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POLARITY DRIVEN LAMINAR PATTERN FORMATION BY LATERAL-INHIBITION
IN 2D AND 3D BILAYER GEOMETRIES

JOSHUA W. MOORE!, TREVOR C. DALE?, AND THOMAS E. WOOLLEY!

ABSTRACT. Fine-grain patterns produced by juxtacrine signalling, have previously been studied using static
monolayers as cellular domains. However, analytic results are usually restricted to a few cells due to the
algebraic complexity of nonlinear dynamical systems. Motivated by concentric patterning of Notch expression
observed in the mammary gland, we combine concepts from graph and control theory to represent cellular
connectivity and behaviour. The resulting theoretical framework allows us to exploit the symmetry of
multicellular bilayer structures in 2D and 3D, thereby deriving analytical conditions that drive the dynamical
system to form laminar patterns, consistent with the formation of cell polarity by activator localisation.
Critically, the patterning conditions are independent of the precise dynamical details, thus the framework
allows for generality in understanding the influence of cellular geometry and signal polarity on patterning
using lateral-inhibition systems. Applying the analytic conditions to mammary organoids suggests that
intense cell signalling polarity is required for the maintenance of stratified cell types within a static bilayer
using a lateral-inhibition mechanism. Furthermore, by employing 2D and 3D cell-based models, we highlight
that the cellular polarity conditions derived from static domains can generate laminar patterning in dynamic
environments. However, they are insufficient for the maintenance of patterning when subjected to substantial
morphological perturbations. In agreement with the mathematical implications of strict signalling polarity
induced on the cells, we propose an adhesion-dependent Notch-Delta biological process that has the potential

to initiate bilayer stratification in a developing mammary organoid.

Keywords: Pattern formation, Nonlinear systems, Lateral-inhibition, Bilayer structures, Mammary organoids,

Notch

1. INTRODUCTION

Lateral-inhibition is considered a fundamental driving process for the emergence of fine-grain pattern
formation in tissues [1]. At the resolution of the tissue, lateral-inhibition is the process in which the activation
of a cell is inhibited by the increased activity in neighbouring cells thereby preventing each other from
converging the same activity state [1]. The resultant fine-grain patterns are critical in the development

of many multicellular biological systems such as Drosophila eye formation, murine hair organisation in
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auditory epithelia and establishing blood vessels during human embryogenesis [2—4]. In contrast to the
approach of using reaction-diffusion systems that consider diffusive activator proteins over different signal
ranges to generate spatially continuous patterns [5, 6], systems of ordinary differential equations (ODEs)
can be used to generate a discretised description of the space, enabling the formation of fine-grain patterns
at the resolution of individual cells. These spatially discrete ODE systems seek to emulate the behaviour
of contact-dependent cell-cell non-diffusive signalling mechanism known as juxtacrine signalling, a common
form of cellular communication in epithelial tissue [1].

The juxtacrine signalling mechanism relies on membrane-bound signal proteins on a sender cell binding to
surface anchored receptors on a receiving cell, imposing a contact-dependence [1]. Critically, cells can only
use juxtacrine signalling to communicate with their direct neighbours in the absence of activator/receptor
extensions [7], as demonstrated in Figure 1a. Consequently, the spatial organisation of cells is of fundamental
importance in orchestrating signal protein patterning required for specific organ development [8].

Mathematically, juxtacrine signalling dependent pattern formation has been extensively studied over the
last two decades [7, 11-14], commonly focusing on lateral-inhibition mechanisms. An overarching conclusion
from the family of studies focused on juxtacrine pattern analysis of lateral-inhibition models is that linear
analysis techniques in isolation are insufficient to determine precise conditions for patterning, and are only
able to predict the existence of patterning [11]. In light of this, there has been a reliance on numerical
simulations to elucidate parameter regimes in which patterns occur.

However, the model parameters are not the only factors influencing the emergence of patterns. The
geometry of the cellular domain on which the juxtacrine model is being applied has a large impact on
the obtainable patterning. This was highlighted by Webb et al. (2004), where they compared a honeycomb
domain to a simple grid domain in 2D under a standard four-point connectivity stencil for cellular connectivity
(see Figure 2 and Figure 6a). In doing so, they show the considerable differences in parameter regimes required
to achieve similar patterns in different domain types [13]. The underlying features kinetics that describe a
lateral-inhibition model imply that adjacent cells do not converge to similar steady states, thus generating
salt-and-pepper type patterns Figure 2 [10]. Although, asymmetries in cellular geometry have the capacity
to produce unique patterning that are unobtainable on regular domains but are more biologically realistic,
namely clusters of cells with similar steady states [12]. In support of this, when coupling a mechanism for
cellular protrusions with a lateral-inhibition spatially discrete ODE system, a large family of distinct patterns
were observed over a regular 2D honeycomb spatial domain, specifically, the generation of laminar patterns
whereby the tissue converged to rows of alternating activity (Figure 2¢) [7]. Such laminar patterns driven
by lateral-inhibition mechanisms have been observed in various biological systems such as in the mammary

gland and zebrafish skin pigments [15, 16]. Though, to achieve laminar patterns using the lateral-inhibition
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FIGURE 1. A schematic diagram of the canonical Notch pathway as an example juxtacrine
signalling mechanism. (a) Membrane-bound Delta ligands (purple rectangles) on a signal
sending cell bind to membrane-bound Notch receptors (green rectangles) on a receiving
cell. The activation of Notch receptors initiates the cleavage of Notch into the cytosol of
the receiving cell, known as NICD. The NICD then translocates to the nucleus where it
promotes the transcription of HES, an inhibitor of Delta ligand targets. Adapted from
[9]. (b) A minimal representation of the negative feedback dynamics of Notch and Delta in
coupled cells. This mathematical simplification was first conceived in [10].

model, the authors conclude cellular protrusions must be preferentially directed perpendicular to the active
row of cells to ensure contact with the inactivate cells to maintain their activity [7]. These results suggest
the existence of planar cell polarity (denoted by polarity herein) of cell-cell receptors and/or activators in
the absence of cellular protrusions to generate laminar patterns using a lateral-inhibition mechanism.

An alternative approach to pattern formation analysis in lateral-inhibition models was introduced by
[17], where they considered cells as vertices on a connected graph that interact using dynamic input-
output systems, known as interconnected dynamical systems. Namely, interconnected dynamical systems
are constructed from coupling ODE subsystems using networks, whereby the internal kinetics are embedded
within each node. This approach produced analytic conditions for the existence and stability of checkerboard

patterning in cyclic domains, independent of the number of cells, as demonstrated in Figure 2, thus, extending
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the analysis conducted in [11-13] that was restricted to only two cells due to the complexity of the systems
studied.

Moreover, the graph-theoretic approach to juxtacrine systems was later refined when graph partitioning
was applied to represent patterning within collections of cells [18], generalising the previous results of [17],
which developed a framework to prove the existence and stability of a family of patterns within periodic
domains in both grid and hexagonal lattices. These studies emphasise the relationship between how cells are
connected and the obtainable patterns.

Nonetheless, these conditions were derived using static domains and were heavily dependent on several
assumptions regarding the graph’s topology (reviewed in Section 2.3). These assumptions cannot always be
adhered to when investigating patterning on an evolving biological system, although they may be true in

certain quasi-steady stages of its development where static cellular geometries may be applicable.

(a) (b)

FIGURE 2. Activation patterns by lateral-inhibition mechanisms in hexagonal and grid
lattices. Salt-and-pepper patterns formed by lateral-inhibition in over a (a) hexagonal and
(b) grid cellular domains as demonstrated in [10]. An idealisation of the laminar patterns
produced in [7] by coupling active row perpendicular cellular protrusions to lateral-inhibition
mechanism over a hexagonal cellular domain.

The canonical Notch pathway is a well-studied example of a juxtacrine signalling pathway with an essential
role in cell fate determination and morphological bifurcations in developmental systems [15, 19-21]. The
Notch pathway describes a lateral-inhibition mechanism between neighbouring cells, whereby the activation
of the Notch receptor via membrane-anchored Delta ligands on adjacent cells leads to the accumulation of
Notch-intracellular-domain (NICD) within the cytosol. The build-up of NICD leads to the transcription of
members of the Hair-Enhancer of Split (HES) superfamily, which acts as an inhibitor of the target genes
that promote the downstream production of Delta ligands and lineage-specific gene repressor [22]. That is,
the activation of Notch leads to the inactivation of Delta within the same cell as shown in see Figure 1la.
Mammals exhibit four paralogues of the Notch receptor, Notchl to Notch4, each with associated Delta-like
ligands that each observe the autoregulation mechanism outlined by the canonical pathway [22]. A detailed

description of the canonical Notch pathway can be found elsewhere [9].



POLARITY DRIVEN LAMINAR PATTERN FORMATION 5

A particular biological system that is highly dependent on the Notch pathway is the mammary organoid.
Mammary organoids are three-dimensional tissue cultures that are currently the most accurate representation
of in vivo mammary gland biology [23]. Throughout its development, the mammary organoid retains a
consistent bilayer structure of cells as seen in Figure 3. That is, the outer layer holds the elongated, contractile
basal cells, whereas the inner layer consists of cuboidal luminal cells. Once these layers have been established,
a hollow lumen forms, surrounded by the bilayer of cells.

Notch1 signalling (denoted by Notch signalling hereafter) is a critical determinant of luminal cell differentiation
in mammary epithelial cells (MECs) [15]. It has been established that Notch activation is required to support
differentiation of the basal stem cells to the luminal population in the mammary organoid and therefore it
is a key component in the maintenance of a developing mammary system [24]. In addition, sudden Notch
activation within the basal coincides with the locations of symmetry-breaking events of embryonic MECs
[15]. Thus, it has been hypothesised that Notch activation via basal cells, or contact with the basement
membrane, is required to develop branched epithelia [22].

During any stage of development of the mammary gland and organoid, MECs are capable of self-organising
to form an outer layer of cells that highly express Delta (low Notch), and in contrast, inner layers of cells
that surround a hollow lumen that expresses low Delta (high Notch), see Figures 3b-3d [24, 25]. It is unclear
whether this spatial patterning is a consequence or cause of the morphology of developing mammary ducts,
although, it is clear that the concentric (laminar) patterning of the bilayer of cells is robust to morphological
perturbations. Critically, the observed laminar patterning of Notch expression in the mammary gland cannot
be achieved by the canonical intracellular lateral-inhibition mechanism in isolation [7, 24], which suggests
an intercellular intervention in signal transfer. Specifically, we investigate the existence of activator polarity
for the emergence of laminar pattern formation of Notch using a lateral-inhibition mechanism in the distinct
mammary cellular domains.

Conditions defining laminar pattern formation in bilayer geometries using a simple mathematical lateral-
inhibition model concerning activator anisotropy have yet to be derived. Here, we apply the general interconnected
systems framework to a previously developed ODE model of Notch-Delta and obtain conditions on Delta cell-
cell transmission that are sufficient for the bilayer laminar patterns to form in agreement with experimental
observations. Specifically, we induce activator polarity within each cell by introducing cell-type dependent
edge weights to the graph representing cellular connectivity, thus describing the signal anisotropy within the
network of cells. Using the cell type-dependent connectivity framework, we analyse the interplay of cellular
neighbourhood composition and activator polarity, independent of precise intracellular kinetics and physical

dimension, for the instability of the homogeneous steady state of the large-scale dynamical system.
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FIGURE 3. The structure of a mammary organoid and the spatial distribution of Notch
expression. (a) A simple 2D diagram of the structure of a developing mammary organoid,
highlighting lumen formation and maintenance of stratified bilayer. (b-c) Cross-sections
of mammary ducts of 6-week old mice, where Notchl-derived lineages are labelled in
green by (b) membrane-bound green fluorescent protein (GFP) and (c) nuclear GFP. (d)
Representative sections of embryonic mammary buds. The small red dots highlight the
presence of Notchl protein which are clustered towards the centre of the bud. Scale bar,
20um (10pm in magnifications). Images used with permission from Springer Nature and
originally printed in [15].

From properties of monotone dynamical systems, the instability of the homogeneous steady state ensures
the existence of pattern formation for the given bilayer template. We then demonstrate the applicability
and limitations of the analytic activator ligand polarity conditions for static domains to developing dynamic
cellular networks, highlighting the requirement of adaptive control mechanisms for pattern preservation in
stochastic connectivity graphs.

The study is structured as follows. In Section 2.1 we start with a classical ODE system used to study
cell-cell interactions and then demonstrate how to recast such kinetics as an interconnected dynamical system
using regular connected graphs in Section 2.2. In Section 2.3 we describe methods of graph partitioning for
large-scale system reduction that preserve global connectivity properties. Next, in Section 2.4, we review the
literature from interconnected dynamical systems that we apply in this study, particularly outlining the results

that allow us to derive analytic conditions on cell-type dependent weightings of Delta cell-cell transmission. In
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Section 3 we predict the existence and stability of laminar patterns in regular bilayer structures by exploiting
existing results in graph theory, monotone systems and control theory [17, 18]. We apply the analytic
conditions to mammary organoids in Section 4.1 using a Notch-Delta model (NDM), thereby employing a
family of fixed regular 2D and 3D structures to investigate the role of local neighbourhood composition
on laminar pattern formation. Finally, in Section 4.2, we use 2D and 3D cell-based modelling to highlight
the applicability and limitations of the static domains in pattern analysis of developing systems. Critically,
we show how the transient transitions of cellular connectivity in a lattice-free dynamic domain can prevent

robust pattern formation when considering only signal polarisation as a control mechanism.

2. INTERCONNECTED ODE SYSTEMS FOR MULTICELLULAR PATTERN FORMATION BY LATERAL-INHIBITION

In this section, we define a framework to investigate the interplay of domain geometry and cellular signalling
polarity in laminar pattern formation. To elucidate the dependence of cell-type transmission of Delta in
bilayer structures we consider the original lateral-inhibition ODE model constructed in [10]. By adapting the
spatial averaging term to include cell-type dependent weightings on Delta transmission to represent cellular
polarity, we impose signal transfer anisotropy within the cellular system to promote bilayer laminar pattern
formation of Notch-Delta that are experimentally observed (Figures 3b-3d).

In addition, we introduce the notion of the graphical representation of cellular connectivity and a framework
for cellular coupling. We later introduce and review the properties of the interconnected ODE system and

its associated graph that are used in pattern analysis for lateral-inhibition mechanisms.

2.1. A model of intercellular lateral-inhibition dynamics.

The spatially discrete NDM developed by Collier et al. (1996) was the first explicit lateral-inhibition model
that was used to investigate fine-grain patterns that are observed in a variety of biological systems [10].
The intracellular kinetics contains only two components, Notch (N) and Delta (D) activation, simplifying
the underlying biochemical processes, which allows freedom of interpretation of N and D. When studying
the dynamics of Notch-Delta in the mammary organoid, we will consider NV to be the NICD active protein
concentration within the cytosol and D to be the amount of active membrane-bound Delta ligands on the
surface of the cell, see Figure la. The inverse relationship between intracellular Notch and Delta is the key
feature of the spatially discrete ODE model, which is described by the negative feedback loop depicted in

Figure 1b and thus is characterised by the following assumptions:

(i) Cells interact through Delta-Notch signalling only with cells with which they are in direct contact,
that is, adhering to the juxtacrine mechanism.
(ii) The rate of production of Notch activity is an increasing function of the level of Delta activity in

neighbouring cells.
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(iii) The rate of production of Delta activity is a decreasing function of the level of activated Notch in
the same cell.

(iv) Production of Notch and Delta activity is balanced by decay, described by a simple exponential decay
with fixed-rate constants.

(v) The activity of Notch and Delta are uniformly distributed throughout the cell.

(vi) Instantaneous transcription of downstream Notch targets such that the model assumes no delay in

Notch and Delta interactions.

These assumptions outline the Notch-Delta lateral-inhibition model, which can be formalised mathematically

as,

N; = f((Di)) - N, (2.1)
—— ——
NICD activation via NICD

Delta binding from  degradation
adjacent cells

Di= g(N;y) — pD; | (2.2)
—— ——
Delta inhibition Delta
by NICD degradation

where f and g are bounded increasing and decreasing functions respectively. These functions have the form,

)= 2 awmd gy = L
T a4 g T 1+ b’

(2.3)

where parameters a, b, 1, uo > 0 and Hill coefficients r, s > 1. The subscript ¢ corresponds to cell identity
within the system and the definition of the local spatial mechanism, (D;), will be discussed in Section 2.2 in

order to embed the NDM (2.1-2.2) system into a network of cells.

2.2. A network approach to cellular connectivity with signal anisotropy.
To recast the NDM (2.1-2.2) as an interconnected dynamical system we represent the cellular connections
as an undirected connected N.-regular graph G = G (V, E), where vertices v € V represent cells and edges
e € I correspond to cellular connections, see Figure 4. The vertices v; and v; representing cells ¢ and j are
considered to be connected if there exists an edge, e; j, between v; and v; such that e; ; # 0. Physically, we
say that e; ; # 0 if the cell membranes of cell i and j are in contact. We represent the signal strength of
cellular connectivity between cells ¢ and j using nonnegative cell-type dependent weighting coefficients w; ;.
Namely,
wy ife; #ONT =15,
wij =N wy if ey #OAT F# T, (2.4)

0 lf ei’j = (Z),
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where wi, w2 € Ry and cell-type of cell ¢ is denoted by 7;. Explicitly, w;; = 0 if cells ¢ and j are not
connected. If cells ¢ and j are connected and of the same type, w; ; = w;, and if cells ¢ and j are connected
and are different types then w; ; = ws, as highlighted in Figure 4.

As we consider an undirected graph from we have that w; ; = w; ;, namely, we consider cells to be connected
if cell membranes are in contact and therefore there is a connectivity symmetry between any two connected
cells. The coefficients w; ; can be used to mediate Delta transmission between adjacent cells dependent on
cell-type inducing a membrane activator anisotropy within the cellular connectivity graph and thus w; ; will
be the focus of our study.

We introduce graph cellular connectivity to the NDM (2.1-2.2) using the associated weighted adjacency
matrix of G. We consider a system of A cells such that N” € {2n : n € N} to account for bilayer regular
structures. Then the weighted adjacency matrix of G is defined by [w; ;] = W € RQ/OXN as in [17, 18],
where we have included cell-type dependent edge weights here. To represent the cell-type stratified bilayer
structures of the mammary gland, we consider two cell types, basal and luminal cells, which are organised
into separate layers of the tissue as seen in Figure 3a. As G is an undirected connected N.-regular graphs,
we are assuming the lattice structures representing cellular connectivity are symmetric with respect to each
layer and have periodic boundaries in 2D and 3D. Critically, the both of these properties are induced by the
regularity of the graph, that is, each vertex is equipped with the number of edges and associated weights.

Following from the bilayer structure of the graph G, the associated weighted adjacency matrix W can be
N/2)x(N/2)

constructed from the matrices Wy, Ws € R3y . Namely, W has the following form,
W, Wy
Wy, Wi

Here row i of W7 represents the cellular connections of cell i to adjacent cells of the same type, and the rows
of Wy correspond to the cellular connections to cells of differing types where cells are numbered 1 to N/2
in the basal layer and A'/2 + 1 to A in the luminal layer as in shown in Figure 4 in terms of Delta transfer

between cells. For example, for the standard orthogonal template for a bilayer of cells given in Figure 4, has
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connectivity matrices,

0 1 0 0 0 1
1 0 1 0 0 O
0 1 0 1 0 0
Wi=wy |+ - e el e el and Wy = waly s, (2.6)
0 0 1 0 1 0
o o0 --- 0 1 0 1
_1 o --- 0 0 1 O_

where Ipr/5 is the (N/2) x (N/2) identity matrix.

N/2+1
[ ] [ ] [ ] . [ [ ] [ ] Basa]‘
cells

w2

w1 w1 Luminal
- OQ— O ORRRI
1— 1 1+ 1

FIGURE 4. An illustrative computational template for cell-type dependent weighted graph
structure of a bilayer A cells. We consider the edge structure from the perspective of cell
within a bilayer graph of luminal and basal cell types. The edge weights w; and wo determine
the strength of connectivity between cells of the same and different types, respectively.

The network representation of cellular connectivity is introduced to the NDM (2.1-2.2) via the averaging
operator (-). Explicitly, cell-type dependent Delta transmission between adjacent cells in static geometries is
described by

1

PO = e, PO @

where D(t) represents a vector of Delta concentrations for each cell in the system, D(t) = [D1(t), ..., Dy (¢)]".
The value n; corresponds to the number of cells of the same type adjacent to cell ¢, whereas ny is the number
of cells adjacent of a different type, such that N, = n; + no, for example, n; = 2 and no = 1 in Figure 4. In
addition, we introduce notation for the total scale weighting for each cell, N,, = njw; + nows, for brevity.
The inclusion of the scaling term preserves the averaging process that is assumed for the spatially well-mixed
NDM (2.1-2.2) (assumption (v)) [10], and also enables the direct comparison of cellular connectivity to a
probability transition matrix of a reversible Markov chain, such that in each row (1/N,) > ;wi,; =1 for all

1 as previously discussed in [17]. Each node within the network is now equipped with the lateral-inhibition
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dynamics, which defines a large-scale dynamical system composed of topologically connected subsystems,
thus, the establishment of equation (2.7) recasts the NDM (2.1-2.2) as an interconnected dynamical system.

By representing cells as vertices in the connected graph G, we can manipulate the geometry of the graph
to investigate parameter regimes of w; and ws producing an edge weight anisotropy, such that we obtain
the desired patterning. Here, we explore a variety of regular periodic (cyclic) fixed lattices 2D and 3D to
generate graphs that are shown in Figure 5. We assume that e; ; # 0 if cell j lies within a circle (or sphere)
of radius p. drawn around cell ¢ where the rest length of the lattice is unitary. The circle (or sphere) can be
viewed as the cell membrane to which the Notch receptors and Delta ligands are anchored. In addition, we

introduce notation for the cell-type ratio for each cell, which is defined as,

_ # of adjacent cells of the same cell-type ny

R (2.8)

T 4 of adjacent cells of a different cell-type  ny’

due to the symmetry of the domains (regular undirected graphs), R, is homogeneous for all cells in the system.
We chose three representative lattice structures in this study: (1) grid, (2) triangulated and (3) overlapped
grid, to characterise the quasi-steady cellular configurations that may occur during the development mammary
organoids. We then increase the connectivity radius, p., to obtain different neighbourhoods around each cell.

For example, when considering a unitary grid lattice, we examine two common cellular neighbourhoods
used within the field of Cellular Automata [26]. That is, taking p. = 1 yields a Von Neumann neighbourhood,
which is defined by a central node, surrounded by 4 other nodes in the north, east, south and west directions
(Figure 6a) [27]. Whereas increasing the connectivity spheres radius such that p. = v/2, we obtain a Moore
neighbourhood, that includes the diagonal nodes missing from the Von Neumann neighbourhood (Figure 6b)
[27].

Tllustrations of the various 2D and 3D bilayer geometries used considered in both analytical and numerical
investigations for laminar pattern formation in mammary organoids is given in Figure 5 with a summary of

the graph properties given in Table 1.

Lattice type Connectivity radius, p. | Cellular connectivity, N. | Cell-type ratio, R
2D Von Neumann (2DVN) 1 3 2
2D Triangulated (2DT) 1 4 1
2D Moore (2DM) V2 5 2/3
3D Von Neumann (3DVM) 1 5 4
3D Overlapped (3DO1) 1 8 1
3D Triangulated (3DT) 1 9 2
3D Overlapped (3D0O2) V2 12 2
3D Moore (3DM) V2 13 8/5

TABLE 1. A summary of the lattice geometries in 2D and 3D that can be found in Figure 5
outlining the cellular neighbourhoods.
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F1GURE 5. Connectivity diagrams of the bilayer mammary organoid. Basal cells are shaded
blue and luminal cells are shaded orange. (a) Representative diagrams of 2D geometries
studied, solid black lines correspond to cellular connections. (b) Schematics of 3D lattices,
grey lines correspond to connections between luminal cells, black lines are connections
between basal cells and purple lines represent connections between the layers.

In this section, we recast the classical NDM (2.1-2.2) into an interconnected dynamical system using cell-
type dependent weighted graphs and outlined the specific edge structures we consider in our computations.
This enables the analysis of cellular connectivity structure coupled to the intracellular kinetics in large-scale

systems, providing a general approach to intercellular interactions. In the following section, we discuss
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FIGURE 6. A diagram of the cellular neighbourhoods defined by (a) Von Neumann and (b)
Moore on an unitary static grid lattice.

methods of reducing the size of the large-scale systems, while preserving the connectivity structure of the

graphs.

2.3. Graph partitioning for large-scale system dimension reduction.

This study applies the pattern analysis framework of Ferreira et al. (2013) to edge weight anisotropic bilayer
graphs. Specifically, in [18] the symmetries of the cellular connectivity graph G = G(V, E) were used to develop
analytical conditions for the existence and stability of inhomogeneous steady states in lateral-inhibition ODE
models independent of the precise tissue geometry. These methods were employed by considering contrasting
pattern states of cells as partitions of the graph which can be viewed as a pre-defined pattern template. A
graph partition 7 is the grouping of vertices v € V into the sets P, C V such that the subsets P; are disjoint
[28]. For example, each cell in G, represented by a vertex v € V, can be collected into a set that converges to
the same biochemical state, thus producing subsets of V' defining the graph partition 7 (Figure 7a). Using
graph partitions, we define two additional properties that are key for the analysis conducted in [17, 18] for
pattern analysis in large-scale interconnected systems.

Equitable partitions are those that preserve the underlying structure of a graph G by using the regularity
(symmetries) of the edge structure such that all vertices v; € P; have the same number of edges with identical
weights. Thereby selecting representative cells from each subset P; we generate a quotient graph that has
the potential to reduce the number of vertices in the graph whilst retaining the topology of the original
connectivity. Figure 7a illustrates the reduction of a cell-type stratified bilayer regular graph to a quotient

graph of only two representative vertices.

Definition 2.1 (Equitable partitions and quotient graphs [29]). Let G = G (V, E) be a graph with adjacency

matric W. Consider a partition of m of G that allocates each vertex v € V into one of the sets Py, ..., Py.
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The partition T is said to be equitable if there exists W;; for alli,j € {1,...,k} such that

Z Wyy = Wyj Yu € P, (29)
vEP;

where w;; are the elements of W. Moreover, the graph of a single representative vertex from each partition

Py, ..., Py constructed from the reduced adjacency matriz [w;;] = W is called the quotient graph and is denoted

by G/m = G,.
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FIGURE 7. Graph partitioning, symmetry reduction and example graphs. (a) A diagram
representing the partitioning and symmetry reduction process for a bilayer structure of two
subpopulations representing a mammary organoid, see Section 2.2. The graph defining the
bilayer is partitioned into layers, such that basal cells lie in the partition Pp and luminal
cells lie in the partition Pr. By exploiting the symmetries of edge connectivity, a reduction
of vertices is made to consider only representative cells from each partition, Pg and Py,
generating a quotient graph. (b) An example graph with the equitable partitions property.
The partitions are highlighted using colours, the diagram highlights that the blue node always
has three connected orange nodes, and any orange node has only one blue node connected.
(¢) An example graph with the bipartite property. The full graph consisting of both blue
and orange nodes can be decomposed into two disjoint sets of vertices highlighted by the
shaded regions.

Intuitively if 7 is an equitable partition of G, then the edge structure, namely, the number of edges and
associated edge weights are identical independent of the choice of vertices in the same set P;. An example
of an equitable partition m with two vertex sets P; and P; is given in Figure 7b. Furthermore, we introduce
an additional graph property that is required for monotone system transformations that are discussed in the

following section.

Definition 2.2 (Bipartite graphs [28]). A graph G is said to be bipartite if G can be constructed by the union

of two disjoint sets of vertices such that no vertices within the same set are connected.
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Figure 7c depicts an example of a bipartite graph. The bipartite property of a graph G need not induce
the regular structure as is the case of an equitable partition however it can limit the types of connectivity
possible, which may detract from the biological relevance of the connectivity graphs in large-scale systems
as discussed in [17]. Although, it has been shown that the bipartite property of the quotient graph is not a
restriction in the case of two distinct subpopulations [18].

To apply the results of [18] to the bilayer tissue geometries that we consider in this study, we make the

following assumptions on the connectivity graphs:

(A1) There exists an equitable partition 7o of the graph G that groups the vertices into two sets P; and
Py;

(A2) The quotient graph G, is bipartite omitting self-loops.

The 2D and 3D bilayer structures outlined in Section 2.2 conform to (Al) and (A2) as we assume each
layer of the N -regular graph is constructed from cells of the same type, for example see Figures 5 and 7a.
Critically, Ferreira et al. (2013) use (Al) and (A2) to develop methods of pattern templating, namely, using
quotient graphs to generate a pre-defined pattern structure for contrasting states of representative cells [18].
Specifically, the dimension reduction from the equitable partition 7 acts on the scaled weighted adjacency
matrix Wy = (1/N,, )W as constructed in Section 2.2 such that for two representative cells in the bilayer

system, the scaled reduced adjacency matrix has the form

ni1wi n2wWa

a7 niwi+nz2ws niwi+nz2ws
W, = , (2.10)
Mn2W2 1 W1
niwi+nawsz niwi+nowso

following from the connectivity symmetry of G induced from the regular edge structure.

Informally, the reduced scaled adjacency matrix (2.10) represents the connectivity of the partitions as
proportional values between representative cells from each partition, where we consider each partition to
contain a single cell type (Figure 7a). Substituting the quotient graph for cellular connectivity into the
interconnected dynamical system constructed in sections 2.1 and 2.2 generates a quotient dynamical system
which is more amenable to deriving analytic bounds on signal polarity for laminar pattern formation.

We have shown that the large-scale interconnected ODE systems can be reduced to smaller, analytically
tractable quotient systems for bilayer regular structures of two distinct subpopulations. In the following
section, we further discuss interconnected systems in generality and existing results that leverage properties
of the intracellular kinetics and their associated connectivity graphs to isolate the spatial and temporal

influence on pattern convergence.
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2.4. Monotone interconnected dynamical systems.

The interconnected lateral-inhibition model constructed in sections 2.1 and 2.2 can be generalised to form
single-input-single-output system (SISO), a common representation of interconnected ODEs in control theory
with a single state variable connecting the respective subsystems [30]. Formally, the SISO of a lateral feedback

model has the form, for each cell i € {1,.... N'},

x; = f(zi,ui), (2.11)

yi = h(x;), (212)

where x; € X is a vector of reactants (e.g. Notch and Delta), u; € U is the input value to each cell, determined
by the discrete spatial operator (-) and y; € Y is the output of cell ¢ to its connected neighbours. Namely, for
u = [ug,...,un]’ and y = [y, ..., yn]%, we have that u = Wiy . The function f : X x U — X defines the
nonlinear dynamics of the feedback model, and h : X — Y is the function defining the relationship between
the intracellular kinetics and the output signals of the cell. Tt is assumed that both f and A are continuously
differentiable. A diagram of cell-cell lateral-inhibition interactions from the perspective of a SISO system are
given in Figure 8.

For example, for the lateral-inhibition model defined by the NDM (2.1-2.2), we have that x; = [N, Di]T,
where the internal kinetics are of the form,

f ([NuDi]T 7%) _ f (i) = p N (2.13)
g (Ni) = p2 D,

for f(-) and g () the increasing and decreasing functions as defined in Section 2.1. The output signal of each
cell is the current Delta value y; = h ([NZ—, DZ-}T) = D,;, and thus the input signal of cell 7 is determined by
the connectivity structure of G such that u; = (WyD),. As we consider the input signals u; to be composed
of only a linear combination of output signals y; from other cells, the interconnected system defined by the
NDM (2.1-2.2) is closed-loop with no external stimuli.

In order to summarise the internal dynamics of each cell, we introduce the characteristic transfer function

T :U — Y, which defines the input to output signal transfer of the dynamical system for each cell,
T():=h(S()), (2.14)

where S : U — X maps the information from connected cells to the intracellular dynamical system (2.11).
Namely, the function S (+) is the solution to the intracellular dynamical system (2.11) for input signal u € U.

As we consider the transfer function to emulate the cellular response to receptor activation, it is assumed that
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U; = Zwi,jyj Yi = h (xz)
i~j

FIGURE 8. A signal flow diagram for a single cell in a SISO interconnected lateral-inhibition
system. The scalar input signal u; is the determined by the output signals of the connected
cells to cell ¢ via the connectivity graph G, namely, i ~ j if cell 4 and cell j are in contact,
where each output signal strength y; is mediated by the edge weight w; ;. The input signal
u; then stimulates a response from cell ¢ which is determined by the intracellular dynamical
system &; = f (@, u;). The resultant changes to the state variables @; update the output
signals of the cell y; thereby influencing the behaviour of those cells connected to cell <.

T (u;) is positive and bounded, and characteristically, T (u;) is a decreasing function for lateral-inhibition and
increasing for lateral-induction [17]. For the nonlinear dynamics required to produce patterning via lateral-
inhibition mechanisms [31], the characteristic transfer function, T (u;), is generally algebraically intractable
as it is constructed by the composition of nonlinear functions that define the intracellular kinetics [17].
Although directly intractable, we can use the standard method of linearisation to gain insights into the
behaviour of the transfer function (2.14). We do not present the derivation here (see [17] for details) but it

can be shown that the derivative of the transfer function (2.14) can be linearly approximated by

on\ (0f\ "' [of _
T (u)=—{=—| (== = =-CA'B. 2.15
Namely, the components A, B and C form the linearised SISO system
x; = Ax; + Bu;, (2.16)
yi = Ca, (2.17)

near points of interest in the input, output and internal spaces U, Y and X respectively such that the

linearised components are evaluated with respect to a given input us by

4= (5 )| o, 27 G, o ()
ox e=S(u.) ou w=S(u.) ox

A key property of SISO lateral-inhibition models is monotonicity of the transfer function 7" (u;). Monotone

(2.18)

=S (us) .

interconnected systems preserve the order of trajectories within respective nonempty subsets of Banach spaces
[32]. Namely, if ¢ (x*,t) = ¢ (x*), is the solution to a monotone dynamical system for initial condition x*,

then ¢y (x1) < ¢y (z2) for all 1 < x2 and ¢ € (0, 00]. However to formerly define such ordering of solutions
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for interconnected systems, we first need to introduce the spaces that the input, output and internal kinetics
lie in, known as trajectory spaces.
The trajectory spaces, K C R”, we consider are generalisations of orthants in Euclidean space and have

the following properties:

(1) K is a cone, that is, ak € K for all @ € R>g and k € K.

(2) K is convex, for any a, 8 € R>o and ky, ks € K then ak; + Bk € K.

(3) K is pointed, namely, {0} € K.
An example the above properties of the trajectory space is shown in Figure 9. The systems we consider
represent intracellular protein activation an thus always lie in the positive orthant (i.e. @;,u;,y; > 0) which
conforms to the properties of the pointed, convex cone, K. However, the positivity of these cones may alter
following a coordinate transformation thus requiring the general definition stated above. Given a cone K,
we define partial ordering of elements via “<” such that for x,& € K, then * < & means that € —x € K
[17]. The trajectory spaces of the interconnected system (2.11-2.12) X,U and Y, can be defined as cones
KX, KY and KY as they are closed and bounded vector spaces of R™ [32]. The monotonicity of SISO systems

(2.11-2.12) is defined as follows.

Definition 2.3 (Monotone SISO interconnected systems [32]). Given the cones KV, KY KX for the input,
output and state spaces, respectively, the input-output ODE model &; = f(x,u;), y; = h(x;) is said to be
monotone if £;(0) = &;(0) and u;(t) < @;(t) for allt > 0 imply that the resulting solutions satisfy x;(t) < &;(t)

for all t > 0, and the output map is such that x; < &; implies h(x;) < h(&;).

It has previously been shown that the interconnected system defined by the NDM (2.1-2.2) is monotone
with respect to the cones KV = R, K¥ = R¢g and KX = {x € R? : 2; > 0,22 < 0} [17]. These cones
outline the characteristic behaviour of the lateral-inhibition mechanism such that if the input signals of Delta
from adjacent cells are monotonically increasing, we expect the output signal of Delta in the central cell to
be monotonically decreasing.

The monotonicity of SISO systems (2.11-2.12) have previously been used to investigate the stability of
component-wise steady states in biological contexts [17, 18, 32]. Namely, monotone interconnected systems
yield predictable behaviour via the trajectory cones and thus the geometry of the cellular domain can be
manipulated using the connectivity graph G to achieve the desired states for the cells.

In control theory, the stability of SISO systems (2.11-2.12) can be assessed by analysing the transition
of inputs and output between components of the connected system. A particular measure of a connected
system is the Lo-gain, which is a nonnegative quantity that describes the response of a system to an input.

We first provide a general definition of a £,-gain.
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A
z

Vi

FIGURE 9. An example of a pointed, convex cone K in Euclidean space, where K = {x €

R3 : & = a1vy +aavae +azvs Va; € Rso}.
Definition 2.4 (£,-gain of a SISO system [33]). The L,-gain, ¢;, > 0, of a SISO system (2.11-2.12) is
defined by

Gi,p = SUP <”y(t)|”> (2.19)

r<t \ui(®)]lp
for all y; and u; #0 fori=1,....N, and t > 0 denotes the truncation of the Hilbert spaces for the input and

outputs of the system, L, (U) and L, (Y'), respectively.

The L,-gain, g¢;p, is the maximal ratio of output to input over a specified region of time for the output
and input domains defined generally by Hilbert spaces. In the biological systems we consider, all functions
are smooth, continuous and differentiable and thus satisfy these general conditions. However, the £,-gains
of a interconnected system require analytic forms of inputs, u;(t), and outputs, y; (¢) for each cell which are
not obtainable in large-scale nonlinear systems. Although, for monotone systems such that the output map

h(x) >0 for all z € X, we have that the L5-gains of a nonlinear SISO system can be approximated by
gi2=|—CA'B| =T (u}) | (2.20)

for the linearisation of the SISO system about the steady input state, u}, as derived previously (see [34] for
derivation). Critically, the output signals we consider in the biological systems represent protein activation
and thus are nonnegative, i.e. we have that h(x) > 0 for all * € X is always satisfied. Therefore, by
demonstrating a nonlinear SISO system is monotone, we have a convenient procedure to compute the Lo-
gains for each cell in order to measure the output signal response to input perturbations, providing a control
measure of cell state stability. For the remainder of the study, we consider only the Ls-gains for each cell as

this is the standard norm for the Euclidean vector spaces, therefore we set g;2 = ¢;.
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The Ly-gains of interconnected SISO systems are particularly useful for understanding the stability of
the feedback between the connected components. The Small Gain theorem yields a sufficient bound on two

interconnected components for the global stability of feedback.

Theorem 2.1 (Small Gain theorem [33]). For all bounded inputs, a SISO system (2.11-2.12) of two interconnected

cells c1 and co, in a closed-loop are locally asymptotically stable if c1 and co are independently stable and
qQqe <1, (221)

where q1 and g2 are the Lo-gains of ¢1 and ca, respectively.

In terms of multicellular systems we consider, Theorem 2.1 states that given that intracellular kinetics are
not self-exciting in isolation, i.e. A is stable, then the interconnection of these two cells remain globally stable
provided their respective gains (transfer function dynamics, 7" (u;)) are suitably bounded. The application
of an equitable partition m to generate a quotient graph G, consisting of only two representative cells allows
for the use of Theorem (2.1) in the quotient interconnected systems representing cell-type stratified bilayer
geometries that we consider in this study.

We now present the results previously derived in [18] that generate and maintain binary patterns in large-
scale interconnected SISO systems using the monotonicity of the lateral-inhibition mechanisms and regularity
of the cellular connectivity structures via equitable partitions. The first result we consider provides a simple
condition for the instability of the homogeneous steady state of the quotient interconnected SISO system.
Critically, provided the SISO system (2.11-2.12) is monotone with a bounded transfer function, the instability
of the homogeneous steady state yields the convergence to contrasting fixed states for each representative

cell.

Theorem 2.2 ([18]). Let m be an equitable partition of G such that (A2) is satisfied. Let \, the smallest
eigenvalue of reduced quotient matriz associated with G.. If the output characteristic function, T (u;), s

positive, bounded and decreasing, and if for the homogeneous input steady state, u*, we have
T (u*) |\ < —1, (2.22)
then there exists heterogemneous steady states in the representative vertices of Gy .

The second result derived in [18] that we consider defines conditions for the stability of heterogeneous
steady states via Lo-gains of the representative cells within the quotient system. By exploiting the regularity
of the large-scale connectivity graph, and therefore assuming each cell within the same partition behaves

identically, the Lo-gains for those cells will also be identical. Let Q = diag{qi, ..., qx } represent the L,-gains
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from each representative cell in each patterning partition P, ..., P;. In addition, if A is a square matrix with

the set of eigenvalues o (A), then the spectral radius of A is defined by
p(A) =max{|\|: A € 0 (A)}. (2.23)

Using the spectral properties of the connected graph defined by the cellular domain, the stability criterion

for the heterogeneous steady states is stated as follows.

Theorem 2.3 ([18]). Consider the quotient system as defined in Theorem 2.2. The steady state pattern

defined by heterogeneous steady states are locally asymptotically stable if
p(VMQ) <1, (224)

where M is a reduced quotient adjacency matriz that satisfies (A1) and (A2), and p(-) represents the spectral

radius.

The application of Theorem 2.2 and Theorem 2.3 to the signal anisotropic bilayer geometries defined in
sections 2.2 and 2.3 allow us to derive conditions for the amount of signal polarisation for a given connectivity

structure that required to generate and maintain laminar patterns using lateral-inhibition kinetics.

3. EXISTENCE AND STABILITY OF LAMINAR PATTERN FORMATION IN QUOTIENT SISO SYSTEMS

In this section we derive conditions on the cell-type signal weights w; and ws of the connectivity graphs
constructed in sections 2.2 and 2.3 that yield the existence and stability of heterogeneous states in quotient
bilayer systems. Specifically, by leveraging the monotone properties of the quotient SISO systems, we
significantly reduce the complexity involved in juxtacrine pattern analysis in multicellular systems to investigate

the role of anisotropic cellular connectivity in cell state stratification.

3.1. Conditions on cell-type signal strength for the existence of bilayer laminar patterns.

We apply Theorem 2.2 to the reduced geometry of a bilayer periodic lattice described in Section 2.3. The
following result yields a distinct monotonic relationship between homotypic and heterotypic signal weights
when we consider the vertex sets P; and P; of G to contain basal and luminal cells, respectively, as shown in

Figure 7a.

Theorem 3.1. Let G be an undirected, connected graph that satisfies (A1) and (A2) where the quotient
graph G, has the associated reduced scaled adjacency matriz as defined in (2.10). Consider T (-) the transfer

function of a lateral-inhibition SISO system (2.11-2.12) such that T (-) is positive, bounded and decreasing.
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Then there exists heterogeneous steady states between partitions Py and Py if

T/ (w)| = 1Y ws
o () .

provided that niw, < nows.

Proof. The result follows directly from the application Theorem 2.2 to the regular bilayer structures with
layer stratified cells-types that define the sets P; and P,. Specifically, we consider the general quotient
reduced matrix W as defined in (2.10) and seek the smallest eigenvalue. By directed computation we have
that

_— nNq1wi; — NaW2
Wo)=< A =1 )= ——~ =24 3.2
7 ( O) { ! 2 niwi + Naws } (32)

As Ay < A1 independent of the bilayer geometry, and, we have Ay < 0 from the assumption that njw; <
ngwy then Ay = A, in Theorem 2.2. Applying Theorem 2.2 to the bilayer geometry, we substitute Ay into

inequality (2.22) as follows

T ()] ("””1”2“’2) <1, (3.3)

n1wi + Nawa

which can be rearranged to yield inequality (3.1). O

Inequality (3.1) bounds the cell-type dependent signal strength and highlights the influence of cellular
connectivity on pattern formation via the R,. For example, as we increase the number of connected cells
within the same partition (n) then we require greater amounts of signal polarisation (edge weight anisotropy)

directed towards those cells within the other partition to induce laminar patterns, i.e. w; must decrease.

3.2. Conditions on cell-type signal strength for the stability of bilayer laminar patterns.

By applying Theorem 2.3 to the geometry of the general quotient representation of the bilayer of cells
(2.10) yields the following restriction on the homotypic and heterotypic signal strength parameters, w; and
wa, for the stability of the heterogeneous states that are produced by Theorem 3.1. Namely, the following
statement provides sufficient signal polarisation conditions for the maintenance of laminar pattern formation

between static cells in each partition P; and Ps.

Theorem 3.2. Let G be an undirected, connected graph that satisfies (A1) and (A2) where the quotient
graph G has the associated reduced scaled adjacency matriz as defined in (2.10). Consider the Lo-gains of
the representative cells, g1 and g from the partitions Py and Py associated with the heterogeneous steady

states ®1 and x2, Tespectively. Then if any of the following gain relations hold:

(i) 1 +q2 <2
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(i) 1 +q2>2 and w1<(ql+7§2_2>%

then the local asymptotic stability of the heterogeneous steady states ®1 and xo is guaranteed if

niwiy
_ +qgo—2 <1l-— 3.4
PN (1 + a2 — 2q192) 7142 (3.4)

is satisfied. Moreover if 1 > 1 and qa < 1, or vice versa, then the laminar pattern stability criterion (3.4)

has the form

1-qe ) w2
wy < —. 3.5
! <(I1+(I2—(I1Q2—1 R, (3:5)

Proof. Consider the reduced scaled weighted adjacency matrix W (2.10) associated with the cell-type
partitioned quotient graph G,. Let a = njw; /N, and b = naws/N,, and therefore we have,

W. 0 = aqi (1-a)g ’ (3.6)

(1-a)q aqz
where b = (1 — a) due to the row stochastic property of the reduced adjacency matrix Wy. The matrix
W Q is nonnegative as each entry is product of nonnegative values. By the Perron-Frobenius theorem
[35], p (Wg@) is an eigenvalue of Wy Q, which is real due to the positivity of the matrix. Solving for the

eigenvalues of Wy Q yields

(gt Ve @@’ 400 -0

p(WoQ) = 5 + 5 , (3.7)

and so by applying Theorem 2.3 to the spectral radius (3.7), we ensure for the local asymptotic stability of
the heterogeneous states associated with ¢; and go. If the necessary conditions (i) or (ii) for pattern stability

are satisfied, then we have that

\/02 (1 —q2)” +4(1— a)?q1q2 < 2 — a(q1 + 2) (3.8)

is well-defined as the left most term of inequality (3.8) must be real and positive by the Perron—Frobenius
theorem. Namely, Theorem 2.3 can only be satisfied provided the conditions (i) or (ii) hold. Subsequently,
both sides of inequality (3.8) are positive and therefore squaring both sides perseveres the inequality, which

can be expanded and rearranged as follows
q1q2 ((1 —a)? - a2) +a(gr+q)<1 (3.9)

which yields inequality (3.4) from further rearrangement.
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In the case where ¢; > 1 and ¢ < 1 (or ¢1 < 1 and g2 > 1), then (¢1 — 1) (g2 — 1) < 0. Moreover, this
implies that

q1+q2 > 1+ quqo. (3.10)

after expansion. In addition, inequality (3.9) can be arranged to following form

niwy (1 +q2 — q1g2 — 1) < (1 — q1q2) nows. (3.11)

Therefore by inequality (3.10) the left most terms of inequality (3.11) are positive and so division of inequality
(3.11) by (¢1 + g2 — q1g2 — 1) preserves direction of the inequality, producing the pattern stability criterion

explicitly in terms of signal weights w; and ws. U

Corollary 3.1. If the homogeneous steady state u* of a monotone SISO system (2.11-2.12) yields |T" (u*) | >

3, then the gain relation (i) in Theorem 3.2 is always satisfied.

Proof. Without loss of generality, we have that g2 < |T” (u*)| < ¢1 as the contrasting input states u; and
ug will diverge from u* in opposing directions by the monotonicity of the SISO reduced system [18]. From
inequality (3.1) we know that 1 < ¢; must hold as w; € R>o, that is |T” (u*) | > 1 is required for the existence
of laminar patterns. Therefore, if we assume that the homogeneous steady state of the monotone SISO
system (2.11-2.12) is unstable, producing contrasting states in the representative cells, then inequality (3.1)
is satisfied. Comparing the pattern existence inequality (3.1) and the necessary condition (ii) for pattern

stability, we have that inequalityitem (ii) holds when

1 2 T (u*)| -1
< Pl (3.12)
-1 a+qe-2 [T (w)[+1
where the left-most term follows from g2 < ¢;. Rearranging inequality (3.12) yields
21T (u") |
B Ll SRR 3.13
-1 < 19

then applying our assumption |T” (u*) | < ¢1, inequality (3.13) can be satified by solving the more restrictive

bound
2/T" (u”) | :
— < |T" (u* 3.14
which has the minimum value of |T” (u*) | = 3. Moreover, this implies that ¢; > 3 which immediately satisfies

q1 + g2 > 2, and therefore condition (ii) holds. O

Inequality (3.4) outlines the relationship between cellular connectivity (n1,n2) and signal protein feedback
(w1, wsz) that is required to be balanced to ensure the maintenance of pattern formation in bilayer static

geometries. However, we note that the Lo-gains are dependent on the geometry, as they are a function
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of the input value defined by the discrete spatial operator (-), see Definition 2.4. Thus, inequality (3.4)
cannot determine explicit conditions for the relationship between geometry and feedback model, as in the
existence inequality (3.1). However, provided the £o-gains of the representative cells satifsfy the appropriated
conditions outlined in Theorem 3.2, inequalities (3.1) and (3.5) are in a directly comparable form with respect
to signal transfer dynamics.

In addition, inequality (3.9) and therefore inequality (3.5) describes a relaxation of the Small Gain theorem
for closed-loop system, commonly used in control theory applications [36]. To demonstrate this relaxation
of the Small Gain a theorem, w.l.o.g. assume that g2 < ¢1, as we expect the partitions P; and P, of G to

obtain contrasting solution states. In this case, inequality (3.9) is bounded from above by setting g2 = ¢,

q1g2 (1 = 2a) +a(q +q2) < q1 ((1 — 2a) g1 + 2a), (3.15)
where a = njw; /N, as in Theorem 3.2 and noting that (1 — 2a) > 0 from Theorem 3.1. Therefore if
q1 ((1 - 2&) q1 + 2@) <1 (316)

holds, then inequality (3.9) must also be satisfied. The positive parabola defined by inequality (3.16) has
roots g1+ =1 and ¢;,— = 2a — 1 < 0. Namely, if ¢; < 1 then the dynamical system is locally asymptotically
stable. Moreover, if ¢; < 1 then ¢ < 1, which implies g1q2 < 1, thus satisfying the Small Gain theorem
(Theorem 2.1). As a special case of Theorem 3.2, if each cell in the cellular domain has no adjacent cell of the
same type, namely n; = 0, then inequality (3.9) is equivalent to the Small Gain theorem, as demonstrated
previously for checkerboard patterns using lateral-inhibition models (Figure 2) [18], highlighting applicability
of the general form of cellular connectivity define in Section 2.3 to control mechanisms of lateral-inhibition

systems.

4. APPLICATION: NOTCH-DELTA LAMINAR PATTERN FORMATION IN MAMMARY ORGANOIDS

To illustrate the results of Section 3, we use the Notch-Delta lateral-inhibition model outlined in Section 2.1
that was recast as an interconnected dynamical system in sections 2.2 - 2.4. Namely, we seek cell-cell signal
polarity conditions between luminal and basal cells in the mammary organoid to achieve the experimentally
observed laminar pattern formation of Notch in a bilayer of cells (Figure 3b-3d). Specifically, we use the
laminar pattern existence and stability signal strength bounds derived in Section 3 to isolate regions of w;
and wo that facilitate the aforementioned Notch patterns in quotient systems representing the family of static
regular graphs described in Section 2.2. Furthermore, we validate the analytic regions of w; and ws using

fixed lattice large-scale simulations for each graph (see Appendix A simulation methods). Furthermore, we
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then investigate the applicability of our static domain analytical results to dynamic cellular domains using

cell-based modelling in 2D and 3D (see Appendix B for a description of the cell-based model methods).

4.1. Cell-type dependent signal anisotropy regions using a Notch-Delta lateral-inhibition model
in static bilayer domains.
We consider the bilayer cellular domain described by the regular graph G to be partitioned by cell-type.
Namely, let m be an equitable partition of G such that all basal cells are allocated in P, = Pg and luminal
cells allocated in P, = Pj, as in Figure 7a. To apply both Theorem 3.1 and Theorem 3.2 to define signal
strength parameter regimes for laminar patterning (Figure 11a), we first explicitly recast the spatially discrete
ODE (2.1-2.2) in the form of a quotient SISO system (2.11-2.12). Let x; = [N;, D;]7 denote the vector of
state variables of the system, where ¢ designates cellular identity. Then the input to each cell is the local
spatial information received via the (-) operator, such that u; = (D;) = WD. Similarly, the output of each
cell is the Delta expression y; = D;. To apply Theorem 3.1 to our biological model, we need to determine the
following: (i) the derivative of the transfer function, T, of the SISO system and (ii) the homogeneous steady
state, *, of the dynamical system.

(i) The derivative of the transfer function can be derived by taking the partial derivative of the SISO system
w.r.t. the inputs and state variables, as shown in equation (2.15). Thus, for NDM (2.1-2.2) as presented as
an interconnected system in Section 2.4,

arul !
0

—HN Y
gj' = { 0 1 } , g:f. = e and aj = | (erad)” | (4.1)
Z B R (e L l 0

Therefore, multiplying the matrices in equation (4.1) and making the substitution NV; = f(u;)/un at steady
state, yields the following,

-1

KN 2
T'(u;) = - [ 0 1 b o1 (a+uy) ,
T (renyy? T HP 0
__abrspy (a+ up)® et . (4.2)

S T s 2

1o (i (@ +uf) + bu®)
(ii) We now solve the NDM (2.1-2.2) for the homogeneous steady state. This problem is reduced to solving
f(x*,D*) =0asuf = Df = D* for all i = 1,..., N in the case of a system of identical cells. Solving the

system (2.1-2.2) for homogeneous steady states means solving the following polynomial for D*,

bup (D*)** + ik (upD* — 1) (a + (D*)')" = 0. (4.3)
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We choose the parameter values a = 0.01, b = 100, uy = pup = 1, s = 1 and r = 2 selected previously
[10], with the only modification of s to simplify calculations for demonstration purposes. To be able to
apply Theorem 3.1, we require that |77(u*)| > 1 because w; > 0. This condition is equivalent to the
requirement derived by direct linear analysis of a single cell as in [10], where they show that the existence of

the homogeneous steady state instability can only occur when
Fu)g (N*) < —1. (4.4)

It can be shown that T"(u*) = f'(u*)g’ (f (v*) /un) /(unpp) for a closed-loop system of two cells [17], then
applying the same parameter groupings and values for puy and pp as in [10] yields the equivalent condition.
Moreover, |T” (u*)]| is a monotone increasing function with respect to r (see Figure 10), hence increasing
the nonlinearity of the ODE system relaxes the restrictions on w; for the existence of pattern emergence
imposed by Theorem 3.1, therefore emphasising the relationship between the connectivity of the cells and
the characteristics of the intracellular ODE system.

Solving the cubic polynomial (4.3) when r = 2 yields a homogeneous steady state D* = 0.049, therefore,
we have both (i) and (ii). Applying Theorem 3.1 to the NDM system (2.1-2.2) using equation (4.2) and D*
yields the following bound on signal strength parameters,

w
wy < aR—i, (4.5)

for a = 0.21, which defines a strict (wy, ws) parameter space for the emergence of laminar patterning between
layers (region below black line in Figure 11b).

As we have found the necessary bound on w; for pattern formation, we now seek to use Theorem 3.2
to impose a sufficient bound on w; to ensure laminar pattern stability. To apply Theorem 3.2, we require
the Ls-gains for each representative cell at steady state gp and ¢qp from Pp and Pp, respectively. By
the monotonicity of the NDM system (2.1-2.2) with respect to the cones KUV = Rsg, K¥Y = —KY and
KX = {z € R?|z; > 0,25 < 0} [17], we are able to use the steady state relation (2.20). To determine the

Lo-gains, we solve for the heterogeneous steady states xp and xy, with associated input steady states

nlwlDB + n2w2DL and nlwlDL + n2w2DB
11 uy, =
N, N, ’

then using equation (4.2), ¢gg = |T" (up)| and qr, = |T” (ur) |. For each static geometry outlined in Table 1,
a parameter sweep of the signal strength parameter space (wy,ws) was conducted to highlight regions that

satisfy the conditions (i) or (ii) and inequality (3.4) from Theorem 3.2, where the heterogeneous steady
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FIGURE 10. Monotonicity |7”(u*)| with respect to r. Parameter values were chosen as
parameter values a = 0.01, b = 100, uy = up = 1 and s = 1. For each r, the homogeneous
steady state was solved using equation (4.3). The shaded region represents the values of r
that satisfies |T”(u*)| > 1, which is required for the instability of the homogeneous steady
state in Theorem 3.1, highlighting a lower bound of ry;, = 1.5.

states @ and @, were numerically solved (see Appendix A). The resulting stability regions in the (wq, ws)-
space (red shaded regions in Figure 11b) have the same linear form as the analytical existence bound (4.5).
Therefore, assuming the same form of relationship between wy, we and R., a ubiquitous gradient parameter
B was extracted from each static lattice parameter sweep. That is, to ensure the local asymptotic stability
of the laminar bilayer patterns (Figure 11a) in both 2D and 3D,

wy < ﬂ% (4.7)

T

must be satisfied, for 8 = 0.04. We have provided an improvement on equation (4.5) from necessary to
sufficient for laminar pattern formation using the NDM system (2.1-2.2), nevertheless, this defines a highly
restrictive parameter bound on w; for the given intracellular kinetics parameters, implying that almost all
cell-cell signals must be directed towards cells of a different type, emphasising the requirement of apical-basal
layer contact.

Finally, using static lattice simulations for each of 2D and 3D geometries described in Table 1 (see
Appendix A) we conducted a parameter sweep over the (w,ws)-space to verify the necessary bound of
inequality (4.5) and the sufficient bound of inequality (4.7). Namely, the NDM system (2.1-2.2) was
numerically solved for each of the connectivity graphs and allowed to converge to steady-state thereby the
difference in Notch activation was measured between the layers of cells to verify the existence of laminar
patterns. The parameter regions that exhibited the layered patterning using a pattern tolerance of 6 = 0.1 (see

Appendix A) were consistent with the analytical inequalities (4.5) and (4.7), as demonstrated in Figure 11b by
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the blue-shaded regions. Furthermore, the regions defining the observed patterns from numerical simulations
had the same linear upper bound for w; as a function of wy for all 2D and 3D geometries. Therefore, as
conducted for the stability inequality (4.7), we extracted a ubiquitous gradient parameter . Namely, laminar

patterning in a bilayer of cells can be observed if w; satisfies,

wy < 7% (4.8)

where v = 0.11. Note that due to the symmetry of the system, that is, each cell has identical internal kinetics
that are spatially coupled by a regular and undirected graph, then to achieve the laminar patterning in the
correct direction, the system required a small perturbation using initial conditions. Moreover, as the pattern
tolerance § — 0 (see Appendix A) then v — «, due to the contrast between the layers becoming weaker, see
Figure 12b. Thus the arbitrary choice of § defines what is considered as acceptable patterning, though we
note that the necessary bound provided by Theorem 3.1 is always satisfied.

As the observed pattern regions lie within the existence bound regions (v < «) and the sufficient stability
bound regions are a subset of the observed pattern regions (8 < «) in (wq,ws)-space (Figure 11b), we
numerically verify the analytical conditions imposed on the signal strength parameters w; and ws by
Theorem 3.1 and Theorem 3.2 using the NDM system (2.1-2.2). In each case, for existence, stability and
numerical observation, there exists a consistent form for the upper bound of the cell-type dependent signal
strength parameter wy, which relates cellular connectivity to signal strength polarisation, via R, independent
of lattice dimension.

In summary, from the analytic and empirical upper bounds on the homotypic signal strength, wq, outlined
above reveal that the lattice geometries with the low R, values require the less active polarisation to generate
and maintain laminar patterns. For example, the 2DM lattice (see Table 1) has lowest neighbourhood cell-
type ratio withR, = 2/3, and therefore has the largest regions in (wj,ws)-space for existence, stability and
observed laminar patterns (Figures 11b and 11c). In contrast, the 3DVN lattice has the largest R, value,
thus producing the smallest patterning regions and thus great amounts of polarisation are needed to produce
laminar patterns (Figure 11b). These findings highlight that laminar pattern formation using a lateral-
inhibition mechanism is highly sensitive neighbourhood composition of the bilayer structure, suggesting that
the contrasting phenotypes of the basal and luminal cells (elongated and cuboidal shapes, respectively)
may play a significant role in pattern maintenance during mammary development. Though the cell-type
composition is an important factor, we found that all 2D and 3D geometries we considered required signal
polarisation to achieve laminar patterning, such that w; < ws (Figure 11b), indicating the existence of a

polarity mechanism within the intracellular system.
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F1GUurRE 11. Cell-type dependent Signal strength polarisation regions for laminar pattern
formation in static bilayer geometries. (a) The left diagram represents the (wy, ws) parameter
space that yields conditions for bilayer laminar patterning. The region above the black line
corresponds to stability of the steady state, where the black line is the upper bound of w;
provided by inequality (3.1) in Theorem 3.1. (Continued on the following page.)
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FIcure 11. (Continued.) The blue line is the upper bound of w; determined from numerical
simulations of the ODE system and the red line is the upper bound for analytical stability of
the heterogeneous steady states provided by inequality (3.4) in Theorem 3.2. Representative
patterns are embedded into the 2D Triangulated lattice. (b) (wi,ws) parameter space
highlighting laminar pattern regions shown in (a) for each static geometry outlined in Table 1
with example simulation results shown in (¢) using the 2DM lattice (highlighted). The
magnified region of (wy,wsy)-space demonstrates the high density of parameter values with
the capacity to produce laminar patterning, denoted by +, which defines the blue observed
regions in all static lattice simulations. Red points represent the parameter values used in
the example simulations on the right. (wq, w2)-space was discretised into 150 x 150 regular
grid lattice for wy € (0,0.25] and wq € (0,1], resulting in 2.25 x 10* simulations per static
geometry. For further details on static simulations, see Appendix A.

The graph partitioning methods applied here highlight the flexibility of the cellular domain in pattern
formation analysis. Specifically, the only information required is the cell-type neighbourhood composition
for any given cells, independent of the physical dimension. Therefore, we propose such a neighbourhood
composition sensing mechanism could be used by cells to maintain the observed pattern formation in
developing systems where connectivity graphs are not regular and independent on time. That is, adaptive

activator ligand membrane localisation is dependent on current neighbours in contact with the cell.

4.2. Adaptive cell-type dependent signal anisotropy mechanisms using a Notch-Delta lateral-
inhibition model in dynamic bilayer domains.
In section 4.1, analytical and numerical bounds on w; were derived for the existence and stability of Notch-
Delta polarisation in static bilayer cell domains. Motivated by the consistency of the laminar patterning of
Notch in the developing mammary gland (see Figure 3), we seek to test if the static bounds derived on w; can
produce the same pattern formation in dynamic domains. In addition, we investigate the efficacy of using a
fixed and adaptive upper bound of w; to ensure laminar pattern stability in bilayers.

We simulate dynamic cellular domains using cell-based modelling such that each cell is represented as
a point in space equipped with a connectivity radius that corresponds to the cell membrane. We say that
cells are connected if their connectivity regions overlap in space, which generates a connectivity graph as
described in Section 2.2. By embedding small amounts of stochastic motion in addition to spring-like
mechanical properties to a bilayer of cells, we generate a time-dependent stochastic connectivity network that
approximates junction transitions in developing tissues. Furthermore, each node is designated a cell type
which allows for the study of cell-type dependent signal edges for stochastic networks when coupled with the
NDM intracellular kinetics (2.1-2.2). As in the static geometry investigation, each cell-based simulation
is initiated with a bilayer of cells with luminal and basal on the inner and outer surface, respectively,
thereby representing the cell structure of the mammary organoid. For further information on the cell-based

simulations and NDM (2.1-2.2) integration, see Appendix B.
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When transitioning to dynamic domains, we cannot always satisfy the equitable property of the cell-type
partitions Pp and Py, in the bilayer connectivity graph due to the absence of regularity. Consequently, the
analytical conditions derived in Section 3 cannot be applied at each timestep of the simulations, instead, we
use the static domain inequalities (4.7-4.8) to gain an intuition for ligand activator polarisation conditions
in dynamic geometries to generate and maintain laminar patterns. In particular, we focus on how a cell
responds to the microenvironment via two cell-type signal strength mechanisms: (i) globally fixed values
of wy; and wy and (ii) a locally adaptive wy for a globally fixed wy. By investigating these two types of
signal strength mechanisms in the dynamic cellular domains, we can measure the influence of varying cellular
connections on pattern stability as the system evolves. Specifically, we determine efficacy of both pattern
control mechanisms by mean difference in Notch activation between each cell-type, AN, and is defined as

1 N 1 N
AN = N, Z(l = Or(i)r(B))Ni — N, 257(@'),7(3)]\7@ (4.9)
i i
where N is the total number of cells, N7, is the number of luminal cells and Ny is the number of basal cells.
The function d,;) »(py is the cell-type Kronecker delta function,
1 if cell ¢ is a basal cell,

Or(i),7(B) = (4.10)
0 if cell ¢ is a luminal cell.

Specifically, AN ~ 1 implies complete laminar patterns of Notch activation, whereas AN = 0 is considered
as no consistent laminar patterns between the layers of cells.

The fized mechanism for wy (case (i)) is used to represent a high inertia of cellular adaptability to the
local environment of the cell, that is, that transmission strengths are defined at birth. Here, the w; is set
to agree with the inequalities (4.7) or (4.8), designated as “Fixed " (Ff) or “Fixed ~” (F7), respectively.
Using the fized mechanism in dynamics simulations, the R, value is defined by the initial connectivity of the
geometry and is constant throughout the simulation.

The adaptive mechanism for w; (case (ii)) is used to represent a low inertia of cellular response to the
microenviroment. That is, for each cell, w; is updated at each timestep to satisfy the observed static
inequality (4.8) by determining R, ;, i.e. the cell-type composition of the neighbourhood for each cell i (see
Appendix B). We denote this signal strength mechanism “Adaptive 77 (A~).

Simulating each signal strength mechanism, F3, F~y, A~ for 100 hours highlighted that conditions defining
laminar pattern regions in static geometrics, inequalities (4.7) and (4.8), allow for the emergence of laminar
patterns in dynamic cell geometries up to small spatial perturbations, Figure 12a. That is, each mechanism

initially (¢ < 50h) produced concentric contrasting layers of Notch expression, however, as the bilayer
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geometry became deformed due to the random perturbations of each cell, the definition between layers was
lost by 100 hours (Figures 12a-12c). Thus, information about cell-type signal polarisation is preserved when
partitions of the connected graph are no longer equitable, however, the retained information is insufficient
for the long-term stability of the Notch states.

In terms of pattern intensity and retention, using the Fixed 8 polarisation mechanism performed the best
(Figure 12a). Though due to the high contrast between layers, the variance in Notch expression quickly
becomes very large once consistent patterning is lost, Figures 12b-12c. The region of (w1, ws)-space, defined
by inequality (4.7), which is sufficient for stability of heterogeneous states between layers of static bilayers is
highly restrictive, such that w; ~ 0 for all 2D and 3D geometries. In the context of the mammary bilayer,
the simulation using Fixed 8 accounts for the situation of no almost Delta ligands are located on the luminal-
luminal and basal-basal interface, again indicating the existence of a Delta inhibition mechanism at these
membranes.

The Fixed + signalling mechanism produced the least contrast of Notch expression between layers initially
and was quick to lose the consistency of expression, therefore performing the worst out of the signal strength
mechanisms (Figures 12b-12c). However, the Adaptive ~ signal strength mechanism yielded the greatest
pattern retention over the total time, highlighted by the lowest variance from AN values Figures 12b-12c.
As Adaptive v allows for wy &~ v (see Figure 12d), this ability of the cell to update signal strength depends
on the local cell-type composition, enables cells to still signal to cells of the same type whilst maintaining
the concentric patterning. This highlights that if homotypic signalling is observed, then cells may be actively
adapting to the microenvironment to stabilise stratification.

Furthermore, using the Adaptive « signal strength mechanism revealed that there are stricter polarisation
conditions in the basal cells than luminal cells while laminar patterning is maintained, for ¢ < 50h (Figures
12a-12¢). Subsequently, by the inverse relationship between the cell-type connectivity and lateral-inhibition
model (Theorem 3.1), the restricted cellular signalling imposed on the basal cells may induce laminar
pattern formation within the luminal cells, whilst allowing for greater luminal-luminal cell communication
(Figure 12d). Moreover, at t ~ 50h, a basal cell was disconnected from the luminal layer, producing a transient
irregularity for w; values (bounded above by inequality (4.5)), and therefore initiating the deterioration of

laminar patterning (Figure 12d.)
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FIGURE 12. 2D dynamic cellular domain simulation results of fixed and adaptive signal
strength polarisation with each simulation using a globally fixed value of wy = 1. (a) Cell-
based simulations of a cross-section of a bilayer spheroid. The simulations were run for 100
hours, initialised with cell-type stratification (see Figure 15), and ODE initial conditions
xp(0) = [0.1,0.2]7 and =1 (0) = [0.2,0.1]7 for basal and luminal cells, respectively. The
colour of each sphere represents the intracellular level of Notch. No noise was introduced to
the ODE systems for Notch and Delta dynamics, the variability in these values presented is
induced from the small spatial perturbations on each cell. (b) Violin plots summarising the
Notch values in (a) over four 25h periods. Shaded regions denote the probability density of
the AN values over each period. The black and red lines are the means and medians of the
AN values, respectively. (c) A plot of the AN value for each signal polarity mechanism over
time. Shaded regions represent standard deviations from the mean Notch expression of each
cell type. (d) An additional output plot for the adaptive signalling mechanism demonstrating
the disparity of w; values for basal and luminal cells over time. Shaded regions represent
standard deviations from the mean w; of each cell type. For further information on the
cell-based model, see Appendix B.

Cell-based simulations investigating the efficacy of the static geometry polarisation conditions in dynamic

domains were initially conducted on 2D cross-sections of bilayer spheroids. Analysis conducted on static
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geometries suggested that the signal strength conditions on w; are independent of the physical dimension.
We show in Figures 13a-13b that simulations of 3D spheroids are in agreement with 2D cross-sections, namely,
that both the fized and adaptive signalling mechanisms are capable of generating laminar patterning but are
unable to retain the definition of the layers for long periods. Due to the increase of cells in the 3D simulations,
the variance of local connectivities is greater as random motion applied was to each cell at every timestep (see
Appendix B). Consequently, the time at which consistent laminar patterning is lost much earlier at ¢ ~ 20h

(Figure 13b) when using the same parameter values as in the 2D simulations.
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Ficure 13. 3D cell-based simulation of a bilayer spheroid representing a developing
mammary organoid using examples of the adaptive and fized signal strength mechanisms.
(a) The simulations were run for 100 hours, initialised with cell-type stratification (see
Figure 15b), and ODE initial conditions z(0) = [0.1,0.2]7 and 1 (0) = [0.2,0.1]7. The
colour of each sphere represents the intracellular level of Notch. Only half of the spheroids
are visualised to show the dynamics of the internal luminal cells. (b) A plot of the AN
value for both Fixed « and Adaptive v signal polarity mechanisms over time for the 3D
simulations. Shaded regions represent standard deviations from the mean Notch expression

of each cell-type.

We note that initial spatial conditions are not identical as in the 2D simulations as currently there exists
no solution to map equidistant points that cover the surface of a sphere [37]. We instead use the Fibonacci

spiral method as an approximate solution, though, this produces clustering of cells at the poles of the sphere
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[38], and so introduces initial artefacts to cellular connectivity in the simulations which is a possible cause of

the reduced time to pattern degradation.

5. DiscussioN

We have developed a framework for investigating cell-type dependent juxtacrine signal strength polarisation
conditions for emergence and stability of laminar patterning in symmetric bilayer structures via lateral-
inhibition. Leveraging previous results of graph partitioning on monolayers, we show how the geometry of
the cellular domain has a large impact on the capacity of the system to produce heterogeneity. Moreover,
using this framework, we replace the algebraically demanding process of linear analysis of large multicellular
systems with an exploitation of the spectral properties of the quotient graphs, therefore addressing the
complexity issue discussed in previous juxtacrine pattern analysis studies [31].

In Section 3, we provide necessary and sufficient conditions for the existence of laminar patterns in a
bilayer of cells. Both existence and stability inequalities (3.1) and (3.4) highlight that increasing connectivity
with opposing cell-types allows for larger existence and stability regions in signal strength (w1, ws)-space. In
the context of a bilayer of cells, as global concavity of the structure increases, luminal cells have a greater
probability to connect with more basal cells, thereby relaxing the existence and stability conditions imposed
by Theorem 3.1 and Theorem 3.2 by decreasing R,. However, this would violate the symmetry between
partitions required to apply both Theorem 3.1 and Theorem 3.2, hence we propose investigating asymmetric
connections between layers of cells may allow for a relationship between global curvature of the cellular
structure and pattern stability. Specifically, allowing the global connectivity graph to be semi-regular such
that each of the basal and luminal subpopulations retain regular edge structure, though these structures may
differ between the partitions. Subsequently, the semi-regular structures conform with the equitable partition
requirement, thus enabling the analytical study of laminar pattern formation with more authentic cell-cell
interactions, i.e. preserving phenotypes and subpopulation sizes.

In addition, as the signal polarisation constraints, inequalities (3.1) and (3.4), are independent of the
lateral-inhibition model, Theorem 3.1 emphasises the influence of connectivity on pattern formation by
requiring cell-type signal strength heterogeneity. Therefore, in cell-type stratified bilayer geometries such
as those seen in Figure 5, cell-type dependent signal strength polarisation is required for the existence of
heterogeneous steady states, which is independent of the precise intracellular kinetics of the Notch pathway
in the mammary organoid. This indicates the critical role of cellular connectivity in juxtacrine systems as
initially highlighted in [12] and thus the geometry of the cellular domain should be carefully considered in

fine-grain pattern analysis.
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By studying a family of 2D and 3D static cellular domains of varying connectivity, we gain insight into the
emergence and stability of concentric layer pattern formation in dynamic domains. Namely, by employing the
bounds on w; derived from the static simulations, we were able to generate the laminar patterns in 2D and 3D
bilayer spheroids when imposing random spatial perturbations on each cell. However, these patterns become
unstable as geometry deformation increases, producing disorganised layers of Notch expression even when
using an adaptive polarisation mechanism (Figure 12 and Figure 13). Therefore, the information obtained
from static domains is insufficient to fully characterise the behaviour of the lateral-inhibition model in a
developing mammary organoid.

In this study we assume that the laminar pattern formation is driven purely by signal strength polarisation
between the layers, thus neglecting the effect of the external environment on the biological system. That is,
we neglect the influence of stroma or extracellular matrix and the importance of the lumen to the luminal
cells in supporting the high contrast of Notch expression in vivo and in wvitro, respectively [22]. Thus,
applying supplementary boundary conditions in dynamic domains in addition to signal polarisation may
achieve laminar patterning, invariant to morphological perturbations.

Furthermore, we note that the parameters chosen for the cell-based simulations were selected to preserve
a bilayer structure while perturbing the neighbourhood composition of each cell. Consequently, in Section
4.2 we highlight the sensitivity of our pattern analysis methods to the mechanical properties of the cells,
specifically in the instance of a bilayer disconnect resulting in sudden dissipation of laminar patterns (Figure
12). As cell-based models were used to demonstrate the limitations of static pattern analysis of developing
systems, more appropriate methods of neighbourhood composition perturbations, such as stochastic edge
structure in fixed vertex networks, should be employed to rigorously analyse the effect of cell-type composition
fluctuations on global pattern convergence and the development of pattern control mechanisms [39].

Applying the analytical polarisation conditions of Theorem 3.1 and Theorem 3.2 to the context of a
mammary organoid using the Collier et al. (1996) NDM we revealed that if patterns are to be experimentally
observed then we require almost no juxtacrine communication between cells within the same layer. A plausible
process to address the polarisation of Notch activators may involve Cadherins [40], which are transmembrane
proteins that mediate cell-cell adhesions. Differential expression of cadherins (E-cadherins are associated with
luminal cells and P-cadherins are associated with the basal cells) are suggested to promote self-organisation
to form bilayer structures in the mammary gland via cellular affinity to homophilic interactions [40]. There is
growing evidence for an inverse relationship between Notch and E-cadherins in biological systems, including
mammary epithelia [41-43]. In addition, it has been verified that E-cadherins located between luminal cells

promote lumen formation during mammary organoid development [44]. Therefore, we propose that there
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exists a Cadherin adhesion-dependent Notch inhibition mechanism that promotes the localisation of Delta

ligands on the luminal-basal interface (Figure 14).

Basal cells Notch Delta  Cadherin junctions

F1GURE 14. Proposed spatial distribution of Notch, Delta and Cadherin junctions within
a developing mammary organoid. Due to the adhesion required to maintain the bilayer
structure with a hollow lumen, tight junctions form, inhibiting the function of the membrane-
bound Notch receptors and Delta ligands between cells in the same layers.
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APPENDIX A. METHODS FOR STATIC LATTICE SIMULATIONS

The 2D fixed lattice geometries were considered as a 6 cell system, split equally as luminal and basal cells
as demonstrated in Figure 5a. This cyclic geometry generates a system of 12 ODEs that were coupled via
the scaled adjacency matriz (1/N,, )W as previously discussed in Section 2.2. Similarly, 3D fixed geometries
were treated as a cyclic 18 cell system and therefore producing a system of 36 ODEs. For both 2D and
3D geometries, the ODE systems were solved numerically using the ode45 function in Matlab 2019b. The
simulations were solved for 100 hours. If all solutions varied less than 1 x 10~ over four consecutive iterations,
then we assume that the system was considered to have converged to a steady-state. We note that all
simulations presented in this study satisfied the convergence criteria.

To determine if the luminal and basal layers have converged to contrasting states of Notch-Delta expression,
the mean value of Delta expression was taken from each layer of cells. Explicitly, let d; denote the mean final

Delta values in each layer of cells, such that,
9 N
dj = N zl: D; ;, (A1)

where N is the total number of cells in the system. The difference Ad = |d; — ds| indicates the existence of
laminar bilayer pattern formation. Note that using Notch as the pattern indicator variable has an identical
effect due to the inverse relationship of Notch and Delta. We considered the system to have achieved a

laminar bilayer pattern if Ad was greater than a prescribed tolerance, 6 > 0.
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The static simulation parameter sweeps for w; and wg where conducted over a discretised 150 x 150 regular
grid lattice for w; € (0,0.25] and wq € (0, 1], resulting in 22500 simulations per static geometry. In all static
lattice simulations, we choose a = 0.01, b = 100, uy = up =1, s = 1 and r = 2 as parameter values for the

NDM (2.1-2.2), as previously defined [10].

APPENDIX B. METHODS FOR LATTICE FREE SIMULATIONS USING A CELL-BASED MODEL

Cell-based simulations were carried out using Chaste v2019.1 (Cancer, Heart and Soft Tissue Environment)
[45], where the Overlapping Spheres (OS) framework was used to enable seamless transition between 2D and
3D geometries. In addition, it has been previously demonstrated that OS models are highly applicable to
study short ranged signal-reaction networks in cellular systems due to the mechanical methods used to define
cellular contact [46]. Cells are connected by a mechanical force which is proportional to the region of overlap
of spheres defined around each cellular node, see Figure 15. Here, we used the OS force model as defined in
[47], where, the displacement of two nodes representing cell centres is represented by the vector r;; = r; —r;

and the force between the cells is defined by,

igig (0755 (0)log (1 + U@l for [Jri; (D] < si5(0),

Fiy(t) = Qg (Irig ()l = i3 (1)) 73 (8) exp (—k 2 @Un®) - for iy (1) < flris ()] < rnass (B-D)

Sij (t

0, for |7 ()] > Tmax,

where n;;,5;;(t) > 0 are the spring constant and rest length between cells ¢ and j. #;;(¢) corresponds to
the unit vector of 7;;(t) and k. defines the decay of force between the cells. Upon cellular division, the rest
length s;;(t) of both parent and daughter cells are set to 5?}" = 5;;(t)/2 and will tend back to s;;(¢) in finite
time as the cell grows. In all simulations, random motion was introduced to each cell to stimulate a dynamic
cellular domain. The random motion was implemented by an additional force acting on each cell node at
each timestep,

3
Frand — [~ B.2
Vit (B.2)

where £ is a constant defining the size of random perturbation, v is a vector of samples from a standard
multivariate normal distribution and At the timestep of the simulation, as previously defined [46]. The
resultant force acting on cell i is defined by,

N
FI(t) = F™ 43 Fy(t), (B.3)

J
for \V; is the number of cells within the cut-off distance, rp.«. Using this resultant force acting upon each cell,

we relate this to cellular movement using the assumption that the inertia terms are small in comparison to
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the dissipative terms acting upon the cell. This is because both in vivo and in vitro cells move in dissipative
environments with small Reynolds number [48], thus the position of each cell is governed in the Aristotelian
regime, such that the velocity of a cell is proportional to the force acting on it. Namely, the spatial dynamics

of each cell is determined by,

drz res
v = Fre), (B.4)

where v > 0 denotes the damping constant of the spring force. Equation (B.4) is solved using the simple
forward Euler method to determine the location of each cell at each timestep, At, see Table 2 [49].

F; ; < overlapping region

|

F; ‘ F,;
A —

\/

(a) (b)

FIGURE 15. The cell-based model using the Overlapping Spheres framework. (a) A
schematic of the mechanical dynamics that determines the motion of a cell using the
Overlapping Spheres framework. The mechanical force acting on each cell is proportional to
the region of overlapped space between any two nodes which are the centre of spheres with
radius r.. The mechanical force between cells ¢ and j can be interpreted as a spring force
and due to the relevantly low viscosity of the medium, it is assumed that the motion of each
cell is governed in an Aristotelian regime, that is, the force is directly proportional to the
velocity of the cell. (b) An example of the 2D initial spatial conditions when simulating the
bilayer spheroid. The colours of the cells denote cell types, where the blue and orange cells
are the basal and luminal cells respectively. The present example has a spheroid radius of 3
cell diameters (CD).

Simulations were initialised with a bilayer structure, see Figure 15b. Basal and luminal cell types were
considered to be mechanically identical to isolate the effects of neighbourhood cell-type composition on Delta
patterning. Cells were assumed to not proliferate in both 2D and 3D simulations, this was done to control
the spatial organisation of cell types in each layer.

The NDM (2.1-2.2) was integrated into each cell in the population and was solved using the explicit
Runge-Kuttad5 method [49], which is built into the Chaste software. At every timestep, each cell would
sweep through the population to determine the connectivity neighbourhood, which is defined by all nodes
within a radius of p., as in the fixed geometry simulations. In the simulations presented here, we assume the
connectivity radius, p., is equal to the mechanical cut-off length, ry.x. Once a cellular neighbourhood has

been determined for each cell, the average Delta is calculated using equation (2.7), and then updated in the
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state variables to be used to solve the next timestep of the NDM (2.1-2.2). In all dynamic lattice simulations,
we choose a = 0.01, b = 100, uy = up = 1, s = 1 and r = 2 as parameter values for the NDM (2.1-2.2), as
previously defined [10].

The seeds used to initialise the generation of the pseudo-random numbers were fixed for all simulations to
compare signal strength parameters on dynamic domains. In addition, wy = 1 was fixed for each comparison

simulation. Parameter values used in all cell-based simulations can be found in Table 2.

Parameter Description Value Units Reference

tiot Total simulation time 100 h -

At Timestep 0.01 h -

Nij Spring constant 25* NCD! -

Sij Spring rest length 1 CD -
Pmax Force cut-off length 3/2* CD -

ke Decay of force 5 Dim’less [47]

13 Random motion perturbation | 0.0025* | Dim’less -

v Damping constant 1 NhCD~! [50]

TABLE 2. Table of parameters used in each cell-based simulation. The unit of length CD
refers to the fixed cell diameter used in simulations. * indicates parameter values tuned for
bilayer structure maintenance, the rest of the simulation parameters used in this study were
extracted from [46].
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