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Abstract 

The Forkhead box P2 (FOXP2) encodes for a transcription factor with a broad role in 

embryonic development. It is especially represented among GWAS hits for 

neurodevelopmental disorders and related traits, including attention-deficit/hyperactivity 

disorder (ADHD), autism spectrum disorder, neuroticism, and risk-taking behaviors. 

While several functional studies are underway to understand the consequences of FOXP2 

variation, this study aims to expand previous findings to clinically and genetically related 

phenotypes and neuroanatomical features among subjects with ADHD. The sample 

included 407 adults with ADHD and 463 controls. Genotyping was performed on the 

Infinium PsychArray-24 BeadChip, and the FOXP2 gene region was extracted. A gene-

wide approach was adopted to evaluate the combined effects of FOXP2 variants (n=311) 

on ADHD status, severity, comorbidities, and personality traits. Independent risk variants 

presenting potential functional effects were further tested for association with cortical 

surface areas in a subsample of cases (n=87). The gene-wide analyses within the ADHD 

sample showed a significant association of the FOXP2 gene with harm avoidance 

(P=0.001; PFDR=0.015) and nominal associations with hyperactivity symptoms (P=0.026; 

PFDR=0.130) and antisocial personality disorder (P=0.026; PFDR=0.130). An 

insertion/deletion variant (rs79622555) located downstream of FOXP2 was associated 

with the three outcomes and nominally with the surface area of superior parietal and 

anterior cingulate cortices. Our results extend and refine previous GWAS findings 

pointing to a role of FOXP2 in several neurodevelopment-related phenotypes, mainly 

those involving underlying symptomatic domains of self-regulation and inhibitory 

control. Taken together, the available evidence may constitute promising insights into the 

puzzle of the FOXP2-related pathophysiology. 

 

Keywords: ADHD, FOXP2, psychiatric disorders, structural neuroimaging, personality 

traits.



Introduction 

Genome-wide associated risk loci for attention-deficit/hyperactivity disorder 

(ADHD) include a hit near the Forkhead box P2 (FOXP2) gene region [1]. This gene 

encodes a member of the forkhead/winged-helix family of transcription factors that 

modulates the embryonic expression of hundreds of genes involved mainly in neuronal 

growth, neural development, and synaptic plasticity [2–4]. These molecular functions 

take part in key mechanisms related to learning, memory, and cognitive functions, which 

are central processes in the pathophysiology of ADHD and several other psychiatric 

disorders [5, 6]. 

FOXP2 is highly expressed in the cortex, basal ganglia, striatum, and cerebellum 

[7–9], regions known to be involved in motor learning and control [10]. In fact, cortical-

subcortical circuitry is also crucial to cognitive performance. It regulates several 

symptomatic domains often impaired in the neuropsychiatric conditions associated with 

FOXP2, such as self-regulation, decision making, and attention [11–18]. In line with this, 

neuroimaging studies have reported associations between these brain regions and 

neurodevelopmental disorders, including ADHD and autism spectrum disorder, for which 

cognitive and impulse control impairments are observed [19–21]. As cognitive processes 

are also involved in the sequential learning and working memory required for social 

communication, it is not surprising that FOXP2, which has long been studied due to its 

causal role in speech and language development [22–24], also has a role in underlying 

mechanisms involved in psychiatric disorders. 

 In this sense, FOXP2 has been associated by GWAS with a wide variety of 

psychiatric-related phenotypes, that besides ADHD, includes autism spectrum disorder 

[25], neuroticism (especially the domains of irritability and tension) [26], sleep 

disturbances such as insomnia [27, 28] and risk-taking/risk tolerance behaviors [29–31]. 

Taken together, such evidence suggests that a potentially shared component underlying 

these associations could be related to emotional or impulse control. Dysregulation in these 

symptom domains has shown to be a common factor among psychiatric disorders and is 

relevant to many aspects of cognitive functioning and learning [32].  

While the consistent pattern of associations in behavior has spurred FOXP2 

research on evolutionary [33], cell biology [2, 34–36], animal models [23, 37, 38], and 

other promising approaches, there is also a need for in-depth dissection of its effects on 

psychiatric clinical aspects. Thus, this study aims to extend previous genome-wide 

associations involving FOXP2 variants to ADHD clinically and genetically related (endo) 



phenotypes, including symptom severity, comorbidities, personality traits, and 

neuroanatomical measures. An integrated and thorough approach involving gene-wide 

analyses followed by functional characterization of FOXP2 signals to prioritize potential 

causal variants was performed in this comprehensive evaluation.  

 

Material and Methods 

 Subjects 

The sample was composed of 407 adults with ADHD from the adult division of the 

ADHD Outpatient Program (ProDAH-A) from Hospital de Clínicas de Porto Alegre 

(HCPA) and 463 blood donor controls from the same hospital. After the study was 

publicized in the local media, the patients self-referred to the ProDAH-A, where an initial 

screening interview was performed to confirm ADHD diagnosis before their inclusion in 

the study. All subjects are white Brazilians of predominantly European descent aged 18 

years or older. The first step to defining individuals as white Brazilians was based on self-

classification and the psychiatrist’s perception of skin color, followed by their 

confirmation that their parents or grandparents were of European origin. Besides, it is 

important to notice that most individuals (94%) from Southern Brazil are of European 

descent, according to reported estimates of interethnic admixture [39–42]. The second 

step considered genomic information as described in the “Genomic analysis” section 

below. The exclusion criteria included evidence of a clinically significant neurological 

disease that might affect cognition (such as a history of head trauma and/or epilepsy or 

dementia) and an estimated intelligence quotient score (IQ) below 70.  

The diagnosis of ADHD followed the Diagnostic and Statistical Manual of Mental 

Disorders (DSM-IV) criteria [43] from 2001 to 2012 and DSM-5 from 2013 onwards [44, 

45]. ADHD and oppositional defiant disorder (ODD) diagnoses were performed 

according to the Portuguese version of the Kiddie Schedule for Affective Disorders and 

Schizophrenia (K-SADS-E) [46], adapted for adults [45]. As expected for a sample of 

adults, patients with the combined presentation were the most common in our sample 

(53,3%; n = 217), followed by the inattentive (42,3%; n = 172) and hyperactive/impulsive 

(4,4%; n = 18) presentations. Antisocial personality disorder (ASPD) diagnosis was 

assessed through the Brazilian version of the Mini-International Neuropsychiatric 

Interview (MINI) [47, 48]. All other psychiatric comorbidities were evaluated by trained 

psychiatrists using the Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-

I) [49] from 2001 to 2012, an adapted version of SCID from 2012 to 2015, and the SCID-



5 from 2015 onwards [50]. The severity of ADHD symptoms was measured using the 

Swanson, Nolan, and Pelham Rating Scale, version 4 (SNAP-IV) [51]. 

Temperament/personality dimension scores were assessed by the Temperament and 

Character Inventory (TCI version 9) [52].  

The control sample had a negative screening for ADHD, as assessed by the 6-item 

Adult ADHD Self-Rated Scale Screener (ASRS) [53]. In this sample, psychiatric 

disorders were evaluated through SCID-I screening module [49] from 2001 to 2015 and 

SCID-5 [50] after 2015, including psychosis and anxiety, mood, substance use, and eating 

disorders. 

All participants were fully informed of all study procedures and provided signed 

informed consent, approved by the institutional review board of HCPA (IRB 0000921). 

This work was carried out following the Declaration of Helsinki. 

  

Genomic analysis 

Genotyping was performed on the Infinium PsychArray-24 BeadChip (Illumina, 

San Diego, CA, USA). Pre imputation quality control (QC), principal components (PC) 

analysis to exclude ancestry outliers and related individuals, and genotype imputation 

procedures were implemented using the Ricopili pipeline following default parameters 

(//sites.google.com/a/broadinstitute.org/ricopili/home). The European population of the 

1000 Genomes Project Phase 1 was used as the reference panel mapped to the GRCh37 

build. Post imputation QC was performed using the following settings for inclusion of 

variants or individuals: info score > 0.8, minor allele frequency > 10%, SNP and 

individual call rate > 95%, and Hardy-Weinberg equilibrium test with p-value > 1e-06. 

The FOXP2 gene region plus 35 kb upstream and 10 kb downstream window was 

extracted to include regulatory elements [54], and 311 variants were retained in the final 

dataset. 

 

Magnetic Resonance Imaging (MRI) acquisition data  

The brain images were acquired for a subsample (n = 87) of individuals with ADHD 

during a follow-up reassessment 13 years after the initial diagnosis. MRI acquisition was 

performed in a 3.0 T Siemens SPECTRA scanner with a 16-channel head coil. A high-

resolution structural MRI volume was acquired using T1-weighted 3D MPRAGE 

sequence with 192 slices, flip angle = 7°, TE = 2.55 ms, TR = 2530 ms, TI = 1100 ms, 

matrix size = 256 × 256, isotropic resolution of 1 mm, and a GRAPPA factor of 2. Our 



MPRAGE T1-weighted structural images were visually inspected before segmentation at 

the Freesurfer software v. 5.3 [55]. The quality control of images followed Enhancing 

Neuro Imaging Genetics through Meta-Analysis (ENIGMA) protocol [56], using as input 

the data generated after preprocessing at Freesurfer.  

 

Statistical analyses 

A gene-wide approach was performed using PLINK software, version 1.9, with the 

--set-based command followed by 10,000 permutations [57]. The set-based test provides 

a joint association value for the combined effects of all included variants within the gene 

region (n = 311; gene-wide association). It also retrieves individual association values per 

variant (single variant association), indicating the associated independent variants that 

are, by default, the ones with the lowest p-values. We tested the FOXP2 gene-wide 

association with ADHD case-control status, as well as with ADHD symptom severity, 

personality dimensions, and comorbidities within the ADHD sample. Apart from the 

10,000 permutations performed for each outcome, FDR correction was applied to the 

gene-wide analyses considering the number of outcomes tested (ADHD status plus 14 

outcomes tested in the ADHD sample).  

Besides the independent variants retrieved from the analyses, all single variants 

presenting p-values < 0.05 for traits that were at least nominally associated in the gene-

wide analyses were submitted to an exploratory search using in silico tools (see 

Functional prediction in silico search below). Among them, representative variants of 

each linkage disequilibrium block with the highest potential to present a functional 

regulatory role based on in silico tools and evidence of an association by previous GWAS 

were selected to further test their association with neuroimaging measures within the 

ADHD sample. The neuroimaging measures evaluated were cortical surface areas of 30 

brain regions previously associated with ADHD [20]. FDR correction was applied 

considering the variants and the brain regions tested. This strategy was adopted to search 

for evidence of effects in neurogenesis and/or neurodevelopmental risk, considering that 

variants associated with psychiatric-related traits and with evidence of regulatory features 

probably affect gene expression and function in the brain. 

All analyses were based on an additive genetic model. Sex, age, and the ten first 

principal components were included as covariates. The analyses of neuroimaging 

measures also included average surface area as a covariate. 

 



Functional prediction in silico search 

The in silico tools used to assess the potential regulatory features of the variants 

selected from the single variant analyses mentioned above were:  

(1) RegulomeDB [58], a tool that annotates SNPs with known and predicted 

regulatory elements in the intergenic regions of the human genome. It provides 

probability scores that integrate functional genomics features with ChIP-seq, DNase-seq, 

and other sources, ranging from 0 to 1, with 1 being most likely to be a regulatory variant. 

Since there is no exact cut-off definition to classify functionality, we considered 

probability scores higher than 0.6 as a reasonable threshold for a moderate to a high 

probability of functionality for our purposes. 

(2) CADD (Combined Annotation Dependent Depletion) [59], a tool that provides 

a score of deleteriousness predictions of a single nucleotide (a scaled CADD score - 

PHRED - greater than 10 indicates that these are predicted to be the 10% most deleterious 

substitutions in the human genome, while a score greater than 20 points the 1% most 

deleterious and so on).  

(3) HaploReg v4.1 [60], a tool that examines annotations of the noncoding genome 

at variants on haplotype blocks at disease-associated loci, including information on 

chromatin state, protein binding annotation, sequence conservation, the effects of variants 

on regulatory motifs, and expression from eQTL studies.  

(4) Variant Effect Prediction (VEP) [61], a tool for predicting functional 

consequences of known and unknown variants.  

(5) Variant Annotation Integrator (VAI) [62], a tool for associating annotations 

from the UCSC database to predict functional effects of variants on transcripts. 

(6) MirSNP [63], a collection of human SNPs in predicted miRNA-mRNA binding 

sites that promote post-transcriptional effects. 

The set of variants was also evaluated for associations by GWAS considering the 

psychiatric and cognitive domains of the GWAS atlas website [64]. Moreover, a heatmap 

of pairwise linkage disequilibrium statistics using the CEU population as the reference 

was obtained with the LDmatrix tool [65].  

 

Results 

The characteristics and the comorbidity profile of the total sample of individuals 

with ADHD and controls are presented in Table 1. 



In the gene-wide analyses, there was no significant association between 

the FOXP2 gene and ADHD case-control status (P = 0.654) (Table 2). The analyses 

within the ADHD sample showed a significant association of FOXP2 gene with harm 

avoidance (HA; P = 0.001; PFDR = 0.015), and nominal associations with hyperactivity 

symptoms (P = 0.026; PFDR = 0.130) and ASPD (P = 0.026; PFDR = 0.130) (Table 2). The 

single variant associations comprising the 311 variants in the FOXP2 region for these 

traits are depicted in the region plots generated from LocusZoom [66] in Supplementary 

Figures 1, 2, and 3, respectively.  

Summarized single variant association results are presented in Table 2, where one 

variant with p-value < 0.05 was observed for HA, 42 (3 independent) for hyperactivity 

symptom severity, and 24 (3 independent) for ASPD. Supplementary Tables 1 and 2 

present the summary statistics of the association results between each of these variants 

and hyperactivity severity and ASPD, respectively, the LD relationship between each 

independent variant and those comprising the block, the in silico prediction of 

functionality, and previous GWAS findings. A linkage disequilibrium matrix for all 

pairwise comparisons of these variants is shown in Supplementary Figure 4 (missing 

data for rs79622555). This data was used for the selection of variants to test in the 

subsequent neuroimaging analyses.  

The only variant associated with HA (rs79622555) was a shared association with 

hyperactivity and ASPD. It is an insertion/deletion variant located at chr7:114340504, and 

the Insertion allele was associated with lower HA scores, higher hyperactivity severity, 

and increased risk for ASPD (Table 3). As presented in Supplementary Tables 1 and 2, 

a potential regulatory feature is suggested for this variant since it is located at a DNAse 

hypersensitivity area in the brain germinal matrix tissue and presents a relatively high 

probability score of functionality (probability score = 0.67) according to RegulomeDB. 

Also, no LD pairs were identified for rs79622555. Based on this evidence, this variant 

was among those selected for subsequent analyses with neuroimaging measures. 

Although we did not observe a significant association after FDR correction of rs79622555 

with cortical surface areas in any tested brain region, nominal associations were found 

for caudal anterior cingulate and superior parietal cortices (Table 3). We additionally 

tested the dominant model considering the low frequency of homozygotes for the minor 

allele (genotype frequencies in the ADHD sample: Del/Del, n = 327; Del/Ins, n = 68, 

Ins/Ins, n = 9) and similar results were obtained. 



Besides rs796622555, five additional independent variants (rs2244419, rs1852638, 

rs1668333, rs4730637, and  rs12705984) with the highest potential to be causal were 

selected to be tested for association with neuroimaging measures considering the 

integrated set of information presented in Supplementary Tables 1 and 2. The 

association analyses between cortical surface areas of 30 brain regions and the selected 

variants are depicted in Supplementary Table 3, and no significant results were found 

after FDR correction.  

 

Discussion  

Our study extends and refines previous GWAS findings pointing to a role of FOXP2 

in neurodevelopmental-related phenotypes, mainly those involving underlying domains 

of impulse control and decision making. By adopting a gene-wide approach, we found 

suggestive evidence that the personality trait of HA, hyperactivity symptom severity, and 

ASPD might be influenced by the combined effects of all measured variation in the 

FOXP2 gene region in adults with ADHD. Notably, a specific insertion/deletion variant 

located downstream of FOXP2 (rs79622555) was a common finding among the 

phenotypes.  

Consistent with our findings, genome-wide significant hits for FOXP2 include 

neuroticism [26] and risk-taking behavior [64]. Neuroticism is a personality trait 

positively correlated to HA, and both characteristics are related to decision-making and 

can interfere in risk-taking behavior [67]. Risk-taking is a common behavioral trait of 

neuropsychiatric disorders characterized by difficulties in impulse control, such as 

substance use and ADHD. Such behavior refers to the individuals’ propensity to select a 

high-gain/high-risk over a low-gain/low-risk alternative even when associated with a 

disadvantageous long-term outcome [68]. The previously reported association between 

polygenic risk scores for ADHD with neuroticism, tobacco and alcohol use, and risk-

taking behavior [69] reinforces the correlation among these traits. It suggests a shared 

neurobiological mechanism that may be related to emotional and impulse control. In this 

sense, FOXP2, as a shared genetic component, might exert its effects by modulating such 

intermediate phenotypes that underlie the neurobiology of a variety of psychiatric 

disorders. 

Indeed, cortical FOXP2 deletion in mice impaired behavioral flexibility [36], a 

cognitive function that involves problem-solving and the capacity to learn the reversal of 

a task that has been well trained and is considered a strategy to inhibit impulsivity and 



compulsive drug-seeking behavior [70, 71]. Interestingly, impaired cognitive flexibility 

and poor impulse control are also characteristic of antisocial behaviors [72, 73], including 

ASPD, a frequent comorbidity of ADHD. Our suggestive findings of an association 

between ASPD and FOXP2 corroborate the hypothesis of a potential role of this gene in 

endophenotypes related to impulse control. Multiple component processes likely 

encompass self-regulation and might explain its broad relevance for personality traits and 

several aspects of psychopathology. 

Considering that brain structure and functioning are influenced by genetic factors, 

especially in the context of neuropsychiatric conditions, we tested whether FOXP2 

variation associated with the ADHD-related traits in our sample would also affect cortical 

structure in specific regions previously identified as relevant for ADHD [20]. Although 

these analyses did not support a robust role of FOXP2 common variation in brain 

structure, which might reflect the reduced sample included in the neuroimaging analyses, 

the nominal associations of the rs79622555 with caudal anterior cingulate cortex and 

superior parietal cortex should be highlighted. Both regions have been implicated in 

cognitive functions [74, 75], and the anterior cingulate cortex, one of the key structures 

of the cortical-basal ganglia network, is specifically involved in reward-based learning, 

decision-making, response inhibition [75], and behavioral shift after error [76]. Also, its 

caudal region has an important role in negative emotion control and processing [77, 78], 

which manifests as individual differences in personality that relate to reward sensitivity 

and persistence [79]. Interestingly, this region is activated during inhibition tasks in 

healthy adults [80–85] and children with disorders characterized by lack of impulse 

control such as ADHD [86], autism [87], and disruptive behavior disorders [88], 

supporting a connection between this brain region, self-regulation and neuropsychiatric 

disorders. 

As mentioned above, rs79622555 was a common association among the evaluated 

clinical traits (see Table 2). The suggestive evidence of its influence in the cortical surface 

area also indicates that brain structural alterations might be on the pathway of the genetic 

effects of FOXP2 on psychiatric-related traits. The in silico search showed that 

rs79622555 is located 6.7 kb 3’ of FOXP2 at a DNAse hypersensitivity site. It is also 

noteworthy that we did not find any LD pairs for this specific variant, possibly reflecting 

either its location near a recombination hotspot (see Supplementary Figures 1-3) or a 

drawback of the tools available. Although there is limited information on the functionality 

of this specific variant, the 3’UTR region of FOXP2 is known to be highly targeted by 



miRNAs [89] that control gene expression at a post-transcriptional level. Moreover, loss 

of function in this region implicates ectopic expression, delays in neurite outgrowth, and 

altered cellular migration [89, 90], suggesting a potential regulatory mechanism of this 

region that might impact brain structure or functioning and susceptibility to psychiatric 

disorders.  

Our results should be interpreted considering some limitations. Although gene-wide 

approaches, as the one applied here, based on previously reported GWAS hits, have 

substantially higher statistical power than genome-wide single variant associations, the 

relatively small sample size may have precluded the identification of more robust FOXP2 

effects. Even though we did not specifically replicate the association of FOXP2 with 

ADHD status, our findings reinforce a pattern of associations with ADHD-related traits 

that might represent underlying mechanisms involved in the disorder’s pathophysiology. 

The sample size limitation is even more critical in the subgroup with neuroimaging 

measures and might explain the lack of association in these analyses. In addition, 

unfortunately, we do not have information on language-related phenotypes to investigate 

a possible common mechanism of FOXP2 effects on psychiatric-related traits and 

language skills. Finally, although refined in silico analyses were performed, which 

integrated information from several bioinformatics tools, there is scarce information on 

the functionality of the associated variants, especially for the insertion/deletion one. This 

limitation impairs more refined inferences on regulatory mechanisms underlying the 

observed associations and whether it might involve brain structure alterations.  

 

Conclusion 

In summary, the present findings evaluating a sample of adults with ADHD are 

consistent with previous studies implicating the FOXP2 gene in several psychiatric-

related phenotypes. Our results, combined with previous FOXP2 GWAS associations and 

the reported evidence of a genetic correlation between ADHD and neuroticism, substance 

use, and risk-taking behavior, might suggest an underlying common neurobiological 

mechanism related to self-regulation and inhibitory control that might be mediated, at 

least in part, by FOXP2 effects. Fine mapping and characterization of noncoding risk 

variants by integrating genomic/transcriptomic associations over a wide range of common 

neuropsychiatric phenotypes, molecular data, bioinformatics, and other sources should be 

further pursued by future studies to prioritize the most likely causal variants before 

proceeding with biological follow-up experiments. 
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