datasets with age (one-way ANOVA p<0.001 for all, 

after multiple comparison adjustment). Dissimilarities increased with age for the Gonçalves 

et al. and Antonakakis et al. datasets and decreased for the Hoekema et al. dataset (see Figure 

4.4 for comparisons). These disparities are a direct result of conductivity variation, rather 

than variation in head geometry. For head geometry, there was a significant negative 

correlation between CSF volume and peak field for all datasets and tDCS intensities as well 

as a positive significant correlation between GM volume and peak fields. No correlation was 

revealed for WM volume percentage. Furthermore, no significant correlation was revealed 

between peak field and skull thickness when including all age ranges. However, as skull 

thickness linearly declined for ages atlases 20-60 (where, thickness for the 10-year-old atlas 

was significantly lower, not higher than the 20-year-old atlas), an additional analysis was 
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conducted excluding the 10-year-old data. These results revealed, for age atlases 20-60, 

significantly positive correlations between skull thickness and peak field for all intensities 

and datasets (average for all intensities, r = 0.83775, 0.6742 and 0.9146 for the Gonçalves et 

al., Antonakakis et al. and Hoekema et al. datasets, respectively).  

 

Figure 4.4: Variation in peak electric fields at the 99th percentile depending on tDCS intensity and 

subject’s age. Figures 4.4a, c and e display electric fields where proposed age-appropriate skull 

conductivity was varied alone and all other head tissues remained at the mean value, for the 
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Gonçalves et al., Antonakakis et al., and Hoekema et al. datasets, respectively. Figures 4.4b, d and f 

show electric field where the skull conductivity was varied within proposed age-appropriate values 

and the remaining head tissues were varied in a stable way across ages, for the Gonçalves et al., 

Antonakakis et al., and Hoekema et al. datasets, respectively. All boxplots show the minimum and 

maximum values (extended lines), where the filled box is the inter-quartile range and notch is the 

medium. Blue, orange, yellow and purple show results for tDCS intensities equal to 0.5 mA, 1 mA, 1.5 

mA and 2 mA, respectively. Filled green squares, magenta circles, and blue triangles display the 

singular peak field value when head tissues are the mean value and skull conductivity is 0.0055 S/m, 

0.01 S/m, and 0.016 S/m, respectively (taken from the cited literature). 

 

Comparable results were revealed using proposed age-appropriate skull conductivities and 

GM, WM, and scalp varied identically across ages. For all datasets, there was a negative 

significant (following multiple comparison correction) correlation between peak fields and 

age for all intensities (average r =-0.8759, r = -0.7984 and r = -0.8753 for the Gonçalves et 

al., Antonakakis et al., and Hoekema et al. datasets, respectively; Figure 4.4b, d and f). 

Alongside this, a significant difference between intensities and peak fields was found for all 

ages (one-way ANOVA p<0.001 for all, following multiple comparison correction). This, 

again, decreased with age (skipped Pearson correlation r > 0.80, r > 0.75, and r > 0.97 for the 

Gonçalves et al., Antonakakis et al., and Hoekema et al. datasets, respectively, and all ages). 

Correlations for both age and intensity were of the highest significance for the Hoekema et al. 

dataset and lowest for the Antonakakis et al. dataset (see Figure 4.5). Correlations employing 

both varied skull and head tissue conductivities were marginally lower than varied skull 

conductivity alone for all datasets (see Figure 4.5).  
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Figure 4.5: Variation in peak electric fields at the 99th percentile for 1 mA tDCS for varying 

ages, datasets, and electrical conductivities. Figure 4.5a represents peak values where 

proposed age-appropriate skull conductivity was varied alone and all other head tissues 

remained at the mean value, for the Gonçalves et al. (blue), Antonakakis et al. (orange), and 

Hoekema et al. (yellow) datasets. Figures 4.5.b shows peak fields with proposed age-

appropriate varying skull conductivity all other head tissues varied as stable across ages for 

the aforementioned datasets. Filled green squares, magenta circles and blue triangles display 

the singular peak field value when head tissues are the mean value and skull conductivity is 

0.0055 S/m, 0.01 S/m, and 0.016 S/m, respectively (taken from the cited literature). 

 

Significant correlations were revealed between age and the sensitivity coefficients for the 

scalp, skull, GM, and WM (p<0.001 for all datasets and intensities, corrected for multiple 

comparisons). Figure 4.6 shows the sensitivity coefficient magnitudes at 1 mA tDCS. Values 

and subsequent correlations were similar for all four employed intensities. Skull conductivity 

deviation became the most significantly influential tissue with increasing age for the 

Gonçalves et al. and Antonakakis et al. datasets. There was a positive correlation between age 

and the sensitivity of the skull to peak field deviation, weaker for each respective dataset 

(skipped Pearson correlation average for all intensities, Gonçalves et al.: r = 0.82145, 

Antonakakis et al.: r = 0.5063and Hoekema et al.: r = 0.9387). Furthermore, a negative 

relationship was revealed between age and WM sensitivity (average for all intensities; 

Gonçalves et al.: r = -0.8001, Antonakakis et al.: r = -0.7320, Hoekema et al.: r = -0.5978). 

This was repeated for GM sensitivity (for all intensities average; Gonçalves et al.: r = -

0.7834, Antonakakis et al.: r = -0.7432, Hoekema et al.: r = -0.5867) and scalp sensitivity 

(average for all intensities; Gonçalves et al.: r =-0.8604, Antonakakis et al.: r = -0.8051, 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

El
ec

tri
c 

Fi
el

d 
(V

/m
)

a) Skull Conductivity Varied

10 yrs 20 yrs 30 yrs 40 yrs 50 yrs 60 yrs
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

El
ec

tri
c 

Fi
el

d 
(V

/m
)

a) All Tissue Conductivities Varied

10 yrs 20 yrs 30 yrs 40 yrs 50 yrs 60 yrs

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

El
ec

tri
c 

Fi
el

d 
(V

/m
)

Peak electric field at the 99th percentile for 1mA tDCS for different datasets and conductivity variation

10yrs 20yrs 30yrs 40yrs 50yrs 60yrs

Fernández-Corazza et al., (0.0055 S/m)
Dannhauer et al., (0.01 S/m)
McCann et al., (0.016 S/m)
Gonçalves et al., (2003)
Antonakakis et al., (2020)
Hoekema et al., (2003)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

El
ec

tri
c 

Fi
el

d 
(V

/m
)

Peak electric field at the 99th percentile for 1mA tDCS for different datasets and conductivity variation

10yrs 20yrs 30yrs 40yrs 50yrs 60yrs

Fernández-Corazza et al., (0.0055 S/m)
Dannhauer et al., (0.01 S/m)
McCann et al., (0.016 S/m)
Gonçalves et al., (2003)
Antonakakis et al., (2020)
Hoekema et al., (2003)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

E
le

ct
ric

 F
ie

ld
 (V

/m
)

b) Gonçalves et al., (2003)

10 yrs 20 yrs 30 yrs 40 yrs 50 yrs 60 yrs



 

    
 

108 

Hoekema et al.: r = -0.7472). Uncertainty in skull conductivity was the most influential tissue 

in the Antonakakis et al. dataset and became the most influential for atlases over 30 years old 

in the Gonçalves et al. dataset.  

Figure 4.6: Global derivative-based sensitivity coefficient magnitudes of 1 mA tDCS induced electric 

field change at the 99th percentile with respect to deviations in WM (blue), GM (orange), proposed 

age-appropriate skull (yellow) and scalp (purple) conductivity for each age atlas. Figures display 

simulations employing the Gonçalves et al. (4.6a), Antonakakis et al. (4.6b) and the Hoekema et al. 

(4.6c) datasets. 

 
4.4.3. Focality 
 

Figure 4.7 displays the GM volume (mm3) with an electric field greater than 75% of the peak 

value (i.e., focality) for different conductivity configurations, simulated at 1 mA tDCS. As 

can be seen, a significant difference was revealed between GM volume at different ages. This 

was across all three datasets and all four intensities when skull conductivity alone was varied 

(one-way ANOVA, p<0.001 for all). The correlational analysis was insignificant. No 

differences were found between different intensities for any dataset or age. When skull and 

other head tissues were varied, focality significantly differed between ages for all datasets 
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and intensities (one-way ANOVA, p<0.001). There was a significant negative correlation 

between focality and age (identical for all intensities) for the Gonçalves et al. and 

Antonakakis et al. datasets (skipped Pearson correlation: r = -0.7531 and r = - 0.8023, 

respectively). No differences were found between different intensities for any dataset or age. 

All intensities yielded the same GM volume when proposed age-appropriate skull and all 

other head tissue values were constant. Furthermore, no significant correlation was revealed 

between peak field and skull thickness when including all age ranges. However as in Section 

4.4.2, an additional analysis was conducted excluding data from the 10-year-old age atlas. 

Significantly positive correlations were thus revealed between skull thickness and focality 

solely for the Gonçalves (r = 0.7010) and Antonakakis (r = 0.8081) dataset (identical for all 

intensities). 

Figure 4.7: Variation of GM volume with an electric field greater than 75% of the peak value for 1 

mA for varying ages and conductivity values. Blue boxplots represent values where only proposed 

age-appropriate skull conductivity was varied for each dataset (4.7a – 4.7c), whilst the orange 

boxplot shows simulations where both proposed age-appropriate skull ranges were utilised with all 

the head tissues varied as stable with age. Filled green triangles, magenta circles, and blue squares 

display the singular peak field value when head tissues are the mean value and skull conductivity is 

0.0055 S/m, 0.01 S/m, and 0.016 S/m, respectively (taken from the cited literature). 
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4.5. Discussion 

 
The current chapter revealed a significant negative correlation between atlas age and peak 

fields for simulated tDCS stimulation. This was mediated by proposed age-appropriate skull 

conductivity, irrespective of whether all other head tissue conductivities and tDCS intensity 

were varied. Deviations in skull conductivity were found to become the most influential 

tissue for peak field changes with increasing age for two datasets (Gonçalves et al. and 

Antonakakis et al.). Significant differences were also shown between tDCS focality and atlas 

age. However, there were only significant correlations when other head tissues were also 

varied (but stable across age). Focality increased (corresponding to lower GM volumes) with 

increasing age following scalp, GM, and WM conductivity variation for two datasets 

(Gonçalves et al. and Antonakakis et al.). These results suggest that skull conductivity, 

indicated to decline with age, is vital when modelling tDCS induced fields and these 

deviations should be accounted for. Such changes could account for varying clinical 

outcomes and suggest tDCS dose should be individualised and adjusted for participant’s age. 

 

4.5.1. Atlas Justification 
 

The employed atlas volumes corresponded with individual MRI volumes from the existing 

literature. The results specifically revealed GM volume linearly decreased, whilst WM 

remained relatively stable with age, with slight decrease for the youngest and eldest atlases. 

This is comparable to previous research, where GM generally decreased with age, falling 

within 0.4 – 0.9 L (Good et al., 2001; Gur et al., 2002; Ge et al., 2002; Smith et al., 2007; 

Groeschel et al., 2010; Sowell et al., 2003; Evans et al., 2012), whilst WM displays a ‘bell-

shaped’ curve, ranging between 0.3-0.7L (Giorgio et al., 2010; Good et al., 2001; Gur et al., 

2002; Smith et al., 2007) and ‘peaking’ within the fourth decade (Gur et al., 2002; Smith et 

al., 2007). Moreover, CSF volume for the utilised atlases was revealed to increase with age 

for which there is a multitude of support from the literature, where volumes have been 

reported to vary between 0.2-0.6 L (Gur et al., 2002; Smith et al., 2007; Groeschel et al., 

2010; Evans et al., 2012). The use of atlases has also previously been established in 

neuroimaging research, allowing capture of the population mean and variance as a function 

of age (Evans et al., 2012). Atlases or templates have been utilised, for example, in MEG 

network analysis, revealing consistent results compared to using individual MRI (Douw et 

al., 2018). Additionally, the Neurodevelopmental database utilised in the current chapter was 
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recently employed and validated to build structural templates for use in infant cortical EEG 

(O’Reilly et al., 2021). This is in addition to recent use in individual modelling with age in a 

tDCS computation (Rezaee et al., 2020) and t-PBM (Yuan et al., 2020). Head atlases have 

also been applied to represent average brains and determine tDCS parameters and responses 

that can generalise to a population. For example, a FE head model was created from a 

standard brain atlas to establish optimal tDCS positions (Im et al., 2008). Standard templates 

were further produced from multiple MRIs from participants of varying races, in order to 

determine the effect of race on tDCS current flow (Datta et al., 2018). Although it is noted 

the use of head atlases has disadvantages, for example the blurring of sulci and gyri and 

smoothing of tissue interfaces, particularly at the pial surfaces. Despite this, templates can 

provide generalised information that is not due solely to individual differences between 

participants. The smoothing of the utilised atlases was also considered minimal. The 

inspection and comparison of the current atlases to previous literature demonstrate the 

integrity of the provided head models and justify their use in the present tDCS simulation 

study.  

 

4.5.2. Age and peak induced fields 
 

The current results are in support of previous research from multiple participants. For 

example, using grouped ages, higher peak fields have been revealed in children, declining in 

adolescence and adulthood (Ciechanski et al., 2018; Antonenko et al., 2021). This is in 

addition to findings of higher peak fields in younger compared to older adults (Antonenko et 

al., 2021; Muffel et al., 2019). Furthermore, a slight negative correlation for peak electric 

fields was displayed between the ages 21 and 55 (Laakso et al., 2015). Importantly, the 

discussed papers (Ciechanski et al., 2018; Antonenko et al., 2021; Rezaee et al., 2020) have 

noted a limitation of their results is the exclusion of proposed age-appropriate skull 

conductivity values, which may exacerbate any relationship, as revealed in the current 

findings. By including a range of ages across the lifespan, results were able to be concluded 

as correlational, rather than mere differences between pooled groups of ages. Likewise, 

induced field variation was assessed as being directly due to proposed age-appropriate skull 

conductivity deviations. As hypothesised, the decrease in skull conductivity, irrespective of 

scalp, GM, and WM conductivity diversity, mediated the decline in peak electric fields with 

age. Not only was this effect not masked by other head tissue variability but remained for all 

tDCS intensities. Alongside this, changing scalp and skull conductivities, not accounting for 
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age, has yielded similar electric field deviations across different tDCS montages (Callejón et 

al., 2021). This suggests the current results can be applied to differing electrode placement 

parameters.  

 

The significant correlation between the three standard and varying proposed age-appropriate 

skull conductivity values (varied alone and alongside soft tissues) revealed that most of the 

electric field uncertainty is a direct result of aging skull conductivity. As changes in skull 

conductivity were the only varying factor, this variability was concluded not to occur due to 

head geometry alone (see Figure 4.4). From these results, differences were found to increase 

with age for the Gonçalves et al. and Antonakakis et al. datasets and decreased for the 

Hoekema et al. dataset. Head geometry, nevertheless, exacerbated these findings. The 

opposing correlational effect for the Hoekema et al. dataset is due to considerably higher 

conductivity values for the skull, compared to the three standard values and other datasets. 

This means that the decrease with age approached standard conductivities for Hoekema et al. 

but deviated away for Gonçalves et al. and Antonakakis et al. These results additionally 

revealed skull conductivity to be of increasing importance with increasing age for peak field 

variation (see Figure 4.6). This result was as expected as a more highly conductive skull, for 

younger participants, would allow more tDCS current to reach the brain and in turn increase 

electric fields. This effect is heightened in combination with geometry, e.g., paediatric skulls 

being considered significantly thinner than adult skulls (Cvetković et al., 2016; Antonakakis 

et al., 2020). As such, the current results equally revealed significant correlations with skull 

thickness and induced field., when the 10-year-old age atlas was excluded for analysis. This 

atlas, being from a paediatric population, had reduced skull thickness, as expected Cvetković 

et al., 2016; Antonakakis et al., 2020) due the skull still undergoing development. Therefore, 

correlational analysis was conducted for atlases 20 years and older. The resultant significant 

correlation between thickness and induced fields is indicative skull geometry may play a role 

in tDCS application. However, as induced fields were significantly correlated across all age 

ranges (10-years included), this parameter is not the sole contributor to deviating results. 

Skull thickness remains an important inclusion, particularly when considering how 

conductivity may vary. Previous research (Antonakakis et al., 2020) has revealed, for 

example, skull thickness to positively correlate with conductivity, which is supported by 

(Tang et al., 2008). Furthermore, a non-significant negative correlation between thickness 

and participant age was found (Antonakakis et al., 2020) and it was mentioned skull 

thickness increases exponentially from birth to adolescence (Delye et al., 2015) then linearly 
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decreases over time (Lillie et al., 2016). Hence, determining a clear and robust relationship 

requires essential further research. Skull thickness is therefore expected to play an imperative 

role in conductivity variation, particularly with age. Future studies should attempt to 

disentangle this relationship and provide additional conductivity data to allow for 

assumptions, such as correlation with age. 

 

Brain tissue volumes also differed according to age template. This is reinforced by the 

significant relationship between induced fields and CSF and GM volume and the negative 

correlation between age and brain tissue sensitivity to field changes. Paediatric brains contain 

comparably less CSF than adults, which is supported by the current head models. In these 

cases, current is less efficiently conducted via CSF, permitting a higher intensity of the 

remaining field. Moreover, children with lowered CSF have smaller extra-axial CSF space 

and shorter scalp to skull distances (Rezaee et al., 2020; Sadleir et al., 2010; Fox et al., 2004).  

This may result in higher peak electric fields and increased current spread as a larger 

proportion of stimulated current is penetrating the brain and in part due to lessened electrical 

current shunting. This is thus hypothesised to increase induced fields under the tDCS 

electrodes (Kessler et al., 2013). The current results are enhanced by Laakso et al. (2015) 

who revealed reduced peak electric fields with age due to a positive correlation between age 

and CSF volume. They considered this a measure of brain atrophy. Following from this, an 

increased number of brain lesions is expected with age, which would further contribute to 

differing tDCS induced fields. The impact of lesions and their conductivity was beyond the 

scope of the current chapter. Future studies, however, could incorporate lesions into field 

modelling, including conductivity estimates. Likewise, Ciechanski et al. (2018) suggested 

declining GM/WM ratio with age, irrespective of any changes in their conductivity, may 

relate to tDCS induced field fluctuations. This was in addition to the contribution of 

alterations in WM microstructure and myelination processes. Future research could explore 

the influence diffusion characteristics, expected to change with age (Groeschel et al., 2010; 

Salehinejad et al., 2020) on tDCS induced fields.  

 

The presented research further elucidated the relationship between tDCS dose and age. Peak 

fields were approximately triple in the eldest (60 years old) compared to the youngest atlas 

(10-years-old) when dose was kept constant. Generally, peak electric fields following 0.5 mA 

in the youngest atlas was comparable to 1.5 mA in the oldest atlas. These results are 

supported by previous similar studies. For example, stimulation intensity for adult ADHD 
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treatment (2 mA, 0.8 V/m) was double that required in children to produce similar electric 

fields (1 mA, 0.6 V/m; Gillick et al., 2014). A 0.7 mA in a 10-year-old with perinatal stroke 

additionally produced a peak brain current intensity equivalent to an adult receiving 1 mA 

(Im et al., 2008). Deviations in skull conductivity for the presented research, however, were 

not taken into consideration. The current chapter demonstrates the effect of variable skull 

conductivity is not minimal and exacerbates relationships between head geometry and 

induced tDCS fields. 

 

In addition, experimental studies have evidenced the effect of age on clinical and research 

outcomes. For tDCS motor cortex stimulation, elderly participants’ (older than 60 years old) 

responses were delayed (Heise et al., 2014) or differed (Saldanha et al., 2020) to younger 

participants (younger than 25 years old). Furthermore, anodal stimulation over the 

dorsolateral prefrontal cortex (DLPFC) in adolescence increased pain perception, whereas 

stimulation over the motor cortex using the same intensity increased the pain threshold in 

adults (Croarkin et al., 2014). The authors suggested age as a central mediator for the tDCS 

response, providing an explanation for differing treatment outcomes for identical stimulation 

parameters. Importantly, their results support previous findings that intracortical inhibition 

increases with age (Gillick et al., 2014). Moliadze et al. (2015) revealed 1 mA cathodal tDCS 

produced a facilitating brain function in children, originally hypothesised to reduce cortical 

excitability (where anodal stimulation would increase excitability). They suggested a “ceiling 

effect” may exist that cannot be overcome by higher tDCS intensity. The proposed “ceiling 

effect” threshold is dependent on age and therefore identical stimulation intensities may 

initiate long-term depression changes in adults, but long-term potentiation changes in 

children. In order to ensure comparable research and clinical outcomes across ages, it may be 

essential to individually adjust dosages.  

 

The present research revealed an average scaling factor (between all three proposed age-

appropriate skull conductivity datasets) of 0.82 per declining decade for induced peak fields. 

Datta et al. (2011) explored the effect that variation in head geometry has on peak electric 

fields and thus how doses can be normalised. They suggested the simplest approach would be 

to scale dosages according to peak electric fields, accounting for variation as a result of head 

geometry. The current results combine the influence of head geometry with skull 

conductivity to provide a suggestive scaling factor of 0.82 to tDCS dose per increasing 

decade. However, this value is arbitrary and still ensues large uncertainties, more evident 
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across vastly different head models, and is merely a suggestive value. Additional research is 

essential to determine how to accurately adjust tDCS dosages and montage application for 

treatment optimisation. 

 

In addition, future research is imperative to fully understanding the relationship between 

conductivity, electric fields and tDCS parameters (Croarkin et al., 2014). A recent study, for 

example, revealed the current propagation from the scalp to the brain was unaffected by skull 

conductivity changes (Forssell et al., 2021). This was found to be due the concept of “skull-

transparency”, where using specific current injection patterns without a priori skull 

conductivity values did not result in large induced field errors, as expected. Instead, they 

depended on the distance from the injection to the source and areas with high spatial 

frequency. This would be one solution to tDCS injection parameters without accounting for 

changing head conductivity. However, further research is required in this area and would be 

useful for tDCS treatment and research. Furthermore, a recent study also utilising gPC 

analysis, revealed uncertainty in scalp and skull conductivity significantly impact EEG 

inverse solutions (Vorwerk et al., 2019). This suggests the underlying relationship between 

electric current and skull conductivity is not minimal and can be extended to work in EEG. 

Further research could also employ analogous tDCS and EEG monitoring to explore such a 

relationship.  

 

4.5.3. Age and focality 
 

The presented results revealed no relationship between focality and age except when scalp, 

GM and WM conductivities were varied alongside proposed age-appropriate skull deviations. 

This result is as expected as focality has previously been hypothesised to depend on head 

geometry and GM/WM composition, rather than the contribution of skull conductivity 

(Callejón et al., 2021; Laakso et al., 2015; Mikkonen et al., 2020; Fernández-Corazza et al., 

2017). In support of this, the presented research revealed a significant relationship (when 

excluding the 10-year-old atlas) between skull thickness and focality for two datasets 

(Gonçalves et al. and Antonakakis et al.). This suggests skull geometry, particularly 

thickness, potentially plays a larger role in tDCS focality than skull conductivity, more so 

than for tDCS field strength. The lack of correlation for all ages however, suggests (as 

discussed in Section 4.5.2) skull thickness alone cannot account for tDCS variations (both 

focality and strength). A recent study confirmed the contribution of skull geometry, not 
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conductivity, to focality, revealing changing scalp and skull conductivities had a greater 

effect on electric field magnitude than distribution (Callejón et al., 2021). This may also 

explain why a relationship was revealed when scalp, GM and WM conductivities were varied 

as these simulations allow for larger overall deviation and an increased likelihood of finding 

an effect. Mikkonen et al., (2020) for example, found no variation in focality due to tDCS 

intensity, supporting the current results, but deviations in focality depending on tDCS 

montage, more specifically the size of the employed electrodes. Variation in electrode size 

was beyond the scope of the current chapter, however future modelling studies may explore 

how tDCS montage in combination with age-appropriate geometry and conductivity affect 

focality.   

 

4.5.4. Limitations 
 

One limitation of the research presented in this chapter is that bone composition in the skull 

was not taken into consideration. Spongiform bone, more highly conductive than compact 

bone, is typically increased in thicker skull regions, which could increase tDCS induced field 

strengths (Fernández-Corazza et al., 2017). The present research, however, did not include 

spongiform conductivity as a varying factor as the current software (SimNIBS, the most 

frequently employed software [Thielscher et al., 2015] and ROAST [Huang et al., 2019]) are 

unable to automatically represent marrow segmentation. The majority of papers exploring 

tDCS electric fields do not account for marrow tissue, inclusion of which in this research 

would therefore not be representative of the current standard (Thielscher et al., 2015). The 

aim was to explore tDCS induced fields in a way frequently employed, thus the most 

standard software was utilised and deemed appropriate for the current simulations. 

Furthermore, for accurate spongiform and suture segmentation, additional imaging 

information, such as that obtained through CT, is required, but often unavailable for brain 

stimulation treatment and research (Fernández-Corazza et al., 2017). It is acknowledged, 

however, that segmentation is possible through MRI data (for example in Antonakakis et al., 

2020) and could be utilised in further studies. Nevertheless, segmentation stemming from 

MRI methods are dependent on water content and thus would present variable results 

according to spongiform bone composition. This chapter allows evaluation of skull 

conductivity variations when employing the simplifications most frequently used. 

Nonetheless, the impact of spongiform bone and skull sutures are important and additional 

information and modelling should be examined in the future.  
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Further to this, the meninges and blood vessels (most commonly segmented as CSF) may 

also impact tDCS induced fields, although to a lesser degree, and have been neglected in this 

research (Jiang et al., 2020). For example, accounting for differing conductivity of the dura in 

tDCS simulation improved correlational accuracy with intracranial recordings (Jiang et al., 

2020). Similarly, errors caused by neglecting blood vessels in EEG source analysis 

(employing similar underlying electrical biology as tDCS) were analogous to omitting CSF 

conductivity (Fiederer et al., 2016). Following from this, CSF is frequently overestimated 

within the brain compartment (i.e., segmenting the meninges as CSF) and near the skull 

boundaries, notably of the occipital lobe, where the brain should contact the skull (Jiang et 

al., 2020). This is particularly evident for FEM modelling employing tetrahedral meshes, as 

in the presented research, which typically overestimate CSF perimeters. Moreover, 

tetrahedral meshes may be prone to errors due to bad quality elements if not appropriately 

treated (Beltrachini et al., 2018). It is acknowledged that omitting segmentation of the 

meninges, blood vessels and not accounting for CSF overestimation may, have impacted on 

tDCS induced fields. Future studies could thoroughly check and enhance the quality of 

tetrahedral meshes or employ hexahedral domain discretisations and further analyse the effect 

such CSF overestimation, alongside accurate segmentation of the meninges and blood vessels 

has on tDCS. This may have a greater impact as a function of age, particularly considering 

vast variation in CSF volume with age.  

 

An additional limitation is that the utilised proposed age-appropriate conductivity ranges are 

based on limited data from the literature and do not accurately depict how skull conductivity 

changes with age. The existing literature was extensively searched for papers explicitly 

reporting skull conductivity and participant age. However, only papers reporting more than 

five measurements and where a relationship with age could be extracted were included. 

Consequently, not all skull electrical conductivities were represented, which may influence 

the resultant correlation with age. Despite reporting more than five values, Dabek et al. 

(2016) were excluded due to no relationship with age being stated and their utilised method 

(EIT) being represented from the Gonçalves et al. dataset. More research, however, is 

essential to accurately determine the relationship of skull conductivity with age. Furthermore, 

values extracted from the Hoekema et al. database were considerably higher (up to 10-fold) 

than those found in all other literature (Chapter 3) and may skew results from this database. 

For example, the resulting peak fields stemming from Hoekema et al.’s proposed age-

appropriate skull conductivities have a smaller range compared to the Gonçalves et al. and 
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Antonakakis et al. datasets. The contribution of skull conductivity uncertainty to peak field 

changes is also lower for Hoekema et al. versus the remaining two datasets. Both of these 

discrepancies are suggested to be due to a lower relative difference between skull 

conductivity values within the UQ simulations. Therefore, all effects are dimmed. 

Furthermore, the considerably higher conductivity measurements for the Hoekema dataset 

may be due to the fact measurements were acquired in vitro, compared to under in vivo 

conditions. Consequently, skull conductivity values may decay with time away from the 

biological host, as well as the influence of temperature. However, similar in vitro methods 

have been employed (for example in Tang et al., 2008) and conductivity values found within 

a similar range to the Antonakakis and Gonçalves datasets. Equally, the methodology in 

Hoekema et al. was previously assessed and considered reliable (in the QAS, Section 3.5.5). 

Irrespective of the deviations, due to an identical method being employed for Hoekema et 

al.’s extracted measurements, any deviations were appointed to be due to participant 

demographics and therefore reliably depict how induced fields may change with age. This is 

thus irrespective of the particular skull conductivity values. Furthermore, it is noted that the 

calibrated bulk conductivity values extracted from Antonakakis et al. are redefined based on 

a fixed compact and spongiform bone conductivity ratio (according to Akhtari et al., 2002). 

Compact bone was estimated from the procedure and spongiform conductivity assigned 

following a fixed ratio to calibrate whole skull conductivity. Therefore, Antonakakis et al. 

accounted for differing bone composition conductivity and geometry within their whole skull 

estimations, which the other papers did not, making comparisons between the three 

methodologies incomplete. However, three methods under differing conditions were chosen 

to elucidate the variability within the literature and to represent the resultant changing tDCS 

induced fields. This was, firstly, as a hypothesised function of age (as shown by variability 

within the results for each dataset) and secondly, due to chosen methodology and skull 

conductivity values from the literature (shown by the variability between datasets). 

Nonetheless, supplementary research to determine the influence age has on skull 

conductivity, particularly of the layered skull, is essential. 

 

Additional values would be imperative to understanding induced tDCS fields for participants 

beyond the ages discussed here. It is hypothesised that peak field would decay further for 

older ages, particularly in combination with brain atrophy and degradation and the higher 

likelihood of lesions.   
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4.6. Chapter Summary 

 
The current chapter illuminated the importance of accurate and individualised head anatomy 

and proposed age-appropriate skull conductivity values in tDCS experiments. A computer 

simulation study was carried out in order to determine the impact deviation in skull 

conductivity as a function of age affected tDCS induced fields. Significant points are outlined 

below: 

 

• Induced peak tDCS field strengths were revealed to correlate with age significantly 

negatively for four different intensities employing three databases proposed age-

appropriate skull conductivity models. Irrespective of whether GM, WM and scalp 

conductivities were additionally varied.  

• Skull conductivity deviation was found to be the most important tissue with 

increasing age to peak field changes.  

• Peak field significantly negatively correlated with CSF volume and positively 

correlated with GM volume for all simulated parameters.  

• An average scaling factor of 0.82 per declining decade for peak tDCS fields across all 

intensities and skull conductivities datasets was found.    

• Precise conductivity values and individual head models considering participant age 

are therefore considered to be vital for full understanding of tDCS current 

propagation. Inaccuracies in both could contribute to deviations in tDCS clinical and 

research outcomes.  

• Future studies are suggested to consider age when calculating tDCS dosage for 

paediatric and elderly participants and understanding the underlying physiological 

mechanisms responsible for such induced fields. 
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CHAPTER 5: SKULL CONDUCTIVITY AND EEG 
 

5.1 Chapter Overview  

 
Chapters 1 and 2 outlined the neurophysiological basis of electrical brain activity and the 

methodology of characterising this activity through EEG, where imaging the source and 

distribution of the electrical potential is essential. Solving the respective inverse and forward 

problems in EEG requires realistic, anatomically correct volume conductors and accurate 

tissue conductivities. Chapter 3 and 4 highlighted the particular importance of skull 

conductivity for electrical current propagation, which deviates across participants, 

particularly considering age, and according to bone composition and the presence of adult 

sutures. The current chapter therefore analysed the effect considering adult sutures and 

differing bone composition had on the EEG-FP and IP solutions utilising a well-established 

and detailed head atlas. The true skull conductivity was considered as inhomogeneous 

according to spongiform bone proportion and sutures. The EEG-FP and IP were solved and 

compared to results employing homogeneous skull models, with varying conductivities and 

omitting sutures, as well as using a hypothesised aging skull conductivity model. This chapter 

aimed to elucidate the significance that neglecting adult sutures and bone composition 

distribution, as well as assuming a homogeneous skull volume and when age was considered, 

had on EEG analysis. 

 

5.2. Motivation 

 
EEG is a non-invasive imaging modality used for characterising the electrical activity of the 

brain (Henry, 2006; Chapter 1). Localising the source of such activity provides valuable 

information for understanding brain function in health and disease, as well as aiding in the 

diagnosis of neurological disorders and syndromes such as epilepsy (Michel et al., 2004) and 

ADHD (Ibáñez et al., 2011). As outlined in Chapters 1 and 2, source analysis involves, in a 

first instance, the characterisation of the current propagation from a known endogenous 

source to the scalp, the EEG-FP. The signal origin can then be estimated from the recorded 

data and personalised FP computations – the EEG-IP (Haueisen et al., 1999). Accurate 

solutions to these problems require the adoption of realistic and individualised volume 

conductor models incorporating precise anatomical tissues’ geometries and their electrical 

conductivities. Within all tissue compartments, the skull has been pointed as the most 
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relevant for EEG signal analysis, mostly due to its high resistivity (Chapter 3; Dannhaeur et 

al., 2011; Gençer et al., 2004; Vorwerk et al., 2019). Although the majority of current studies 

incorporate realistic geometries from complementary medical images, the conductivities of 

all tissues, including the skull, are typically assumed from existing literature. This poses a 

limitation to model personalisation as it is now accepted that most tissues, and in particular 

the skull, are subject to large variability between participants and measurement methods and 

protocols (Chapter 3). Misspecification of this conductivity, when considered as one 

compartment, has resulted in significant EEG forward and inverse solution errors (Vallaghé 

et al., 2008; Acar er al., 2013; Chen et al., 2010; Vorwerk et al., 2019). Incorporating 

accurate skull conductivity volumes is therefore imperative for the most precise resolution to 

the EEG-FP and IP. 

 

The skull, however, is geometrically complex and its simplification into one homogeneous 

layer is insufficient for accurate EEG source localisation (Dannhauer et al., 2011). Within the 

field, the skull is accepted to be composed of three layers: a diploë (spongiform/marrow 

bone) layer, sandwiched between two compact bone compartments that are less conductive 

than the former (Tang et al., 2008; see also Section 1.6.2. and 3.5.3.). The percentage of bone 

marrow varies throughout the skull depending on overall skull thickness and location, leading 

to an inhomogeneous conductivity profile (Law, 1993; Tang et al., 2008). Accounting for the 

varying presence of spongiform and compact bone is essential, which can be only done in 

detail by means of CT (Fernández-Corazza et al., 2017) or unconventional MRI (Antonakakis 

et al., 2020), as discussed in Chapter 4. Previous research has indicated that neglecting such 

detailed segmentation and assuming the skull as one homogeneous conductivity layer can 

result in EEG inverse solution errors of up to 2 cm (Dannhaeur et al., 2011; Lanfer et al., 

2012; Montes-Restrepo et al., 2014; Montes et al., 2011; Wolters et al., 2006). 

 

Although inhomogeneous skull models accounting for both spongiform and compact bone 

are increasingly employed, adult sutures are omitted, mainly due to the necessity of CT data 

and unclarity regarding their impact. As discussed in Section 1.6 the sutures are dense, 

fibrous, immovable joints mostly made up of collagen (a protein found in connective tissue) 

that connect the various skull bones (Tang et al., 2008; Gray, 1878). They are wide to allow 

movement at birth, and remain open at various stages of development, differing between 

cases. For example, the frontal suture fuses between 3-9 months old (Vu et al., 2001), whilst 

the sphenosquamosal suture usually closes by 6 years, but can take as long as 10 (Idriz et al., 
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2015). In comparison, during adulthood, the coronal, sagittal, lambdoid, and squamosal 

sutures do not close until approximately 45, 50, 55, and 70 years of age, respectively (Russell 

& Russell, 2018; Idriz et al., 2015; Kumar et al., 2018; Singh et al., 2004; Nakahara et al., 

2006; see also Section 1.6.2.). An exemplar diagram of the adult skull sutures and their 

positions are displayed in Figure 5.1. Neglecting the presence of sutures, which have 

differing conductivity to spongiform and compact bone (Tang et al., 2008), can thus result in 

large and localised EEG source reconstruction errors. Previous research has evaluated the 

impact that infant fontanelles have on EEG source analysis, which, although geometrically 

larger in comparison, is hypothesised to yield similar results when accounting for adult 

sutures. For example, Lew and colleagues (2013) revealed that omitting the fontanelles but 

assuming correct skull conductivity (compared to a model with equivalent skull conductivity 

and fontanelle inclusion) produced maximum EEG source errors of 3.6 mm. A recent study 

further confirmed that the exclusion of fontanelles in neonates resulted in the largest source 

localisation errors directly below the fontanelles (Azizollahi et al., 2020). Previously, Darbas 

and colleagues (2019) similarly concluded that including the fontanelles significantly 

improved EEG source reconstruction. They also revealed conductivity variation near to the 

fontanelles and that eccentricity and orientation of dipolar sources significantly influenced 

EEG source localisation. The effect of adult sutures in EEG source analysis, however, has yet 

to be assessed.  

 

Figure 5.1: Schematic representation of the generated sagittal (green), coronal (orange), lambdoid 

(red) and squamous (blue) sutures on the skull with the anatomical landmarks bregma (blue circle), 

lambda (pink circle), pterion (green circle) and asterion (yellow circle).  
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Realistic head modelling, particularly of the skull, is therefore evidently an essential aspect of 

EEG forward and inverse computation. Numerical methods, as opposed to analytical 

approaches, are required to account for a realistic head shape, allowing for multiple non-

spherical compartments. As discussed in Chapter 2, Section 2.3.3ii, the FEM is one such 

numerical approach that can consider realistic models of arbitrary geometry, being able to 

incorporate anisotropy and heterogeneity between tissues, an advantage over other existing 

numerical approaches (Vorwerk et al., 2012). The BEM, on the other hand, approximates the 

head as compartments with isotropic conductivities and computes EEG surface potentials 

produced by current sources at the interface and boundary of a homogeneous volume 

conductor. Importantly, FEM, differing from BEM, can additionally distinguish between 

spongiform and compact bone and accurately incorporate CSF without substantially 

increasing computation complexity. It can also represent a homogeneous skull, such as 

including the sutures (Vorwerk et al., 2012; Beltrachini, 2019). FEM is therefore frequently 

employed for EEG forward analysis utilising realistic and inhomogeneous conductivities and 

is integrated into known EEG analysis toolboxes such as FieldTrip (Oostenveld et al., 2011) 

and BrainStorm (Tadel et al., 2011). 

 

This chapter thus aimed at evaluating the contribution that adult sutures had on the EEG 

forward and inverse solutions and their effect compared to neglecting deviations in bone 

composition. A detailed head model with inhomogeneous conductivity profiles that 

accounted for spongiform bone distribution throughout the skull and the presence of four 

adult sutures was developed. The FEM was then utilised to simulate the forward problem 

solution. Source analysis employing the “true” inhomogeneous skull conductivity model was 

compared to simplified representations omitting the sutures and bone composition 

distribution. Homogeneous model conductivity values frequently employed in the literature 

were also used for comparisons. Moreover, aging skull conductivity profiles that accounted 

for variation in conductivity and suture closure with age were simulated to determine source 

analysis differences considering participant age. The results therefore highlight the 

importance that geometrically accurate head models with appropriate electrical conductivity 

are for EEG source localisation, with particular focus on the critical inclusion of adult 

sutures. 

 

The chapter is organised as follows. The generation of the utilised head model, including 

tissue segmentation, calculation of bone composition proportion and suture position 
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assignment, is described in Section 5.3.1. An outline of each of the experiments, including 

the model comparisons and their justifications is provided in Section 5.3.2. The computation 

methodology for the models employed in each of the experiments (as described in Section 

5.3.2) is discussed in Section 5.3.3. Specifically, 5.3.3i details the generation of the ground 

truth model, 2.3ii outlines an EIT protocol for estimating homogeneous conductor models 

and 5.3.3iii describes development of the age-appropriate skull conductivity models. Section 

5.3.4 described the forward and inverse solution methodology and error measurements. The 

results are provided in Section 5.4, discussing the contribution of the sutures and bone 

composition in 5.4.1, the impact of different homogeneous models in 5.4.2 and the results of 

the age-appropriate models in 4.3. Finally, a discussion of these three main results is provided 

in Section 5.5.1, 5.5.2 and 5.5.3, respectively, with considerations for future research in 5.5.4. 

 

 

5.3. Methods 

 
5.3.1. Head model construction 
 

A realistic detailed head model was developed from the high-resolution Colin27 MRI 

segmentation (Aubert-Broche et al., 2006). Colin27 provided the segmented head model, 

which utilised combined T1 and T2 MRI data from repeated scans of a single participant with 

CT and MR angiography to provide better bone and vascular structure segmentation as well 

as high resolution (Aubert-Broche et al., 2006). FreeSurfer (Fischl, 2012) was then employed 

to compute the surface where the sources were placed, residing in the GM, by calculating the 

midpoint between the GM/WM and GM/CSF interface (as described in Section 5.3.4). This, 

together with the segmentations provided by the Colin27 atlas, resulted in five compartments: 

scalp, skull, CSF, GM, and WM. Further refinement provided bone marrow classification, 

enabling the creation of a detailed inhomogeneous skull map. The ISO2Mesh toolbox (Fang 

& Boas, 2009) was then utilised to first compute surface meshes from the available 

segmentations. These meshes were subsequently employed to build a 3D tetrahedral 

discretisation resulting in 6.8M elements and 1.1M nodes into the five compartments (Figure 

5.2a). Each compartment and the resultant head model were manually checked for 

abnormalities and to ensure high quality of the mesh. Special refinements of the skull layer 

(0.4M nodes) allowed for inclusion of differing bone composition and adult sutures by 

changing the individual element’s conductivity. To calculate the percentage of spongiform 
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and compact bone, the points at all interfaces between skull/CSF and skull/scalp were firstly 

computed. For each point on the skull/CSF interface, a straight line perpendicular to the 

interface was drawn until reaching the skull/scalp interface. The percentage of spongiform 

bone at that point was then determined as the percentage of the line belonging to the soft 

bone compartment (based on the segmentation). Figure 5.2b displays the skull conductivity 

distribution as a function of spongiform bone proportion, computed according to Tang et al. 

(2008) and further described in Section 5.3.2i. The presence of sutures was evidenced by the 

lack of spongiform bone in the corresponding regions and were clearly visible in the model, 

which merged CT and MRI data. The suture segmentation also followed the standard 

locations as displayed in Figure 5.1. On the surface of the scalp layer, a total of 164 (point) 

electrodes were positioned according to the ABC-160 positioning system (BioSemi B.V., 

Amsterdam, Netherlands), plus an additional four fiducials (nasion, inion, left and right pre-

auricular). 

 

Figure 5.2: a) Head model discretisation (mesh) showing the five layers; scalp (blue), skull (red), 

CSF (green), GM (yellow) and WM (orange). b) Skull conductivity distribution (in S/m) throughout 

the skull based on spongiform proportion according to Tang et al. (2008) (see Section 5.3.2i for 

details of the computation of the conductivity from the available percentage of marrow). The sutures 

are located within areas lacking spongiform bone (dark blue sections), and following the lines as 

presented in Figure 5.1.  

 

The adult sutures were manually segmented and incorporated into the head model. Skull 

elements along the suture lines and without spongiform bone (and thus assumed most likely 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

a) b) c) d) e) f) g) h) i) j) k)
l) m) n) o) p) q) r) s) t) u) v)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

a) b) c) d) e) f) g) h) i) j) k)
l) m) n) o) p) q) r) s) t) u) v)



 

    
 

126 

to be sutures) were extracted and visualised using Matlab (Natick, USA). This visualisation 

confirmed the suture location was according to previously defined anatomical landmarks 

(Miura et al., 2009; see also Figure 5.1). The intersecting points where the generated sutures 

meet (i.e., bregma, lambda, asterions, and pterions) were then found. Elements along the path 

connecting the intersections with the least proportion of spongiform bone, and following 

previously defined anatomical landmarks, were manually selected, and interpolated. All the 

elements fully composed of hard bone and with centroids at 10 mm from the sutures were 

considered part of them. This was done to comply with the conductivities provided by Tang 

et al. (2008), which were measured in samples of approximately that size. This produced five 

subject-specific anatomically correct non-smooth sutures: the sagittal, coronal, lambdoid, and 

the left and right squamous (see Figure 5.1). These were defined as either dentate (sagittal, 

corona, and lambdoid) or squamosal (squamous), which have differing properties and thus 

conductivities (Tang et al., 2008; Gray, 1878).  

 

The electrical conductivities of the scalp, CSF, GM, and WM were assigned as 0.4137, 

1.7358, 0.3787 and 0.1462 S/m, based on Chapter 3. The conductivity assignment of the skull 

for each model, including that of the sutures, is described in Section 5.3.2. 

 

5.3.2. Experiments 
 

The electrical conductivity of the skull was varied to develop differing volume conductor 

models and demonstrate the impact such simulated deviations have on the EEG forward and 

inverse solutions. A ground truth model was first generated, which incorporated variation in 

spongiform and compact bone distribution throughout the skull, as well as the presence of 

sutures. The corresponding models were variations of the ground truth model, deviating 

according to skull conductivity alone. The experiments comparing the various models and 

their purpose are outlined below. The methodology involved for generating each of these 

models is outlined in Section 5.3.3 and the forward and inverse solution computation and 

comparison calculations between models is described in Section 5.3.4.  

 

1. Omitting Sutures: the ground truth model (generation outlined in Section 5.3.3i) was 

compared against a model in which the distribution of spongiform and compact bone was that 

of the ground truth, but the presence of sutures was neglected, and their conductivity 

considered that of hard bone. This experiment set out to determine the impact solely omitting 



 

    
 

127 

the sutures, whilst accounting for variation in overall bone composition has on EEG source 

analysis. 

 

2. Neglecting Spongiform: the model omitting the sutures (but with spongiform distribution 

intact) was compared against a homogeneous skull conductivity model that did not account 

for bone composition variation nor the presence of sutures. The homogeneous skull 

conductivity was calculated as a global representation of the model that omitted the sutures 

utilising EIT (method described in Section 5.3.3ii). This produced a one-layered skull 

conductivity value not influenced by sutures, and assuming no bone composition variation 

throughout the skull. The appraisal between this homogeneous model and that omitting the 

sutures aimed to assess the impact neglecting spongiform distribution variation throughout 

the skull had on EEG-FP and IP solutions. Comparing against the model omitting the sutures 

ensured any discrepancies were solely due to disregarding the variation in spongiform 

proportion, rather than also accounting for adult sutures. 

 

3. Homogeneous 0.01 and 0.0055 S/m: the ground truth model was assessed against two 

models where the skull was assumed as one homogeneous layer with a single conductivity, 

taken from existing literature: either 0.01 S/m or 0.0055 S/m. These comparisons aimed to 

indicate potential global inaccuracies when not accounting for inhomogeneity and taking a 

literature value as the truth, a very common practice in the field. The first homogeneous value 

(0.01 S/m) was extracted as the most frequently employed value in existing literature 

(Dannhauer et al., 2011) and highlighted EEG source analysis discrepancies for a relatively 

high assumption of skull conductivity. The second homogeneous literature value (0.0055 

S/m; Fernández-Corazza et al., 2017) aimed to reveal such errors when assuming low skull 

conductivity, potentially in contrast to the previous high homogeneous value. 

 

4. Homogeneous EIT Estimated: the ground truth model was evaluated against a 

homogeneous skull model, where the global conductivity was estimated using an EIT 

protocol that accounted for variation in spongiform proportion and the presence of sutures 

(protocol described in Section 5.3.3ii). The EIT homogeneous model aimed to provide a ‘best 

guess’ of a homogeneous volume given the ground truth model input, rather than assuming 

specific values according to previous literature. This experiment set out to determine EEG-FP 

and IP solution inaccuracies when analysing discrepancies between homogeneous and 

inhomogeneous (i.e., the true) skull models. 
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5. Age estimated models: a separate set of experiments was carried out to determine the 

impact that not accounting for suture closure according to age has on EEG source analysis. 

The same realistic head model geometry (as described in Section 5.3.1) was utilised, and five 

age-appropriate volume conductor models created from this identical geometry at 20, 30, 40, 

50, and 60 years of age. For these models, only the conductivity of the skull differed from the 

ground truth model as a general decline in global skull conductivity and suture closure with 

age was hypothesised (computation outlined in Section 5.3.3iii). An identical head geometry 

was thus employed for all age-appropriate models (see Section 5.5.3 for a discussion on the 

necessity of additional data and research for more accurate age-appropriate representations). 

Source analysis for each of the hypothesised age models were compared to those of an EIT 

estimated homogeneous skull conductivity value for each corresponding age (where the input 

for EIT estimation was the hypothesised age-appropriate model, as described in the EIT 

protocol in Section 5.3.3ii). These evaluations aimed to elucidate the effect sutures has on 

EEG source localisation when an aging skull is taken into account.  

 

 

Model Distribution Whole 
skull Sutures F/IP 

Comparison Aims to highlight 

Ground 
Truth Heterogeneous 

Computed 
according 

to 
spongiform 
proportion 

 

Dentate - 
0.0173 

Squamous - 
0.0079 

NA Reference model 

Omitting 
Sutures Heterogeneous Equal to hard 

bone Ground Truth Importance of 
including sutures 

Neglecting 
Spongifor

m 
Homogeneous Whole skull 0.0061 S/m Omitting 

Sutures 
Discrepancies when 
spongiform omitted 

Homogene
ous 0.01 

S/m 
Homogeneous Whole skull 0.01 S/m Ground Truth 

Errors when 
assuming high 

homogeneous value 
Homogene
ous 0.0055 

S/m 
Homogeneous Whole skull 0.0055 S/m Ground Truth 

Errors when 
assuming a low 

conductivity value 
Homogene

ous EIT 
Estimated 

Homogeneous Whole skull 0.0072 S/m Ground Truth 
Errors when 

providing ‘optimum’ 
homogeneous value 

Age 20 Heterogeneous Scaled 
function of 

ground 
truth to 

account for 
age 

variation 

Scaled 
according to 
Figure 3 to 
account for 

state of 
closure at 

different ages 

Scaled 
homogeneous 

value 
estimated 

from EIT as 
described in 

5.3.3ii 

Effect of omitting the 
sutures for each age 
when considering 

approximate 
conductivity of aging 

skull 

Age 30 Heterogeneous 
Age 40 Heterogeneous 
Age 50 Heterogeneous 
Age 60 Heterogeneous 
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Table 5.1: A summary of each employed model, outlining the distribution (homogeneous or 

heterogeneous), the computation of the whole skull conductivity, not including the sutures (either 

homogeneous with one conductivity or accounted for spongiform proportion variation), the 

conductivity of the sutures and how they were computed, and the model utilised for comparison in the 

FP and IP computation and the purpose and research aims of each model. All conductivity values are 

in S/m if not explicitly mentioned. 

 
5.3.3. Model computation methodology 
 

This section describes the methodology employed to generate each of the volume conductor 

models. The computation of the ground truth model is outlined in Section 5.3.3i. The EIT 

protocol utilised to estimate the model neglecting spongiform, the homogeneous EIT 

estimated model and the age-appropriate homogeneous models that were used as comparison 

models for the hypothesised inhomogeneous age estimated models is described in Section 

5.3.3ii. The development of the heterogeneous age estimated models is outlined in Section 

5.3.3iii.  

 

5.3.3i Ground truth model 
 

The ground truth model was regarded as the reference and absolute truth, where the 

proportion of spongiform and compact bone throughout the skull and the sutures were 

accounted for. The skull conductivities were taken from Tang et al. (2008), where resistivity 

measurements were extracted from 388 excised skull samples of differing structure. These 

values were utilised as they represented the most comprehensive average conductivity values 

from a large sample size, across varying participants and skull regions using a robust method. 

The employed methodology was assessed in Chapter 3 and regarded as high quality in the 

Quality Assessment due to measurements being obtained from freshly excised tissue, in a 

carefully controlled situation, at stable (body) temperature and across many participants.  

 

The sagittal, coronal, and lambdoid sutures were assigned the average conductivity for 

dentate sutures, i.e., 0.0173 S/m. The squamous sutures’ conductivities were assigned the 

average reported values, i.e., 0.0079 S/m. The conductivity of the remaining skull was 

modelled as a function of the cross-sectional proportion of spongiform bone. This was taken 

from Figure 6b of Tang et al. (2008), where !!" = 215 − 231.25	 × 	+,	with + being the 
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spongiform thickness percentage. This corresponds with the EMA for the effective 

conductivity of a material given a number of compartments with different conductivities 

(Torquato & Hyan, 2001). The maximum value of + was set to 80% to account for the fact a 

skull region cannot be completely spongiform. Compact bone was modelled with a 

conductivity value of 0.003787 S/m. This resulted in an inhomogeneous skull conductivity 

model incorporating sutures and deviations in skull composition, termed the ground truth 

model. 

 

5.3.3ii. EIT protocol 
 

Models employing a personalised homogeneous skull layer were estimated using an EIT 

simulation protocol (Fernández-Corazza et al., 2017). EIT is a non-invasive imaging 

modality where electrical conductivity is estimated following current injection between 

electrodes and measurement of the resultant electric potentials from the remaining electrodes. 

The EIT current injected can be simulated given an input volume conductor model and the 

global conductivity of each compartment (e.g., the skull) estimated. EIT was thus utilised to 

approximate homogeneous skull conductivity values, given an inhomogeneous input model. 

The employed Colin27 input model was either the ground truth, the model omitting sutures, 

or one of the five hypothesised age-appropriate models. For all the input models, the 

conductivities of the scalp, GM, WM, and CSF were fixed according to the literature (see 

Section 5.3.1) and only the skull conductivity was estimated. This was as the current chapter 

aimed to focus on the contribution of variation in skull conductivity alone.  

 

For each of the EIT estimation protocols, first the ideal EIT measurements were computed 

based on the reference input model. This was thus the most detailed model and was either the 

ground truth, the model omitting sutures or one of the five age-appropriate models (as 

above). The conductivity value for the skull as one homogeneous (and thus simplified) 

compartment was then determined using EIT simulation. The current injection was simulated 

between electrodes located on the scalp of the appropriate model and the conductivity 

estimated from simultaneous potential recordings. A current amplitude of 0.25 mA was 

passed from one ‘source’ to one ‘sink’ for 32 pairs of electrodes, located on the scalp of the 

model, optimised so that the injection points were at the most maximum distance from one 

another (Mamatjan et al., 2012). These pairs were evenly distributed across the skull and 

utilised a pair number (32) in typical EIT systems (Avery et al., 2017; McCann et al., 2011; 
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Oh et al., 2011; Khan et al., 2014). The resulting voltage was calculated on the remaining 

electrodes not involved in current injection (called EIT-FP) and used to estimate the 

equivalent conductivity (referred to as EIT-IP). The EIT-FP was solved numerically using the 

FEM and a PCG algorithm, with LU factorisation matrices (factoring a matrix as the product 

of an upper and lower triangular matrix) as preconditioners, as described in Fernández-

Corazza et al. (2013) and briefly in Section 2.3.3ii. The EIT-IP then estimated the 

compartmental electrical conductivity from the simulated potential measurements using the 

least squares approach to minimise the ℓ2 -norm of the difference between measurements and 

model estimations. The quasi-Newton numerical optimisation method was utilised to solve 

this due to less iterations required and higher stability. It has been previously shown that 

employing initial values lower than the true conductivity further increases stability and 

convergence speed to the global minimum (Fernández-Corazza et al., 2017). Thus, the initial 

guess for skull values was set to 0.005 S/m. The final homogeneous value was taken as an 

average of estimations from all injection pairs, providing a global and homogeneous estimate 

(as carried out in Fernández-Corazza et al., 2017). A more detailed description of an EIT 

protocol is described in Fernández-Corazza et al. (2013) and (2017).  

 

5.3.3iii. Age-appropriate models 
 

Five age-appropriate models at 20, 30, 40, 50 and 60 years, were created to account for 

general decline in global skull conductivity (Antonakakis et al., 2020, see also Chapter 4) and 

suture closure with age. The estimated decrease with age was taken from the mean function 

in Figure 4.1a. The relationship was computed according to the data acquired in Gonçalves et 

al. (2003a, b) and chosen in the current study as they utilised an EIT method, similar to the 

homogeneous EIT estimations. Bone composition and the resulting conductivity distribution 

were firstly modelled as in the ground truth model. The whole conductivity distribution, 

accounting for variation in spongiform and compact bone proportion, was then scaled for 

each age according to the sigmoid function described in Chapter 4, Figure 4.1a. This sigmoid 

function was first assumed as the general function describing decline in whole skull 

conductivity. The distribution was then adjusted and scaled accordingly, so the global 

conductivity value estimated from the function, at age 28 (the age of Colin27 at scanning; 

Aubert-Broche et al., 2006), aligned with the EIT estimated homogeneous value of the 

Colin27 model. This standardised the hypothesised aging skull conductivity with the 

estimated homogeneous conductivity of the utilised volume conductor model (Colin27). As a 
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result, a final function describing the decline in conductivity with participant age was thus 

determined, where 	-#$ = -	 × 	0.01871%&'	×	!*.*,-.. Here, - is the vector describing the 

conductivity distribution in the skulls’ tetrahedra according to bone composition (as 

computed from Colin27 and described in Section 5.3.1) and	-#$ is the new distribution 

according to modelled age. The scale is thus determined by participant age at 

0.01871%&'	×	!*.*,-..  

 

The closure of the adult sutures was then modelled considering fusion at 45, 50, 55, and 70 

years for the coronal, sagittal, lambdoid and squamosal sutures, respectively, as mentioned in 

the literature (Russell & Russell, 2018; Idriz et al., 2015; Kumar et al., 2018; Singh et al., 

2004; Nakahara et al., 2006). The sutures were assumed to close at a sigmoid rate from age 

20, in accordance with previous publications (Figures 3-5 in Todd and Lyon, 1925; Figure 3 

from Jangietriew et al., 2007; and Figure 3a from Chiba et al., 2013). This choice was 

additionally supported by Ruengdit et al. (2020), who reviewed cranial sutures’ closure. They 

found that the sutures typically progress slowly in early adulthood from age 20, then rapidly 

until approximately ¾ of the age at complete closure, and finally slowly again towards 

absolute fusion age. The conductivities at age 20 for all suture types were assigned according 

to Tang et al. (2008), whereas the values at closure were assumed as that of hard bone.  

 

The resultant conductivities of the sutures as a function of age are depicted in Figure 5.3. 

From age 20 to closure age, a sigmoid function was generated where conductivity equalled 

the median between that of hard bone and the respective suture at the midway point between 

age 20 and suture fusion. 
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Figure 5.3: Hypothesised conductivity (S/m) as a function of age (years) for the a) coronal, b) 

sagittal, c) lambdoid, and d) squamous sutures. A sigmoid model was assumed where the conductivity 

was that of the respective suture at age 20, the median conductivity between hard bone and respective 

suture at the midway point between 20 and suture fusion age (black cross), and then that of hard bone 

at closure (red cross). The blue line indicates this function for each of the sutures.  

 

5.3.4. EEG forward and inverse problems 
 

The EEG-FP was solved using the FEM and the analytical subtraction approach (Beltrachini, 

2019) with a PCG algorithm and LU factorisation matrices as preconditioners. This method 

has been previously shown to perform well compared to other subtraction-based approaches 

and was the most robust against deformation of individual elements and eccentric sources 

(Beltrachini, 2019). A detailed explanation of this solver can also be found in Beltrachini 

(2019). A total of 20,119 sources were placed centrally in the GM compartment. This was 

done by computing the mid surface between those corresponding to the GM/CSF and 

GM/WM interfaces provided by FreeSurfer (Fischl, 2012). All source positions were checked 

to belong to the resulting GM compartment. Normal constraint is a reasonable physiological 

assumption due to the fact apical dendrites produce a measured field oriented normal to the 

surface (Baillet et al., 2001). Furthermore, when the head model is known from MRI/CT data 
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and is considered as a true, not approximate, model with pre-defined source positions, normal 

constraint is realistic and frequently employed (Grech et al., 2008; Valdés-Hernández et al., 

2009). Average reference was considered in all simulations.  

 

The sLORETA method was used to solve the EEG-IP (Pascual-Marqui, 2002) given the 

electrical potential input as estimated from the EEG-FP (see above). This employs the current 

density estimate provided by a standardisation of the minimum norm solution to infer 

localisation based on these estimates (see Chapter 2, Section 2.5.3). sLORETA calculates the 

smoothly distributed electric activity whilst assuming synchronous and simultaneous 

neuronal firing of adjacent neurons and no noise and is thus capable of exact (zero-error) 

localisation under specific scenarios (Pascual-Marqui, 2002). The method computes the 

equivalent dipole location as the maximum measurements of the standardised power. 

sLORETA was chosen due to its discussed capability of yielding zero localisation error when 

utilising the actual head model and assuming no noise, as well as a reduced likelihood of 

locating deep sources as residing on the surface (as with minimum norm estimation). 

Furthermore, non-standardised LORETA can result in zero electrical activity estimation at 

superficial sources, which sLORETA avoids (Pascual-Marqui, 2002).  

 

The EEG-FP was solved for all proposed models. Comparisons were made between the FP 

electric potentials of two models, as necessary for the experiments outlined in Section 5.3.2. 

The relative error (RE) metric was employed to characterise errors in the FP, defined as 

23 = 	‖5/ − 	50‖/‖5/‖, where 5/ and 50 are the potentials generated by a given source 

employing the input and approximated models, respectively. The RE describes the overall 

difference between the two employed models. The MAGnification factor (MAG) was also 

computed to indicate the errors in magnitude between the two comparison models, where 

789 =	‖5/‖/‖50‖. The relative difference measure (RDM) was additionally calculated as a 

measure of topographical error with minimal error as RDM = 0. Here, 2:7 =
	‖(5//‖5/‖) − (50/‖50‖)‖. These error measurements are frequently used in addition to RE 

within EEG analysis fields (Wolters et al., 2003).  

 

The EEG-IP was solved for each generated leadfield given the potentials calculated for the 

input model.	For each source, the distance between estimated locations using the input and 

approximated models was calculated, to result in an absolute error (AE, measured in cm) 
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between the input and comparison models (according to the required models for each 

experiment, described in Section 5.3.2).  

 

5.4. RESULTS 

 

The EIT estimated homogeneous skull conductivity for the model neglecting spongiform 

proportion was found to be 0.0061 S/m. When accounting for a “ground truth” of both 

variation in bone composition and the presence of sutures the EIT estimated homogeneous 

model conductivity was estimated as 0.0072 S/m. Hypothesised age-appropriate 

homogeneous skull conductivity values considering both spongiform proportion and sutures 

were estimated as 0.0086, 0.0068, 0.005, 0.0037, 0.0029 S/m for 20, 30, 40, 50 and 60 years 

old, respectively.  

 

5.4.1. Impact of sutures and bone composition 
 

As can be seen in Figure 5.4, omitting the presence of sutures, compared to the ground truth 

model, resulted in the largest FP-RE (Figure 5.4a, maximum 67.72 %) and IP-AE (Figure 

5.4c, maximum 4.14 cm) across the suture lines, particularly the dentate. Figure 5.5 equally 

displays high MAG and RDM values across suture lines, particularly noticeable across the 

dentate sutures. When neglecting variation in spongiform and compact bone distribution 

throughout the skull, the greatest FP-RE (maximum 47.47 %) and IP-AE (maximum 2.19 

cm) was evident across areas of high spongiform proportion, particularly in frontal regions 

(Figure 5.4b and d, respectively). Deep sources also produced relatively large IP-AEs (Figure 

4c, inferior view). Highest MAG values were revealed in high spongiform proportion areas 

(Figure 5.5b), with low values in high compact bone (Figure 5.5, lateral view). Topological 

errors were decreased compared to magnification factor values when neglecting the 

spongiform proportion (Figure 5.5d). Omitting the sutures produced the largest maximum 

and localised forward solution errors for both the FP (Figure 5.4e, inset) and IP (Figure 5.4f). 

However, neglecting spongiform proportion resulted in higher global FP errors than omitting 

the sutures (Figure 5.4e). 
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Figure 5.4: Error distribution when omitting the sutures (compared to the ground truth) for the EEG 

forward (a) and inverse (b) solution and when neglecting the spongiform distribution (compared to an 

EIT estimated homogeneous value when omitting the sutures) for the forward (a) and inverse (b) 

solution. The colour scale for the FP-RE is presented in percentage, where 1 would indicate 100% 

error, whilst the IP-AE is measured in cm, the maximum (red) differs for each comparison. The 

normalised probability histogram of the e) EEG-FP RE and f) EEG-IP AE (cm) when omitting the 

sutures (blue histogram) and neglecting the spongiform distribution (yellow) is presented, where the 

inset for each figure is a zoomed portion of the x axis to add clarity. 
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Figure 5.5: Forward problem MAGnification factor when omitting the sutures compared to the 

ground truth (a) and when neglecting the spongiform distribution compared to an EIT estimated 

homogeneous value when omitting the sutures (b). The colour scale represents a factor from 0.8 to 

1.5, for all models. The forward problem relative difference measure (RDM) is also depicted when 

omitting the sutures (c) and neglecting spongiform (d), with minimum RDM at 0. The superior, 

inferior, and lateral views are displayed. 

 

5.4.2. Homogeneous skull models 
 

Figure 5.6 indicates that assigning the most frequently employed homogeneous skull 

conductivity value (0.01 S/m) produced the greatest FP (maximum 85.49 %) and IP 

(maximum 2.7cm) error across complete compact bone regions (Figure 5.6a and d for the FP 

and IP, respectively). This also produced the largest maximum FP-RE of all the 

computations, most notably in the temporal and lower parietal regions. Comparably, 

assigning a lower value (0.0055 S/m) resulted in the largest FP (maximum 56.81 %) and IP 

(maximum 3.03 cm) errors across areas of high spongiform proportion, particularly 

pronounced in the frontal cortex, and through suture lines (Figure 5.6b and e for the FP and 
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IP, respectively). Similar results were revealed for magnitude errors, with high MAG values 

across high areas of spongiform bone for the 0.0055 S/m model (Figure 5.7b) and low values 

across high compact bone proportion for the 0.01 S/m model (Figure 5.7a). The EIT 

estimated model produced relatively lower overall MAG in both high spongiform and 

compact bone, similar to RE (Figure 5.7c). The greatest topographical errors were across 

areas of particularly high spongiform or compact bone proportion (Figure 5.7d-f). Of the 

three homogeneous skull models, the EIT estimated value produced the lowest RE and AE, 

with the greatest FP (maximum 53.28 %) and IP (maximum 3.03 cm) solution error across 

regions of very high (i.e., frontal areas) or no (particularly temporal regions) spongiform 

proportion (Figure 5.6c and f for the FP and IP, respectively). The EIT estimated 

homogeneous model generated the lowest overall distribution of FP and IP error of the 

homogeneous models (Figure 5.8).  
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Figure 5.6: Error distribution for the EEG forward and inverse solution when skull conductivity was 

assigned a homogeneous value of 0.01 S/m (a and d, respectively), a homogeneous value of 0.0055 

S/m (b and e, respectively), and the EIT estimated homogeneous value of 0.072 S/m (c and f, 

respectively), all compared to the ground truth model. Three views, superior, inferior, and lateral are 

displayed for each comparison. The colour scale for the FP-RE is presented in percentage, where 1 

would indicate 100% error, whilst the IP-AE is measured in cm, the maximum (red) differs for each 

comparison.  
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Figure 5.7: Forward problem MAGnification factor and relative difference measure (RDM) when 

skull conductivity was assigned a homogeneous value of 0.01 S/m (a and d, respectively), a 

homogeneous value of 0.0055 S/m (b and e, respectively), and the EIT estimated homogeneous value 

of 0.072 S/m (c and f, respectively), all compared to the ground truth model. Three views, superior, 

inferior, and lateral are displayed for each comparison. The MAG colour scale represents a factor 

from 0.8 to 1.5, for all models, whilst the minimum RDM is at 0.  
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Figure 5.8: Normalised probability histogram of the a) EEG-FP RE and b) EEG-IP AE (cm) for a 

homogeneous skull of 0.01 S/m (blue), 0.0055 S/m (red) and EIT estimate of 0.0072 S/m (yellow) 

conductivity, compared to the ground truth model. The inset for each figure is a zoomed portion of the 

x axis to add clarity.  

 

5.4.3. Age-appropriate models 
 

The forward and inverse solution error between the hypothesised age-appropriate models 

(ages 20-60) and their respective EIT estimated age-appropriate homogeneous value are 

depicted in Figure 5.9. The largest FP-RE for all (with the exception of the 30-year-old 

models experiment, due to similarity with the corresponding EIT estimated model) was 

revealed across regions of high spongiform proportion, in the frontal brain area. The greatest 

FP-RE for the 30-year-old model was across suture lines, as in the model omitting sutures 

(see Figure 5.6b). Errors across suture lines were also evident for the 20- and 40-year-old 

model experiments (Figures 5.9a and c), particularly across the lambdoid and coronal sutures, 

whilst FP-RE can be seen along the squamous suture for the 50-year-old (Figure 5.9d). The 

MAG value was revealed to be low across high areas of spongiform bone (the frontal region) 

and greater across areas of high compact bone (temporal areas), as can be seen in Figure 5.10 

(MAG values) for all of the age-appropriate models. The topographical (RDM) error revealed 

increased values in deep frontal sources and across higher compact bone areas, this was 

evident for all models (Figure 5.10, RDM values). The greatest IP-AE for all ages, however, 

were in regions with the highest proportion of spongiform bone (frontal and right central 

areas) and at the base of the brain (see inferior view). The maximum FP-REs for the 20, 30-, 

40-, 50- and 60-year-old evaluations were 66.2, 42.14, 72.06, 78.63 and 78.77 %, 
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respectively, whilst the maximum IP-REs were 1.95, 2.29, 2.04, 2.76 and 2.21 cm, 

respectively.  

 

Figure 5.9: Error distribution for the EEG forward and inverse solution when omitting the sutures 

compared to EIT estimated age-appropriate homogeneous skull models accounting for suture closure 

and global conductivity variation, for ages 20, 30, 40, 50 and 60 (a-e respectively). Three views, 

superior, inferior, and lateral are displayed for each comparison, respectively. The colour scale for 

the FP-RE is presented in percentage, where 1 would indicate 100% error, the maximum RE for all 

simulations is 68%. The IP-AE is measured in cm, with the maximum (red) at 2 cm.   
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Figure 5.10: Forward problem MAGnification factor and relative difference measure (RDM) when 

omitting the sutures compared to EIT estimated age-appropriate homogeneous skull models 

accounting for suture closure and global conductivity variation, for ages 20, 30, 40, 50 and 60 (a-e 

respectively). Three views, superior, inferior, and lateral are displayed for each comparison, 

respectively. The MAG colour scale represents a factor from 0.8 to 1.5, for all models, whilst the 

minimum RDM is at 0. 

 

5.5. DISCUSSION 

 

The current chapter assessed the impact that neglecting adult sutures and differing bone 

composition has on EEG forward and inverse solutions. An inhomogeneous skull 

conductivity head model was created that accounted for variations according to proportion of 
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spongiform and compact bone as well as the presence of adult sutures. This model was 

compared to others omitting sutures and/or spongiform bone with differing homogeneous 

conductivity values. A hypothesised aging skull was further computed to assess the 

contribution of suture closure with age on EEG source computations. The results revealed 

large forward solution relative errors, up to 85%, between models, particularly evident across 

suture lines when omitted and directly related to proportion of spongiform. Inaccuracies of up 

to 4.14 cm were revealed for the EEG inverse solutions when the sutures were not taken into 

account. Source localisation errors were also particularly related to proportion of spongiform 

and across suture lines. This result was not eradicated when an aging skull was estimated as 

significant FP errors across suture lines remained evident at ages 20-50 years old.  

 

5.5.1. Impact of sutures and bone composition 
 

The presented results importantly elucidated the novel significance of adult sutures. When 

omitting the presence of sutures and considering them as compact bone, the highest forward 

and inverse inaccuracies were revealed directly beneath suture lines (see Figure 5.4a and c 

and Figure 5.5a and c). Specifically, when sutures were neglected, forward solutions may 

have a relative error of up to 67%, with erroneous source localisation of up to 4.14 cm. This 

is more evident for the dentate (coronal, sagittal and lambdoid) than squamosal sutures, 

where the conductivity of hard bone deviated further from the respective suture. Of note, 

omitting the presence of sutures resulted in the greatest general IP solution errors of the first 

five core experiments. Moreover, when accounting for variation in suture closure, as well as 

the deviation in whole skull conductivity according to age, the impact of sutures remained. 

Specifically, the dentate sutures resulted in noticeable FP-RE for ages 20-40 years old 

(Figures 5.9a-c), whilst the squamosal sutures retained a visible error for the hypothesised 50-

year-old (Figure 5.9d). As when omitting the sutures (Figure 5.4 and 5.5, a and c), this is due 

to the whole skull conductivity (as estimated with EIT) being closer to that of the dentate 

sutures for the 20-40 age ranges, whilst the opposite is true for the 50-60 range. Furthermore, 

results obtained with the hypothesised 30-year-old head model are comparable to that of the 

model omitting the sutures, as the age of the utilised head model in all simulations is similar. 

Thus, significant differences between these models were not expected. These results suggest 

the influence of the adult sutures is not minimal and remains regardless of suture closure. In 

support, Azizollahi et al. (2016) varied fontanelle conductivity, which they suggested would 

decrease during infant development due to the ossification process. Skull conductivity 
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decreases during this process and causes the fontanelles to close and be replaced by less 

conductive bony structures (Lipsett et al., 2019). Such variation in fontanelle conductivity as 

in Azizollahi et al. (2016), mimics the presented hypothesised deviation due to age in adult 

sutures and local REs beneath fontanelle lines were revealed. The forward solution errors 

were notably large particularly along suture lines which also corresponded to high magnitude 

errors, suggesting incorporating accurate suture conductivities is essential for determining 

electrical current propagation.  

 

The exploration of sutures on EEG forward and inverse solutions has not yet been previously 

investigated, due to the necessity of CT data for accurate skull segmentation. Although the 

utilised head model represents one head alone and results may not be generalisable to the 

entire population, high resolution MRI and CT information has been employed providing 

essential contributions. This allowed representation of 10 tissue types including four sutures, 

thus is considerably detailed compared to typical realistic models and permitted novel 

conclusions, such as the contribution of the sutures, to be made.  

 

The presented results can be related to previous research discussing the influence of neonatal 

sutures and fontanelles, which provided analogous findings. For example, Lew et al., (2013) 

demonstrated the conductivity difference between the skull and fontanelles significantly 

impacted EEG forward and inverse solutions. They demonstrated source reconstruction errors 

were considerably lower than the presented chapter (maximum 2.4 mm when the sources 

were normally constrained, as in this method). One explanation for this, as the authors 

mentioned, is the relative size of infant heads. The method employed in this chapter utilised 

adult head sizes, inaccuracies from Lew et al., (2013) may therefore be equivalent in adult 

heads and result in higher significance of the misspecification. There also exists additional 

differences between infant and adult head models such as the presence of large fontanelles, 

skull and scalp thickness, percentage of spongiform bone, CSF volume and GM/WM 

distribution which may account for such discrepancies. The current chapter used a particular 

head model that did not account for complete differences between infant and adult head 

geometries, which is acknowledged as a limitation. Future research should implore to utilise 

accurate neonatal and infant head models for the most precise comparisons. Moreover, the 

conductivity values of all the compartment tissues differed considerably in Lew et al.’s paper 

(2013), compared to this experiment. Of particular note is that of skull conductivity which 

was assigned a value of 0.04 S/m (or between a range of 0.03 – 0.05 S/m for comparison 
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models). This was more than double and, in some cases, quadruple any skull conductivity 

value utilised in the presented chapter. Additionally, Lew et al. (2013) employed 277 EEG 

and MEG electrodes, compared to 164 in this study, which may further contribute to 

localisation error differences. Such source localisation differences may also be explained by 

their use of unconstrained sources compared to normally constrained sources. In the 

presented chapter, normal constraint may have, in comparison, resulted in the higher source 

localisation areas. Additionally, a different IP methodology was employed, using a single 

dipole fit compared to sLORETA in this research, which may contribute to the inverse 

solution differences. Furthermore, in Lew et al.’s (2013) study, the initial guess of the dipole 

fit was set to the original position and orientation, which may have also minimised the 

inverse solution errors. 

 

Comparable local effects to the presented results, however, have additionally been revealed 

in previous research, where Azizollahi et al. (2016) discovered forward errors directly below 

the fontanelles. Likewise, Lanfer et al. (2012) found local defects in skull geometry, such as 

simulating sinuses as compact bone and skull holes resulted in forward and inverse 

miscalculations within the vicinity of the deficiency. This was additionally supported by 

Bénar and Gotman (2002), Vanrumste et al. (2000) and more thoroughly in von Ellenrieder et 

al. (2014). High source localisation errors in the current chapter may, however, be also 

somewhat explained by the use of normally constrained sources. As revealed in Valdés-

Hernández et al. (2009), normal constrained sources caused increased localisation errors 

when the head model was approximated due to potential large differences in the actual and 

approximate normal direction, as the normal may not point in the same direction. This is 

supported by a more recent study by Vorwerk et al. (2019) where source reconstruction errors 

were reduced for sources with ‘free’ orientation and these errors, as a result of conductivity 

deviations, could be moderately compensated by source orientation modifications. The 

sources and head model in the current chapter, however, were geometrically accurate and 

only the conductivity distribution of the head model was simplified. Thus, a lesser effect of 

normal constraint was assumed and was deemed suitable for the purposes of this research. 

Nevertheless, further research, particularly when the head model and participant MRI or CT 

is unavailable, or sources are unknown, as can be the case in infants, should consider utilising 

unconstrained moments to reduce such an impact of oriental differences.  
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It is noted that when neglecting the presence of sutures, the conductivity was assumed to 

equal that of hard bone, however, this may not be the case for all individuals. Furthermore, 

suture closure was assumed from literature data to decline in a sigmoid fashion. However, 

such closure may not relate directly to conductivity values. Knowledge of suture conductivity 

and their closure is limited from the existing literature, and therefore future research that 

explores this in more detail is imperative for detailed understanding and EEG source analysis. 

Alongside this, it is noted that skull conductivity values are taken from Tang et al. (2008) 

alone or estimated from an EIT methodology (Fernández-Corazza et al., 2017), which does 

not account for measurement variation across participants and studies and the relative quality 

of the utilised method. The true conductivity of the utilised head model (Colin27) will differ 

from these proposed values; however, this highlights the necessity of individualised 

conductivity measurements for the most accurate EEG forward and inverse computation. 

Furthermore, conductivities of soft tissues were assigned as the weighted average from 

Chapter 3, weighted according to the quality of each respective study. This provided the 

optimum conductivity value given the available data. Skull conductivity estimations were, 

however, not weighted as they were employed to highlight specific inhomogeneous 

differences. It is acknowledged that the quality and methodology (for example E/MEG 

compared to EIT protocols) will impact the obtained inhomogeneous skull conductivity 

values. Future studies may therefore utilise different techniques for obtaining conductivities 

and compare their effects on EEG forward and inverse computations 

 

The present simulations further revealed that neglecting an assumed variation in spongiform 

proportion resulted in maximum forward relative errors of 47% and maximum source 

localisation errors of 2.19 cm. As expected, this was considerably more evident across 

regions with high marrow bone concentration, particularly in the frontal skull regions as well 

as within the temporal lobe (Figure 5.4b). Peak forward and inverse errors were greater when 

omitting the sutures than when neglecting spongiform variation. However, the relative 

forward error across the whole skull was more widespread (see Figure 5.4a and b and Figure 

5.5b). Overlooking differing bone composition indicates greater global error than omitting 

the sutures alone. This is supported by Lew et al. (2013) results, where skull conductivity 

mismatch produced broader errors than excluding infant sutures and fontanelles. Comparable 

to the presented findings, previous research has revealed inaccurate skull segmentation of the 

compact and spongiform bone results in considerable forward and inverse solution errors up 

to 2 cm (Lanfer et al., 2012; Montes-Restrepo et al., 2014; Wolters et al., 2006; Dannhauer et 
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al., 2011). Vorwerk et al. (2014) notably revealed significant EEG source localisation errors 

within temporal regions, similar to the presented EEG-FP results (Figure 5.4b), but not 

frontal areas. This may be explained by the specific distribution of spongiform bone, the 

proportion of which was high for the utilised model in both frontal and temporal regions. 

Neglecting the distinction between bone composition is thus hypothesised to result in 

increased FP and IP EEG errors in both high compact and spongiform regions, differing 

between participants and head models. Furthermore, the skull tissue conductivities utilised in 

Vorwerk et al. (2014) were considerably higher and with a greater difference between 

compact and spongiform conductivities than in the presented study. For example, compact 

bone was assigned a value of 0.008 S/m (compared to a value of 0.0038 in the current 

experiment), whilst areas of the highest spongiform bone proportion in the current 

methodology reached a maximum conductivity of 0.014 S/m compared to 0.025 in Vorwerk 

et al. An approximately 2-fold difference between these values may explain differing results. 

This is alongside greater disparity between the spongiform, compact bone and whole skull 

conductivities in Vorwerk et al. (2014) than the current study and thus larger errors would be 

present in high spongiform areas (such as the temporal lobe). Aside from this, the present 

results are further supported by comparisons between homogeneous and inhomogeneous 

skull models, where using CT, heterogeneous skull conductivity yielded the lowest errors 

compared to homogeneous models (Montes-Restrepo et al., 2014; Sadleir & Argibay, 2007; 

Dannhauer et al. 2011). Dannhauer and colleagues (2011) additionally showed that 

employing local heterogeneous models produced source localisation errors up to 4 mm, 

compared to 2 cm with global homogeneous models.  

 

5.5.2. Impact of a homogeneous skull 
 

As revealed in the study by Dannhauer et al. (2011), as well as previous literature, assuming 

homogeneous skull conductivity values can result in significant propagated electric potential 

errors and source localisation (Vorwerk et al., 2019; Vallaghé et al., 2008; Chen et al., 2010; 

Acar et al., 2013). The current chapter supports these findings, where homogeneous skull 

models compared to the ground truth value led to forward solution relative errors of up to 

85% (for a homogeneous value of 0.01 S/m) and 57% (for a value of 0.0055 S/m). The region 

of greatest error also depended on spongiform and compact proportion distribution. For the 

0.01 S/m homogeneous skull model, the highest errors occurred in areas of complete compact 

bone (with a conductivity of 0.0047 S/m). This is as expected as the homogeneous 
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conductivity deviated further from compact than spongiform bone (with approximate 

conductivity between 0.013 – 0.016 S/m). Conversely, employing a lower homogeneous skull 

conductivity (0.0055 S/m) resulted in lower REs, with the highest miscalculation across 

regions of high spongiform proportion. This homogeneous conductivity deviated further from 

that of marrow than compact bone, hence the greatest errors were revealed across these areas. 

The presented results suggest forward solution errors may be a direct result of skull bone 

composition errors and the approximated homogeneous value. The highest proportion of 

marrow bone is across the frontal skull region (see Figure 5.2), whereas the areas of complete 

compact bone are typically across temporal regions. Homogeneous conductivities 

considerably different from complete compact and high marrow bone values would yield the 

greatest forward solution errors within the respective regions. Notably, a higher 

homogeneous conductivity value in this chapter produced the greatest FP-REs of the first five 

core experiments. These results suggest that, when assuming a homogeneous skull value, the 

differences between compact and marrow bone should be minimised.  

 

EIT provided a method to estimate homogeneous skull conductivity and thus minimise 

eccentricities due to sutures and bone composition across a heterogenous model. It computed 

the most likely homogeneous global conductivity value given an inhomogeneous model. The 

forward solution RE was smaller when utilising EIT estimated conductivity (0.0072 S/m), 

with a maximum error of 53% (Figure 5.6c; Figure 5.8a). Similarly, localisation errors were 

largely reduced for this model (Figure 5.6f), producing the lowest IP-AE of the first five core 

experiments (Figure 6b), with additionally lower MAG and RDM errors (see Figure 5.7). 

However, this model did result in a maximum absolute error of 3.03 cm, marginally higher 

than a high homogeneous value and identical to the low value, assumed from the literature. 

As expected, regions with the greatest error were both in areas of complete compact bone and 

the highest spongiform proportion. EIT estimated homogeneous conductivity, however, 

minimised deviations between the bone composition and thus produce less concentrated 

inaccuracies. This was particularly evident when compared with the high and low skull 

conductivity values, assigned from literature. EIT is typically considered non-invasive, safe, 

cost and time-effective, easily portable and acquired (Holder, 2004), with relatively good 

skull conductivity characterisation, therefore it is suggested as one such method for easily 

obtaining individualised conductivity measurements. The presented EIT method may 

therefore be one technique to reduce errors incurred when assuming a homogeneous skull. 

The global homogeneous conductivity can be estimated during EEG acquisition, based on 
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real EEG electrical potentials and solved accordingly (Gonçalves et al., 2000), using a 

standard EIT application. Applying EIT during EEG acquisition to determine equivalent head 

tissue conductivities reduced systematic EEG-IP inaccuracies by up to 1 cm and obtained 

conductivities within 5% of the true value (Gonçalves et al., 2000). This may be especially 

useful when MRI alone, and not CT or x-ray information, is available, essential to most 

accurately segment bone compartments and sutures (Fernández-Corazza et al., 2017; Bayford 

et al., 2001). Furthermore, a recently developed protocol employed EIT using injection 

patterns with one source and multiple sinks to generate an inhomogeneous conductivity map 

of the skull (Fernández-Corazza et al., 2020). This novel method may enhance the current 

proposed EIT homogeneous model, to produce the most accurate heterogenous representation 

of skull conductivity and thus reduce FP and IP errors further. Additional methodologies 

exist to determine individualised skull conductivities, such as those obtained with EEG and 

MEG (i.e., as in Gonçalves et al., 2003a). Despite good characterisation of personalised skull 

conductivity using EIT, further research could employ these additional methods and 

determine differences between them and the impact of sutures and bone composition using 

these measurements. 

 

5.5.3. Influence of age 
 

The current findings employing age-appropriate conductivity values also indicate the 

importance of accounting for suture closure as a function of age for EEG source analysis. 

Specifically, the greatest FP-RE was shown across regions of high spongiform proportion, 

typically frontal regions, for all age-appropriate models. This error increased with increasing 

age, due to a higher relative difference between the EIT estimated global conductivity value 

and that of spongiform bone. Conversely, a greater error was revealed across areas of high 

compact bone for the 20-year-old model, which is also supported by Azizollahi et al. (2016) 

findings that skull conductivity affected EEG forward modelling in regions covered by 

cranial bones. In line with Azizollahi et al.’s (2016) and the current results, younger ages, 

particularly children with higher skull conductivities, may yield greater inaccuracies in 

regions of complete compact bone (typically temporal areas). Importantly, as discussed more 

thoroughly in Section 5.4.1, accounting for suture closure, and thus differing conductivity, as 

a function of age further impacted EEG source analysis. These results outline not only the 

importance of including the sutures in EEG analysis, but also that accounting for their 

variation and fusion across the lifespan is imperative.  
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The relationship between skull conductivity and age, however, remains relatively unknown, 

with such a relationship being hypothesised from previous data in the current analysis. Future 

research should determine accurate and precise in vivo conductivity values as a function of 

age to assess the impact on EEG source analysis. Alongside this, the current volume 

conductor models assumed known and fixed non-skull tissue conductivity values. This also 

avoided unstable estimation and negative conductivities for EIT conductivity estimation. 

However, these tissues are equally subject to variation in the literature (see Chapter 3), of 

which participant age, gender and measurement methodology may influence. Furthermore, 

skull and brain geometry, such as skull thickness and size, is also affected by participant age 

but was beyond the scope of the presented study, which utilised identical head geometries for 

all age-appropriate models. An important future avenue thus involves evaluating the 

influence that varying soft tissue conductivities has on EEG source estimation as well as 

including these unknown parameters for EIT skull and non-skull conductivity computation. 

Particularly imperative is including the changing head geometry as a function of participant 

age, alongside deviating conductivity values, and ascertaining a more accurate representation 

of EEG forward and inverse computations when considering age-appropriate models. 

 

5.5.4. Research and clinical applications 
 

The source localisation errors from the current chapter are important for both research and 

clinical applications. Particularly in a clinical setting, head models are typically segmented 

using typical MRI procedures which are unable to accurately account for compact and 

spongiform layers or include the sutures (Fernández-Corazza et al., 2017). Furthermore, 

suture closure cannot be obtained directly from CT and thus such deviation as a function of 

age has been omitted. As presented, this could yield source localisation errors between 2 – 4 

cm, potentially crucial for resection and treatment purposes. For example, Aydin et al. (2014) 

revealed source localisation inaccuracies of an approximately 1.5 cm radius for epileptic 

spikes when the skull was considered to have a global conductivity that approximated both 

compact and spongiform layers into one compartment (compared to a model with distinction 

between the layers). This would greatly impact epilepsy resection surgeries. Further research, 

however, is imperative to explore real-world applications of neglecting the sutures, bone 

composition distribution, and aging skull conductivity. This can be done, for example, by 

utilising individualised, realistic, inhomogeneous skull conductivity models (as determined 



 

    
 

152 

through high-quality CT and EIT acquisition) on evoked and event-related EEG data to 

further determine their clinical and research importance. Moreover, concurrent EEG and EIT 

methodologies can be employed in the future to non-invasively and cost-effectively obtain 

individualised and inhomogeneous conductivities (i.e., using the method proposed by 

Fernández-Corazza et al., 2020) for such applications 

 

The presented inverse solution calculations were also in a noiseless situation and therefore 

represent errors in the most optimum circumstances. In a more realistic setting, where noise 

(such as participant motion, physiological artifacts, and environmental interference), is 

expected, these errors are hypothesised to increase. Similarly, real EIT data would incur 

artifacts due to participant movement, physiology, and environmental factors, triggering 

potential inaccuracies in conductivity estimation (Lionheart, 2004). For EEG source analysis, 

the effect of noise is supported by Montes-Restrapo et al., (2014) where dipole estimation 

errors were considerably large for high levels of noise. Interestingly, the employed model 

accuracy was more important at lower levels of noise, where very noisy environments 

yielded similarly elevated errors across models. Understanding the influence of 

spatiotemporally correlated noise, for example incorporating spatiotemporally correlated 

Gaussian noise for both the EIT and EEG forward and inverse solutions is imperative for 

future research (Lionheart, 2004; Beltrachini et al., 2013). 

 

5.6. Chapter Summary 

 
The current chapter highlighted the importance skull conductivity deviation has on EEG 

forward solutions and source localisation. The EEG-FP and EEG-IP were solved for a true 

inhomogeneous skull conductivity model and compared to solutions with varying 

conductivities and omitting sutures, assuming homogeneous conductivity and using a 

hypothesised aging skull conductivity model. Significant findings are outlined below: 

 

• Omitting the presence of adult sutures incurred large EEG source analysis 

inaccuracies, up to 4.14 cm, directly beneath suture lines, particularly evident for 

dentate sutures.  

• These inaccuracies remained even when suture closure and global conductivity 

variation as a function of age was accounted for, particularly from 20 - 50 years old. 
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• When neglecting changes in spongiform and marrow proportion across the skull, and 

thus assuming a homogeneous model, errors were reported up to 85% in the EEG-FP 

and 3.03 cm in the EEG-IP.  

• Assuming higher homogeneous skull conductivity increased global errors across areas 

of complete compact bone, such as temporal regions, whereas lower conductivity 

yielded greatest miscalculations across high spongiform proportion, such as the 

frontal region.  

• Estimating equivalent homogeneous conductivity from EIT reduced such errors.  

• Future research is suggested to account for the presence of sutures and incorporate a 

heterogenous model, as well as employ individualised in vivo conductivity values for 

the skull. 
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CHAPTER 6. GENERAL DISCUSSION 
 

6.1. Thesis Overview 

 
A fundamental aspect of brain activity involves electric and induced magnetic fields 

generated during neurotransmission, responsible for information and stimulus processing and 

communication. The produced neuronal activity can provide essential knowledge regarding 

brain behaviour and diseases such as sleep, memory, language, and neurological disorders. 

EEG is a non-invasive neuroimaging technique capable of detecting electrical fields at high 

temporal resolution, whilst tDCS is a neuromodulatory method able to non-invasively 

stimulate electrical activity within the brain. Both measurement and modulation approaches 

are complementary and aid in informing neurophysiological processes, disorder diagnoses 

and treatments. Reconstructing the source of such electromagnetic activity and distribution of 

current involves solving the forward and ill-posed inverse problems. Accurate solutions to 

these problems require realistic volume conductor models incorporating precise anatomical 

head geometry and tissue conductivities. However, large variations in employed head models 

and assigned tissue conductivities exist, misspecifications of which can result in considerable 

forward and inverse solution errors.  

 

The current thesis therefore delved further into aspects of head anatomy and electrical 

conductivity of head tissues to assess variation across literature and participants and the 

impact that such deviation has on neurophysiological modalities. Firstly, a systematic meta-

analysis was completed to determine the variation and contributing factors in head tissue 

conductivities. A notable finding from this initial study was the deviation in conductivity of 

the skull and its inner compartments, throughout methodologies and between participant 

demographics. Particularly, such discrepancies as a function of age resulted noticeable. 

Following from this enlightenment, a simulation study was conducted to determine the 

impact that the proposed variation in whole skull conductivity, as a function of age, had on 

tDCS induced fields. As expected, tDCS induced electric field intensity significantly 

decreased with age due to the hypothesised decline in skull conductivity. Participant age was 

therefore suggested to be crucial for tDCS modelling as such changes could account for 

varying clinical outcomes. This indicated tDCS dose should therefore be individualised and 

adjusted for participant age to achieve the desired result. Alongside deviations in skull 

conductivity are the differences in skull anatomy that contribute to changing conductivities. 



 

    
 

155 

For example, the proportion of spongiform bone alters throughout the skull and the presence 

of adult sutures, which close at various ages, provide a path of least electrical current 

resistance. The impact of head geometry and homogeneous conductivity values were 

therefore assessed for EEG forward and inverse solutions. Omitting the adult sutures resulted 

in considerable localised EEG source reconstruction errors, of up to 4.14 cm, whilst 

neglecting deviations in spongiform and marrow bone proportion additionally instigated 

inaccuracies of up to 3.03 cm, although to a wider extent. Furthermore, assuming a 

homogeneous skull layer resulted in forward solution errors, up to 85%. These results 

remained when skull conductivity was considered as a function of age. Similar to conclusions 

stemming from tDCS simulation, individualised inhomogeneous conductivity values, 

accounting for skull geometry discrepancies were suggested to be essential for a most 

accurate EEG source reconstruction.  

 

6.2. Summary of Findings 

 
The current thesis aimed to illuminate the contribution that head conductivity and geometry 

have on electromagnetic imaging and stimulation techniques, particularly tDCS and EEG. 

Important and significant findings are outlined below. 

 

Firstly, Chapter 3 systematically analysed how head tissue conductivity varies throughout the 

literature according to methodology and participant demographics. Research papers reporting 

electric conductivity of human head tissues utilising any method, below 1 kHz frequency, 

were evaluated and deviations according to employed methodology, temperature, condition, 

frequency, participant age and pathology were analysed. Each included paper was assessed 

for quality (see Appendix C) and reported values correspondingly adjusted to calculate 

weighted means and standard deviations for each tissue type. These averages were thus 

considered the most appropriate value according to the existing literature, when not 

individualising across participants. Statistics for each tissue type were found, e.g., the scalp = 

0.414± 0.18, whole skull = 0.016 ± 0.02, spongiform skull layer = 0.048 ± 0.07, whole 

compact skull layer = 0.005 ± 0.002, CSF = 1.736 ± 0.3, GM = 0.3787 ± 0.16, WM = 0.1462 

± 0.11 S/m and BSCR = 50.4 ± 39. Supporting previous literature, CSF conductivity was 

considered stable across participants and methodology, deviating only according to 

temperature (Baumann et al., 1997). On the other hand, scalp conductivity varied 

considerably. This variation, however, was found not to be explainable by anything other 
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than individual differences, providing the first support for the necessity of personalised head 

conductivity models. More realistic and detailed models consider the brain as GM and WM 

separately, both of which significantly deviated throughout the literature. Notably, participant 

pathology contributed to GM and WM variation. Alongside this, deviations according to 

employed methodology were not minimal. Considerable differences were revealed when 

utilising DTI methods, particularly according to the chosen DTI scaling factor.  

  

An overwhelming finding from the meta-analysis was the variation across the literature and 

between participants for whole-skull and layered-skull conductivity values. Significant 

differences in skull conductivity were revealed between methodologies, for example in vivo 

measurements were generally increased, alongside those obtained with E/MEG, compared to 

EIT, techniques. Furthermore, deviation was found according to employed frequency. 

However, this relationship was unknown. Importantly, skull conductivity was further 

implicated to vary as a function of participant’s age, supported by results in the BSCR 

(Figure 3.12 and Gonçalves et al., 2003a) and of layered-skull conductivity. Distinct 

conductivities for the spongiform and compact layers of the skull were indicated, supported 

by a breadth of previous research (Akhtari et al., 2000; Akhtari et al., 2002; Fernández-

Corazza et al., 2017; Tang et al., 2008). This suggests a homogeneous skull is a 

simplification of a true skull model and thus can result in significant electromagnetic forward 

and inverse errors (Dannhauer et al., 2011; Haueisen et al., 1999; Haueisen et al., 2002; 

Ollikainen et al., 1999; Pohlmeier et al., 1997). However, even when considering a tri-layer 

skull, deviations remained between conductivity values. The spongiform layer in particular 

could be attributed to divergences in condition, temperature, frequency, pathology, and age. 

Contributions to these significant differences involve the presence of infant fontanelles, adult 

sutures (both of which close at various stages in life), head geometry, proportion of 

spongiform bone and bone composition variation throughout the lifespan. Thus, skull 

conductivity was hypothesised to decline as a function of age, as supported by previous 

studies (Gibson et al., 2000; Pant et al., 2011, Antonakakis et al., 2020; Hoekema et al., 2003; 

Wendel et al., 2010). Such discrepancies in skull conductivity can result in considerable 

source localisation errors for EEG (Lanfer et al., 2012; Montes-Restrepo et al., 2014; Wolters 

et al., 2006), MEG (Cho et al., 2015; Lau et al., 2016) and tDCS electric fields (Schmidt et 

al., 2015; Antonenko et al., 2021; Fernández-Corazza et al., 2017). 
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Following from the hypothesised contribution age has on skull conductivity and thus 

electromagnetic fields, Chapter 4 aimed to determine the impact this has on tDCS 

application. Despite previous research indicating the significant influence participant age has 

on electrical induced fields (Moliadze et al., 2015; Kessler et al., 2013; Ciechanski et al., 

2018; Antonenko et al., 2021; Rezzaee & Dutta, 2020), none considered the contribution of 

skull conductivity variation as a function of age. The presented research chapter thus aimed 

to elucidate this by using age-specific head atlases to characterise the influence various 

estimated age-appropriate skull conductivity ranges has on tDCS induced fields. Six volume 

conductor FEM head meshes were created at ages 10, 20, 30, 40, 50 and 60 years old, from 

age templates based on more than 1000 images (Richards et al., 2015; 2016), using a specific 

head model pipeline (SimNIBS v3.1.2; Thielscher et al., 2015; Nielsen et al., 2018). Skull 

conductivity ranges, as a function of age, were hypothesised according to three separate 

research studies (see Figure 4.1): Gonçalves et al., (2003a), Antonakakis et al., (2020) and 

Hoekema et al., (2003). A UQ analysis determined divergences in motor cortex tDCS 

induced electric fields at four different intensities due to variation in skull conductivity 

according to the age-appropriate ranges. Soft tissue (scalp, GM, and WM) conductivities 

were either fixed or varied (according to Chapter 3) and these results were also compared to 

three fixed skull conductivity values (see Section 4.2.2. and Table 4.1. for details).   

  

A significant negative correlation between tDCS induced electric peak fields and age was 

revealed for all utilised age-appropriate datasets and intensities, both when soft tissue 

conductivities were fixed and varied. Additionally, peak field and intensity, as well as GM 

volume were significantly positively correlated, whilst CSF volume and peak fields resulted 

in a significant negative association. This emphasises the importance of accurate head 

volume modelling, particularly accounting for participant age, for electrical stimulation 

application. Furthermore, skull thickness, at ages greater than 20, was significantly positively 

correlated with induced fields. Previous research has also indicated skull conductivity to 

deviate with skull thickness (Tang et al., 2008), thus supporting the imperative nature of 

accurate skull modelling and conductivity estimation for tDCS stimulation. No relationship 

between the focality of tDCS induced fields and age were revealed, except when soft tissue, 

alongside age-appropriate skull conductivity values were varied. This was expected as 

focality has previously been hypothesised to depend on head geometry and brain 

composition, rather than skull conductivity variation (Callejón et al., 2021; Laakso et al., 

2015; Mikkonen et al., 2020; Fernández-Corazza et al., 2017). This finding is further 
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reinforced by a significant relationship between skull thickness and focality. Importantly, the 

presented research discovered deviation in skull, compared to soft tissue, conductivity 

generally became the most significant factor with increasing age, for tDCS peak fields. This 

insinuates aging skull conductivity to be the most influential element for the respective tDCS 

electric fields. 

 

On average, across the three datasets, peak fields declined by a factor of 0.82 per decade. 

This, for example, was analogous to peak fields being triple in the eldest, compared to the 

youngest atlas when the dose was constant. Generally, the peak field for the 10-year-old 

model was comparable to that of the 60-year-old when employing one third of the stimulation 

dose. The presented results provide support for age, potentially as a result of changing skull 

conductivity, being a central mediator for tDCS clinical and research response. Supporting 

this, Moliadze and colleagues (2015) suggested the induced tDCS effect may be dependent 

on age, where identical dosages could initiate long-term depression changes in adults, but 

long-term potentiation changes in children. Individualised patient-specific dosage may 

therefore be essential. Such dosages could be adjusted by the suggested declining factor (of 

0.82 per decade). However, it is appreciated this value is arbitrary and likely to differ across 

varying head models. The overwhelming findings suggest accurate and individualised head 

anatomy and age-appropriate skull conductivity values are fundamental for tDCS research 

and clinical application.  

 

Considering the significant impact that the skull conductivity variation, particularly as a 

function of age, has on tDCS induced electric fields, it was hypothesised such variation 

would also effect EEG electrical potential propagation due to the reciprocity theorem. The 

previous chapter included the skull as one homogeneous layer, however, assuming it as a 

single conductivity compartment has resulted in significant EEG-FP and IP solution errors 

(Vallaghé et al., 2008; Acar er al., 2013; Chen et al., 2010; Vorwerk et al., 2019). The skull 

consists of three layers: a spongiform layer, sandwiched between two compact bone 

compartments that are less conductive than the former, the proportion of which varies 

throughout the skull. As well as this, sutures connect the individual skull bones and remain 

open at various stages of development, with differing conductivity values. The influence of 

these sutures was yet to be evaluated, thus Chapter 5 aimed to analyse the contribution that 

adult sutures had on the EEG forward and inverse solutions and their effect compared to 

neglecting deviations in bone composition, as well as accounting for participant’s age. A 
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detailed realistic head model with inhomogeneous skull conductivity volumes was developed 

that accounted for the presence of four adult sutures and spongiform bone distribution 

throughout the skull. The FP (using a FEM) and IP (using sLORETA) solutions for a “true” 

heterogeneous skull conductivity model were compared to those omitting the sutures, 

neglecting bone composition distribution and homogeneous models. Aging skull conductivity 

volumes, accounting for suture closure with age and overall decline in skull conductivity 

(taken from Chapter 4) were also compared.  

 

Omitting the presence of adult sutures resulted in the largest IP errors (a maximum of 4.14 

cm) across all the comparison models, as well as considerable FP errors (maximum 68%), 

notably across the suture lines. These results highlight that modelling the skull sutures for 

adults is essential for accurate EEG-FP and IP solutions, similar to accounting for the 

fontanelles in infants (Lew et al., 2013; Azizollahi et al., 2016). When accounting for suture 

closure and overall skull conductivity variation with age, the impact of sutures remained, 

signifying that accounting for the skull sutures is imperative. This is firstly due to potential 

variation in conductivity of the sutures with participant’s age, which has not been explicitly 

measured. Secondly, as sutures close during different developmental stages, the impact of the 

sutures consequently deviate across skull regions, dependent on state of suture closure. 

Furthermore, the greatest FP errors were revealed across regions of high spongiform 

proportion. This was typically found in frontal regions, for all age-appropriate models and 

generally increased with age. Including variation in skull conductivity, alongside the presence 

of sutures and suture closure as a function of age, is therefore fundamental for the most 

accurate EEG-FP and IP solutions. 

 

Considerable FP and IP solution errors also occurred when spongiform distribution across the 

skull was neglected, particularly evident across regions of high spongiform bone content. 

This emphasises the necessity of a heterogeneous skull volume, supported by previous 

research (Lanfer et al., 2012; Montes-Restrepo et al., 2014; Wolters et al., 2006; Dannhauer 

et al., 2011). Further to this, assuming homogeneous skull conductivity produced substantial 

errors. Of note, a high skull conductivity value (0.01 S/m) resulted in up to an 85% FP 

solution error, with up to 57% for a lower value (0.0055 S/m). The area of greatest error 

specifically depended upon bone composition, occurring within complete compact bone 

regions for the high homogeneous skull value and in low compact bone areas for the 0.0055 

S/m skull conductivity. Importantly, EIT provided a method to estimate homogeneous 
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conductivity whilst minimising eccentricities due to sutures and bone composition. The 

global FP and IP errors were largely reduced compared to the literature assumed values, 

producing less concentrated inaccuracies. Utilising EIT to estimate a homogeneous skull 

conductivity volume may therefore be advantageous when accurate individualised 

heterogeneous models are unavailable (i.e., from CT data). However, the findings from 

Chapter 5 highlight that incorporating adult sutures and bone composition in an 

inhomogeneous model, particularly considering deviation according to participant age is 

imperative for EEG analysis, misspecification of which can have severe research and clinical 

consequences. 

 

6.3. Future Directions 

 
A prominent conclusion from the presented research is the need for individualised, in vivo, 

inhomogeneous skull conductivity values. Chapter 3 provided an overview of the existing 

literature examining skull conductivity, finding significant variation due to methodology and 

participant demographics. Chapters 4 and 5 elucidated the importance that accounting for 

such variation has for tDCS application and EEG analysis, respectively. Of particular note 

was the lack of data available for determining the relationship between skull conductivity and 

age, especially for a heterogeneous layer that included the skull sutures. However, the 

available data is insufficient, thus assumptions were made within the current thesis to account 

for inconsistencies and lacking measurements. Firstly, despite a breadth of research 

indicating that the electrical conductivity of a homogeneous skull would decline with age, for 

example due to changes in geometry and composition (Silau et al., 1995; Christie, 1949; 

Nakahara et al., 2006; Tang et al., 2008; Spence, 1990; Peyman et al., 2001; Ross et al., 

1998), limited research existed specifically analysing skull conductivity with age. As 

discussed in Chapter 4, an association was extracted from three such studies (Gonçalves et 

al., 2003a; Hoekema et al., 2003; Antonakakis et al., 2020), however it is noted these papers 

are limited in participant numbers and complete age range. Additional, in vivo measurements 

are therefore required, for an accurate depiction of this relationship, utilising a greater 

number of participants stemming from infancy to older age.  

 

Alongside this, Chapter 4 assumed such variation across a homogeneous skull, whereas it is 

acknowledged a one-layered skull is misrepresentative. As discussed in more detail in 

Chapters 3 and 5 the skull consists of multiple compartments, spongiform and compact bone, 
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as well as sutures, all with differing conductivities. Accounting for a heterogeneous skull 

model is thus essential when determining the influence of age on conductivity. EIT provided 

a method to estimate homogeneous skull conductivity and is suggested as one technique to 

minimise eccentricities due to bone composition and sutures for research and clinical 

application. It is a safe, cost and time effective, portable, and easy to use methodology that 

can be estimated during EEG acquisition (Gonçalves et al., 2000). Thus, it can be easily 

exploited for determining associations between age and electrical skull conductivity in large 

scale studies. A recent EIT protocol has further been developed which can generate 

inhomogeneous conductivity maps of the skull by employing injection patterns with one 

source and many sinks (compared to the standard of one source to one sink; Fernández-

Corazza et al., 2020). In a preliminary study this novel method was able to produce reliable 

and accurate smooth inhomogeneous skull conductivity reconstructions that were correlated 

with deviations in spongiform bone distribution (Fernández-Corazza et al., 2020). This 

technique may therefore provide a revolutionary procedure for generating geometrically 

accurate, inhomogeneous skull conductivity measurements. Such an application could be 

utilised in the future to firstly, determine a relationship with age and secondly, enhance head 

modelling for tDCS and EEG research and clinical application. 

 

Further to this, assumptions were made regarding the conductivity of adult sutures and their 

decrease with age. Existing research has suggested age of closure for each suture (Russell & 

Russell, 2018; Idriz et al., 2015; Kumar et al., 2018; Singh et al., 2004; Nakahara et al., 

2006). However, conductivity at closure may not equal that of hard bone, nor decline in a 

sigmoid fashion. Moreover, suture conductivity is likely to differ between participants and 

methodologies, specifically when obtained in vivo, as opposed to the in vitro measurements 

utilised in Chapter 5 (Tang et al., 2008). Supplementary knowledge of suture conductivity 

and the progression of their closure from infancy to old age is thus vital for the most accurate 

representation. Complementary CT or unconventional MRI techniques using T2 weighting 

(Antonakakis et al., 2020) could be employed to ascertain such information from a greater 

number of participants within a large age range. Moreover, four specific skull sutures were 

considered for the EEG analysis chapter, however additional sutures exist, typically closing 

during childhood and adolescence. For example, the frontal suture, running mid-line of the 

frontal bone, normally fuses between 3-9 months old (Vu et al., 2001), whilst the 

sphenosquamosal suture usually closes by 6 years, but can take as long as 10 (Idriz et al., 

2015). On the other hand, the sphenofrontal suture, lying between the sphenoid bone and 
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posterior horizontal orbital plates, and the occipitomastoid suture, extending between the 

occipital bone and mastoid of temporal bone, typically close at 15 and 16 years respectively 

(Captier et al., 2003; Madeline & Elster, 1995). Characterising complete skull composition 

throughout all ages is therefore essential, particularly for tDCS application and EEG analysis 

in children and the elderly. 

 

Skull thickness is an additional notable aspect of skull geometry influential to tDCS 

application and EEG analysis (as discussed in Chapters 4 and 5 respectively). However, the 

association with participant age and electrical conductivity is inconclusive. For example, 

skull thickness has been revealed to increase with age during early adulthood (Despotovic et 

al., 2013; Hansman, 1966), but this is non-linear (Li et al., 2015) and several studies have 

found no such a relationship (Ishida & Dodo, 1990; Lynnerup, 2001; Lynnerup, Astrup, & 

Sejrsen, 2005; Pensler & McCarthy, 1985; Sullivan & Smith, 1989). An inverse correlation 

between skull thickness and conductivity with increasing age has additionally been reported 

(Lai et al., 2005; Gibson et al., 2000; Antonakakis et al., 2020). This may relate to a 

proportion of spongiform bone increase with age (Hatipoglu et al., 2008; Sabancıoğulları et 

al., 2012), accompanied with inner and outer compact thinning (Skrzat et al., 2004). Such a 

relationship between skull thickness, age, and conductivity, however, has been insufficiently 

and inconsistently explored within the literature and thus no concrete conclusions can be 

made. Future research is therefore essential to disentangle their association, as well as the 

impact on tDCS induced fields and EEG analysis. One avenue of future research could 

employ CT with a large number of participants of varying ages and both genders, to analyse 

skull thickness, specifically, the differentiation between spongiform and compact bone. 

Alongside this, applying an EIT method would enable associations with electrical 

conductivity. 

 

EIT has been suggested as providing a cost and time effective, non-invasive, and easily 

applicable estimation of skull conductivity (Fernández-Corazza et al., 2020; Fernández-

Corazza et al., 2017, Dabek et al., 2016). Further developments of this technique as well as 

additional methodologies may provide complementary information. The quality and accuracy 

of EIT measurements are dependent on various factors such as electrode configuration, 

number of electrodes and injected current distribution. Such factors require consideration to 

provide adequate sensitivity and spatial resolution across a complete head model. Additional 

research could therefore explore electrode placement, number of sinks and sources, a priori 
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information regarding soft tissue conductivity and initial guesses, and computational iteration 

parameters, in order to fully optimise EIT conductivity estimation.  

 

The current thesis specifically focused on the importance of skull conductivity, however 

accurate GM, WM, and scalp conductivity values are also essential for the most precise head 

models. The scalp conductivity, for example, is subject to variation between participants 

(Chapter 3), inaccuracies of which may impact EEG source analysis and tDCS induced fields, 

particularly for shallow brain regions (Gençer & Acar, 2004; Gonçalves et al., 2003a). A 

range of scalp conductivities were considered within the tDCS simulations (Chapter 4), but 

future research should aim to determine the impact that scalp conductivity also has on EEG-

FP and IP analysis. Furthermore, fluctuations in GM and WM were regarded for tDCS 

application, but the influence on EEG analysis is not minimal. Alongside deviations 

throughout participants, GM and WM volume has been shown to vary with development 

(Giorgio et al., 2010; Groeschel et al., 2010) and pathology (Sastre-Garriga et al., 2005; 

Douaud et al., 2007; McAlonan et al., 2007) and can be related to conductivity (see Chapter 

3). In particular, WM conductivity has been associated with deviations according to 

participant age (Cheng, & Alexopoulos, 2009; Schmithorst et al., 2002). Additional research 

is thus essential to determine GM and WM conductivity variation between participants and 

the respective influence on tDCS application and EEG analysis.  

 

One such method not explored in depth in the presented thesis is DTI, which, as shown in 

Chapter 3, provided multiple conductivity measurements for GM and WM. DTI is an in vivo, 

non-invasive method capable of estimating the electrical conductivity tensor from diffusion 

tensor eigenvalues measured with diffusion-weighted MRI (Tuch et al.,1999). Notably, this 

technique can account for anisotropy within tissues, which was neglected in the current 

thesis. Previous research has indicated that overlooking WM anisotropy resulted in 

significant EEG localisation (Anwander et al., 2002; Gullmar et al., 2010), tDCS (Schmidt et 

al., 2015; Ciechanski et al., 2018), especially for deep sources, and TMS induced fields (De 

Lucia et al., 2007) errors. Future research could therefore incorporate discrepancies in GM 

and WM conductivity according to DTI measured anisotropy for electromagnetic imaging 

methods. As discussed in Chapter 3 (Section 3.5.5ii), however, there are different anisotropic 

conductivity models of WM based on DTI (as reviewed in Wu et al., 2018). Thus, care 

should be taken when estimating conductivity from diffusion measurements and additional 

research is required to determine the optimal transformation. 
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Further to this, the skull can also be considered as anisotropic, with increased conductivity in 

tangential compared to radial directions (Law, 1993). Not accounting for this anisotropy has 

resulted in significant EEG forward and inverse solution errors (Marin et al., 1998; Chauveau 

et al., 2004; Hallez et al., 2005). Skull anisotropy may be determined using layered isotropic 

elements with an anisotropy ratio, as described in detail in Sadleir and Argibay (2008). 

Future research could thus include skull anisotropy, particularly alongside accurate 

inhomogeneity to ascertain the impact on EEG analysis and tDCS induced fields. The 

importance of incorporating a heterogeneous layered skull, however, is acknowledged in 

more recent research, therefore inclusion of skull anisotropy may not be necessary. 

Additional research is hence required to establish its usefulness, particularly when 

individualised, in vivo, heterogeneous skull conductivities are considered.   

 

The inclusion of additional tissues, such as the meninges, blood vessels, fat, and muscle, as 

well as lesions and brain atrophy were also neglected for tDCS induced field and EEG 

analysis but, have previously been found to impact such investigations, although to a lesser 

degree (Jiang et al., 2020; Fiederer et al., 2016; Laakso et al., 2015). Alongside this, CSF is 

also frequently overestimated within head modelling, due to including the blood vessels and 

meninges as CSF and can equally result in notable errors (Jiang et al., 2020). As discussed in 

Section 4.5.2., additional research is therefore necessary to elucidate the importance of 

accounting for these additional tissues, as well as accurately segmenting CSF, for example 

using tetrahedral FEM discretisations (Beltrachini et al., 2018). The presence of lesions and 

brain atrophy is increasingly likely with participant age and hence may therefore be 

progressively critical to include for both EEG and tDCS evaluations.  

 

Following from Chapter 4, a supplementary essential avenue for research is determining the 

optimum solution for the effect of age on tDCS. The current thesis suggested a scaling factor 

of 0.82 per decade which could be related to applied dosage. However, as discussed in 

Section 4.5.2. this value is arbitrary and subject to large uncertainties throughout participants. 

The use of a scaling factor was supported by Datta and colleagues (2011), thus larger scale 

studies incorporating true head models and individualised, in vivo conductivities could be 

employed to inform such a value more accurately. Alternatively, when equipment and time 

permitting, tDCS simulation utilising these individualised head conductivity models could be 

employed prior to tDCS application. Adjusting the tDCS dose appropriately has been 

relatively unexplored but remains fundamental for future tDCS clinical and research 
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application. Alongside this, examining the influence of tDCS electrode size and placement 

was beyond the scope of the current thesis, however forthcoming modelling analyses could 

explore their effect on tDCS induced fields, in combination with age-appropriate geometry 

and conductivity. 

 

Due to the reciprocity theorem and dual relationship between tDCS and EEG, a further and 

informative aspect of research would be analogous tDCS and EEG monitoring. Combining 

such complementary modalities can enlighten additional aspects of brain function. For 

example, concurrent analysis can aid in revealing the underlying biological mechanisms 

behind both tDCS and EEG, as well as the in-depth effect of skull conductivity and its 

relationship with electric current. Concurrent tDCS and MEG has also previously been 

employed to derive conclusions on the cortical mechanisms of tDCS (Hanley et al., 2016) 

and evidence the ability of MEG for characterising tDCS induced brain changes (McGonigle 

et al., 2015). Further to this, the presented thesis focused on application to electrical imaging 

methods. However, the effect of conductivity on magnetic fields is not minimal. For example, 

existing research has revealed significant effects on TMS induced fields when neglecting 

WM anisotropy (De Lucia et al., 2007) and inaccurate GM/WM conductivity (Saturnino et 

al., 2019) and MEG analysis when employing inaccurate GM and WM (Wolters et al., 2006; 

Gençer et al., 2004; Güllmar et al., 2010), skull (Cho et al., 2015; Lau et al., 2016) and scalp 

(Gençer et al., 2004) conductivities. Further research should therefore attempt to disentangle 

the relationship between soft and hard tissue conductivities and TMS/MEG analysis, 

particularly when age is taken into consideration.  

 

6.4. Overall Conclusion 

 
The presented thesis aimed to determine the influence that variability in head tissue electrical 

conductivity had on corresponding electrical brain imaging research. A systematic meta-

analysis revealed electrical conductivity, predominantly of the scalp, skull, GM, and WM 

deviated according to both participant demographics and employed methodology. The 

variation of skull conductivity was of particular note, consisting of multiple layers and 

associated with participant age. Correspondingly, the proposed decline in homogeneous skull 

conductivity as a function of age resulted in reduced tDCS induced fields, leading to the 

suggestion tDCS dosages should be individualised, particularly to account for participant age. 

Following from this, accounting for the presence of adult sutures and proportion in 
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spongiform and compact bone distribution throughout the skull, was found to be vitally 

important in EEG analysis. Omitting the sutures, deviations in bone composition, and 

assuming various homogeneous skull conductivity values resulted in considerable EEG 

forward and inverse solution errors, discrepancies of which remained even when accounting 

for age.  

 

The overwhelming conclusion from the presented research is the imperative nature of 

incorporating geometrically accurate and precise volume conductors for the skull. Not 

accounting for its heterogeneity, including sutures, bone composition and deviations 

according to participant demographics can result in significant tDCS and EEG analysis 

errors. The sutures, all of which vary in closure rate and deviate between participants, which 

in turn effects their conductivity, are vital within head modelling methodologies but are 

frequently omitted. Furthermore, the influence of participant age is imperative for accurate 

skull conductivity values, however existing data is limited. Additional measurements are 

required to ascertain such a relationship between homogeneous skull conductivity values, the 

conductivity of the sutures, deviations in spongiform and compact bone thickness and 

conductivity and participant age. It is suggested that research involving both tDCS and EEG 

should include in vivo, individualised skull conductivity values and head geometries, through 

for example, EIT and MRI acquisition, respectively, for the most accurate representation and 

analysis.  
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APPENDIX 
 
Appendix A: Prisma Flow Diagram 
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For more information, visit www.prisma-statement.org. 
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Appendix B: Keywords for Literature Search 

 

The inclusion criteria considered Articles, Books, Book Chapters, Corrections, Data Paper, 

Early Access or Reprints presented or translatable to English. The keyword search was 

conducted for titles only. Keywords included any variation and combination of 

“conductivity” (i.e. resistance, impedance, dielectric, electric/current field, electric 

properties) AND “head tissue” (i.e. head, brain, scalp, skull, cerebral, CSF, dura, white 

matter, grey matter, brain-skull, brain-scalp, BSCR, lesion). To reduce the amount of 

retrieved papers, those including unrelated keywords in their titles (i.e. insulin, diabetes, 

drug, DNA, blight, ship, sea, flower, Kawasaki, train) and non-human animals (i.e. rat, pig 

sheep, cow, swine, mice, mouse) were excluded from the keyword search. 

 

Appendix C: Quality Assessment Protocol for All Studies 

 

Item 1: Were participants appropriately recruited and described? 

Pre-specified 

protocol 

 

 

 

 

 

 

Yes - 1 

 

No - 0 

 

Unclear – 0.5 

No participant demographics or pathology were excluded in order to 

explore how variations affect conductivity values. However, both should 

be considered when analysing results to accurately determine their 

impact. Therefore, an accurate description of participants should be 

provided in order to appropriately group them for analysis. In the case no 

information is provided, it should be made clear participants are assumed 

to be healthy adults.  

 

At minimum, participant pathology was provided. Age is further included 

in the current meta-analysis if available. 

No information on participant pathology or demographics were provided, 

or sufficient to assume participants were healthy adults. 

When no detailed description was available, it is still sufficient to assume 

participants were healthy adults. 

Item 2: Does the measurement method appropriately determine the desired value?  

Pre-specified 

protocol 

The study measures what they set out to measure (i.e. 

conductivity/resistivity) and reports the values appropriately.  
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Yes - 1 

No – 0 

 

Unclear – 0.5 

 

Results were reported in accordance to the study aims and methodology. 

Reported values were inconsistent with the study aims and what they 

claimed to report. 

It is unclear whether or not reported results were in line with the studies 

aim, therefore an average of 0.5 for this item is assigned.  

Item 3: Is the methodology accurately described such that it can be replicated?  

Pre-specified 

protocol 

 

 

 

Yes - 1 

 

No - 0 

 

Unclear 0.5 

Employed methodology should be sufficiently described in order to 

accurately assess variation in conductivity values due to methodological 

differences. Enough information should therefore, at minimum, be 

provided to assign methodology. In order to further validate the chosen 

method, a sufficient description should allow replication of the method. 

Sufficient information was provided to assign a methodology and 

replicate their chosen method. 

No information was provided, and the review is unable to appropriately 

assign chosen methodology.  

It is unclear whether enough information is provided for replication, but 

methodology can be assigned appropriately.  

Item 4: Is the chosen methodology justified?  

Pre-specified 

protocol 

 

 

Yes - 1 

No - 0 

Unclear – 0.5 

As there are many different methods measuring conductivity, it would be 

expected each study would justify their chosen methodology, potentially 

based on the previous literature. 

 

Justification for the chosen method was provided. 

No justification for the employed methodology was provided. 

It is unclear whether or not justification was provided, therefore an 

average of 0.5 for this item is assigned. 

Item 5: Was the measurement protocol verified for accuracy?  

Pre-specified 

protocol 

 

 

 

Tests measuring conductivity do not come without errors, in order to 

improve validity of the method, measurement errors should be provided 

to further verify their results. This may be through simulation or phantom 

experiments, or as standard deviations within each participant. 
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Yes - 1 

 

No - 0 

Unclear - 0.5 

The error associated with the chosen methodology was reported – from 

simulation, phantom or participant data. 

No protocol errors were reported. 

It is unclear whether errors were reported or not – i.e. unclear whether 

reported errors were due to simulation, phantom or participant data 

errors.  

Item 6: Did the measurement and verification method remain unchanged throughout 

the study? 

Pre-specified 

protocol 

 

Yes - 1  

No – 0 

Unclear – 0.5 

Methodology should remain constant throughout the measurement 

process, with any deviations described and justified. 

 

All measurements were obtained using the same methodology. 

Methodology did not remain constant. 

It is unclear whether or not the methodology was consistent for each 

measurement, therefore an average of 0.5 for this item is assigned. 

Item 7: Were the measurement errors within an acceptable range? Higher weight? 

Pre-specified 

protocol 

 

 

Yes - 1 

No - 0 

 

Unclear - 0.5 

Errors should be of an acceptable value otherwise use of the chosen 

method is not justified. Where errors are considerably large, a discussion 

should be made as to why and ramifications implemented. 

 

Errors were relatively low and within an acceptable range. 

Errors were considerably large, and no justifications/ramifications were 

made. 

No clear error values were provided, or justification/ramification are 

absent/arbitrary, therefore an average of 0.5 for this item is assigned. 

 

 

Direct Measurement  

Item 8: Were measurements obtained immediately after tissue was excised? If no, 

how much time elapsed between excision and test? 

Pre-specified protocol 

 

 

For conductivity values that reflect the most natural 

circumstances, measurements should be made immediately after 

tissue has been excised, or immediately after death. Time-
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Yes - 1 

No: 

< 24 hours – 0.8 

1 - 7 days – 0.6 

1 - 8 weeks – 0.4 

>2 months – 0.2 

Unclear – 0.5 

elapsed from excision and measurements may affect the relative 

conductivity of the tissue.  

 

No time elapsed from excision and test.  

Time elapsed between excision and test within the range 

described and an item score was assigned accordingly.  

 

 

 

It was unclear how much time elapsed, therefore an average of 

0.5 for this item is assigned. 

Item 9: Were excised tissue samples kept in 100% saline? If no, what liquid (and 

concentration) were tissue samples kept in? 

Pre-specified protocol 

 

 

 

Yes - 1 

 

No: 

>90% saline – 0.8 

50-90% saline – 0.6 

<50% saline – 0.4 

Dry – 0.2 

Unclear – 0.5 

To ensure conditions are kept as natural as possible, excised 

tissue should be contained within 100% saline, where 

conductivity is 1 S/m.  

 

Excised tissue samples were contained in 100% saline of 1 S/m 

conductivity.  

Tissue samples were kept in varying concentrations of saline and 

quality scores were assigned accordingly. 

 

 

 

It is unclear what concentration of saline tissues were kept in, 

hence they were assigned an average score of 0.5  

Item 10: Was the tissue kept at body temperature (~37 degrees Celsius)? 

Pre-specified protocol 

 

 

Yes - 1 

No - 0 

Unclear – 0.5 

For conductivity values that reflect the most natural 

circumstances, excised tissue should be maintained at body 

temperature.  

Tissue kept at approximately body temperature (34-39oC) 

Tissue not at body temperature.  
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The temperature of the tissue during conductivity measurements 

was unclear or ambiguous, therefore an average of 0.5 for this 

item was assigned. 

 

Model-dependent Measurements  

Item 11: Is an individualised head model considered for each participant?  

Pre-specified protocol 

 

 

 

 

 

Yes, individualistic - 1 

No, realistic – 0.75 

No, spherical – 0.25 

Unclear – 0.5 

 

Head shape and tissue thickness varies considerably between 

individuals; therefore, head models should be personalised for 

each individual – i.e. from MRI/DTI data. If not, realistic head 

models should be employed as opposed to a spherical model, as 

the head is not a simplistic sphere. 

Individualistic head models were considered. 

A realistic head model was employed. 

A spherical head model was employed.  

The head model used was unclear, hence an average quality 

score of 0.5 is given.  

Item 12: Has the head been maximally segmented into appropriate layers depending 

on the tissue type being measured?  

Pre-specified protocol 

12a: Scalp 

Yes: muscle, fat skin- 1 

Yes: 2 layers - 0.5 

No - 0 

N/A 

 

 

12b: Skull  

Yes: 4 layers – 1 

 

Yes: 3 layers – 0.66 

 

Yes: 2 layers – 0.33 

As specified by sub-sections: 

 

The scalp was segmented into the 3 tissue layers of muscle, fat, 

skin 

The scalp is considered as 2 layers (i.e. muscle + fat) 

Scalp is considered one homogenous layer. 

If the study did not measure scalp conductivity, item 12a is not 

included in the Quality Assessment score.  

 

The skull was segmented into spongiform, inner and outer 

compact bone with sutures. 

Skull considered tri-layered; spongiform, inner and outer 

compact bone without sutures.   

Skull segmented into spongiform and compact bone.  
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No: 1 layer – 0 

N/A 

 

12c: Brain 

Yes: GM + WM – 1 

No: homogenous – 0.5 

No: scalp = brain – 0 

 

N/A 

 

 

12d: WM anisotropy 

Yes: anisotropic – 1 

No- isotropic – 0 

 

 

N/A 

 

The skull was considered as one homogenous head layer.  

If the study did not measure scalp conductivity, item 12b is not 

included in the Quality Assessment score.  

 

The brain was compartmented into grey and white matter. 

The brain was considered as a homogenous tissue.  

The brain was assumed to have the same conductivity as the 

scalp. 

If the study did not measure brain conductivity, item 12c is not 

included in the Quality Assessment score.  

 

 

WM was modelled as anisotropic 

WM was modelled as isotropic, or this was not mentioned in the 

study, therefore WM was assumed to be modelled as isotropic 

If the study did not measure WM conductivity, item 12d is not 

included in the Quality Assessment score.  

Item 13: Were no assumptions made for the conductivity value of any tissue type? 

Pre-specified protocol 

 

 

 

Yes - 1 

No – 0 

Conductivity values for all reported tissue types were 

empirically measured rather than assumed from prior literature 

(i.e. CSF is often assumed to model the remaining tissues).  

 

No assumptions were made 

Conductivity was assumed for one or more tissue types.  

 

Model-independent Measurements 

Item 14: Was the magnetic resonance resolution high? 

Pre-specified protocol 

 

 

 

Yes: <1mm - 1 

High resolution magnetic resonance imaging data with small 

voxel sizes should be acquired in order to most accurately 

segment head tissue and improve spatial resolution. 

 

MR resolution is 1mm3 or less. 
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No: 1-2mm – 0.8 

No: 2-3mm – 0.6 

No: 3-4mm – 0.4 

No: >4mm – 0.2 

Unclear – 0.5 

 

N/A 

Resolution between 1-2mm3. 

Resolution between 2-3mm3. 

Resolution between 3-4mm3. 

Resolution above 4mm3. 

The resolution used was unclear or unprovided, hence an 

average quality score of 0.5 is given. 

If the study did not employ a magnetic resonance method, item 

14 is not included in the Quality Assessment score. 

 
Example 1 & 2: Direct Measurements 
 
Baumann et al. (1997)  
 

Item 1 2 3 4 5 6 7 8 9 10 11 12a 12b 12c 12d 13 14 
Score 1 1 1 1 0 1 0.5 0.4 0.5 1 N/A N/A N/A N/A N/A N/A N/A 

Total  7.4 
QAS  0.74 (Score total divided by number of relevant items, in this case 10) 

 
Acktari et al. (2000)  
 

Item 1 2 3 4 5 6 7 8 9 10 11 12a 12b 12c 12d 13 14 

Score 1 1 1 1 1 1 1 0.2 0.8 1 N/A N/A N/A N/A N/A N/A N/A 

Total  9 

QAS  0.9 (Score total divided by number of relevant items, in this case 10) 

 
Example 3 & 4: Model Dependent Measurements 
 
Dannhauer et al. (2011) – E/MEG 
 
Item 1 2 3 4 5 6 7 8 9 10 11 12a 12b 12c 12d 13 14 

Score 1 1 1 1 0 1 0.5 N/A N/A N/A 1 0 0.66 1 N/A 0 N/A 
Total  8.16 

QAS  0.68 (Score total divided by number of relevant items, in this case 12) 
 
Fernández-Corazza et al. (2017) – EIT 
 

Item 1 2 3 4 5 6 7 8 9 10 11 12a 12b 12c 12d 13 14 

Score 1 1 1 1 1 1 1 N/A N/A N/A 1 0 0.33 1 N/A 0 N/A 

Total  9.33 

QAS  0.7775 (Score total divided by number of relevant items, in this case 12) 
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Example 5: Model Independent Measurements 
 
Rullmann et al. (2009) – DTI 
 

Item 1 2 3 4 5 6 7 8 9 10 11 12a 12b 12c 12d 13 14 

Score 1 1 1 1 1 1 1 N/A N/A N/A N/A N/A N/A N/A N/A N/A 1 
Total  8 

QAS  1 (Score total divided by number of relevant items, in this case 8) 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


