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INTRODUCTION 
 

Non-Mendelian Alzheimer’s disease (AD) has become 

the paradigm of a complex disease for which a major 

genetic determinant is known, the APOE locus. Three 

linkage studies published in 1993 pointed to the APOE 

region at 19q13 as a risk locus for late onset familial 

AD [1, 2], and even common sporadic late-onset AD 

(LOAD) [3]. Shortly after, researchers around the world 

confirmed the association of APOE gene with diverse 

forms of the disease and its association with other 

dementias. 

 

The APOE gene encodes a lipoprotein firstly identified 

in the 1970s among patients with familial 

hypercholesterolemia type III [4, 5]. The protein has 

three major isoforms depending on the combination of 

two polymorphisms located at positions 112 (rs429358 

(C > T)) and 158 (rs7412 (C > T). The most common 

isoform, APOE3, has a cysteine at position 112 and an 

arginine at position 158, whereas APOE2, the least 

common isoform, has a cysteine at both positions, and 

the AD risk allele APOE4 has an arginine at both 

positions [6–8]. These aminoacidic substitutions result 

in a conformational change that brings together the N-

terminal and C-terminal domains in APOE4, which are 

normally separated in APOE2 and APOE3 isoforms. 

The consequences in downstream signaling of this 

conformational shift in the APOE4 isoform are still 

unknown. In fact, it is not even clear if the APOE4 is a 

gain or loss of function mutation despite extensive 

research in the field [9]. What is already known is that 

having a single APOE4 allele increases risk 2- to 4-fold 

and having two APOE4 alleles increases risk about 8- to 

12-fold, although risk varies according to genetic 

background and sex [10]. 

 

In the last years, genome-wide association studies 

(GWAS) have contributed a number of Alzheimer’s 

disease associated low penetrance genes, including 

ABCA7, ABI3, ACE, AC074212.3, ADAM10, 

ADAMTS1, ADAMTS4, ALPK2, ANKDR31, APH1B, 
ATP5H, BIN1, BZRAP1-AS1, CASS4, CD2AP, CD33, 

CELF1-MADD, CLNK, CLU, CNTNAP2, CR1, DSG2, 

ECHDC3, EPHA1, FERMT2, HESX1, HLA-DRB5–
HLA-DRB1, HS3ST1, KAT8, IQCK, INPP5D, NME8, 
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ABSTRACT 
 

Alzheimer’s disease (AD) is the most common form of dementia, currently affecting 35 million people 
worldwide. Apolipoprotein E (APOE) ε4 allele is the major risk factor for sporadic, late-onset AD (LOAD), which 
comprises over 95% of AD cases, increasing the risk of AD 4-12 fold. Despite this, the role of APOE in AD 
pathogenesis is still a mystery. Aiming for a better understanding of APOE-specific effects, the ADAPTED 
consortium analyzed and integrated publicly available data of multiple OMICS technologies from both plasma 
and brain stratified by APOE haplotype (APOE2, APOE3 and APOE4). Combining genome-wide association 
studies (GWAS) with differential mRNA and protein expression analyses and single-nuclei transcriptomics, we 
identified genes and pathways contributing to AD in both APOE dependent and independent fashion. 
Interestingly, we characterized a set of biomarkers showing plasma and brain consistent protein profiles and 
opposite trends in APOE2 and APOE4 AD cases that could constitute screening tools for a disease that lacks 
specific blood biomarkers. Beside the identification of APOE-specific signatures, our findings advocate that this 
novel approach, based on the concordance across OMIC layers and tissues, is an effective strategy for 
overcoming the limitations of often underpowered single-OMICS studies. 
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NYAP1, MS4A gene cluster, NDUFAF6, OARD1, 
PICALM, PLCG2, PTK2B, SCIMP, SLC24A4, SORL1, 

SPI1, TREM2, WWOX, ZCWPW1 [11–14]. Some 

reports have performed stratified analyses based on the 

presence or absence of the APOE4 allele, identifying 

some additional genes with effect in APOE4 carriers 

(such as ISYNA1, CUGBP2) or in individuals lacking 

the E4 allele (AC099552, GPAA1, MAPT, NSF, 

TREM2) [15–18]. 

 

One aim of the ADAPTED consortium is to identify 

specific APOE signatures associated with the different 

APOE isoforms. We describe for the first time herewith 

a comprehensive integration of genomic, transcriptomic 

and proteomic data stratified by the three major APOE 

haplotypes. 

 

RESULTS 
 

GWAS data: SNP-level analysis 

 

The combined analysis of the three stages (stage 

I+II+III) (Figure 1 and Supplementary Tables 1–3 and 

Supplementary Figures 1–3), identified genome-wide 

significant signals (p<5x10-8) for APOE, BIN1, CLU, 
CNTNAP2 and PICALM in the APOE4 stratum; 

suggestive signals (p<10-5) in this analysis include a 

1.4Mb intergenic region on 4p15. (from 33.3Mb to 34.7 

Mb, hg19) with lowest p value for the SNP rs12641122 

(p=6.28x10-7), a 4.5Kb intergenic region on 4q35.2 or 

the KCNQ3 gene among others. In the APOE3 stratum, 

ABCA7, BIN1 and PICALM passed the genome-wide 

significance threshold, with suggestive signals for the 

HLA-DQ/HLA-DR loci, CTNND2, FBN1, WLS or 

CSTF1 genes among others. By contrast, no genome 

wide significant SNPs were found in the APOE2 

stratum, nor any known AD gene among suggestive 

signals. 

 

An additional validation of stage I+II+III findings was 

performed using the EADI population (stage IV), where 

only the APOE locus in the APOE4 stratum reached the 

genome wide significance threshold (Supplementary 

Figure 4). In the combined analysis of Stage I+II+III and 

Stage IV results, ABCA7, BIN1 and PICALM in the 

APOE3 stratum and APOE, BIN1, CLU and PICALM in 

the APOE4 stratum reached genome-wide significance 

(Supplementary Tables 4–6 and Supplementary Figure 5). 

 

 
 

Figure 1. Manhattan and QQ plots of stage I+II+III APOE2 (A, D), APOE3 (B, E) and APOE4 (C, F) stratified meta-analysis. 
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Sex stratified meta-analysis (Supplementary Tables 7, 8 

and Supplementary Figure 6) identified genome-wide 

significant signals for BIN1 and APOE as well as 

suggestive signals for PICALM, MYLK, SOX5 and 

SCEL in the female population. By contrast in males, 

only suggestive signals for BIN1, APOE, ZCCHC2, the 

ABI3BP/IMPG2 locus, ESRRB and the 19q13.4 

leukocyte receptor cluster were identified. Stratified 

analysis by sex and APOE (Supplementary Tables 9–14 

and Supplementary Figure 7), yielded genome-wide 

significant signals for APOE in the APOE4 stratum in 

both sexes and for a 400kb 13q31.3 intergenic region 

containing the Ubiquitin Specific Peptidase 7 (Herpes 

Virus-Associated) (USP7) pseudogene (RP11-464I4.1) 

for APOE3 males. Among APOE4 males, we found 

association with AD for a large region of 1.9Mb on 

3q12.1 comprising the genes CMSS1, COL8A1, 

FILIP1L, MIR548G, RPL24 and, in females, a 1.5Mb 

region on 2q33.2 comprising the ABI3 homologue 

ABI2, CARF, CYP20A1, FAM117B, FZD7, ICA1L, 

NBEAL1, RAPH1 and WDR12 genes. 

 

GWAS data: gene-level analysis 

 

Genetic marker-level results were summarized into a 

single measure of association for each gene. Then, 

association results from the combined stage I, II and III 

meta-analysis were used to estimate gene-wide statistics 

for all genes in each one of the three APOE strata 

(Supplementary Tables 15–17). Per stratum, genes were 

ranked in ascending order according to lowest to highest 

p values derived from the mean χ2 statistics 

implemented in MAGMA (Table 1). Among previously 

reported AD genes, APOE was the highest ranked in 

both APOE2 and APOE4 carriers (ranks 26 and 3 

respectively), whereas BIN1 was ranked first in the 

APOE3 stratum (Supplementary Table 18). Known AD 

genes were ranked worst in the APOE2 stratum than in 

the others, with the complement receptor 1 (CR1), 

ranked in position 1292, being the second most relevant 

of these genes among APOE2 carriers after APOE. 

 

Differential expression analysis 

 

Blood APOE stratified DE meta-analysis between AD 

cases and controls (Supplementary Tables 19–21) 

included the ADNI and ADDN datasets. In the APOE2 

stratum we identified only two upregulated (ISY1 and 

SRF) and two downregulated (CPT1A, PLCD1) genes 

below the FDR <0.05 threshold, clearly differing from 

expression profiles in APOE3 and APOE4 carriers 

(Figure 2, top 100 genes from each stratum). By 

contrast, APOE3 and APOE4 stratified analyses 
identified 1,692 and 3,293 DE genes respectively. 

Among genes differentially expressed in APOE4 cases 

versus controls we observed an over-representation of 

mitochondrial genes, most of them involved in the 

oxidative phosphorylation pathway. However, several 

genes from this pathway were differentially expressed 

in all strata but with opposite expression profiles, such 

as the electron transport chain genes ATP5F1, UQCRB 

or NDUFB3 upregulated in APOE2 cases but 

downregulated in APOE4 cases when compared to 

controls of the same haplotype. APOE3 genes were 

mainly cytoplasmatic genes involved in RNA 

metabolism. 

 

Cortex APOE-stratified DE included the MAYO, 

ROSMAP, MSBB, GSE15222 and GSE48350 studies. 

Meta-analysis of cortex datasets resulted in 518, 7714 

and 1717 statistically significant genes (FDR<0.05) for 

the APOE2, APOE3 and APOE4 strata respectively 

(Supplementary Tables 22–24). As opposed to blood 

analyses, the overall picture is of enhanced gene 

expression in AD in all strata, but more pronounced in 

APOE2 except for XIST, strongly downregulated in AD 

APOE2 subjects (Figure 3, top 100 genes from each 

stratum). The heparan sulfate proteoglycan CD44 and 

the heparan sulfate lysosomal degradation enzyme IDS 

encoding genes were differentially expressed in all 

strata, with CD44 strongly upregulated in APOE2 cases 

and IDS downregulated in APOE4 cases. APOE2 

specific genes were mostly nuclear genes involved in 

primary metabolic processes, as well as some apoptosis 

related genes (CFLAR, ATM, MCL1, AKT3 and CTSZ), 

all of them downregulated in AD cases but CTSZ, with 

higher expression in AD cases than in controls. APOE3 

and APOE4 candidate genes were mainly expressed in 

the cytoplasm. In all strata, we identified genes involved 

in neuronal development (such as GFAP, BDNF or 

CDC42), especially in the APOE3 stratum. For both 

APOE2 and APOE4 strata, genes involved in vesicle 

mediated transport were identified, with key genes such 

as PCSK1, SYTL2 or SVOP downregulated in APOE4 

cases. 

 

Robust rank aggregation analysis 

 

Integrative analysis was performed independently to 

include either blood or cortex APOE-stratified DE 

rankings. Thus, we combined meta-GWAS stage I-III 

gene-level results with blood meta-GWES  

results (Supplementary Tables 25–27) or with  

cortex meta-GWES results respectively (Supplementary 

Tables 28–30). 

 

In blood 275, 284 and 278 genes passed the FDR 

threshold in the APOE2, APOE3 and APOE4 strata 

respectively with 15 common genes, associated with 
AD irrespective of the APOE haplotype, which include 

APOC1, CLPTM1, DNAJA1, ING3, LARP7, NGDN, 

RPA3, RPL36AL, RPS24, SOD1, SRP19, and four 
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Table 1. GWAS analysis: gene level data (MAGMA results) by APOE stratum. 

Rank E2 HUGO NSNPS NPARAM ZSTAT PJoint PSNPwise (mean) PSNPwise (top) 

1 RNF152 609 65 4.62 1.90E-06 4.59E-07 4.63E-04 

2 DUOX2 150 26 3.97 3.53E-05 4.72E-06 5.12E-03 

3 METRN 140 18 3.88 5.29E-05 2.41E-05 9.43E-04 

4 WDR24 197 18 3.83 6.31E-05 2.71E-05 1.21E-03 

5 FBXL16 196 18 3.84 6.03E-05 2.85E-05 1.11E-03 

6 FAM173A 120 17 3.83 6.29E-05 2.99E-05 1.14E-03 

7 JMJD8 193 18 3.79 7.59E-05 3.34E-05 1.32E-03 

8 CCDC78 115 17 3.81 6.99E-05 3.68E-05 1.14E-03 

9 DUOXA2 145 23 3.63 1.41E-04 3.68E-05 6.05E-03 

10 HAGHL 107 15 3.83 6.43E-05 3.88E-05 9.08E-04 

11 NARFL 105 15 3.83 6.51E-05 4.00E-05 8.92E-04 

12 STUB1 193 18 3.72 1.01E-04 4.61E-05 1.56E-03 

13 ABCB4 344 35 3.89 5.11E-05 5.27E-05 5.59E-03 

14 APOC1 209 32 3.42 3.16E-04 5.40E-05 4.13E-02 

15 IRGC 300 45 4.55 2.72E-06 5.52E-05 3.36E-05 

Rank E3 HUGO NSNPS NPARAM ZSTAT PJoint PSNPwise (mean) PSNPwise (top) 

1 BIN1 633 70 7.02 1.15E-12 8.93E-07 3.51E-12 

2 FBN1 533 41 4.71 1.27E-06 4.82E-06 2.76E-04 

3 WNT3 239 38 4.69 1.35E-06 6.85E-06 1.26E-04 

4 CLEC4M 424 68 4.07 2.35E-05 1.35E-05 1.46E-03 

5 NSF 144 22 4.76 9.48E-07 2.88E-05 3.07E-05 

6 CASS4 349 50 5.00 2.80E-07 3.43E-05 4.58E-05 

7 APP 998 99 3.96 3.75E-05 3.91E-05 3.43E-03 

8 GPR27 306 47 3.21 6.62E-04 4.63E-05 6.29E-02 

9 CRHR1 1261 23 4.07 2.39E-05 5.46E-05 2.55E-03 

10 CD209 482 71 3.80 7.36E-05 6.93E-05 1.55E-03 

11 SPPL2C 556 19 4.03 2.83E-05 7.77E-05 1.68E-03 

12 KANSL1 978 20 4.01 2.98E-05 7.79E-05 1.44E-03 

13 LRRC37A 115 6 4.01 3.09E-05 7.97E-05 4.41E-04 

14 STH 460 17 3.94 4.00E-05 8.35E-05 2.88E-03 

15 EIF4E3 516 83 3.01 1.29E-03 9.34E-05 1.41E-01 

Rank E4 HUGO NSNPS NPARAM ZSTAT PJoint PSNPwise (mean) PSNPwise (top) 

1 TOMM40 293 44 14.90 1.59E-50 1.50E-26 1.00E-50 

2 APOC1 247 38 15.05 1.71E-51 3.20E-26 1.00E-50 

3 APOE 270 40 14.82 5.36E-50 2.83E-24 1.00E-50 

4 PVRL2 361 51 14.31 8.88E-47 1.17E-23 1.00E-50 

5 APOC4 241 29 11.30 6.96E-30 1.60E-14 2.52E-33 

6 APOC2 232 27 13.20 4.31E-40 8.54E-13 1.00E-50 

7 CLPTM1 267 34 12.78 1.06E-37 3.43E-11 5.65E-46 

8 CLU 351 46 7.60 1.47E-14 5.85E-10 4.89E-13 

9 SCARA3 426 51 7.08 7.06E-13 7.15E-07 3.53E-13 

10 PICALM 555 43 5.54 1.49E-08 8.39E-07 9.65E-08 

11 AKAP2 601 85 4.12 1.86E-05 2.27E-06 5.58E-03 

12 PALM2-AKAP2 1542 159 3.61 1.52E-04 3.72E-05 1.46E-02 

13 IL6 414 48 3.72 1.01E-04 4.36E-05 7.17E-03 

14 EPHX2 467 56 4.23 1.15E-05 5.26E-05 2.17E-04 

15 BIN1 635 70 5.70 5.95E-09 5.72E-05 1.11E-08 
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Figure 2. Top candidates from DE analysis in blood datasets. 
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Figure 3. Top candidates from DE analysis in cortex datasets. 
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mitochondrial proteins (ATP5F1, ATP6V1D, MRPL51 

and UQCRH). The list of APOE2 specific genes is the 

largest one (241 genes) and include mitochondrial 

transporters such as SLC25A3 and SLC25A4. APOE3 

specific signatures included MAPT and APP genes, 

along with other neuronal genes such as the cholinergic 

receptors CHRNA10 and CHRNA2. APOE4 specific 

genes included known AD genes involved in vesicle 

transport such as CLU and SORL1; SORL1 has been 

shown to regulate IL6 levels, also identified among 

APOE4 specific signatures. We found however a large 

overlap among significant genes for the APOE3 and 

APOE4 strata (n=51) including BIN1, MS4A4A, 

MS4A6A, PICALM and SLC24A4 AD genes and a good 

number of ribosomal and electron transport 

mitochondrial proteins (ATP5I, ATP5O, ATP6V1E1, 

COX17, MRPL27, MRPL33, MRPL35, MRPS17, 

MRPS21, UQCRB). APOE2 and APOE3 shared eleven 

genes (ACADM, AK2, ENSA, GPR132, GPR137, 
HSP90AA1, MCL1, NXF1, TAF1C, UBA7, ZC3H15) 

whereas the overlap between E2 and E4 was the 

smallest with eight proteins (KTN1, NDST2, POLR1D, 
RHOT2, STK17B, TOMM40, TSPAN32, UCHL3). At 

the pathway level, we observed a lower overlap 

between APOE strata, with only three shared 

mitochondrial GO categories among the three 

haplotypes, and little or none overlap between APOE2 

and APOE3 or APOE2 and APOE4 (Supplementary 

Tables 31–33 and Supplementary Figure 8). In contrast, 

there was considerable overlap between APOE3 and 

APOE4 which includes mitochondria biology, secretory 

vesicles and antigen processing and presentation 

functions. 

 

In cortex, we found 376, 399 and 366 significant genes 

(FDR<0.05) for the APOE2, APOE3 and APOE4 strata 

respectively. Seven common AD candidate genes 

(APOC1, APOC2, CD44, CDC42, CLPTM1, DST, 

PGM2L1) were significant in all three strata; of them, 

APOC1 and CLPTM1 were also associated in the three 

strata in blood. In this analysis, the shortest list of 

APOE-specific genes was found in the APOE4 stratum, 

which showed the largest overlap with the APOE3 

stratum; among the 45 significant genes shared by these 

strata, we identified several AD genes, including BIN1, 
MS4A4A, MS4A6A, PICALM and RIN3 in accordance 

with blood results. The CR1 gene is included among the 

19 top genes from the APOE2 and APOE3 strata 

(ATPIF1, CACNB2, CDC27, CFLAR, COX15, CR1, 

DCLK1, GOSR2, KANSL1, KLF12, MAPT, MCL1, 
NSF, POGK, RUFY3, SCD5, SORBS1, SPEN, TTN), 

whereas APOE, TOMM40, SLC24A4 or WWOX were 

included among common genes for the APOE2 and 
APOE4 strata (21 genes: AHNAK, APOE, ARNT, 

CRTAP, FBXL16, GART, KALRN, KAT6A, MTMR11, 

OPA1, PDLIM5, PPFIA1, PURA, RBMS2, SLC24A4, 

SRGAP1, TOMM40, TSPAN14, UBE2F, WWOX, 
ZNF264). Enrichment analysis also identified both 

common and exclusive pathways. Common pathways 

for AD irrespective of the APOE haplotype were related 

to adhesion, neuronal development, differentiation, and 

lipoprotein metabolism; diverse signals related to 

neuronal death are also present in all three strata. 

Again, we observed larger overlap between APOE3 and 

APOE4 pathways (glial cell differentiation and 
activation, immunological, lipid metabolism, 

cardiovascular system development and heart function) 

than for APOE2 and APOE3 (which includes 

axonogenesis) or APOE2 and APOE4 (mainly 

phospholipid and lipoprotein metabolism due to APOE, 
APOC1 and APOC2 genes). (Supplementary Tables 34–

36 and Supplementary Figure 9). We observed that 

APOE2 exclusive pathways include chromatin 

regulation and telomere maintenance related processes. 

The APOE3 strata showed the largest number of 

significant enrichments, but most of them showed a 

similar annotation in APOE2, or, more frequently, in 

APOE4 strata, with the exception of antigen processing 
and presentation, IFNG signalling, astrocyte 

development and activation and myelin sheath. In 

APOE4 macrophage activation, fructose metabolism, 

vitamin D mediated inflammation, inositol phosphate 

metabolism and cholesterol efflux were the most 

relevant pathways. Clathrin vesicles, amyloid biology, 

inflammatory and immune response and glial cell 
development and differentiation appear as the most 

relevant categories shared by APOE3 and APOE4 strata. 

 

To identify relevant candidate blood biomarkers 

tracking brain changes in AD pathology we compared 

blood and cortex analyses (Figure 4). We identified 68 

genes in common for the APOE4 stratum, including 

CLU, CD2AP, IL6, MS4A2, SLC25A1 or INNPP4A 
(Figure 4C). In APOE3, 76 common genes were found, 

including APP, AQP9, ATPAF, CD209, LILRA5, 

NDUFB3 or PTK2B (Figure 4D). Finally, in the APOE2 

stratum, we identified 84 common genes including 

several ABC receptors (ABCA9, ABCB1, ABCB4, 

ABCD4), solute carrier molecules (SLC25A3, SLC25A4, 
SLC35E1, SLC9A9), TLR9 or IL4I1 (Figure 4B). 

Overlap between APOE strata-specific pathways from 

blood and cortex showed 6 common pathways for 

APOE2 (Figure 4F), half of them related to chromatin 

regulation, 24 common pathways for APOE3 (secretion, 

regulation of supramolecular fiber organization, site of 

polarized growth and leukocyte activation involved in 

inflammatory response, Figure 4G) and 18 shared 

pathways for APOE4, including clathrin coated 

vesicles, amyloid-beta processing, mitochondrial 
transmembrane transport, macrophage activation and 

monosaccharides and fructose metabolism (Figure 4H). 

We followed up genes with concordant profiles in both 
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Figure 4. Summary of candidate genes (A–D) and pathways (E–H) from APOE2 (B, F), APOE3 (C, G) and APOE4 (D, H) common candidates 
from Blood and Cortex RRA analyses. 
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blood and cortex (upregulated or downregulated in AD 

cases vs controls) and showing opposite profiles in 

APOE2 and APOE4, which included 34 genes with 

overrepresentation of the gluconeogenesis and fructose 

metabolic pathways (FBP1, FBP2, SLC25A1) (Figure 

5A). When compared with average expression in 

normal brains, FBP1, FBP2, RHOH, JPH2, ERAp2 and 

SCLT1 were upregulated in APOE4 cases when they are 

usually expressed at low levels, whereas, SNX3 and 

SUB1, were downregulated in APOE4 cases when they 

are expressed at very high levels in the normal brain 

according to GTEx (Figure 5B). 

 

Validation on proteomic datasets 

 

We aimed at investigating if any of our candidate genes 

were detected and differentially expressed at the 

proteomic level using blood proteomics data from the 

ADDN study (931 proteins) and cortex proteomics from 

four independent datasets (BANNER, BLSA, MAYO 

and MSBB, 2,658 proteins). 

 

Out of 737 RRA blood candidates, only 38 were present 

in the ADDN blood proteomic data (Supplementary Table 

37 and Supplementary Figure 10). Among them, DE 

analyses between cases with controls, either overall or 

stratified by APOE haplotype, identified 8 differentially 

expressed genes in the unstratified analysis, 8 genes in the 

APOE4 stratum and 9 in the APOE3 stratum. We could 

confirm APOE allele-specific effects identified in the 

RRA analysis for the immune related proteins AIF1, 

METAP2, NCK1, PRDX1, PRKCZ, RPS27A in the 

APOE3 stratum, and FCGR2B and SEZ6L2 (involved in 

SNC development) in the APOE4 stratum. Overall, 

among these 38 RRA candidates, we identified a cluster 

of 11 overexpressed proteins in AD cases when compared 

to controls in the APOE3 stratum, but downregulated 

APOE4 AD cases including AIF1, APP, GDI2, 

HSP90AA1, METAP2, NACA, NCK1, PRDX1, 

RPS27A, SFTPD and UFC1 (Supplementary Figure 11); 

immunological functions associated to these proteins 

include leukocyte activation (APP, PRDX1, GDI2), Toll-

like receptors (TLRs) cascade (APP, RPS27A, SFTPD) or 

phagocytosis (NCK1, HSP90AA1, SFTPD, AIF1) in line 

with our RRA findings. 

 

In cortex, 234 out of 1,039 RRA candidates were 

present in the proteomics DE meta-analysis, 100 of 

them showing evidences of association (p<0.05) in at 

least one stratum or in the unstratified analysis 

(Supplementary Table 38 and Supplementary Figure 

12). Of note, the largest differences between cases and 

controls were observed among APOE4 carriers, 

confirming at the proteomic level the role of APOE4 

 

 
 

Figure 5. Blood and cortex biomarkers showing opposite profiles in APOE2 and APOE4 strata. (A) Meta-analysis logFCs from 
case-control DE analysis in blood and cortex (APOE2 and APOE4 strata); (B) average expression of genes downregulated in APOE2 and 
upregulated in APOE4 cases by normal tissue (GTEx repository); (C) average expression of genes upregulated in APOE2 and downregulated in 
APOE4 cases by normal tissue (GTEx repository). 
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RRA candidates involved in neurogenesis (DPYSL4, 

EHD1, GABRB3, MAPK8, UNC13A), or more 

specifically, in glial cell differentiation (CLU, GAP43, 

GFAP, GSN). Among APOE3 candidates, we 

confirmed candidates involved in neurotransmission 

such as RPH3A PTK2B, ALDH5A1, GABRA2 and 

APP (the later upregulated in all strata) and genes from 

the electron transport chain (ALDH5A1, NDUFA7, 

NDUFB3). Confirmed APOE2 candidates included the 

choline transporter SLC44A1, involved in myelin 

production, and the myelin basic protein MBP; MAPT 

was upregulated in all strata but particularly in the 

APOE2 stratum. We also confirmed the role of CDC42 

and DST in all the strata, but we did not observe 

association of CD44 and PGM2L1 with AD in this 

analysis. 

 

Cell-type-specific expression profiles: cortex 

snRNAseq 

 

Since the enrichment analysis showed an over-

representation of neuronal development related 

pathways in all strata, and of cells from the glial lineage 

in the APOE3 and APOE4 strata, we investigated which 

cerebral cell types our cortex RRA candidates were 

mainly expressed in, and which cell types showed 

largest differences between cases and controls using 

snRNAseq from the ROSMAP study (Figure 6). We 

dropped pericytes and endothelial cells from the 

differential expression analysis because of the low 

number of cells (≈100 cells, <0.3%). 

 

APOE gene was mainly expressed in astrocytes and 

microglia (Figure 6). According to previous results, 

APOE is upregulated in microglia from AD subjects 

when compared with controls (overall and stratified by 

APOE genotypes). By contrast, in astrocytes we found 

higher APOE expression levels in cases than controls in 

the APOE3 stratum (logFC=0.34, p=1.56x10-4), but 

significant lower expression in APOE4 cases than in 

controls (logFC=-0.14, p=1.83x10-2, pinteraction<10-5). 

 

As reported in the original article [19], most neuronal 

genes were strongly differently expressed in AD cases 

versus controls. Furthermore, our analysis found this 

result was consistent irrespective of the APOE 

haplotype. Given that glial specific signals arose from 

APOE3 and APOE4 strata, we therefore primarily 

focused on RRA cortex candidates showing evidence of 

association with AD in any glial cell type (astrocytes, 

microglia, oligodendrocytes and oligodendrocyte 

precursors) within the same APOE stratum (Figure 6 

and Supplementary Table 39 and Supplementary 
Figures 13–16). In fact, RRA candidates were mainly 

expressed in the glial lineage, showing a lineal decrease 

in expression from APOE2 to APOE4 in the astrocyte 

and microglia populations, and an increase in 

expression in the oligodendrocyte subpopulation 

(Figure 6). The seven genes in common in all the RRA 

analyses, were downregulated in all cell types except 

for APOE and APOC1 in microglia, and CD44 in 

astrocytes (Figure 6). In the stratified analysis, these 7 

genes were predominantly downregulated in AD 

APOE3 carriers and upregulated among APOE4 AD 

cases when compared to controls, particularly APOC1, 

DST and CD44 (Supplementary Figure 9). By stratum, 

APOE2 RRA cortex candidates were mostly 

upregulated in all cell types (Supplementary Figure 10), 

and in particular FXR1 and DNAJB1, the latter only 

downregulated in microglia. APOE3 RRA candidates 

showed the largest differences between cases and 

controls in microglia cells, where APOC1, ALDOA, 

RPLP0 and DYNLRB1 were strongly upregulated 

whereas ARL17B was downregulated in AD cases 

Supplementary Figure 11). Almost all APOE4 candidate 

genes were downregulated in both excitatory and 

inhibitory neurons and upregulated in the glial lineage, 

particularly TMEM163 and CPM in microglia and 

GFAP, PLCE1, CLU, CALN1, DLG2 and PDE5A in 

astrocytes Supplementary Figure 12); we also observed 

a strong downregulation of the Serine/Threonine Kinase 

17b (STK17B), involved in apoptosis and autophagy, in 

microglial cells of APOE4 cases. 

 

DISCUSSION 
 

The ADAPTED consortium has performed a holistic 

approach analyzing and integrating diverse data sets 

from different OMICS technologies, including 

genomics, transcriptomics (bulk tissue and single cell) 

and proteomics collected from public repositories and 

other consortia, resulting in nearly sixty thousand 

samples analyzed. The novelty of our strategy relies on 

the use of a stratified approach for the three major 

APOE haplotypes, and the integration of these signals 

with a ranked-based algorithm which accommodates 

different kind of data, resulting in replicated signals at 

different levels. These signals have been further 

explored at the single-cell level, pointing to key cellular 

types for AD. Previous attempts for integrating different 

OMICS in AD were mainly focused on the 

identification of quantitative trait loci (QTLs) for 

mRNA levels, protein levels or epigenomic signatures 

by means of association analyses [20–23], in some 

cases stratified by APOE allele [24]. Other approaches 

involved the independent analysis of the different 

OMICS and selection of concordant genes [25] or the 

combination of human GWAS data with mouse 

transcriptomics [26]. Potential limitations of our study 

include reduced sample size in some of the datasets, 

especially for the APOE2 stratum, and the use of 

unsigned methods (i.e. irrespective of the directionality 
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Figure 6. Cortex snRNAseq data from the ROSMAP study. (A) Cell clustering labelled by reported cell type; (B) APOE expression across 

cell types; (C) violin plot for APOE expression by cell type; (D) UMAP plot for average expression of cortex RRA APOE2 candidates by total 
gene expression; (E) UMAP plot for average expression of cortex RRA APOE3 candidates by total gene expression; (F) UMAP plot for average 
expression of cortex RRA APOE4 candidates by total gene expression; (G) UMAP plot for average expression of blood/cortex biomarkers by 
total gene expression; (H) expression by cell type of the seven genes in common in all the RRA analyses; (I) APOE expression by cell type and 
case status. 
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of the expression profiles) for selecting candidate genes 

in expression datasets. 

 

At the genome level, we were able to detect genome-

wide significant signals for ABCA7, BIN1 and PICALM 

in the APOE3 stratum and for APOE, BIN1, CLU and 

PICALM in the APOE4 stratum. We identified a novel 

candidate region for APOE4 carriers on 4p15.1 

(33.6Mb-34.3Mb), which, according to the GWAS 

catalogue (https://www.ebi.ac.uk/gwas/) has not been 

previously associated with AD, but with schizophrenia, 

total cholesterol change in response to fenofibrate in 

statin-treated type 2 diabetes, and PCSK9 levels, a 

protease that binds to lipoprotein receptors promoting 

their degradation; a homozygous deletion overlapping 

this region has been described for the offspring of a 

consanguineous marriage between first cousins, with 

cognitive impairment and autistic-like behavior [27]. 

Sex-stratified analysis identified genome wide 

significant signals for APOE and BIN1 only in females; 

this result is in agreement with the recent report from 

Fan et al., who described a genome-wide significant 

association for BIN1 only in females [28]. Further 

stratification of male and female populations by APOE 

haplotype identified a genome-wide significant 

intergenic region on 13q31.3 among APOE3 males. 

This region has been associated with TREM2 levels, 

circulating Interleukin-1-receptor antagonist levels and 

triglyceride change in response to fenofibrate in statin-

treated type 2 diabetes. This region harbors a USP7 

pseudogene (RP11-464I4.1) associated with 

herpesvirus. Interestingly, a potential role of herpes 

simplex virus infection in AD has recently been object 

of intense debate [29]. Despite the number of GWAS 

datasets collected, our study is still underpowered for 

detecting genuine APOE strata-specific signals with 

low effect sizes, but resulting gene-level statistics were 

instrumental to select those DE signals that better 

correlate with the disease at genetic level. This helps 

maximize high probable loci involved in the 

fundamental pathways involved in disease 

pathogenesis. 

 

The genome-wide expression analysis was performed at 

two levels: blood and brain cortex. In blood, 

mitochondrial ribosomal genes and as well as those 

encoding proteins of the respiratory chain appeared 

downregulated in cases irrespectively of the APOE 

haplotype, but more pronounced among APOE4 

carriers. Mitochondria are crucial players of energy 

metabolism but are also the main source of Reactive 

Oxygen Species (ROS). Mitochondrial dysfunction has 

been proposed as the primary process triggering all the 
cascade of events that lead to sporadic late-onset AD. 

Although this hypothesis has not been confirmed, 

diverse mitochondrial functions were observed altered 

in AD and even MCI subjects, showing a significant 

increase of oxidative stress markers, such as lipid 

peroxidation and protein oxidation products [30–32]. 

We did not observe mitochondrial signatures at the 

whole cortex level, mostly enriched in activated genes 

from neuronal, apoptosis, vesicle mediated transport 
and adhesion related pathways, maybe because 

mitochondrial dysfunction has been reported to be 

limited to certain hippocampal and temporal cortex 

neurons [33, 34]. 

 

Integration of genome data with expression data at 

blood and cortex levels through the RRA algorithm, 

showed a larger overlap of genes and functions in 

APOE3 and APOE4 carriers than in APOE2 carriers, 

which appears as a more distinct entity. In fact, we 

identified signatures for chromatin remodeling and 

regulation in this stratum at both brain and plasma 

levels, not observed in the other two strata. Common 

features of the disease to all three strata are related to 

lipid metabolism due to APOE (except for the APOE3 

carriers), APOC1 and APOC2. A recent report has 

suggested that APOC1 gene, located in the APOE locus, 

is an independent risk factor for AD, and that genetic 

variability in the region is associated with chromatin 

regulation [35]. 

 

AD cases in APOE3 and APOE4 share signaling 

pathways and functional categories previously reported 

by other groups such as amyloid-beta formation 

(APOE, BIN1, CLU, PICALM) mitochondrial 

physiology (including ATP5H, NDUFS5, MRP 
proteins, SNCA, SOD1, SSBP1, SUCLG1 or UQCRH), 

vesicle mediated transport (including APOC1, APP, 

BIN1, C1QTNF5, CASS4, CDC42, LDLR, MAPT, 
PICALM or PTK2B), actin organization (ACTN1, 

ACTR2, AIF1, ANTXR1, CALD1, CAPZ1, CD2AP, 
DST, ITGB5, MACF1, MAPT, PALLD, RHOC …) or 

immunological functions (CCL5, CD209, CD44, CR1, 

IL6, LILRA5 or MS4A2 among others), but with 

specific gene signature (for example IL6 in the APOE4 

stratum or CD209 in the APOE3 stratum). IL6 plays a 

critical role in inflammation as well as in 

neuroprotection through two different mechanisms. 

Anti-inflammatory effects are mediated by the classical 

signaling pathways, which involves the binding of IL6 

to the membrane bound IL6 receptor (IL6R), whereas 

proinflammatory effects are mediated by soluble IL6R 

forms. Classical signaling occurs in microglia whereas 

trans-signaling is predominant in most neuronal types, 

astrocytes and oligodendrocytes [36]. Cross-talk 

between TREM2, CD33 and IL6 (among other ILs) 

regulating phagocytic capacity, a hallmark of AD 
among APOE4 carriers according to our results, has 

been reported in microglia cells [37]. Interestingly, IL6 

is degraded by SORL1, encoded by another well-

https://www.ebi.ac.uk/gwas/
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known AD gene [38]. CD209 is mainly expressed on 

the surface of dendritic cells, specialized antigen-

presenting cells, where regulates DC adhesion, 

migration and triggering of immune response [39]. In 

conclusion, our results suggest that APOE-allele 

specific immunological checkpoints may exist in AD. 

 

Although we have identified signatures of the nervous 

system development in all strata, they represent a 

largest proportion of relevant pathways in the APOE3 

stratum. In this stratum, enrichment analysis of RRA 

cortex candidates showed an over-representation of 

genes involved in cardiac development and function 

(DLG1, JPH2 or MEF2C among others), supporting a 

cardiovascular etiology of dementia in this stratum. In 

line with this finding, we have recently reported a link 

between cardiac function and AD, that is mediated, at 

least in part, by CFLAR and caspase dependent 

mechanisms [40]. In fact, CFLAR and CASP8 are both 

RRA cortex candidates in this stratum. Another 

example of the nervous-cardiac connection is GFAP, 

which participates in the control of heart rate and 

vascular resistance through the sympathetic nervous 

system (SNS), which controls heart rate and vascular 

resistance. We have observed an upregulation of GFAP 

protein in cortex of all AD cases irrespective of the 

APOE carrier status. Macrophage activation and Fc 
gamma receptor mediated phagocytosis appeared as the 

most exclusive pathways in the APOE4 stratum. 

Phagocytosis (i.e. the engulfment and digestion of 

cellular debris) is critical for the degradation of 

infectious agents and senescent cells, playing a key role 

in tissue remodeling, immune response, and 

inflammation. Several Fc receptors (FcRs, FCGR2B, 

FCRLA and FCRLB) and downstream effectors receptor 

such as CDC42, RHOH, RHOQ and RHOT2, GTPases 

that regulate actin cytoskeleton, have been identified as 

APOE4 RRA candidates. While FcRs are constitutively 

active for phagocytosis, the complement receptor (CR)-

mediated phagocytosis is activated in presence of 

additional stimuli. An additional difference between 

FcR- and CR-mediated phagocytosis is that he former 

have a higher capacity for triggering the release of 

inflammatory mediators [41]. In fact, an enhanced 

release of inflammatory molecules such as IL-6, an 

APOE4 RRA candidate, IL1β or TNFα has been 

observed in blood among APOE4 carriers [42, 43] and 

in blood and brain humanized APOE4 mice models 

[44–46] has been observed. In this study, we found that 

CR-related mechanisms were more relevant in APOE2 

and APOE3 carriers, with CR1 and ATP5F1 as RRA 

candidates in both strata. 

 
Macrophages are also involved in the development of 

atherosclerotic plaques through the intracellular 

accumulation of lipids and the formation of foam cells, 

a process counterbalanced by cholesterol efflux, a 

mechanism identified as an APOE4 specific feature in 

our study. A key protein in this process seems to be 

AIF1, a pro-inflammatory molecule expressed primarily 

in the monocyte/macrophage lineage, which was shown 

to be downregulated in APOE4 cases and upregulated in 

plasma samples of APOE3 cases in this study. A1F1 

was originally cloned from a rat heart allograft under 

chronic rejection, and it is involved in several 

inflammatory conditions including atherosclerosis. 

Crossbreeding experiments A1F1 and APOE transgenic 

mice have shown an interaction between these genes 

leading to atherosclerotic vasculopathy though 

modulation of the incorporation of degenerated LDL by 

macrophages [47, 48]. 

 

In brain, the resident macrophages, microglia cells, are 

the specialized phagocytic cells acting through a 

complement dependent mechanism coupled to ATP 

production. The analysis of single cell cortex data 

points to a pivotal role of the glial lineage in the 

development of AD in accordance with RRA results 

and current knowledge. Beyond astrocytes and 

microglia, the main cell types in which APOE is 

expressed, oligodendrocytes and oligodendrocyte 

precursors (OPCs) also play a role; interestingly, it has 

been suggested that astrocytes and oligodendrocytes 

could also participate in phagocytosis in the brain [49]. 

But the main role of oligodendrocytes is the 

production of myelin in the central nervous system, a 

cholesterol dependent mechanism; oligodendrocytes 

are continuously generated in the healthy adult brain, 

being the formation of new myelinating 

oligodendrocytes during adult life an important 

mechanism for neuroplasticity [50]. Astrocytes were 

shown to facilitate all steps of myelination, promoting 

OPC proliferation through PDGF and FGF2, or 

inhibiting the differentiation of OPCs into myelin-

forming cells through the CD44 receptor. Furthermore, 

CD44 is a top candidate from cortex RRA analysis 

upregulated in astrocytic cells of AD cases of all 

APOE strata, particularly in APOE4, while 

downregulated in the other cell types including OPCs, 

illustrating the complexity of AD related mechanism at 

the cellular level. Myeloid basic protein encoding gene 

(MBP) is one of the top RRA candidates from the 

APOE2 stratum, also reinforcing the relevance of 

myelination in AD in agreement with recent research 

in the field [51, 52]. In fact, evidence from multiple 

sclerosis- lesions suggests that Fc receptors and 

complement have relevant roles in myelin 

phagocytosis, while in-vitro blockade of Fc or CRs 

reduced myelin phagocytosis [53]. 
 

In summary, through the integration of multi-OMICS 

datasets we have identified both common and APOE 
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specific signatures of AD. The ADAPTED consortium 

has generated isogenic hiPSC derived macrophages, 

neurons, astrocytes, and microglia carrying the different 

APOE haplotypes to further explore presented findings 

in human samples, in a cell-type specific manner. This 

will support the further elucidation of APOE dependent 

pathways that drive the AD risk and potentially support 

developing a therapy for AD patients. 

 

MATERIALS AND METHODS 
 

Table 2 summarizes the datasets and number of 

individuals by APOE stratum included at each analysis 

stage (total number of processed samples: 50,737). A 

flow chart of the analyses performed in this report is 

shown in Figure 7. Additional information about study 

datasets is provided as Supplementary Note. 

 

GWAS data 

 

Study cohorts 

Stage I GWAS meta-analysis comprised 13,305 

subjects from nine datasets, including the Alzheimer's 

Disease Neuroimaging Initiative (ADNI), the 

AddNeuroMed study, the Alzheimer’s Disease Genetics 

Consortium (ADGC), the Multi-Site Collaborative 

Study for Genotype-Phenotype Associations in 

Alzheimer’s Disease (GenADA), the Mayo Clinic 

Alzheimer's Disease Genetic Study, the Neocodex-

Murcia study, the National Institute on Aging (NIA) - 

Late Onset Alzheimer's Disease Family Study, the 

Religious Orders Study and the Rush Memory and 

Aging Project (ROSMAP) study and the TGEN study. 

Stage II meta-analysis (N=14,536 individuals) included 

the Genome Research at Fundació ACE (GR@ACE) 

study stage I and the Genetic and Environmental Risk in 

Alzheimer’s Disease (GERAD) study. The Cohorts for 

Heart and Ageing Research in Genomic Epidemiology 

(CHARGE) consortium contributed the Atherosclerosis 

Risk in Communities (ARIC) study, Cardiovascular 

Heart Study (CHS), the Framingham study (FS) and the 

Rotterdam study (RS) for Stage III GWAS meta-

analysis (N=11,345 subjects). Additional validation 

(stage IV) of stage I-III meta-analysis was performed on 

the European Alzheimer’s Disease Initiative (EADI) 

dataset (N=8,576 samples). Estimated power for the 

stage I+II+III meta-analysis was 65.9%, 99.9% and 

99.8% for a SNP with MAF=0.2 and OR=1.2 in the E2, 

E3 and E4 strata respectively, dropping to 28.3%,86.5% 

and 76.4% for a variant showing MAF=0.2 and 

OR=1.1. 

 

Whenever possible, clinical information was reviewed 

to exclude: i) cases not classified as confirmed or 

probable AD ii) controls with amyloid pathology or 

history of altered cognition tests. 

Quality control (QC) and imputation 

A standard QC was applied to all datasets, including 

removal of individuals with more than 3% missing 

genotypes, with excess autosomal heterozygosity (>0.35 

or more than 3 standard deviations (SD) from population 

mean), those showing a discrepancy between genotypic 

and reported sex, as well as individuals of non-European 

ancestry based on SMARTPCA principal component 

(PC) analyses (exclusion of subjects more than 6 SDs 

away from the population mean) [54]. Duplicated and 

related individuals were identified and removed by means 

of IBS estimates (IBS>0.1875) both within and across 

studies. At the genotype level, we removed SNPs with 

missing genotype rate > 5%, not in Hardy-Weinberg 

equilibrium (HWE) (p<10-6 in controls) and SNPs with 

minor allele frequency (MAF) < 1%. When necessary, 

datasets were updated to genome build GRCh37/hg19. 

 

Genotype imputation was performed at the University 

of Michigan server using the minimac3 algorithm and 

the SHAPEIT tool for haplotype phasing with the 

Haplotype Reference Consortium (HRC) cohort as 

reference panel [55]. After imputation, only SNPs with 

an R2 quality estimate higher than 0.3 and MAF >1% 

were kept for association analysis. 

 

APOE stratified association analysis 

Association analysis was performed within each dataset 

in three independent groups: ε2 stratum (including 

subjects with APOE genotypes ε2/ε2 and ε2/ε3), ε3 

stratum (ε3/ε3 individuals) and ε4 stratum (ε3/ε4 and 

ε4/ ε4 carriers). The ε2/ε4 genotype was excluded 

because of the combination of both the protective and 

deleterious alleles. Association of genotype dosages 

with the AD case-control status was explored through 

regression models adjusted by age, sex and the first four 

PC vectors as covariates using PLINK software [56]. 

 

Sex and APOE stratified association analysis 

We also explored the effect of both APOE and sex on 

susceptibility to AD using two approaches. We first 

performed a sex stratified analysis using logistic 

regression models adjusted by age, the first four PC 

vectors and APOE genotype as a quantitative trait, 

assigning each allele E2 a value of -1, each E3 allele a 

value of 0 and each E4 allele a value of +1 (full range: 

from -2 to 2). Additionally, we performed an 

association analysis stratified by both APOE and sex. 

For these analyses, eight datasets from Stage I (ADDN, 

ADGC, ADNI, GNADA, MAYO, NIA, NXC, 

ROSMAP, N=12,158 individuals) and Stage II 

(GR@ACE, 5,741 subjects) were used. 

 
Meta-analysis (meta-GWAS) 

Within each stage and stratum, association results were 

combined by meta-analysis using the inverse variance 



 

www.aging-us.com 9292 AGING 

Table 2. Study datasets. 

 ApoE2  ApoE3  ApoE4 

Controls Cases  Controls Cases  Controls Cases 

GWAS Stage I 

ADGC 191 113  810 1070  329 2063 

ADDN 22 10  126 104  50 140 

ADNI 40 10  161 153  67 303 

GNADA 92 35  487 252  164 467 

NXC 78 21  510 150  128 150 

MAYO 147 24  657 233  286 478 

NIA 68 9  353 94  374 297 

ROSMAP 51 62  153 353  23 200 

TGEN 71 25  281 261  89 420 

Total Stage I 760 309  3538 2670  1510 4518 

GWAS Stage II 

FACE 330 123  2220 1314  639 1115 

GERAD 780 145  3572 1090  1574 1634 

Total Stage II 1110 268  5792 2404  2213 2749 

GWAS Stage III 

ARIC 1001 144  4479 688  1666 567 

CHS 243 44  1058 240  302 133 

FHS 474 27  2346 180  687 88 

RS 667 102  2770 548  1001 435 

Total Stage III 2385 317  10653 1656  3656 1223 

GWAS Stage IV 

EADI 819 124  4317 993  1188 1135 

Total Stage IV 819 124  4317 993  1188 1135 

TOTAL GWAS 5074 1018  24300 7723  8567 9625 

Blood GWES 

ADDN 14 11  92 79  37 107 

ADNI 27 3  118 71  48 127 

TOTAL Blood GWES  41 14  210 150  85 234 

Cortex GWES 

MAYO (TCX) 27 5  112 71  43 118 

ROSMAP (DLPFC) 28 26  85 147  13 92 

MSBB FP 2 1  10 16  3 18 

MSBB OVC 1 3  8 16  4 7 

MSBB DLPF 2 0  9 12  5 16 

MSBB PCG 0 3  5 14  0 14 

MSBB PFC 1 1  9 15  1 17 

GSE15222 26 3  114 48  37 108 

GSE48350 SFG 9 1  23 8  16 10 

GSE48350 EC 8 1  16 5  15 8 

GSE48350 PG 10 1  21 8  13 14 

TOTAL Cortex GWES 114 45  412 360  150 422 

Blood Proteomics 

ADDN 12 10  46 76  28 110 

TOTAL Blood Proteomics 12 10  46 76  28 110 

Brain proteomics 

BANNER 6 6  29 35  6 57 

BLSA 5 3  7 10  1 7 



 

www.aging-us.com 9293 AGING 

MAYO 3 4  23 37  4 43 

MSBB 6 10  15 88  7 44 

TOTAL Cortex Proteomics 20 23  74 170  18 151 

Brain snRNAseq 

ROSMAP  4 2  7 7  2 9 

Total snRNAseq 4 2  7 7  2 9 

TOTAL 5265 1112  25049 8486  8850 10551 

 

method implemented in METAL [57] or PLINK 

software programs. SNPs with MAF >1% that were 

available in at least 60% of the datasets at each stage 

were included in the meta-analysis. Genomic inflation 

lambda (λ) was calculated using the GenABEL package 

[58]. Manhattans and QQ plots were generated with the 

qqman R package [59]. 

 

Gene-level analysis 

Gene level analysis was performed using MAGMA 

software, which compute gene-wise statistics taking 

into account physical distance and linkage 

disequilibrium (LD) between markers [60]. All SNPs 

with MAF above 5% were used in these analyses, 

setting a distance threshold of 50kb. At each stratum, 

genes were ranked according to the global p mean 

value. 

 

Genome-wide expression analysis (GWES) and 

meta-analysis 

 

Study cohorts 

Whole blood expression profiles for meta-analysis were 

obtained from ADNI and AddNeuroMed studies 

 

 
 

Figure 7. Integrative analysis workflow. 
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(N=734). The cortex gene-expression meta-analysis 

included Mount Sinai Brain Bank (MSBB) dataset 

(frontal pole, occipital visual cortex, dorsolateral 

prefrontal cortex, precentral gyrus, prefrontal cortex), 

ROSMAP (dorsolateral prefrontal cortex) and MAYO 

(temporal cortex) studies and GSE15222 [61] and 

GSE48350 [62] (entorhinal cortex, superior frontal 

cortex, post-central gyrus) datasets from the GEO 

repository (N=1,503). 

 

QC 

For these analyses, we used background corrected and 

normalized intensity values from expression 

microarrays distributed by the dataset providers, except 

for GSE48350. For this GEO dataset, raw. CEL files we 

downloaded and processed using the Robust Multi-array 

Average (RMA) algorithm integrated in the affy R 

package for background correction and normalization 

[63]. Diagnostic plots included Residuals vs Fitted, 

Residual vs Leverage, Scale Location, PCA and QQ 

plots; outlier values identified in these analyses were 

disregarded. For those datasets provided in different 

experimental batches, the ComBat function from the sva 

R package [64] was used to minimize batch effects. A 

multivariate regression model was fitted to adjust 

intensity values for covariates, including pH, post-

mortem interval (PMI), RNA integrity numbers (RIN), 

age of death, sex, race and use of lipid lowering 

medication when available. 

 

Differential expression analysis 

As for GWAS data, differential expression (DE) 

analysis between cases and controls was performed 

independently in the three APOE subgroups using R 

package limma [65] by dataset and brain region when 

available. Limma results were adjusted for multiple 

testing using the Benjamin and Hochberg’s (BH) 

method. Volcano plots and heatmaps were produced to 

assess these results. Probes were annotated to gene 

symbols using appropriate specific libraries, keeping the 

most differentially expressed mRNA isoform for those 

genes showing alternative splicing. 

 

Differential expression meta-analysis (meta-GWES) 

Independent APOE stratified meta-analyses were 

performed for combining DE results from the different 

datasets into single ranked gene lists for both blood and 

cortex. For cortex, only genes present in at least a 70% 

of the datasets were considered for meta-analysis. 

Individual logFCs were combined using the Random 

Effect Model (REM). Given that the analysis included 

data from different brain regions, genes were ranked 

according to the Fisher statistics to avoid making 

assumptions about the directionality of the effect, aimed 

at identifying candidate markers differentially expressed 

in the “majority” of studies, where Fisher methods has 

been described to outperform other methods in terms of 

power detection, biological association, stability and 

robustness [66]. All the analyses were performed with 

the metaDE R tool. Heatmap graphs were generated 

with the Pheatmap R package. 

 

Integrative analysis 

 

In order to obtain per-gene single estimates GWAS and 

GWES data were combined using the Robust Rank 

Aggregation (RRA) method [67]. The algorithm, 

integrated in the RobustRankAggreg R package, uses a 

probabilistic model for aggregation that is robust to 

noise and also facilitates the calculation of significance 

probabilities for all the elements in the final ranking. 

Two independent runs of the RRA algorithm were 

performed. In all of them we combined stage I+II+III 

GWAS meta-analysis plus blood or cortex GWES 

metanalyses (Figure 7). Final gene ranks for blood and 

cortex were generated according to ascending order of 

the exact p values generated by the RRA algorithm. 

 

Proteomic data analysis 

 

Proteomic data from blood (ADDN study) and brain 

(BANNER, BLSA, MAYO and MSBB studies) were 

collected. Histograms and boxplots were generated to 

assess the distribution of normalized intensity protein 

expression values distributed by data providers. 

Differential protein expression analyses by study and 

APOE stratum were performed using limma, with PMI, 

age, sex and, when available, lipid lowering medication 

as covariates. Meta-analysis of the diverse brain 

datasets was performed as described for GWES 

datasets. 

 

Single nuclei RNAseq (snRNAseq) data analysis 

 

Additionally, we explored snRNAseq cortex data from 

the ROSMAP study [19]. Count matrix provided by 

ROSMAP study was processed using Seurat package 

[68]. After QC (filtering out cells that have unique 

feature counts over 2,500 or less than 200 and cells with 

>5% mitochondrial counts), data were normalized and 

scaled. Prior to clustering the cells, we applied the 

Uniform Manifold Approximation and Projection 

(UMAP) dimensional reduction technique. Finally, a 

differential expression analysis between AD cases and 

controls was performed by each cell type using the 

edgeR package [69]. 

 

Enrichment analysis 

 
Enrichment analysis of RRA results was performed 

using four different tools: WebGestaltR [70, 71], 

FUMA [72] and gPROFILER [73], for genes passing 
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the multiple testing correction threshold (p=0.05), and 

GSEA [74] for full gene ranked lists. The databases 

being interrogated include GO, KEGG, WikiPathways, 

and Reactome. Only pathways and GO categories 

selected by at least two enrichment tools with adjusted 

p<0.05 and a minimum of three overlapping genes were 

selected for further exploring. 
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SUPPLEMENTARY MATERIALS 
 

Extended datasets description 

 

 

The Alzheimer's disease genetics consortium (ADGC) 

 

The National Institute on Aging (NIA) Alzheimer's 

Disease Centres (ADCs) cohort includes subjects 

ascertained and evaluated by the clinical and 

neuropathology cores of the 29 NIA-funded ADCs [1]. 

Data collection was coordinated by the National 

Alzheimer's Coordinating Center (NACC). The ADC 

cohort consists of autopsy-confirmed and clinically-

confirmed AD cases, and cognitively normal elders 

(CNEs) with complete neuropathology data who were 

older than 60 years at age of death, and living CNEs 

evaluated using the Uniform dataset (UDS) protocol 

who were documented to not have mild cognitive 

impairment (MCI) and were between 60 and 100 years 

of age at assessment. 

 

The AddNeuroMed study 

 

AddNeuroMed was a public-private partnership for 

biomarker discovery and replication in Alzheimer’s 

disease [2, 3]. It was designed as a multi-center study in 

Europe with the first patient enrolled in January 2006 and 

the last in February 2008. The study protocol was planned 

for a baseline assessment visit with follow ups every 3 

months for the first year, proceeded by annual visits that 

continued through 2013. The study enrolled a total of 258 

AD, 257 MCI and 266 controls, not all with complete data 

at each assessment. 

 

The Alzheimer’s disease neuroimaging initiative 

(ADNI) 

 

Data used in the preparation of this article were 

obtained from the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) database (adni.loni.usc.edu). The 

ADNI was launched in 2003 as a public-private 

partnership, led by Principal Investigator Michael W. 

Weiner, MD. The primary goal of ADNI has been to 

test whether serial magnetic resonance imaging (MRI), 

positron emission tomography (PET), other biological 

markers, and clinical and neuropsychological 

assessment can be combined to measure the 

progression of mild cognitive impairment (MCI) and 

early Alzheimer’s disease (AD). The ADNI study has 

three phases: ADNI1, ADNI GO and ADNI2. For up-

to-date information, see http://www.adni-info.org. 

 

The atherosclerosis risk in communities (ARIC) 

 

The ARIC study is a population-based cohort study of 

atherosclerosis and clinical atherosclerotic diseases (ARIC 

Investigators 1989) [4]. At its inception (1987-1989), 

15,792 men and women, including 11,478 white and 

4,266 black participants were recruited from four U.S. 

communities: Suburban Minneapolis, Minnesota; 

Washington County, Maryland; Forsyth County, North 

Carolina; and Jackson, Mississippi. In the first 3 

communities, the sample reflects the demographic 

composition of the community. In Jackson, only black 

residents were enrolled. Participants were between age 45 

and 64 years at their baseline examination in 1987-1989 

when blood was drawn for DNA extraction and 

participants consented to genetic testing. Vascular risk 

factors and outcomes, including transient ischemic attack, 

stroke and dementia, were determined in a standard 

fashion. During the first 2 years (1993-1994) of the third 

ARIC examination (V3), participants aged 55 and older 

from the Forsyth County and Jackson sites were invited to 

undergo cranial MRI. This subgroup of individuals with 

MRI scanning represents a random sample of the full 

cohort because examination dates were allocated at 

baseline through randomly selected induction cycles. 

 

The Banner Sun Health Research Institute (Banner) 

study 

 

This study is based on 201 post-mortem brain tissue 

samples obtained from the Banner Sun Health Research 

Institute's Brain and Body Donation Program. The 

tissue set came from 101 cognitively normal (controls) 

and 100 Alzheimer’s disease (AD) cases. Label free 

proteome analysis was done on the dorsolateral 

prefrontal cortex from all individuals. Post-mortem 

neuropathological evaluation was performed at Banner 

Sun Health Research Institute. This included amyloid 

plaque distribution according to CERAD criteria and 

neurofibrillary tangle pathology assessed with Braak 

staging. Control cases were defined as cognitively 

normal within on average 9 months of death with low 

CERAD (0.13 ±0.35) and Braak (2.26 ±0.94) measures 

for amyloid and tau neuropathology, respectively. In 

contrast, AD cases were demented at the last clinical 

research assessment, and the brains showed high 

CERAD (2.9 ±0.31) and Braak (5.4 ±0.82) scores 

consistent with moderate to severe neuropathological 

burden. There was no significant difference in age or 

post mortem interval (PMI) between control and AD. 

 

The Baltimore longitudinal study on aging (BLSA) 

study 

 

We BLSA study included 97 post-mortem brain tissue 

samples from the National Institute on Aging’s 

http://www.adni-info.org/
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Baltimore Longitudinal Study of Aging (BLSA, 

https://www.blsa.nih.gov/). The tissue set came from 50 

individuals representing 15 controls, 15 AsymAD and 

20 AD cases. For 47 cases, we analyzed tissue from 

both the dorsolateral prefrontal cortex (FC, Brodmann 

Area 9) and precuneus (PC, Brodmann Area 7). Both 

regions are affected in AD, and PC is a site of early 

amyloid deposition and glucose hypometabolism. Post-

mortem neuropathological evaluation was performed at 

the Johns Hopkins Alzheimer’s Disease Research 

Center with the Uniform Data Set including amyloid 

plaque distribution according to CERAD criteria and 

neurofibrillary tangle pathology assessed with Braak 

staging. Control cases were defined as cognitively 

normal within on average 9 months of death with low 

CERAD (0.13 ±0.35) and Braak (2.26 ±0.94) measures 

for amyloid and tau neuropathology, respectively [5]. In 

contrast, AD cases were demented at the last clinical 

research assessment, and the brains showed high 

CERAD (2.9 ±0.31) and Braak (5.4 ±0.82) scores 

consistent with moderate to severe neuropathological 

burden. AsymAD cases were cognitively normal 

proximate to death and had high CERAD (2.1 ±0.52) 

and moderate Braak (3.6 ±0.99). 

 

The cohort for heart and ageing research in genomic 

epidemiology (CHARGE) consortium 

 

The CHARGE consortium currently includes six large, 

prospective, community-based cohort studies that have 

genome-wide variation data coupled with extensive data 

on multiple phenotypes [5]. A neurology working-group 

arrived at a consensus on phenotype harmonization, 

covariate selection and analytic plans for within-study 

analyses and meta-analysis of results [6]. Consent 

procedures, examination and surveillance components, 

data security, genotyping protocols and study design at 

each study were approved by a local Institutional 

Review Board, details are provided below. Of the six 

studies, we included in this study the Atherosclerosis 

Risk in Communities (ARIC) study, the Cardiovascular 

Health Study (CHS), the Framingham Heart Study 

(FHS) and the Rotterdam Study (RS). 

 

The cardiovascular health study (CHS) 

 

The CHS is a population-based cohort study of risk 

factors for coronary heart disease and stroke in adults ≥ 

65 years conducted across four field centers [7]. The 

original predominantly European ancestry cohort of 

5,201 persons was recruited in 1989-1990 from random 

samples of the Medicare eligibility lists; subsequently, 

an additional predominantly African-American cohort 
of 687 persons was enrolled for a total sample of 5,888. 

Blood samples were drawn from all participants at their 

baseline examination and DNA was subsequently 

extracted from available samples. Genotyping was 

performed at the General Clinical Research Center’s 

Phenotyping/Genotyping Laboratory at Cedars-Sinai 

among CHS participants who consented to genetic 

testing and had DNA. European ancestry participants 

were excluded from the GWAS study sample due to the 

presence at study baseline of coronary heart disease, 

congestive heart failure, peripheral vascular disease, 

valvular heart disease, stroke or transient ischemic 

attack or lack of available DNA. Among those with 

successful GWAS, 567 European ancestry participants 

had available FreeSurfer measures for this analysis. 

CHS was approved by institutional review committees 

at each field center and individuals in the present 

analysis had available DNA and gave informed consent 

including consent to use of genetic information for the 

study of cardiovascular disease. 

 

The European Alzheimer’s disease initiative (EADI) 

consortium 

 

All the 2,240 Alzheimer’s disease cases were ascertained 

by neurologists from Bordeaux, Dijon, Lille, Montpellier, 

Paris, Rouen, and were identified as French NHW 

ancestry. Clinical diagnosis of probable Alzheimer’s 

disease was established according to the DSM-III-R and 

NINCDS-ADRDA criteria. Controls were selected from 

the 3C Study [8]. This cohort is a population-based, 

prospective (10-years follow-up) study of the relationship 

between vascular factors and dementia. It has been carried 

out in three French cities: Bordeaux (southwest France), 

Montpellier (southeast France) and Dijon (central eastern 

France). A sample of non-institutionalized, over-65 

subjects was randomly selected from the electoral rolls of 

each city. Between January 1999 and March 2001, 9,686 

subjects meeting the inclusion criteria agreed to 

participate. Following recruitment, 392 subjects withdrew 

from the study. Thus, 9,294 subjects were finally included 

in the study (2,104 in Bordeaux, 4,931 in Dijon and 2,259 

in Montpellier). Genomic DNA samples of 7,200 

individuals were transferred to the French Centre National 

de Génotypage (CNG). First stage samples that passed 

DNA quality control were genotyped with Illumina 

Human 610-Quad BeadChips. At the end we removed 

308 samples because they were found to be first- or 

second-degree relatives of other study participants or were 

assessed non-European descent based on genetic analysis 

using methods described in 89. In this final sample,  

at 10 years of follow-up, 564 individuals suffered  

from Alzheimer’s disease with 95 prevalent and 469 

incident cases. 

 

The Framingham heart study (FHS) 

 

The FHS is a three-generation, single-site, community-

based, ongoing cohort study that was initiated in 1948 

https://www.blsa.nih.gov/
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to investigate the risk factors for cardiovascular 

disease. It now comprises 3 generations of participants: 

the Original cohort followed since 19489; their 

Offspring and spouses of the Offspring (Gen 2), 

followed since 1971 [9]; and children from the largest 

Offspring families enrolled in 2000 (Gen 3) [10]. The 

Original cohort enrolled 5,209 men and women who 

comprised two-thirds of the adult population then 

residing in Framingham, MA. Survivors continue to 

receive biennial examinations. The Offspring cohort 

comprises 5,124 persons (including 3,514 biological 

offspring) who have been examined approximately 

once every 4 years. The Third-generation includes 

4,095 participants with at least one parent in the 

Offspring Cohort. The first two generations were 

invited to undergo an initial brain MRI in 1999-2005, 

and for Gen 3, brain MRI began in 2009. The 

population of Framingham was virtually entirely white 

(Europeans of English, Scots, Irish and Italian descent) 

in 1948 when the Original cohort was recruited. Self-

reports of ethnicity across all three generations were 

99.7% whites, reflecting the ethnicity of the population 

of Framingham in 1948. FHS participants had DNA 

extracted and provided consent for genotyping, and 

eligible participants underwent genome-wide 

genotyping. 

 

Multi-site collaborative study for genotype-phenotype 

associations in Alzheimer's disease and longitudinal 

follow-up of genotype-phenotype associations in 

Alzheimer's disease and neuroimaging component of 

genotype-phenotype associations in Alzheimer's 

disease (GenADA) 

 

GenADA was a multi-site collaborative study, 

involving GlaxoSmithKline Inc and nine medical 

centers in Canada, including 1000 AD patients and 

1000 ethnically-matched controls in order to associate 

DNA sequence (allelic) variations in candidate genes 

with AD phenotypes [11, 12]. The study consists of 

both retrospective and prospective data. Where possible, 

biological relatives with Alzheimer's (up to third degree 

relationship) and unaffected siblings of AD cases were 

also recruited. 

 

The genetic and environmental risk for Alzheimer’s 

disease (GERAD1) consortium 

 

The GERAD1 sample comprised up to 3941 AD cases 

and 7848 controls. A subset of this sample has been 

used in this study and were genotyped at the Sanger 

Institute on the Illumina 610-quad chip. These samples 

were recruited by the Medical Research Council (MRC) 

Genetic Resource for AD (Cardiff University; Kings 

College London; Cambridge University; Trinity College 

Dublin), the Alzheimer’s Research UK (ARUK) 

Collaboration (University of Nottingham; University of 

Manchester; University of Southampton; University of 

Bristol; Queen’s University Belfast; the Oxford Project 

to Investigate Memory and Ageing (OPTIMA), Oxford 

University); Washington University, St Louis, United 

States; MRC PRION Unit, University College London; 

London and the South East Region AD project 

(LASER-AD), University College London; Competence 

Network of Dementia (CND) and Department of 

Psychiatry, University of Bonn, Germany and the 

National Institute of Mental Health (NIMH) AD 

Genetics Initiative. All AD cases met criteria for either 

probable (NINCDS-ADRDA, DSM-IV) or definite 

(CERAD) AD. All elderly controls were screened for 

dementia using the MMSE or ADAS-cog, were 

determined to be free from dementia at 

neuropathological examination or had a Braak score of 

2.5 or lower.” 

 

The genome research @ fundació ACE project 

(GR@ACE) study 

 

The GR@ACE study comprises 4,120 AD cases and 

3,289 control individuals. Cases were recruited from 

Fundació ACE, Institut Català de Neurociències 

Aplicades (Catalonia, Spain). Diagnoses were 

established by a multidisciplinary working-group, 

including neurologists, neuropsychologists, and social 

workers, according to the DSM-IV criteria for dementia 

and to the National Institute on Aging and Alzheimer’s 

Association’s (NIA-AA) 2011 guidelines for defining 

AD [13]. Dementia individuals diagnosed with probable 

or possible AD at any moment of their clinical course 

were considered AD cases. 

 

Briefly, participants were genotyped using the Axiom 

815K Spanish Biobank Array (Thermo Fisher), performed 

in the Spanish National Center for Genotyping (CeGEN, 

Santiago de Compostela, Spain). Individuals were 

excluded for low-quality samples, (call rate <97%), 

excess heterozygosity, sample duplicates, or relation to 

another sample (PIHAT > 0.1875). Individuals were 

excluded if sex discrepancy was detected. Population 

outliers of European ancestry were also removed. Variants 

were excluded if they departed from the Hardy-Weinberg 

equilibrium (P-value ≤ 1 × 10-6), presented a different 

missing rate between cases and controls (P-value < 5 × 

10-4 for the difference), or had a low frequency (MAF < 

0.01) or low call rate < 95%. High-quality variants  

were imputed in Michigan Server using the  

Haplotype reference consortium (HRC) panel (https:// 

imputationserver.sph.umich.edu). Only high imputation 

quality markers (MAF > 0.05 and R2>0·03) were used for 
downstream analysis. Further information about 

phenotyping and GWAS quality controls have been 

previously provided [14]. 

https://imputationserver.sph.umich.edu/
https://imputationserver.sph.umich.edu/
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The mayo clinic LOAD genome-wide association 

study (MAYO) 

 

Subjects from the Mayo LOAD GWAS were selected 

from two clinical AD Case-Control series: Mayo Clinic 

Jacksonville (MCJ), Mayo Clinic Rochester (MCR)and 

a neuropathological series of autopsy-confirmed 

subjects from the Mayo Clinic Brain Bank [15]. All 

subjects from the clinical series (MCJ and MCR) were 

diagnosed by a Mayo Clinic neurologist; all control 

subjects had a Clinical Dementia Rating score of zero at 

the most recent time of testing; all LOAD patients had a 

diagnosis of probable or possible AD according to the 

NINCDS-ADRDA criteria [16]. All ADs had definite 

diagnosis according to the NINCDS-ADRDA criteria 

and had Braak scores of ≥4.0. All non–AD Controls had 

Braak scores of ≤2.5; many had brain pathology 

unrelated to AD. 

 

The Mount Sinai Brain Bank (MSBB) study 

 

Brain specimens were obtained from the Mount Sinai/JJ 

Peters VA Medical Center Brain Bank (MSBB) which 

holds over 1,700 samples. This cohort was assembled 

after applying stringent inclusion/exclusion criteria and 

represents the full spectrum of disease severity. 

Neuropathological assessments are performed according 

to the Consortium to Establish a Registry for Alzheimer's 

Disease (CERAD) protocol and include assessment by 

hematoxylin and eosin, modified Bielschowski, modified 

thioflavin S, and anti-β amyloid (4G8), anti-tau (AD2) 

and anti-ubiquitin (Daka Corp.). Each case is assigned a 

Braak AD-staging score for progression of neurofibrillary 

neuropathology. Quantitative data regarding the density 

of neuritic plaques in the middle frontal gyrus, orbital 

frontal cortex, superior temporal gyrus, inferior parietal 

cortex and calcarine cortex are also collected as 

described. Clinical dementia rating scale (CDR) and 

mini–mental state examination (MMSE) severity tests are 

conducted for assessment of dementia and cognitive 

status. Final diagnoses and CDR scores are conferred by 

consensus. Based on CDR classification, subjects are 

grouped as no cognitive deficits (CDR = 0), questionable 

dementia (CDR = 0.5), mild dementia (CDR = 1.0), 

moderate dementia (CDR = 2.0), and severe to terminal 

dementia (CDR = 3.0–5.0). Covariates including 

demographic and neuropathological data were collected 

on the samples used for this project including 

postmortem interval, race, age of death, clinical dementia 

rating, clinical neuropathology diagnosis, CERAD, 

Braak, sex, and a series of neuropathological variables. 

 

The Neocodex-Murcia study (NXC) 

 

The study includes 327 sporadic AD patients and 801 

controls with unknown cognitive status from the 

Spanish general population collected by  

Neocodex [17, 18]. AD patients were diagnosed as 

possible or probable AD in accordance with the  

criteria of the National Institute of Neurological and 

Communicative Disorders and Stroke and the 

Alzheimer's Disease and Related Disorders Association 

(NINCDS-ADRDA) [16]. 

 

The national institute on aging - late onset 

Alzheimer's disease family study (NIA) 

 

The goal of this study is to identify and recruit families 

with two or more siblings with the late-onset form of 

Alzheimer's disease and a cohort of unrelated, non-

demented controls similar in age and ethnic 

background, and to make the samples, the clinical and 

genotyping data and preliminary analyses available to 

qualified investigators world-wide [19]. Genotyping by 

the Center for Inherited Disease Research (CIDR) was 

performed using the Illumina Infinium II assay protocol 

with hybridization to Illumina Human 610Quadv1_B 

Beadchips. 

 

The religious orders study and memory and aging 

project (ROS/MAP) study 

 

The Religious Orders Study (ROS) is a longitudinal 

clinical-pathologic cohort study of aging and 

Alzheimer's disease (AD) from the Rush University 

that enrolled individuals from religious communities 

for longitudinal clinical analysis and brain donation 

[20]. Participants were enrolled from more than 40 

groups of religious orders (nuns, priests, brothers) 

across the United States. Medical conditions are 

documented starting in 1994 by clinical evaluation or 

self-report. Alzheimer's Disease status was determined 

by a computer algorithm based on cognitive test 

performance with a series of discrete clinical 

judgments made in series by a neuropsychologist and a 

clinician. 

 

The Memory and Aging Project (MAP) is a 

longitudinal, epidemiologic clinical-pathologic cohort 

study of common chronic conditions of aging with an 

emphasis on decline in cognitive and motor function 

and risk of Alzheimer’s disease that began in 1997 and 

is run from Rush University [20]. This study was 

designed to complement the ROS study by enrolling 

individuals with a wider range of life experiences and 

socioeconomic status into a study of similar structure 

and design as ROS. The study enrolled older individuals 

without any signs of dementia, primarily recruiting from 

continuous care retirement communities throughout 
north-eastern Illinois, USA. Diagnoses of dementia  

and AD are performed in an identical manner to the 

ROS study. 



 

www.aging-us.com 9309 AGING 

The Rotterdam study 

 

The Rotterdam Study is a prospective, population-based 

cohort study among individuals living in the well-

defined Ommoord district in the city of Rotterdam in 

The Netherlands [21, 22]. The aim of the study is to 

determine the occurrence of cardiovascular, 

neurological, ophthalmic, endocrine, hepatic, 

respiratory, and psychiatric diseases in elderly people. 

The cohort was initially defined in 1990 among 

approximately 7,900 persons, aged 55 years and older, 

who underwent a home interview and extensive 

physical examination at the baseline and during follow-

up rounds every 3-4 years (RS-I). The cohort was 

extended in 2000/2001 (RS-II, 3,011 individuals aged 

55 years and older) and 2006/2008 (RS-III, 3,932 

subjects, aged 45 and older). Written informed consent 

was obtained from all participants and the Medical 

Ethics Committee of the Erasmus Medical Center, 

Rotterdam, approved the study. 

 

The Translational Genomics Research Institute 

(TGEN) study 

 

The TGEN GWAS study included 643 late onset AD 

cases and 404 controls from a neuropathological cohort, 

and 197 late onset AD cases and 114 controls from a 

clinical cohort [23]. 
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Supplementary Figures  
 

 
 

Supplementary Figure 1. Stage I meta-analysis manhattan and QQ plots (all strata). 

 

 
 

Supplementary Figure 2. Stage II meta-analysis manhattan and QQ plots (all strata). 
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Supplementary Figure 3. Stage III meta-analysis manhattan and QQ plots (all strata). 

 

 
 

Supplementary Figure 4. Stage IV meta-analysis manhattan and QQ plots (all strata). 
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Supplementary Figure 5. Stage I-IV meta-analysis manhattan and QQ plots (all strata). 

 

 

 

Supplementary Figure 6. Sex stratified meta-analysis manhattan and QQ plots. 
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Supplementary Figure 7. APOE and sex stratified meta-analysis manhattan and QQ plots. 
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Supplementary Figure 8. RRA integrative analysis in blood: enrichment analysis for (A) common genes, (B) APOE2, (C) APOE3, (D) APOE4 
specific candidates. 



 

www.aging-us.com 9320 AGING 

 
 

Supplementary Figure 9. RRA integrative analysis in cortex: enrichment analysis (A) common genes, (B) APOE2, (C) APOE3, (D) APOE4 

specific candidates. 
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Supplementary Figure 10. Blood proteomics heatmap for RRA blood candidates (ADDN dataset, all strata). 
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Supplementary Figure 11. Protein expression of relevant RRA blood candidates by APOE stratum and case status. 
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Supplementary Figure 12. Cortex proteomics heatmap for RRA cortex candidates (meta-analysis, all strata). 
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Supplementary Figure 13. Cortex snRANseq heatmap for RRA candidates shared by the three APOE strata: (A) Unstratified, (B) APOE2, (C) 

APOE3, (D) APOE4 AD cases vs controls. 
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Supplementary Figure 14. Cortex snRANseq heatmap for APOE2 RRA cortex candidates. 
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Supplementary Figure 15. Cortex snRANseq heatmap for APOE3 RRA cortex candidates. 
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Supplementary Figure 16. Cortex snRANseq heatmap for APOE4 RRA cortex candidates. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–39. 

 

Supplementary Table 1. Stage I-III APOE2 stratified meta-analysis results (p<10-4). 
 

Supplementary Table 2. Stage I-III APOE3 stratified meta-analysis results (p<10-4). 
 

Supplementary Table 3. Stage I-III APOE4 stratified meta-analysis results (p<10-4). 
 

Supplementary Table 4. Stage I-IV APOE2 stratified meta-analysis results (p<10-4). 
 

Supplementary Table 5. Stage I-IV APOE3 stratified meta-analysis results (p<10-4). 
 

Supplementary Table 6. Stage I-IV APOE4 stratified meta-analysis results (p<10-4). 
 

Supplementary Table 7. Sex stratified meta-analysis (males). 
 

Supplementary Table 8. Sex stratified meta-analysis (females). 
 

Supplementary Table 9. APOE and sex stratified analysis: APOE2 males meta-analysis results (p<10-4). 
 

Supplementary Table 10. APOE and sex stratified analysis: APOE3 males meta-analysis results (p<10-4). 
 

Supplementary Table 11. APOE and sex stratified analysis: APOE4 males meta-analysis results (p<10-4). 
 

Supplementary Table 12. APOE and sex stratified analysis: APOE2 females meta-analysis results (p<10-4). 
 

Supplementary Table 13. APOE and sex stratified analysis: APOE3 females meta-analysis results (p<10-4). 
 

Supplementary Table 14. APOE and sex stratified analysis: APOE4 females meta-analysis results (p<10-4). 
 

Supplementary Table 15. Stage I-III APOE2 stratified meta-analysis gene level results. 
 

Supplementary Table 16. Stage I-III APOE3 stratified meta-analysis gene level results. 
 

Supplementary Table 17. Stage I-III APOE4 stratified meta-analysis gene level results. 
 

Supplementary Table 18. Stage I-III stratified gene level meta-analysis results (Stage I-II) for known AD genes 
(all strata). 
 

Supplementary Table 19. Differential expression analysis in blood: APOE2 stratum. 
 

Supplementary Table 20. Differential expression analysis in blood: APOE3 stratum. 
 

Supplementary Table 21. Differential expression analysis in blood: APOE4 stratum. 
 

Supplementary Table 22. Differential expression analysis in cortex: APOE2 stratum. 
 

Supplementary Table 23. Differential expression analysis in cortex: APOE3 stratum. 
 

Supplementary Table 24. Differential expression analysis in cortex: APOE4 stratum. 
 



 

www.aging-us.com 9329 AGING 

Supplementary Table 25. RRA integrative analysis in blood: APOE2 stratum. 
 

Supplementary Table 26. RRA integrative analysis in blood: APOE3 stratum. 
 

Supplementary Table 27. RRA integrative analysis in blood: APOE4 stratum. 
 

Supplementary Table 28. RRA integrative analysis in cortex: APOE2 stratum. 
 

Supplementary Table 29. RRA integrative analysis in cortex: APOE3 stratum. 
 

Supplementary Table 30. RRA integrative analysis in cortex: APOE4 stratum. 
 

Supplementary Table 31. RRA integrative analysis in blood: enrichment analysis APOE2 stratum. 
 

Supplementary Table 32. RRA integrative analysis in blood: enrichment analysis APOE3 stratum. 
 

Supplementary Table 33. RRA integrative analysis in blood: enrichment analysis APOE4 stratum. 
 

Supplementary Table 34. RRA integrative analysis in cortex: enrichment analysis APOE2 stratum. 
 

Supplementary Table 35. RRA integrative analysis in cortex: enrichment analysis APOE3 stratum. 
 

Supplementary Table 36. RRA integrative analysis in cortex: enrichment analysis APOE4 stratum. 
 

Supplementary Table 37. Blood proteomics differential expression results (all strata). 
 

Supplementary Table 38. Cortex proteomics meta-analysis (all strata). 
 

Supplementary Table 39. Cortex snRNAseq differential expression analysis. 


