
Showering et al. BMC Microbiology           (2022) 22:98  
https://doi.org/10.1186/s12866-022-02502-4

RESEARCH ARTICLE

Skin microbiome alters attractiveness 
to Anopheles mosquitoes
Alicia Showering1*  , Julien Martinez2, Ernest Diez Benavente3, Salvador A. Gezan4, Robert T. Jones1, 
Catherine Oke1, Scott Tytheridge1, Elizabeth Pretorius1, Darren Scott5, Rachel L. Allen6, Umberto D’Alessandro7, 
Steve W. Lindsay8, John A. L. Armour9, John Pickett10 and James G. Logan1 

Abstract 

Background:  Some people produce specific body odours that make them more attractive than others to mosqui-
toes, and consequently are at higher risk of contracting vector-borne diseases. The skin microbiome can break down 
carbohydrates, fatty acids and peptides on the skin into volatiles that mosquitoes can differentiate.

Results:  Here, we examined how skin microbiome composition of women differs in relation to level of attractive-
ness to Anopheles coluzzii mosquitoes, to identify volatiles in body odour and metabolic pathways associated with 
individuals that tend to be poorly-attractive to mosquitoes. We used behavioural assays to measure attractiveness 
of participants to An. coluzzii mosquitoes, 16S rRNA amplicon sequencing of the bacteria sampled from the skin and 
gas chromatography of volatiles in body odour. We found differences in skin microbiome composition between the 
poorly- and highly-attractive groups, particularly eight Amplicon Sequence Variants (ASVs) belonging to the Proteo-
bacteria, Actinobacteria and Firmicutes phyla. Staphylococcus 2 ASVs are four times as abundant in the highly-attrac-
tive compared to poorly-attractive group. Associations were found between these ASVs and volatiles known to be 
attractive to Anopheles mosquitoes. Propanoic pathways are enriched in the poorly-attractive participants compared 
to those found to be highly-attractive.

Conclusions:  Our findings suggest that variation in attractiveness of people to mosquitoes is related to the composi-
tion of the skin microbiota, knowledge that could improve odour-baited traps or other next generation vector control 
tools.
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Background
Individual people who are more attractive to mosquitoes 
receive the most bites, resulting in higher risk of contract-
ing often lethal vector-borne diseases, including malaria 
[24]. Human attractiveness to mosquitoes is partially 
determined by our skin microbiome, which contributes to 
differences in volatile organic compounds (VOCs) in body 

odour [45]. There are over 500 VOCs in skin secretions, 
including acids, alcohols, aldehydes, esters and ketones 
[8]. Anopheles mosquitoes, which transmit malaria, exhibit 
electrophysiological and behavioural responses to several 
of these VOCs, including heptanal, lactic acid, propanoic 
acid and 1-octen-3-one [4, 5, 7, 27, 40]. Synthetic odour 
blends containing human VOCs have been developed for 
use in mosquito traps, with some success [30].

Bacteria that naturally occur on the skin have been 
shown to contribute to body odour, producing micro-
bial volatile organic compounds (mVOCs) that can affect 
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attractiveness to mosquitoes [45]. Skin bacteria catabo-
lise amino acids and lipids in body secretions into pun-
gent short chain carboxylic acids [15]. Sweat incubated 
with bacteria has been shown to be more attractive to 
Anopheles gambiae than freshly-secreted sweat [3]. Spe-
cific mVOCs produced by bacteria on the skin have been 
identified and tested for attractiveness to mosquitoes 
[45] and volatiles have been associated with attractive-
ness to mosquitoes [42]. Our study goes further to link 
the skin microbiome, body odour and attractiveness to 
mosquitoes, to predict candidate metabolic pathways and 
therefore elucidate mechanisms that lead to differential 
attractiveness.

Butanoic acid, carbon dioxide, lactic acid and propa-
noic acid together elicit Anopheles attraction [42]. On 
the other hand, people less attractive to Aedes aegypti 
have been shown to produce more specific repel-
lent volatile chemicals, including aldehydes (decanal, 
octanal, nonanal), and ketones (geranylacetone and 
6-methyl-5-hepten-2-one) [22], and current evidence 
suggests these are natural repellents. Further under-
standing of attractive and repellent mVOCs could lead 
to the development of mosquito repellents with differ-
ent modes of action, or be applied to improve current 
push-pull systems that incorporate compounds to repel 
mosquitoes away from hosts and attractants to lure 
them into traps [44].

Many factors contribute to variation in attractiveness 
to mosquitoes, including age, diet, sex, pregnancy, per-
sonal hygiene and parasite infection [21, 29, 33, 37, 40]. In 
some cases, these changes are associated with differences 
in skin microbiome diversity [47]. There is also evidence 
that attractiveness to mosquitoes is partly under genetic 
control [11], and it has been hypothesised that human 
genes may influence attractiveness through shaping the 
skin microbiome composition [48]. Since heterogenei-
ties in mosquito biting between people can have signifi-
cant epidemiological impacts [13, 43], it is important to 
understand the role of the skin microbiome in differential 
attractiveness.

Currently, the role the skin microbiome plays in human 
attractiveness to mosquitoes is not fully understood. 
Investigating differences in abundance of bacterial genera 
on the skin between people is critical in understanding if 
differences in attractiveness are due to differences in the 
skin microbiome. Applying chemical ecology techniques 
to identify mVOCs in body odour and correlating these 
with bacteria on the skin can be used to identify bacte-
rial genera of interest. The aim of this study was to iden-
tify differentially abundant genera of bacteria between 
poorly- and highly-attractive groups, then predict meta-
bolic pathways involved in body odour production and 
attractiveness to Anopheles mosquitoes.

Results
Study samples and population
In order to investigate the association between attractive-
ness to mosquitoes and skin microbiome composition, 
we collected skin swabs from the plantar aspect of par-
ticipants’ feet and measured behavioural response of An. 
coluzzii mosquitoes to the odour of the participants. In 
order to minimise potential confounding factors such as 
gender or hormonal cycles [34], while ensuring sufficient 
numbers of participants to be included in the study, only 
post-menopausal females, aged between 50 and 90 years 
were recruited to control for known variation in attrac-
tiveness to mosquitoes.

Global differences in the microbiome community 
between poorly‑attractive and highly‑attractive groups
From the behavioural data distribution we calculated 
relative attractiveness as the number of mosquitoes that 
chose the participant’s sock divided by the number that 
chose a trap. Highly-attractive (top quintile, 27 individu-
als) and poorly-attractive (bottom quintile, 28 individu-
als) groups were then selected for the analysis of skin 
microbiome composition. Co-variates were compared 
between the poorly- and highly-attractive groups prior 
to analysis (Supplementary Table  1). The median Faiths 
Phylogenetic Diversity (PD), a broad measure of alpha 
diversity or species richness within individuals, was on 
average lower in the highly-attractive group compared to 
the poorly-attractive group, although there was no signif-
icant difference in mean PD between the two groups (PD 
t-test P = 0.757) (Supplementary Fig. 1).

Sparse partial least squares discriminant analysis 
(sPLS-DA) was used to compare poorly- and highly-
attractive groups based on beta diversity, a measure of 
variation in species diversity between individuals (Fig. 1). 
Components 1 and 2 combined explain 25% of the differ-
ences between attractiveness groups. The centroids for 
the groups are separated on the 1st and 2nd component, 
albeit with overlapping 95% confidence intervals. The 
separation between the groups was of borderline statis-
tical significance (PERMANOVA, P = 0.055), suggesting 
weak evidence for a difference in microbial composition 
between groups.

Differences in individual bacterial taxa 
between poorly‑attractive and highly‑attractive groups
The contribution of individual genera of bacteria to 
differences in microbiome composition between the 
attractiveness groups was investigated by selecting and 
ranking taxa by order of importance on the two com-
ponents of the sPLS-DA model (Fig.  1). The strongest 
correlations (r > 0.5 or r < − 0.5) between relative abun-
dance and global differences in microbiome between 
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the attractiveness groups were observed for Staphylo-
coccus 1 (on component 1), Finegoldia (on component 
2) and Streptococcus (on component 2) (Fig. 2). Staph-
ylococcus 1 and Streptococcus were more abundant 
among highly attractive participants, while Finegoldia 

was more abundant in the poorly-attractive group 
(Fig.  2). Among the top ten bacterial genera contrib-
uting the most to differences in microbiome composi-
tion, additional taxa showed weaker contribution such 
as Acinetobacter and Micrococcus, which were found to 

Fig. 1  Differences in skin microbial composition (beta diversity) between the poorly- and highly-attractive groups. Each participant’s attractiveness 
to mosquitoes was measured using a bioassay, and differences in microbial composition between participants calculated using centralised log ratio 
transformed, DEICODE beta diversities from 16S rRNA data (see Methods). The sparse partial least squares discriminant analysis (sPLS-DA) sample 
plot shown was used to compare differences in microbial composition between the poorly-attractive group (orange) and highly-attractive group 
(blue). Individuals are presented by small triangles (poorly-attractive) or small circles (highly-attractive). Data were scaled (centred and standardised). 
The centroids (stars) represent the mean microbial composition on the first and second components for each group. The ellipse plots (large circles) 
represent 95% confidence intervals for the relative attractiveness groups

(See figure on next page.)
Fig. 2  Bacterial genera with the greatest contribution to differences in microbiome composition between poorly- and highly attractiveness groups. 
The loading plot represents the 10 bacterial genera contributing the most to differences between attractiveness group on A component 1 and 
B component 2 of the sPLS-DA. Bars represent the loading weights or correlation coefficients of each bacterial genus to the components of the 
sPLS-DA. The direction of the bars (left or right) relates to the direction of the loadings in Fig. 1. Orange and blue bars indicate a higher abundance 
in the poorly- or highly-attractive group respectively. There are two Staphylococcus genera belonging to different families: Staphylococcus 1 
belongs to the Planococcaceae family and Staphylococcus 2 belongs to the Staphylococcaceae family
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Fig. 2  (See legend on previous page.)
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be more abundant in the highly and poorly attractive 
group, respectively.

Differential abundance of bacterial genera between 
attractiveness groups was further tested using DESEQ2 
(Fig.  3). We found 10 Amplicon Sequence Variants 
(ASVs) with abundances significantly different between 
the poorly- and highly-attractive groups, eight of which 
could be assigned taxonomy at the genus level: Methy-
localdum, Sphingomonas, Staphylococcus 2 (Staphylo-
coccaceae family), Brevundimonas, Corynebacterium 
and Limnohabitans. Among these, three ASVs belonged 
to the Staphylococcus 2 genus; ASVs of Staphylococcus 
2 genus are increased four times or more in the highly- 
compared to the poorly-attractive group, suggesting that 
the presence of Staphylococcus is strongly associated with 
attraction to Anopheles mosquitoes. Three of the six gen-
era were identified as differentially abundant between the 
attractiveness groups: Sphingomonas, Staphylococcus 2 
and Brevundimonas were also identified in the explora-
tory multivariate analysis in Fig. 2.

Microbial associated VOCs involved in attractiveness 
to mosquitoes
The levels of the differentially abundant bacterial ASVs 
were explored for associations with known compounds 
for which Anopheles mosquitoes have previously been 
shown to have olfactory receptors. Anopheles electroan-
tennography (EAG) active, or behaviourally active com-
pounds were extracted from the literature and included 
if considered to be microbial volatile organic compounds 
(mVOCs), according to mVOC 2.0 database [20] and 
VOCs were identified by GC (see methods). To investi-
gate whether the known compounds were derived from 
people or the skin bacteria, we used a heatmap to dis-
play Pearson’s correlations between the ten differen-
tially abundant ASVs and the known Anopheles active 
compounds [4, 5, 27, 40] (Fig.  4). The abundances of 
Corynebacterium, Methylocaldum and Limnohabitans 
showed significant positive correlations with the amount 
of hexanoic acid, 1-octen-3-one and 1-octen-3-ol respec-
tively (Fig. 4). This suggests that the association between 
skin microbiome composition and attractiveness to mos-
quitoes could be partly mediated by the production of 
these three mVOCs by these bacterial ASVs.

Elucidating metabolic pathways linked to attractiveness
We then predicted metabolic functions based on our 
16S amplicon data. We compared pathway occurrences 
between the poorly- and highly-attractive groups to iden-
tify metabolic functions that were enriched. Metabolic 
pathways identified could be impacting attractiveness to 
mosquitoes. Supplementary Table  2 shows a subset of 
the differences in functional enrichment with log2 fold 
change > 1.5 or < − 1.5 i.e. 2.8 times increase or decrease 
in average pathway occurrence. Despite large log fold 
changes, there were no statistically significant differences 
in mean occurrence between the poorly- and highly-
attractive groups. Although not significant, propanoate 
pathways were more common in the poorly-attractive 
group than the highly-attractive group. Indeed, the Meta-
Cyc pathways PWY-5088 (L-glutamate pathway) and 
VALDEG-PWY (L-valinine pathway) were enriched in 
the poorly-attractive group compared to highly-attractive 
group, suggesting they could be involved in lower attrac-
tiveness to Anopheles mosquitoes. In the L-glutamate 
pathway, pyruvic acid is a repellent candidate that can 
produce propanoic acid. Previous studies have shown 
Anopheles have olfactory receptors that respond to pro-
panoic acid [4]. Propanoic acid is an mVOC, which we 
found to be strongly associated with Hymenobacter bac-
teria in our study (P  < 0.0001) (Fig.  5). From the degra-
dation of L-valine, there are many potentially repellent 
compounds, including 3-methyl-2-oxobutanoic acid, 
isobutanoic acid, methylacrylic acid, (S)-hydroxyisob-
utanoic acid and propanoic acid, which warrant further 
analysis. In our volatile samples we found that propanoic 
acid, isovaleric acid and methyl palmitate were positively 
associated with Hymenobacter, Flavobacterium, Kocuria, 
Corynebacterium and Streptococcus, as indicated by red 
squares in Fig. 5.

Discussion
In this study we explored the difference in skin micro-
biome composition between groups of participants that 
were poorly- and highly-attractive to Anopheles mos-
quitoes. The data here support previous research that 
showed there are differences in skin microbiome com-
position between attractiveness groups, and we have 
identified specific bacterial ASVs that are differentially 

Fig. 3  Differentially abundant bacteria between poorly- and highly-attractive groups. Volcano plot of amplicon sequence variants (ASVs, black 
dots). DESEQ2 was used to calculate log 2 fold changes i.e. if bacterial ASVs are more or less abundant in the poorly-attractive compared to 
highly-attractive group. X axis represents log 2 fold change abundance in the poorly-attractive compared to highly-attractive groups, with 
the biggest changes furthest from the centre. Y axis indicates the negative log-10 transform of the nominal p-value, i.e. increasing significance 
away from the origin. Red line represents P = 0.05 for exploratory purposes. ASVs above the red line are nominally significance and considered 
differentially abundant. Where genus level taxonomy is available and the ASV is above the red line it is labelled with genus level taxonomy

(See figure on next page.)
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abundant between these groups. Further, we have puta-
tively identified metabolic pathways that are enriched 
in poorly-attractive participants, and the functional 
potential of compounds in these pathways as mosquito 
repellents.

We identified 10 differentially abundant bacterial 
ASVs between the poorly- and highly-attractive groups, 
and were able to assign genus level taxonomy to eight 
of these. In particular, three Staphylococcus 2 ASVs 
were found to be more abundant in group of individuals 
highly-attractive to An. coluzzii than those who were 
poorly-attractive. This result supports our multivari-
ate analysis presented here and the findings published 
by Verhulst et  al. [46, 47], which found Staphylococ-
cus spp. were more abundant in the highly-attractive 
group compared to poorly-attractive [47]. This sug-
gests that Staphylococci within the Staphylococcaceae 

family (Staphylococcus genus) produce mVOCs that are 
detectable and attractive to Anopheles.

In addition, we found an ASV belonging to the genus 
Corynebacterium as differentially abundant, with a 
higher abundance in the poorly-attractive group than the 
highly-attractive group. This indicates that Corynebac-
terium may produce compounds that are not attrac-
tive or are repellent to An. coluzzii. Furthermore, we 
found higher Corynebacterium abundance was associ-
ated with higher levels of hexanoic acid in body odour; 
hexanoic acid has previously been suggested as a repel-
lent at low doses [42]. This finding contrasts with those 
of Verhulst et al. [48], who tested bacterial species indi-
vidually and reported that Corynebacterium produce 
attractive volatiles [45]. Bacteria may produce attractive 
VOCs when cultured individually, whereas in a blend 
they may interact antagonistically and have no effect on 
attractiveness. Alternatively, there may be differences in 
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VOCs produced by different species of Corynebacterium 
or when these are grown in culture media. Our findings 
suggest Corynebacterium abundance is important in dif-
ferentiating poorly- and highly-attractive participants, 
and is associated with production of hexanoic acid, which 
may be a contextual repellent.

We identified four other differentially abundant ASVs 
of the Proteobacteria phylum that have not been previ-
ously reported in human attractiveness to Anopheles that 
could be assigned to specific genera: these were Methylo-
caldum, Sphingomonas, Brevundimonas and Limnohabit-
ans, which warrant further investigation. Sphingomonas 
and Brevundimonas have previously been identified as 
attractive in oviposition sites to Aedes [35, 36]. We found 
associations of these bacteria with the known Anopheles 
active VOCs these bacteria may produce (1-octen-3-one, 
octanal and 1-octen-3-ol), which could improve current 

blends being used in vector control tools to mimic human 
body odour [46].

We identified two propanoate metabolic pathways, 
L-glutamate and L-valine pathways, predicted to be 
involved in attractiveness from our 16S data. Both path-
ways were enriched in the poorly-attractive group com-
pared to the attractive one, suggesting they may produce 
repellents. The L-glutamate pathway produces pyru-
vic acid which can produce propanoic acid, a known 
Anopheles attractant [42]. We found propanoic acid 
associated with Hymenobacter, Flavobacterium, Kocuria, 
Corynebacterium and Streptococcus. We also identified 
several repellent candidate VOCs in the L-valine pathway 
that warrant further investigation. It would be interest-
ing to apply shotgun metagenomics approaches to the 
skin microbiome for precise classification of bacteria to 
species level and identify function encoded in bacterial 
genomes, to further understand the metabolic potential 
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of the skin microbiome and determine if the propanoate 
pathways identified here have a role in attractiveness. The 
mVOCs produced through these metabolic pathways 
could be making these participants naturally repellent, 
reducing the number of mosquito bites they receive and, 
therefore, risk of contracting vector-borne disease.

Additionally, we found alpha diversity was not sig-
nificantly different between attractive groups, which 
contrasts to Verhulst and colleague’s study [46, 47] that 
showed significant differences in phylogenetic diversity. 
Species richness does not appear to be correlated with 
human attractiveness to Anopheles mosquitoes.

This study has a few limitations. First, the bacterial 
yield was relatively low as skin microbiome swabs are 
low biomass samples, which was likely to contribute to 
an increased number of contaminant reads. Neverthe-
less, we attempted to mitigate this issue by sequencing 
positive and negative controls and filtering out potential 
contaminants using the literature in addition to statisti-
cal tools, a step that is generally overlooked in metabar-
coding studies. Second, the sample size for this study 
was larger than previous studies in this area but it is 
possible that we could still have limited power to detect 
some differences. Our thresholds for detecting differen-
tially abundant ASVs were conservative for the explora-
tory analysis presented here, meaning there is a risk of 
some false positive results. Thirdly, the skin microbiome 
is expected to change over time and it is difficult to con-
trol for interpersonal variation due to environmental fac-
tors such as diet, hygiene and cosmetic use [12]. Further 
experimental and longitudinal work is needed to con-
trol for some of the potential confounding effects in this 
study and to functionally validate the candidate bacteria 
and putative mVOCs that we have tentatively identified. 
Another limitation of our analysis is that sample selection 
was restricted to post-menopausal female twins in the 
UK. Since there is some evidence that age and sex may be 
associated with attractiveness to mosquitoes, our results 
may only be relevant to this particular demographic.

Further understanding of the skin microbiome and 
VOCs produced could be used to focus vector control on 
those that are highly-attractive. Heterogeneities in biting 
between people have significant epidemiological impact, 
as those that are most attractive receive the most bites 
[13, 43]. Targeting those that are bitten the most relies on 
finding them. Trained detection dogs or devices could be 
used to find the individuals that drive most of the infec-
tion in communities, and protecting or treating these 
individuals could be more efficient than reaching 100% 
coverage with vector control tools [14]. Improved push-
pull systems using bacterial and fungal VOCs could be 
used in the field to trap mosquitoes: previous push-pull 
systems using repellent blends in the eaves of homes and 

attractant traps outside have reduced mosquito house 
entry by more than 50% [28]. Alternatively, products con-
taining repellent mVOCs, could be a durable treatment 
with potential to be used as mosquito repellents.

Conclusions
In summary, the findings presented provide evidence that 
bacteria on the skin differentiate human attractiveness to 
mosquitoes. We have identified differentially abundant 
bacteria, and several new bacterial genera identified here 
warrant further investigation. We have predicted meta-
bolic pathways that may be involved in attractiveness and 
hypothesised the role of compounds in these pathways on 
human attractiveness to mosquitoes. Future studies using 
shotgun metagenomic analysis of the microbiome are 
needed to further elucidate the mechanisms responsible 
for production of odour that is attractive to mosquitoes.

Materials and methods
Recruitment
The study was approved by the London School of 
Hygiene & Tropical Medicine Research Ethics Commit-
tee (approval number 14500). Written informed con-
sent was obtained from all 176 human volunteers (88 
twin pairs) selected from the TwinsUK database (see 
Methods). Thirty-eight monozygotic (MZ) and 50 dizy-
gotic (DZ), white European, post-menopausal, female 
twin pairs between 50 and 90 years were recruited from 
the TwinsUK database from the Department of Twin 
Research, Kings College London (ethics reference E892). 
Twins were chosen because we were also interested in 
investigating the impacts of genetic backgrounds, the 
analysis of which will be published separately. Volunteers 
were required to fill in a questionnaire before visiting 
for sample collection to collect metadata on covariates: 
twin type, sex, height, weight, ethnicity, diet, lifestyle 
and medication. Participants were asked to avoid alco-
hol, strong-smelling food and wearing skin-care prod-
ucts on their feet for 48 h prior to sample collection. They 
were provided with odour-free soap (Simple, Unilever) 
to wash. Descriptive analysis was used to compare the 
characteristics of the women between monozygotic and 
dizygotic twin pairs prior to analysis (Supplementary 
Supplementary Table 1).

Attractiveness of body odour to mosquitoes 
by dual‑choice olfaction
Body odour collection
Body odours were collected for 7–8 h overnight on pre-
washed (using 70% ethanol) nylon socks (100% polyam-
ide, 15 deniers, Marks & Spencer). Cotton gloves were 
worn while handling the socks. Participants were asked 
to wash their feet with the odour-free soap provided 
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before putting on the socks. Socks were removed by par-
ticipants and stored at − 20 °C in sterile glass vials until 
use in an olfactometer bioassay.

The foot was chosen as the sampling site as Anoph-
eles mosquitoes have been shown to have a preference 
for feeding on the feet compared to other body parts [9, 
49]. Feet have been used elsewhere for investigation of 
semiochemical signatures associated with attraction to 
mosquitoes [32, 40]. Anopheles preference for the feet 
correlates with eccrine sweat-gland densities, which are 
known to be associated with the skin microbiome com-
position [19, 48].

Mosquitoes
All bioassays used colony-reared non-blood fed, female 
Anopheles coluzzii mosquitoes (N’Gousso strain) aged 
5–8 days old. Mosquitoes were collected before the 
experiment and given 1 h to acclimatise. Prior to the 
experiment, mosquitoes were maintained at 26 ± 1 °C and 
70% humidity under a 12:12 light dark cycle.

Behavioural assay for attractiveness of odour samples
Two identical dual-port olfactometers (Fig.  6B; Tupola, 
Wageningen University) were used to determine the 
attractiveness of odour samples from the twins. The 
olfactometers consisted of a large flight chamber 
(160 × 60 × 43 cm) [18]. Charcoal-filtered, pressurised 
air was heated, humidified and pumped into the flight 
chamber at a rate of 0.20 ± 0.01 m/s. To activate mos-
quito host-seeking behaviour, the air stream was sup-
plemented with 5% CO2, released at the entrance, below 
each trap at a rate of 175 ml/min to mimic the levels in 
human breath [7]. In each trial, one nylon sock worn by 
a participant was placed in a trap and an unworn control 
sock was placed in the other (Fig. 6A). Mosquitoes were 
released from the release chamber at the opposite end of 
the flight chamber to the traps (Fig. 6B). Twenty mosqui-
toes were released per bioassay and were given 20 min to 
make a choice between the two traps. Experiments were 

performed during the last 4 h of dark phase, in a dimly lit 
room to mimic moonlight (temperature 27 ± 1 °C). After 
20 min mosquito choice was recorded. Experiments were 
repeated twice for each sample, once per olfactometer. 
The sequence of samples was randomised for each rep-
licate and sock samples were randomly assigned to the 
right or left port.

Data cleaning
All twin data was filtered to have a relative response more 
than 35%, i.e. at least 35% of mosquitoes needed to make 
a choice of entering one of the traps for the replicate to 
be included in the analyses. Relative attractiveness was 
calculated as the proportion of mosquitoes that selected 
the odour sample over the total number of mosquitoes 
collected in both trapping devices. It was adjusted for the 
replicate, temperature, humidity and time of day of the 
test. Relative attractive categories were coded based on 
top quintile being highly-attractive and bottom quintile 
poorly-attractive where not otherwise stated.

Volatile odour profile analysis
Collection of volatile odour samples by air entrainment
Participants were asked to avoid washing their feet and 
lower legs on the day of sample collection. For each 
participant the right foot was placed in a prepared bag 
(Roasting Bags, 25 × 38 cm; Toastabags) and clipped shut 
around the calf. Bags were fitted with Swagelok fittings at 
opposite corners of the bag, and connected to polytetra-
fluoroethylene (PTFE) tubing. Charcoal filtered air was 
pumped into the top of the bag at 700 ml/min and vacu-
umed out the bottom at 600 ml/min [7]. The system was 
purged for 15 min before fitting a porapak filter (Porapak 
Q, mesh 50/80; Supelco Analytical) and air entraining 
for 120 min. At the end of sample collection, the porapak 
filter was removed and temporarily stored in clean stop-
pered vial before being sealed in a clean glass ampoule 
under charcoal-filtered nitrogen.

Fig. 6  Diagram of the dual choice olfactometer. A The trap in which the nylon sock was placed. B The dual choice olfactometer from the side. Socks 
were placed on a wire frame inside the trap, and air flowed through the sock, carrying the body odour into the tunnel
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Analysis of odour profiles by gas chromatography
The collected volatiles were eluted from the porapak fil-
ters with 800 μl redistilled diethyl ether and concentrated 
to ~ 50 μl under a stream of charcoal filtered nitrogen [7]. 
A 4 μl sample was injected onto a 50 m non-polar poly-
dimethylsiloxane (HP1) column (50 m × 0.32 mm, solid 
phase thickness 0.52 μm) in a gas chromatogram (Agilent 
Technologies 7890A Instrument fitted with a cool-on-
column injector, nitrogen carrier gas and flame ionisation 
detector). The GC cycle consisted of: 40 °C for 30 s, raised 
by 5 °C per min to 150 °C, held for 1 min, raised by 10 °C 
per min to 230 °C, held for 40 min. Traces were integrated 
using ChemStation software (Agilent Technologies). 
Retention times were used to calculate Kovats retention 
index (KI) relative to a standard series of n-alkanes (C7-
C25) using the equation: KI = 100((log10RtX–log10 Rtn)/
(log10Rtn + 1–log10 Rtn)) +100n. Where RtX is the reten-
tion time for the compound of interest, Rtn is the reten-
tion time for the alkane before the compound of interest, 
and Rtn + 1 is the retention time for the alkane after 
the compound of interest. Peaks were manually aligned 
across samples. The average peak area of the alkane 
standards (C8-C25) was used to calculate the amount 
(in nanograms) of each analyte and the total amount of 
analytes in each injection, and this was multiplied by 
the total extract amount to calculate actual amounts per 
sample.

Data cleaning
Volatile peaks were filtered to remove low abundance 
VOCs and any VOC present less than 10 times across 
all samples was removed to reduce sparsity. Twin pair 
71,721 and 71,272 were removed as there was no data in 
the sample for twin 71,721, most likely due to an error 
from running the sample on the GC.

Anopheles active compounds
The list of known EAG or behaviourally active Anoph-
eles compounds was obtained from the literature [4, 5, 
27]. We checked if compounds were known bacterial 
mVOCs, using mVOC 2.0 database [20]. We ran com-
pounds that were commercially available on our GC to 
get the KI value which allowed us to identify the known 
compounds in the samples. All compounds ran are pre-
sented in Fig.  4: butanoic acid, heptanal, benzaldehyde, 
1-octen-3-one, 1-octen-3-ol, 6-methyl-5-hepten-2-one, 
hexanoic acid, octanal, heptanoic acid, octanoic acid, 
decanal, indole, lactic acid and tetradecanoic acid. Ten-
tative KIs were confirmed by co-injecting known com-
pounds with samples and looking for an increase in peak 
area.

Identification of skin bacteria
Collection of skin microbiome samples
Two swabs were collected from the sole of each of the 
176 participant’s left foot to sample the skin microbiome 
on the same day as the volatiles and socks were collected. 
Sterile PTFE rings (20 mm diameter) were placed on the 
foot to ensure the same amount of surface was sampled 
for each participant. A sterile buccal swab (Isohelix) was 
pre-moistened in specimen collection buffer (Tris buffer 
[pH 7.9], 1 mM Ethylenediaminetetraacetic acid, 0.5% 
Tween-20) and rubbed on the foot surface in circular 
motions for 30 s. Swabs were placed into specimen col-
lection buffer and stored at − 80 °C until DNA extraction.

DNA extractions and 16S amplicon sequencing
DNA was extracted using the DNeasy® PowerSoil® Pro 
Kit (QIAGEN, Hilden, Germany) according to manufac-
turer’s instructions with some modification. The modi-
fications were to add additional cell lysis steps at the 
beginning and to elute in 60 μl of solution C6 to improve 
the DNA yield. DNA concentrations were measured 
using a Qubit® 2.0 Fluorometer. PCR amplification of the 
V3/4 region of the 16S rRNA gene using universal prim-
ers, 314F and 805R [17] was carried out by Polo GGB. 
Twenty five microliter PCR reactions contained 2.5 μl 
microbial DNA (< 5 ng/μl), 5 μl of forward and reverse 
primer (1 μM) and 12.5 μl KAPAHiFi HotStart ReadyMix 
(X2). Four positive controls (DNA and microbial com-
munity standards from ZymoBIOMICS) and two nega-
tive controls (swabs only) were sequenced alongside the 
176 samples to control for cross-contamination in the 
downstream bioinformatic analyses. Amplification was 
performed using a PCR consisting of an initial denatura-
tion (95 °C for 3 min), followed by 25 cycles of: Dena-
turation (95 °C for 30 s), annealing (55 °C for 30 s) and 
elongation (72 °C for 30 s) followed by a final elongation 
(72 °C for 5 min). PCR products were purified to remove 
free primer and primer dimers using AMPure XP beads 
and used as templates in a second PCR to attach dual 
indices and Illumina sequencing adapters, using Nextera 
XT Index Kit. The AMPure XP beads were used to clean 
up the final library before validation and quantification. 
The resulting libraries were validated using a Fragment 
Analyzer (High Sensitivity Small Fragment Analysis Kit) 
to check size distribution. The concentration of library 
samples was defined on the basis of the Qubit® 3.0 Fluo-
rometer quantification and average library size. Indexed 
DNA libraries were normalised to 4 nM and then pooled 
in equal volumes. The pool was loaded at a concentration 
of 4 pM onto an Illumina Flowcell standard with 12.5% of 
Phix control. The samples were then sequenced using the 
Illumina MiSeq V2, to generate 2 × 250 base pair paired 
end reads.
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Bioinformatics
Amplicon libraries were analysed using QIIME 22019.4 
[2]. The raw reads were demultiplexed and quality-fil-
tered, then denoised using DADA2 (q2-demux). Sin-
gletons and known 16S contaminants (mitochondria, 
chloroplasts) were removed. The sequencing depth for 
retaining samples was limited to a minimum of 2500 
sequencing reads per sample, 43 samples were discarded. 
ASVs were aligned with mafft via q2-alignment [16] and 
a phylogeny constructed with fasttree2 via q2-phylog-
eny [38]. In the statistical software R a phyloseq object 
was created [26] and the decontam package [6] used for 
prevalence-based contaminant filtering. Based on the lit-
erature, additional genera likely to be contaminants were 
identified and removed if not previously reported on 
human skin. Alpha diversity metrics (bacterial diversity 
within samples: observed operational taxonomic units 
(OTUs), Faith’s Phylogenetic Diversity and Shannon’s 
diversity index), were estimated using q2-diversity after 
rarefying samples to 2500 sequences per sample. Beta 
diversities (bacterial diversity between samples) were 
later estimated using compositional methods, DEICODE 
QIIME2 plugin [25]. A bespoke classifier was created 
using the greengenes 13_8 database, naïve Bayes method 
on QIIME2 2019.4 and used to assign taxonomy to the 
ASVs using q2-feature-classifier [1] by aligning to the 
greengenes database, trimmed to the V3/V4 region.

q2‑picrust2
We used q2-picrust2 [10] on our ASV feature table and 
sequences file to predict metabolic pathways from our 
16S amplicon data. We set the nearest-sequence taxon 
index cut off to 2, to eliminate possibly problematic 
sequences. We used the mp hidden-state prediction 
method as recommended by the authors to predict 
MetaCyc pathway abundances. We then calculated 
log2 fold change between the attractiveness groups. 
We subset pathways which had a log2 fold change > 1.5 
or < − 1.5 and looked at the pathway details of these 
MetaCyc pathways using https://​metac​yc.​org which 
allowed us to identify pathways that could be of interest, 
those present in bacteria in our samples and produc-
ing VOCs. We checked the compounds produced were 
MVOCs using MVOC2.0 (http://​bioin​forma​tics.​chari​te.​
de/​mvoc/​index.​php).

Data cleaning
The filtered ASV table, taxonomy, rooted tree and meta-
data were imported to the statistical software R (version 
3.6.3) [39] and a filtered phyloseq object was created. 
ASVs present in less than 10% of samples were filtered 
out using prune_taxa, which reduced the number of fea-
tures to 419. Taxa bar plots of relative abundance data 

were generated at phyla and genera levels to look at the 
diversity. A centralised log ratio (clr) transformation was 
applied (took log of the ratio between observed abun-
dance and geometric mean) and the data was agglomer-
ated at the genus level. DEICODE QIIME2 plugin [25] 
was used to calculate beta distances, a form of Aitchison 
distance robust for high levels of sparsity (many zero val-
ues). DEICODE uses robust centred log ratio transforma-
tion (log transforms the nonzero values and then centres 
the data) and the transformed table is used as the input 
for matrix completion. The output was visualised as a 
sPLS-DA to identify genera of bacteria explaining differ-
ences between attractiveness groups, highly-attractive 
group (N  = 27) and poorly-attractive group (N  = 28). 
Cross validation predicted tuning to top ten genera on 
the first two components.

Statistical analysis
General alpha beta analysis
We analysed alpha and beta diversities for associations 
with attractiveness. Spearman correlation tests were 
used to test if highly-attractive people have a higher 
alpha diversity, corresponding to a diverse skin microbi-
ome, or a lower alpha diversity, with a less diverse skin 
microbiome.

Sparse partial least squares – discriminant analysis (sPLS‑DA)
Beta diversities were visualised using sparse partial 
least squares-discriminant analysis (sPLS-DA), a mul-
tivariate analysis tool to show differences in microbial 
composition between highly- and poorly-attractive 
groups [41]. The number of components and variables 
on each component were selected by cross-validation. 
The contributions of individual genera of bacteria and 
volatiles on differential attractiveness was investigated 
by looking at the loadings (correlations with the discri-
minant function of the sPLS-DA) on first and second 
components. PERMANOVA was then used to test for 
a difference in microbial composition between attrac-
tiveness groups [31].

Differential abundance
We used DESEQ2 [23] to find differentially abundant 
genera of bacteria between attractiveness groups. We 
used the significance cut off α = 0.05. This tool obtains 
maximum likelihood estimates for ASV log fold change 
between two groups using a negative binomial GLM, 
then apply Bayesian shrinkage to obtain shrunken log 
fold changes. Subsequent tests between the attractive-
ness groups to obtain significances are Wald tests.

https://metacyc.org
http://bioinformatics.charite.de/mvoc/index.php
http://bioinformatics.charite.de/mvoc/index.php
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