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ABSTRACT
We present a new computational framework to describe polaritons, which treats photons and electrons on the same footing using coupled-
cluster theory. As a proof of concept, we study the coupling between the first electronically excited state of carbon monoxide and an optical
cavity. In particular, we focus on how the interaction with the photonic mode changes the vibrational spectroscopic signature of the electronic
state and how this is affected when tuning the cavity frequency and the light–matter coupling strength. For this purpose, we consider different
methodologies and investigate the validity of the Born–Oppenheimer approximation in such situations.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0089412

I. INTRODUCTION

Polariton chemistry, which studies the strong interaction
between photons and molecules, has been subject to increasing
interest in recent years. The origin of this growing attention lies in
the fact that when light strongly interacts with matter, it can modify
its physical and chemical properties. Whereas physicists have long
studied this phenomenon1 principally due to its promising potential
in a variety of areas, ranging from light amplification2,3 to quan-
tum computing,4,5 it is only in the last decade that the chemistry
community has started focusing on polaritonic effects.6 Even though
the existence of hybridized light–matter states in inorganic materi-
als had also been known for some time, it was only at the end of
the last century that it was shown that this strong coupling effect
could be enhanced by optical cavities.7 This discovery was crucial
to the development of polaritonic chemistry; however, more recent
and abundant interest in the field comes from the realization that
by tuning the coupling between light and a chemical system, one
might be able to modify its properties and even control chemi-
cal reactions8 by, for instance, modifying intersystem crossings and
conical intersections.9,10 Examples include the modification of pho-
toisomerization yields11 and of the rate of organic reactions,12–14

boosting of conductivity,15 and enhancement of the optical activity
of a material.16 For a more complete list, please see the recent reviews
of Refs. 7 and 17.

When the strength of the coupling between photonic and
electronic degrees of freedom becomes significant on the scale of
Coulombic interactions in the molecule, it results in the hybridiza-
tion between the two states. As already anticipated, these new hybrid
light–matter states can be formed by placing the quantum system
in an optical cavity, which consists of two parallel mirrors, as rep-
resented in Fig. 1. By tuning the cavity frequency ωc such that it
approaches resonance with excitation energy of the molecule, the
photonic state and the electronic state will give rise to two hybrid
light–matter states—an upper (UP, ∣p+⟩) polariton and a lower
(LP, ∣p−⟩) polariton—separated in energy by the Rabi splitting. This
is illustrated in Fig. 2, where one can see how the states of a system
are altered inside a quantum optical cavity.

The quantum mechanical treatment of the polaritonic system
needs to embrace the entire molecule–cavity system, rather than
treating it as an electronic system in the presence of an external
classical electromagnetic field. A number of attempts have been
made to extend electronic theories to the polaritonic domain, by
including quantum electrodynamical effects. Among them, the first
was QEDFT, which introduces QED effects into density functional
theory (DFT),18–20 being the most widespread electronic structure
method due to its relative computational cost with wavefunction
theories. More recently, QED effects have been introduced into
coupled-cluster (CC) theory, which offers an opportunity to recover
most of the electronic correlation at a reasonable computational
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FIG. 1. Schematic representation of a molecule in an optical cavity.

FIG. 2. Schematic representation of the hybridization between light and matter
states.

cost, scaling polynomially with the size of the system. CC theory was
first developed for nuclear21,22 structure and electronic23–25 prob-
lems, and has enjoyed widespread use and success for molecular
electronic structure. It has also been applied to nuclear motion26,27

and, more recently, to polaritons.28–31 We present here the extension
of the CC framework of Ref. 28 that treats electrons and photons
on an equal footing, and, in particular, of its excited-state method
equation-of-motion coupled cluster (EOM-CC) for the full quantum
chemical Hamiltonian.

II. THEORY
A. Hamiltonian

We take the following Hamiltonian operator in the length (L)
gauge for an isolated molecule inside a cavity with one or more
optical modes:32

ℋ̂ L = ℋ̂e + T̂n +∑
κ
[h̵ωκ(b†b +

1
2
)

−
√

h̵ωκ(γκ ⋅ μ)(b̂ + b̂ †
) + ωκ(γκ ⋅ μ)

2
]. (1)

Here, ℋ̂e is the usual field-free clamped-nucleus electronic Hamilto-
nian, T̂n is the nuclear kinetic energy (NKE) operator, and μ is the
dipole operator (for both nuclei and electrons). The last two terms

introduce the interaction between the particles and the photon field,
with κ labeling a cavity mode with harmonic-oscillator stationary
states of characteristic angular frequency ωκ. The penultimate term
in the Hamiltonian is linear in both particle and cavity coordinates,
and causes correlation between cavity and molecule states. Finally,
the last term is the self-energy of the molecule in the radiation field,
and is positive definite. The coupling enters the Hamiltonian via the
coupling parameter,

γκ =
λκ
√

2ωκ
=

1
√

2ωκ

√
1
ε0V

ϵκ, (2)

where ϵκ is a unit vector in the electric polarization direction of the
cavity mode and V is the cavity volume.

In all of the calculations considered here, we take a single cavity
mode, and ignore the effects of molecular rotation and translation,
explicitly orienting the molecule relative to ϵκ, but including in T̂n
the motion of the nuclei along the vibrational normal coordinates.

B. EOM-CC for electrons and bosons
In equation-of-motion (EOM) coupled-cluster (CC) theory for

fermions,32 the ground state is described at the CC level, with a
wavefunction given by the following exponential ansatz:

∣ΨCC⟩ = e�̂� ∣Φ0⟩, �̂� =∑
μ
τ̂μ, (3)

where ∣Φ0⟩ is the reference state, typically taken as the Hartree–Fock
(HF) Slater determinant (∣ΦHF⟩), and 𝒯 is known as the cluster
operator. Here, the subscript μ refers to the level of excitation, not
to be confused with the dipole moment operator, and τ̂μ is a linear
combination of a product of μ annihilation and μ creation operators,

τ̂μ = (μ!)−2 tij...
ab... â†

a â†
b . . . âjâi, (4)

having the effect of making μ-fold excitations from HF-
occupied one-particle states, and serves to construct a correlated
wavefunction.

The energy and the cluster amplitudes are determined by the
CC equations,

⟨Φ0∣
ˆ̄ℋ ∣Φ0⟩ = ECC, (5)

⟨Φ0∣â†
i â†

j . . . âbâa
ˆ̄ℋ ∣Φ0⟩ = 0, (6)

where the similarity-transformed Hamiltonian ˆ̄ℋ ≡ e−�̂� ℋ̂ e�̂� has
been introduced.

The excited states are then accessed by the linear
parameterization,32

∣Ψn⟩ = ℛ̂n∣ΦCC⟩, (7)

where the excitation operator ℛ̂ has the same form as the clus-
ter operator but with different amplitudes rij...

ab.... Thus, the excited
states are obtained as eigensolutions of the similarity-transformed
Hamiltonian matrix, as follows:

ˆ̄ℋℛn=ℛnEn. (8)
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The similarity-transformed Hamiltonian is not Hermitian, and so
the left eigenvectors ℒ n are different to ℛn, and both are needed
for calculating the properties that depend on the wavefunction in an
exact treatment.32 However, if one is interested only in the excitation
energies, it is sufficient to solve just the right eigenproblem.

Even though EOM-CC was originally conceived for the elec-
tronic problem, there are no a priori reasons to restrict its use to
the treatment of electrons only. However, the standard CC formal-
ism is usually expressed explicitly in terms of the field operators for
electrons, embedding their fermionic nature, and the single electron
spin doublet. However, it is possible to use this formalism almost
unchanged, by a pseudo-particle treatment of bosonic modes of
motion, and a generalization of the spin-symmetry separation used
in the conventional electronic structure theory.

To extend the EOM-CC method to the treatment of bosonic
systems, we adopt the formalism first presented in Ref. 28, which
follows an earlier work by Christiansen.26 In this framework, the
number of bosons is restricted to nmax such that a given bosonic
mode can be mapped to a basis of nmax + 1 states, each repre-
senting a different number of bosons in the same state, which
can be written as ∣0⟩, ∣1⟩, . . . , ∣nmax⟩. To each number state, one
can then associate an excitation operator τ̂n = ∣n⟩⟨0∣ that creates
that state from the vacuum. The bosonic quantum mechanics
can then be expressed entirely in terms of a Hilbert space for
a fictitious single particle whose stationary states represent the
boson number states. Because there is just one pseudo-particle, it
does not matter whether it is treated as a fermion or a boson,
and in a second-quantized treatment, the Fermi level is directly
above ∣0⟩; ∣n⟩⟨0∣ is then equivalent to annihilation of the ground-
state pseudo-particle, followed by creation of it in an excited
state.

In the case of more than one type of boson (cavity modes
or vibrational normal modes), each mode will have its own
non-identical pseudo-particle. We can then choose to treat the
pseudo-particle as a fermion, with the consequence that no new
formulas are needed to implement many-body theory. In conven-
tional electronic many-body theory, one has to take care of two
different classes of electrons, associated with α and β spins. Within
each class, there are multiple identical fermions, and exchange con-
tributions arise in matrix elements; between each class, exchange
integrals are zero. The present formulation is a generalization that
introduces additional distinct fermion types. The existing soft-
ware designed for the electronic problem is easily adapted, with a
strong separation of the Hamiltonian representation, and the many-
body theory, with the latter being agnostic to the different types
of fermions.

Although this formalism is general, and allows a unified treat-
ment of the quantum dynamics of electrons, nuclei, and optical
fields, in this paper, we apply it just to the strong coupling of an
electronic system with a single optical cavity.

In this case, the reference state is given by the product of an
electronic determinant ∣Φ⟩ and the photonic vacuum state ∣0⟩,

∣Φ0⟩ = ∣Φ⟩⊗ ∣0⟩, (9)

and the excitation operators include both electronic (μ) and pho-
tonic (ν) excitations, as well as coupled electron–photon (μ̃ν̃) terms.
Hence, the electron-boson cluster operator has the following form:

�̂� =∑
μ
τ̂μ +∑

ν
τ̂ν +∑

μ̃ν̃
τ̂μ̃ν̃. (10)

Following the nomenclature proposed in Ref. 28, the electronic
coupled-cluster single doubles (CCSD) equations correspond to the
polaritonic CC-SD-S-D, which includes single and double elec-
tronic, single photon, and coupled one-photon one-electron exci-
tations. One should note that in the excitation-operator formalism,
the single cavity pseudo-particle excitations include all multiphoton
creations up to the size of the cavity one-particle space, i.e., the num-
ber of harmonic-oscillator wavefunctions that have been selected as
the basis functions.

C. Adiabatic and diabatic approximations
Just as in the electronic case, the first step to solve the total

polaritonic Schrödinger equation (SE), which contains the Hamil-
tonian of Eq. (1), is usually to invoke the Born–Oppenheimer (BO)
approximation,33 also known as the adiabatic approximation. This
leads to the polaritonic SE, in which the Hamiltonian does not con-
tain the nuclear kinetic energy (NKE), but depends parametrically
on the nuclear coordinates R,

ℋ̂ pΦi(r; R) = Vi(R)Φi(r; R), (11)

and so do its eigenvalues V i(R) and eigenfunctionsΦi(r; R). The set
of eigenfunctions {Φi(r; R)} forms a complete orthonormal basis in
the polaritonic space at each value of R, and they are said to be the
adiabatic solutions of the SE.

The solution of the total SE will then be given by the
Born–Huang (BH) expansion,34 sometimes also given the name of
BO expansion,

Ψ(r; R) =
Na

∑
i
Φi(r; R)χi(R), (12)

where the sum runs over all adiabatic solutions and where we have
introduced the vibrational expansion coefficients χi. If the expansion
contains the complete set of adiabatic solutions, it is exact. In prac-
tice, however, it needs to be truncated to a computationally feasible
number of lowest states.

By inserting the expanded wavefunction of Eq. (12) into the
nuclear SE and integrating over electronic coordinates, one arrives
at the following expression:35

[T̂n + Vj(R)]χi(R) −∑
i
Λjiχi(R) = Eχj(R), (13)

which contains the nuclear kinetic energy coupling (NKEC),

Λij = δijTn − ⟨Φi∣T̂n∣Φj⟩. (14)

The NKEC describes the dynamical interaction between the
polaritonic and nuclear motions and gives rise to the non-adiabatic
coupling (NAC). It is inversely proportional to the energy difference
between states i and j, thus diverging when the two states become
degenerate. In this situation, the BO approximation is known to
break down, as the electronic structure quickly changes with small
changes in the nuclear geometry, which typically occurs at conical
intersections.35
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To account for these non-adiabatic effects, it is more conve-
nient to transform the adiabatic basis into one where the NACs are
as near to zero as possible, such that they can be neglected, called the
diabatic representation.36

This can be achieved by finding a unitary transformation, often
given the name of adiabatic-to-diabatic transformation (ADT),

W = U†VU. (15)

In our case, we are interested in the interaction of two polari-
tonic states; thus, V refers to the diagonal adiabatic matrix with
eigenvalues ε1 and ε2,

V =
⎛
⎜
⎝

ε1 0

0 ε2

⎞
⎟
⎠

, (16)

and W refers to the no-longer diagonal, but symmetric, diabatic
matrix,

W =
⎛
⎜
⎝

w11 w12

w12 w22

⎞
⎟
⎠

. (17)

The unitary matrix U can be taken as the rotation matrix,

U =
⎛
⎜
⎝

cos θ sin θ

− sin θ cos θ

⎞
⎟
⎠

, (18)

where θ is the mixing angle that gives a measure of the “mixing”
between the two polaritonic states. There are different strategies to
find the mixing angle; the most rigorous method being to explicitly
calculate Λij;36–39 however, this is a tedious task and often needs to
be approximated.40 Therefore, less-demanding methods have been
devised, such as property41,42 or energy-based methods.43–45 Yet a
different approach is to obtain it directly by inspection of the wave-
function coefficients,40,46,47 which we have employed in this work.
The mixing angle can be approximated from the excited-state wave-
functions, as the EOM amplitudes can be expressed as a function
of θ,

r∣0⟩→∣1⟩p = cos θ, r∣0⟩→∣1⟩e = sin θ, (19)

where ∣0⟩→ ∣1⟩ indicates the amplitude corresponding to the occu-
pation of the first photonic state, and p and e indicate that the
EOM coefficient corresponds to the wavefunction of the state
identified as having stronger photonic (∣GS + 1p⟩) or electronic
character (∣ES + 0p⟩), respectively. This is possible as in the spe-
cial case of a photonic excitation, the excitation is very localized
to one single photonic excitation with only negligible contribu-
tion of higher-energy photonic states, as opposed as electronic
excitations that are usually delocalized over different orbitals. We
note here that it is preferable to use the second equation of
Eq. (19), since the electronic state mixes with only the lowest pho-
tonic state whereas the latter mixes with higher-energy electronic
states at larger internuclear distance and is, thus, more error-
prone if we want to study its interaction only with the first excited
state.

An additional diabatization strategy has been employed in this
study, where the diabatic energies have been calculated directly in
the adiabatic basis. This was done by calculating the uncoupled ener-
gies (i.e., with the polaritonic coupling turned off) in the basis of the
adiabatic coupled solutions. From these diabatic energies, together
with the polaritonic eigenvalues ε1 and ε2, one can reconstruct the
diabatic matrix from Eq. (17).

Finally, in order to simulate the vibrational spectrum, we need
to calculate the relative intensity of each peak, which will be given by
the electric transition dipole moment,

Ii, f
∝ ∣⟨Ψf ∣μ̂∣Ψi⟩∣

2. (20)

In the adiabatic picture, the transition dipole moment could be cal-
culated by solving the left EOM eigenvalue problem. However, this
would increase the computational time by roughly twice the time.
Instead, one can simply transform the diabatic transition dipole
moments to the adiabatic basis, by using the same adiabatic-to-
diabatic transformation as presented above, and by approximating
the transition dipole moment by the one obtained from the fully
electronic calculation, and assuming that the photonic transition is
dark.

III. COMPUTATIONAL DETAILS
The EOM-CC-SD-S-D method presented in Sec. II B has

been implemented in a new general many-body gmb module by
using the libtensor library.48 It can run as a stand-alone pro-
gram, or integrated as a part of the MOLPRO software package.49

The ground-state CC and EOM-CC programmable expressions
have the same form as the electronic ones and can, thus, be
found elsewhere;50,51 whereas the programmable expressions for the
polaritonic Hamiltonian are given in Subsection 1 of the Appendix.

The potential energy surfaces have been calculated by using the
gmb program, which have been subsequently used to compute the
vibrational levels by using the DUO52 program.

The results for the CO molecule presented in Sec. IV have been
obtained by using the cc-pVDZ basis set,53 with the two lowest σ
orbitals omitted from the correlation treatment. The equilibrium
geometry has been calculated to be rCO = 1.1384 Å, and all cal-
culations have been run with nmax = 4. For the other polaritonic
parameters, such as the light–matter coupling strength and the cav-
ity frequency, different values have been taken depending on the
calculation and, thus, will be specified when necessary.

IV. RESULTS
We investigate the influence of coupling to cavity modes on the

vibrational structure of the electronic absorption spectra. For this
purpose, we choose to study the diatomic molecule, carbon monox-
ide (CO). We will particularly focus on its first bright excited state at
the Franck–Condon (FC) geometry, a degenerate Π, and its interac-
tion with the first cavity mode. Adopting the standard orientation,
where the CO molecule is along the z axis, we choose the cavity
polarization direction to be x. This will cause a breakdown of degen-
eracy of theΠx andΠy states due to the coupling between the πx and
the first photonic states.
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FIG. 3. Vibrational absorption spectrum of the A1Π state of CO, calculated in the
absence of coupling to the cavity.

Figure 3 corresponds to the vibrationally resolved absorption
spectrum arising from the ground state in the absence of any cavity,
and shows the usual progression in the vibrational states of the A1Π
state.

To form a polariton, the cavity frequency needs to be in reso-
nance with the electronic state excitation energy, such that photonic
and electronic states can interact with each other. Thus, we set the
cavity frequency to 0.32 Ha to 8.7 eV and start by studying the effects
of changing the coupling strength γ.

We start by considering the BO approximation; in the adiabatic
picture, the LP and the UP states form an avoided crossing where
they switch character. The PESs are shown in Fig. 4 for the cavity
frequency ωc = 8.7 eV and different values for the coupling strength.
The PESs show the same trend as previous studies,28,29 One can see
that the two states cross for γ = 0 around the equilibrium geometry;
however, once the coupling is switched on, they move away from
each other. As expected, the larger the coupling strength, the farther

FIG. 4. Adiabatic PESs for CO using ωc = 8.7 eV and for different values of γ.

apart are the two states at the crossing bond length; with γ = 0.1,
the minimum separation of the polaritonic potential energy curves
is 0.90 eV and the equilibrium-to-equilibrium excitation energy to
the first excited state is 8.16 eV, 0.64 eV below that of the pure elec-
tronic problem. At larger internuclear distances, one can see how the
energy is blue-shifted for the ground state and the first excited states,
which corresponds to the self-energy term of the QED Hamiltonian.
The fact that the UP state does not show this shift is probably due
to the fact that it couples to higher-energy states, thus, lowering its
total energy and compensating for the self-energy term.

The vibrational spectra for these curves are shown in Fig. 5.
The strongly perturbed energy curves already anticipated that the
changes in the spectra would be significant. This is now confirmed in

FIG. 5. Vibrationally resolved spectra for CO using ωc = 8.7 eV and for different
values of γ, using the adiabatic states.
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FIG. 6. CO mixing angle (θ, ○) as a function of the internuclear distance (R, Å)
calculated from the wavefunction coefficients.

Fig. 5, which shows two distinct states with different vibrational pro-
gression, both corresponding to a mix of the ground-state and the
first excited-state vibrational structure. The low-energy region of the
spectrum is strongly red-shifted (by ∼0.2 eV for γ = 0.1). Two main
trends can be drawn from these spectra. The first is that one can
see that the larger the coupling, the larger is the separation between
the two first intense peaks, in agreement to the energy separation
already seen in the PES. The second refers to the difference in the rel-
ative intensity between the two mixed states, as the LP seems to gain
intensity when the coupling increases to the detriment of intensity
of the UP state.

To check the validity of the adiabatic approximation, we need
to assess the importance of the NAC. Thus, we proceed as described
in Sec. II C.

Figure 6 shows the mixing angle θ as a function of the inter-
nuclear distance for the different values of γ considered, calculated

FIG. 7. Diabatic energy curves for CO using ωc = 8.7 eV and for different values
of γ.

from the wavefunction coefficients. One can see that for a zero cou-
pling, this corresponds to a step function, where the mixing angle
is 0○ before the crossing and 90○ after a sudden change, testifying
that there is no mixing between the two states. When increas-
ing the coupling strength, the mixing becomes apparent already at
R = 0.8 Å and the change of character from one state to the other
is more smooth, asymptotically approaching 90○ for large values
of R. The diabatized energy curves calculated with this strategy are
shown in Fig. 7. The two curves now cross for any value of cou-
pling strength and the different profiles are rather similar, showing
only slight differences in energy. These coupled curves give rise
to the new spectra, visible in Fig. 8, where the following notation
has been introduced: ψne ,nλ with ne and nλ indicating the diabatic

FIG. 8. Vibrationally resolved spectra for CO using ωc = 8.7 eV and for different
values of γ, using the diabatic states calculated from the wavefunction coefficients.
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electronic and photonic states respectively. One can clearly recog-
nize the spectrum for γ = 0.0, which overlaps perfectly with the
purely electronic spectrum in Fig. 3. This is only slightly perturbed
when setting γ = 0.025; this change is minimal and can barely be
appreciated. However, a substantial change can be observed when
using a stronger coupling; for γ = 0.05, one can already notice a
change in the peak intensities. When looking at the spectrum corre-
sponding to the largest coupling strength, the vibrational structure
is though completely disturbed.

The stronger changes are led by the Ψ0,1 state, where two main
effects can be observed. The first is an increase in its intensity, due
to a higher intensity borrowing induced by a stronger coupling.
The second is that the low-energy spectrum is red-shifted, and the
higher-frequency vibronic absorptions are blue-shifted. This effect
is consistent with a first-order perturbation theory interpretation,
where vibronic states of Σ+,Π symmetries are coupled by the part
of the polaritonic Hamiltonian that is linear in γ, which causes in the
usual way the eigenvalue spectrum to be widened but the average of
all eigenvalues to be conserved. Higher-order effects, and the differ-
ence of self-energy between the ground and excited states, introduce
further shifts in the spectrum.

The strong polaritonic mixing means that the electron-plus-
cavity wavefunction changes strongly with geometry, and the effects
of the nuclear kinetic energy operator on it cannot be neglected.
When the polaritonic coupling is introduced in the diabatic basis,
the strong red-shift of the spectrum that arises in the BO calculation
from the polaritonic interaction, pushing the potential energy func-
tion to lower energy, does not arise to the same extent. This implies
that merely observing the effect of polaritonic coupling on potential
energy surfaces is not a sufficient route to understanding physically
observable quantities.

To check the validity of the wavefunction diabatization scheme,
we now attempt to reproduce its results by employing the other
diabatization method described in Sec. II C, that is, by computing
directly the diabatic energies in the adiabatic basis. The spectrum
obtained by using this procedure can be found in Fig. 9. Compar-
ing it to the bottom spectrum of Fig. 8, a noticeable difference can
be appreciated when looking at the contribution of each of the two
states to the total spectrum. This is particularly true for the state
assigned as ψ0,1. However, the overall trend of the total spectra is
similar for both schemes.

FIG. 9. Vibrationally resolved spectra for CO using ωc = 8.7 eV and γ = 0.1, using
the diabatic states calculated in the adiabatic basis.

FIG. 10. Vibrationally resolved spectra for CO using ωc = 8.7 eV and γ = 0.1,
using the diabatic states calculated without polaritonic coupling.

As a third diabatic scheme, we consider now using as diabatic
states the uncoupled states (∣GS + 1p⟩ and ∣ES + 0p⟩) calculated
including the self-energy contribution, whereas the polaritonic cou-
pling is only introduced perturbatively afterward. These results are
shown in Fig. 10. The total spectrum shows some similarities with
the ones in Figs. 8 (bottom) and 9; however, the individual contribu-
tions of each state to the spectrum are substantially different. In par-
ticular, the spectral signature of Ψ0,1 is blue-shifted with respect to
the previous results. Thus, this shift alters mainly the higher-energy
region of the total spectrum as opposed as Fig. 8, where the vibra-
tional progression was mainly affected at the lower-energy region.
This blue shift with respect to the polaritonic calculation of Fig. 8 can
be attributed to the omission of electron–cavity dynamic correlation
in this approach, which would appear in the wavefunction as entan-
glement of many excited electronic states with various cavity modes.
Thus, this result shows that a fully polaritonic calculation is needed
to ensure a correct description of the vibronic spectra of polari-
tonic systems. Because none of the diabatization schemes are perfect,
we attempted to devise other perturbative schemes to further assess
these results. However, for some geometries, the difference in energy

FIG. 11. Vibrationally resolved spectra for CO using γ = 0.1 with coupling turned
off, compared to the fully electronic A1Π state spectrum.
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between the diabatic states obtained was inferior to the coupling
value, yielding imaginary energies. These schemes were, therefore,
discarded.

Nonetheless, we do believe that the results obtained from the
mixing angle give a good idea of how the CO spectrum for the A1Π
state would look like when coupled to an optical cavity mode. This
is supported by the results obtained using the other diabatization
schemes.

To assess the importance of the polaritonic coupling, we show,
in Fig. 11, the spectrum obtained when switching it off. This figure
shows that, in the absence of coupling between the two diabatic
curves, the obtained spectrum is very similar to the one obtained in

FIG. 12. Vibrationally resolved spectra for CO using γ = 0.1 and for different values
of ωc , using the diabatic states calculated from the wavefunction coefficients.

the absence of any cavity; the main difference being a slight blue-
shift in the energy, which can be rationalized by the self-energy
term.

After investigating the effects of tuning the coupling strength
on the vibrational spectrum, we turn now our attention to explor-
ing the changes induced when modifying instead the cavity fre-
quency by scanning the region where both states are in resonance
(ωc = 7.9–9.5 eV) for a fixed coupling strength (γ = 0.1). These
results are presented in Fig. 12, where the spectra have been obtained
from the wavefunction coefficients of the diabatization scheme.
These are in agreement with what one could expect; at the lower
and upper ends, the presence of a cavity only minimally affects the
original electronic spectrum at the respective ends. This is primarily
due to the fact that the energy needed to populate the photonic state
corresponds to the edges of the spectrum, and also because of this
mismatch in energy between the two states, the coupling is weaker
and, thus, is the intensity of the ψ0,1 state. In contrast, when the
cavity frequency starts to approach the electronic excitation energy
(∼8.8 eV), the spectrum is considerably altered. In the same man-
ner, this is both a result of the fact that now the spectra for the two
coupled states overlap and that the intensity “borrowed” by the ψ0,1
state is now larger as the coupling is stronger. Therefore, this figure
illustrates how tuning the cavity frequency alters the spectral signa-
ture, testifying to how the presence of an optical cavity can modify
the properties of an electronic system.

V. CONCLUSIONS
We have presented a new computational framework for treat-

ing polaritonic systems, which has been implemented in the gmb
program. We have studied how the polaritonic effects alter the vibra-
tional structure of the first electronic state of the CO molecule,
in resonance with the cavity mode. To get a complete picture
of the different effects that play a role in the vibronic spectrum,
we have studied different cases. In the first part, we have simu-
lated the spectra within the Born–Oppenheimer approximation. In
this adiabatic picture, the interaction between photons and elec-
trons gives rise to two different states—a lower polariton and an
upper polariton—with mixed character. Each state has its particular
vibrational structure, which gets farther apart when increasing the
coupling strength. In the second part, we have studied how the dia-
batic picture changes the spectra by allowing the two states to couple.
To do so, we have devised two different diabatization schemes
that account for the non-adiabatic effects—one that exploits the
EOM wavefunction coefficients and the other that needs the cal-
culation of the diabatic energies in the adiabatic basis. The results
show that the BO approximation is not good enough to treat these
systems, but a coupled treatment needs to be used in order to repro-
duce the spectrum. As a third diabatic picture, we also considered
directly taking the uncoupled states (∣GS + 1p⟩ and ∣ES + 0p⟩) and
introducing the polaritonic coupling perturbatively. However, this
approach cannot account for the dynamic correlation, which turned
out to be necessary for an accurate simulation of polaritonic sys-
tems, and testifying, thus, to the necessity of a fully polaritonic
description.

Furthermore, we have shown that the interaction with pho-
tons changes considerably the vibrational structure of the electronic
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states, and can thus be used to probe the presence of polaritonic
states.

The work presented herein has been implemented in a gen-
eral and modular manner paving the way for future work where the
interacting particles do not need to be restrained to electrons and
photons. In a future study, we intend to use the same framework to
address the coupling between vibrations and electrons.

ACKNOWLEDGMENTS
The authors acknowledge funding from the EPSRC (Grant

Nos. EP/R014493/1 and EP/R014183/1). The authors also acknowl-
edge the support of the Supercomputing Wales project, which
is partly funded by the European Regional Development Fund
(ERDF) via Welsh Government. The authors thank Evgeny Epi-
fanovsky for helpful discussions about libtensor. The authors also
thank Jonathan Tennyson and Qianwei Qu for helpful discussions
about DUO.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

APPENDIX: PROGRAMMABLE EXPRESSIONS
1. Polaritonic Hamiltonian

The polaritonic Hamiltonian can be written in atomic units,

ℋ̂ = ℋ̂e +∑
κ
(ωκb̂†

κ b̂κ − γκωκμ̂(b̂†
κ + b̂κ) + γ2

κωκμ̂
2
), (A1)

where the photonic part has been taken as the shifted harmonic
oscillator. To ensure origin-independence, μ̂ refers to the total dipole
operator, including both nuclear and electronic contributions:
μ̂ = μ̂N + μ̂e. Thus, it can be rewritten as

ℋ̂ = ℋ̂e +∑
κ
(ωκb̂†

κ b̂κ − γκωκμ̂N(b̂†
κ + b̂κ)

− γκωκμ̂e(b̂†
κ + b̂κ) + γ2

κωκμ̂
2
N + 2γ2

κωκμ̂N μ̂e + γ2
κωκμ̂

2
e). (A2)

Consider the second-quantized Hamiltonian,

Ĥ = V̂ +∑
σ

â†
σvâσwhσvw +

1
4∑τσ

â†
σvâ†

τxâτyâσw⟨vx∥wy⟩στ , (A3)

where σ and τ range over the particle types:

● α and β: Electrons with a particular spin.
● κ, λ, . . .: Optical cavity modes.

Assuming the same spatial parts for α- and β-spin electronic
basis functions, we can identify the different contributions
as follows:

● Scalar part:

V̂ = V̂NN +∑
κ
γ2
κωκμ̂

2
N. (A4)

● One-particle part:

– One-electron:

hαpq = he
pq +∑

κ
(γ2

κωκμ
2
pq + 2γ2

κωκμNμpq), (A5)

where he
pq is the usual one-electron Hamiltonian,

he
pq = ⟨p∣ −

1
2
∇

2
+ V̂eN ∣q⟩. (A6)

– One-photon:

hκpq = pωκδpq − γκωκμ̂N

× (
√

q + 1 δp,q+1 +
√

q δp,q−1). (A7)

● Two-particle part:

– Two-photon:

⟨pr∥qs⟩στ = (pq∣rs) − δστ(ps∣rq)

+∑
κ

2γ2
κωκ(μprμqs − δστμqrμps). (A8)

– Two-electron:

⟨pr∥qs⟩κλ = 0. (A9)

– Electron–photon:

⟨pr∥qs⟩σκ = −γκωκμpq(
√

s + 1 δr,s+1 +
√

s δr,s−1). (A10)
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