
Type-aware Embeddings for Multi-Hop Reasoning over Knowledge Graphs
Zhiwei Hu1 , Vı́ctor Gutiérrez-Basulto2 , Zhiliang Xiang2 , Xiaoli Li3 , Ru Li1∗ , Jeff Z. Pan4∗

1School of Computer and Information Technology, Shanxi University, China
2School of Computer Science and Informatics, Cardiff University, UK

3Institute for Infocomm Research/Centre for Frontier AI Research, A*STAR, Singapore
4ILCC, School of Informatics, University of Edinburgh, UK

zhiweihu@whu.edu.cn, {gutierrezbasultov, xiangz6}@cardiff.ac.uk, xlli@i2r.a-star.edu.sg,
liru@sxu.edu.cn, http://knowledge-representation.org/j.z.pan/

Abstract
Multi-hop reasoning over real-life knowledge
graphs (KGs) is a highly challenging problem as
traditional subgraph matching methods are not ca-
pable to deal with noise and missing informa-
tion. To address this problem, it has been re-
cently introduced a promising approach based on
jointly embedding logical queries and KGs into a
low-dimensional space to identify answer entities.
However, existing proposals ignore critical seman-
tic knowledge inherently available in KGs, such as
type information. To leverage type information,
we propose a novel TypE-aware Message Passing
(TEMP) model, which enhances the entity and rela-
tion representations in queries, and simultaneously
improves generalization, deductive and inductive
reasoning. Remarkably, TEMP is a plug-and-play
model that can be easily incorporated into existing
embedding-based models to improve their perfor-
mance. Extensive experiments on three real-world
datasets demonstrate TEMP’s effectiveness.

1 Introduction
In recent years, the multi-hop reasoning problem of answer-
ing first-order logic queries (FOL) on large-scale incomplete
knowledge graphs (KGs) [Pan et al., 2016] has gained a lot
of attention in the AI community. A major challenge for tra-
ditional subgraph matching methods for query answering is
that KGs are inevitably incomplete and noisy. Indeed, when
schema [Wiharja et al., 2020] and triples are incomplete in
the KG, correct answers are not guaranteed to be found un-
der normal deductive reasoning, leading to empty or wrong
answers. Another problem is their intrinsic high computa-
tional complexity as they need to keep track of all interme-
diate entities occurring on reasoning paths, leading to an ex-
ponential blow-up. For instance, to answer the query “List
the presidents of Asian countries that have held the Summer
Olympics” shown in Fig. 1, we require two traversing-steps
(many more for other queries): one to identify countries that
have held the summer Olympics and another one to identify
Asian countries, each producing intermediate countries.

∗Contact Authors

To address these challenges, a query embedding (QE) ap-
proach to query answering has been recently introduced as an
alternative to subgraph matching methods. The main idea is
to embed entities and queries into a joint low-dimensional
vector space such that entities that answer the query are
close to the embedding of the query. Several QE mod-
els for query answering, showing very promising perfor-
mance, have been proposed so far [Hamilton et al., 2018;
Ren et al., 2020; Ren and Leskovec, 2020; Zhang et al., 2021;
Choudhary et al., 2021b; Luus et al., 2021]. However, these
models fail to leverage semantic knowledge inherently avail-
able in KGs, such as entity description [Yao et al., 2019;
Daza et al., 2021] or entity type information [Niu et al., 2020;
Pan et al., 2021]. Advantages of introducing type information
are that: 1) it can enhance the representation of entities or
relations; e.g., the types sports/multi event tournament and
time/event can enrich the representation of the entity Sum-
mer Olympics in the context of sport events (cf. Fig. 1). 2)
It can also help tackling the inductive query answering prob-
lem where entities used in test queries cannot be observed
at training time; e.g., consider the queries in Figure 1: “List
the presidents of Asian countries that have held the Summer
Olympics” and “List the presidents of European countries that
have held the Winter Olympics”, which are generated from
two KGs with disjoint sets of entities: Train KG and Test KG,
respectively. Even if the entities Summer Olympics and Win-
ter Olympics are different, they have similar type information,
such as sports/multi event tournament and time/event. Con-
sequently, after using type information to represent entities,
the model associated to the query generated from Train KG is
also effective on the query generated from Test KG.

The goal of this paper is to introduce a type-aware plug-
and-play model which makes full use of type information in
the knowledge graph, and can be easily embedded into ex-
isting QE-based models. To this aim, we propose a novel
TypE-aware Message Passing (TEMP) model, which con-
tains two key components. 1) Type-aware Entity Repre-
sentations (TER), aggregating type information of entities
to strengthen their vector representation (cf. Section 4.1).
2) Type-aware Relation Representations (TRR), using entity
type information to construct a global type graph to enhance
the relation representation, and simultaneously integrate it
with its type representation and existing entity type informa-
tion (cf. Section 4.2). Importantly, some queries have vari-

Anchor node

Variable node

? Target node

Relation
Asia

?
rel_3

Train KG
Europe

?
rel_3

Europe

?
rel_3

Europe

?
rel_3

Test KG

sports/multi_event_tournament

projects/project

book/book_subject

time/event

organization/role

book/editor_title

business/board_member_title

Summer Olympics

Type

government/political_appointer

Winter Olympics

Dependency graphDependency graph

Figure 1: Inductive setting for FOL queries. The left part shows the
query “List the presidents of Asian countries that have held the Sum-
mer Olympics”. The right part shows the query “List the presidents
of European countries that have held the Winter Olympics”. rel 1,
rel 2, and rel 3 represent relations: Hold, Locate, and President of,
respectively.

able nodes in the query paths (see Figure 1), which increase
the difficulty of subsequent reasoning steps in the chain, as
variable nodes are unknown. To address this, the TRR com-
ponent uses a bidirectional mechanism for the anchor node to
supervise the relations in the query path, and vice versa. Fur-
thermore, as mentioned, after using type information to rep-
resent entities and relations, the model becomes inherently
inductive as the occurrence of new entities or relations will
not affect the type-based representations.

Our main contributions can be summarized as follows:
• We propose TEMP, a novel type-aware plug-and-play

model for multi-hop reasoning over KGs, that can be
easily incorporated into the existing QE-based models.

• We design a new bidirectional integration mechanism
that incorporates the pairwise dependencies among
{entity, relation, type} information, even in the absence
of schema axioms like domain and range.

• Extensive experiments demonstrate that after incorpo-
rating TEMP into four state-of-the-art baselines, their
generalization, deductive and inductive reasoning abil-
ities are significantly improved across three benchmark
datasets consistently.

2 Related Work
Query Embeddings. QE models first embed entities and
FOL queries into a joint low-dimensional vector space, and
subsequently compute a similarity score between the entity
representation and query representation in the latent embed-
ding space. In general, according to the type of embedding
spaces, QE-based methods can be divided into four cate-
gories: (i) geometric-based methods, such as GQE [Hamil-
ton et al., 2018], Q2B [Ren et al., 2020], HypE [Choudhary
et al., 2021b], and ConE [Zhang et al., 2021], where logical
queries and KG entities are embedded into a geometric vector
space as points, boxes, hyperbolic, and cone shapes, respec-
tively; (ii) distribution-based methods, such as BETAE [Ren
and Leskovec, 2020], embedding queries to beta distributions
with bounded support, and PERM [Choudhary et al., 2021a],
using Gaussian densities to reason over KGs; (iii) logic-based
methods, relating so-called set logic with FOL [Luus et al.,
2021]; (iv) neural-based methods, e.g., EMQL [Sun et al.,
2020] using neural retrieval to implement logical operations.
Considering QE-based methods are the mainstream in the

current CQA field, we mainly focus on how to construct a
plug-and-play model to embed the type information for exist-
ing QE-based methods.

Other Methods. Besides the QE-based approach, the path-
based approach is another method for CQA, but it faces an
exponential growth of the search space with the number of
hops. For instance, CQD [Arakelyan et al., 2021] uses a beam
search method to explicitly track intermediate entities, and
repeatedly combines scores from a pretrained link predictor
via t-norms to search answers while tracking intermediaries.
However, CQD does not support the full set of FOL queries.

Inductive KG Completion (KGC). In the context of KGC,
there have been some works on inductive settings where test
entities are not seen in the training stage. Based on the
source of information used, they can be split into two cat-
egories: Using graph structure information, e.g., subgraph
or topology structures [Teru et al., 2020; Chen et al., 2021;
Wang et al., 2021], or using external information, e.g., tex-
tual descriptions of entities [Daza et al., 2021]. However, all
these methods focus on the inductive KGC task, which can be
seen as answering simpler one-hop queries.

Type-aware Tasks. Type information was previously used
in other tasks such as KGC or entity typing [Yao et al., 2019;
Zhao et al., 2020; Daza et al., 2021; Niu et al., 2020; Pan
et al., 2021]. However, these works cannot be directly used
for answering FOL queries because this requires multi-hop
reasoning, producing intermediate uncertain entities.

3 Background
In this paper, a knowledge graph [Pan et al., 2016] is repre-
sented in a standard format for graph-structured data such as
RDF. A knowledge graph G is a tuple (E ,R, C, T), where E
is a set of entities, R is a set of relation types, C is a set of
entity types, and T is a set of triples. Triples in T are either
relation assertions (h, r, t), where h, t ∈ E are respectively
the head and tail entities of the triple, and r ∈ R is the edge
of the triple connecting head and tail, or entity type assertions
(e, type, c), where e ∈ E is an entity, c ∈ C is an entity type
and type is the instance-of relation [Pan, 2009].

We consider FOL queries that use existential quantification
(∃), conjunction (∧), disjunction (∨) and negation (¬) opera-
tions. We will work with FOL queries in Disjunctive Normal
Form, i.e. represented as a disjunction of conjunctions. To in-
troduce FOL queries, we assume that Va ⊂ E represents a set
of non-variable input anchor entities, V1, . . . , Vm denote ex-
istentially quantified variables and V? is the target variable.
A FOL query Q is a formula of the following form:

Q[V?] = V? .∃V1, . . . , Vm : c1 ∨ c2 ∨ . . . ∨ cn

where ci = ei1 ∧ . . .∧ eik, k ≤ m such that each eij is of
one of the following forms: r(Va, V), ¬r(Va, V), r(V,V

′)
or ¬r(V, V ′), with Va ∈ Va, V ∈ {V?, V1, . . . , Vm}, V ′ ∈
{V1, . . . , Vm}, V ̸= V ′.

The dependency graph (DG) of a query Q is a graphical
representation of Q, where nodes correspond to variable or
non-variable arguments in Q and edges correspond to rela-
tions in Q. Figure 1 shows an example of a DG.

TER

Step 3: Pairwise representation integration

e es rsr

eres re rs

Step 1

Type Graph

Summer Olympics

Asia Step 2

Relation Context

Type Set

RelationEntity Type

?

Summer Olympics

Asia

rel_3

Dependency graph

KG

TER TRR

e r

e r

TRR

TRR

Figure 2: TEMP’s Architecture. The left top part is the dependency graph for query “List the presidents of Asian countries that have held the
Summer Olympics”, rel 1, rel 2, and rel 3 represent the relations Hold, Locate, and President of, respectively.

We are interested in the multi-hop reasoning problem of
answering queries Q on KGs, which aims to find a set of
entities JQK ⊆ E such that a ∈ JQK iff Q[a] holds true.

4 Semantically-enriched Embeddings
Our model TEMP is composed of two sub-models: Type-
aware Entity Representations (TER), which uses type infor-
mation of an entity to enrich its vector representation, and
Type-aware Relation Representations (TRR), which further
integrates entity representations, relation types, and relation
representations to strengthen the entity and relation vector
representations simultaneously. Interestingly, as we only
leverage type information to perform an in-depth character-
ization of entities and relations without modifying the train-
ing target of existing QE-based models, TEMP can be easily
embedded into them in a plug-and-play fashion.

4.1 TER: Type-aware Entity Representations
The main intuition behind TER is that the types of an
entity provide valuable information about what it rep-
resents in the KG. For instance, if an entity contains
types such as sports/multi event tournament, time/event,
olympics/olympic games, it is plausible to infer that the cor-
responding entity represents Olympics. To capture this intu-
ition, we design an iterative multi-highway layer [Srivastava
et al., 2015] to aggregate the type information in entity type
assertions to get a more accurate and comprehensive repre-
sentation of it1. Let Hi

s ∈ Rd×n denote the hidden state of
type information of an entity in iteration i ≥ 1, where d and n
respectively represent the vector size and the number of types
of an entity. The highway-based type fusion representation of
a given entity can be calculated as follows:

1See appendix for other aggregation alternatives.

g = σ(WiHi
s + bi) (1)

Hi+1
s = g ∗ (W ′

iHi
s + b′i) + (1− g) ∗ Hi

s (2)

H̃K
s = WHK

s + b (3)

H1
s is the initial feature of types of an entity, σ is an element-

wise sigmoid function, {Wi,W
′
i}∈ Rd×d, {bi, b′i}∈ Rd×1

are learnable matrices, and g∈ Rd×n is the reset gate. Af-
ter iterating K times (we set K=2), the final message HK

s ∈
Rd×n (undergoing a linear operation to obtain H̃K

s ∈ Rd×1)
is taken as the representation for the types of a given entity.
We further concatenate the initial entity and its type aggrega-
tion representation to get an enhanced entity representation.

He = W ′[H̃K
s ,H0

s] + b′, (4)

where [·] is the concatenation function, W
′∈ Rd×d and b

′∈
Rd×1 are the parameters to learn. He ∈ Rd×1 is the final
representation of the entity. It is important to note that for
inductive reasoning, we will not concatenate with the initial
entity information H0

s as the entities seen during training are
not presented in the test phase. The process is shown in top
center of Figure 2.

4.2 TRR: Type-aware Relation Representations
Performing TER on entities is useful for queries without ex-
istentially quantified variables. However, for queries with
chained existential variables (chain of variable nodes in the
DG) it is not enough to only perform TER on the anchor en-
tity or target variable. Intuitively, the problem is that in the
long-chain reasoning process, the correlation between the an-
chor entity and target variable may not be strong enough after
several relation projections. Besides, continuous relational

projections may cause exponential growth in the search space,
further increasing the complexity of the model.

We start by observing that the types of a relation are corre-
lated with its representation in the KG. For example, assum-
ing a relation r has types government/ political appointer and
organization/role, then we can plausibly infer that the rela-
tion r represents President of. In long-chain queries, type-
enhancement on relations can help to reduce the answer en-
tity space and cascading errors caused by multiple projec-
tions. However, in most existing KGs, relations lack spe-
cific type annotations (such as domain and range). We ad-
dress this problem by building, based on the original KG, a
novel type graph with types as nodes and relations as edges
(see bottom left of Fig. 2). In a subsequent step, we aggre-
gate the type information on the type graph to obtain the type
embedding corresponding to a specific relation. Finally, we
integrate the entity representation, the aggregated type infor-
mation of a relation and its representation by a bidirectional
attention mechanism, so that the intermediate variable nodes
can perceive the message of anchor or target nodes and of the
relations in the chain of reasoning (see right of Fig. 2). This
will help to avoid the weakening of the connection between
anchor and target entity caused by long-chain reasoning.

Step 1: Type Graph Construction
We formally define a type graph Gtp. Let G = (E ,R, C, T)
be a KG. For a relation r ∈ R, Tr ⊆ T denotes the set of
relation assertions in which r occurs. For a relation assertion
t ∈

⋃
r∈R Tr, hd(t) and tl(t) respectively denote the head and

tail entities of t, and tpt(hd(t)) = {c | (hd(t), type, c) ∈ T }
denotes the set of types of the head of t; tpt(tl(t)) is defined
analogously. Since r may occur in multiple relation asser-
tions, we will compute the type information of r by taking
the intersection of the types of the head and tail entities of
relation assertions in which r occurs. For r ∈ R, we define

tphdr (G) =
⋂
t∈Tr

tpt(hd(t)), tptlr (G) =
⋂
t∈Tr

tpt(tl(t)).

In addition, we define Gtp = (V,E, T) by setting V =⋃
r∈R tphdr (G) ∪ tptlr (G) , E = R, and (v, r, v′) ∈ T if there

exists t ∈ Tr such that v = tpt(hd(t)) and v′ = tpt(tl(t)).

Step 2: Relation Type Aggregation
For a given relation r ∈ E, we define the types associated
with a relation as tpr(Gtp) = tphdr (G) ∪ tptlr (G). We fix an
arbitrary linear order on the elements of tpr(Gtp), and de-
note by tpir(Gtp) the i-th type, for all 1 ≤ i ≤ |tpr(Gtp)|.
Note that not all types in tpr(Gtp) are relevant for answering
a given query. For example, assume that the relation has part
contains the types {vehicle, animal, universe}. For the query
“What organs are parts of a cat?”, we should give type ani-
mal more attention, but for the query “What components are
parts of a car?” we should concentrate on the type vehicle.
So, instead of simply concatenating (or averaging) all the type
information associated to a relation, we model the relation
type aggregation as an attention neural network, defined as:

Hs =
∑
i

ai ⊙Hi
s (5)

ai =
exp(MLP(Hi

r))∑
j exp(MLP(Hj

r))
(6)

Hs is the vector representation of the aggregated type infor-
mation tpr(Gtp); Hi

s ∈ Rd×1 is the vector representation of
the i-th type tpir(Gtp), which is initialized to a uniform dis-
tribution with dimension d, 1 ≤ i ≤ |tpir(Gtp)|; ai ∈ Rd×1

is a positive weight vector that satisfies
∑n

i=1[ai]j = 1 for
all 1 ≤ j ≤ d; and MLP(·) : Rd → Rd is a multi-layer
perceptron network.

Step 3: Pairwise Representation Integration
When embedding queries, integrating the information of enti-
ties, relations, and types can help to smooth decision bound-
aries, but this needs to be done in a way that the intended
match of the query into the KG is captured. For exam-
ple, for the query “Which countries have held the Sum-
mer Olympics?”, we need to concentrate on Held connec-
tions from Summer Olympics, rather than e.g., Watch con-
nections. Analogously, we should only consider Held con-
nections starting at Summer Olympics, rather than e.g., at
World Cup. To properly capture this restriction in the triple
{He, Hr, Hs} (He and Hs defined as in Equations (4) and
(5), and Hr is the initialization relation vector), we introduce
a bidirectional attention mechanism [Zhang et al., 2020] to
integrate each state of pairwise representation pairs: entity-
relation, entity-type, and relation-type. Here, we show how to
do this for entity-relation pair. Bidirectional integration rep-
resentation between He and Hr can be calculated as follows:

Ger = Relu(W1

[
He ⊖Hr

He ⊗Hr

]
+ b1) (7)

Gre = Relu(W2

[
Hr ⊖He

Hr ⊗He

]
+ b2) (8)

{W1,W2} ∈ R2d×2d and {b1, b2} ∈ R2d×1 are learnable
parameters. We use element-wise subtraction ⊖ and multi-
plication ⊗ to build better matching representations [Tai et
al., 2015]. Ger ∈ R2d×1 is the result of integrating entity
relation information. Through bidirectional integration of en-
tities and relations, we simultaneously get a relation-aware
entity representation and an entity-aware relation representa-
tion, capturing the interaction between entities and relations.

We then use a gated mechanism to combine the results pro-
duced by bidirectional fusion as it better regulates the infor-
mation flow [Srivastava et al., 2015]. Take the entity fusion
representation as an example, using the relation-aware entity
Ger and type-aware entity Ges representations as input, the
final representation of entity is computed as

g = σ(W3Ger +W4Ges + b3 + b4) (9)

G̃e = g ∗ Ger + (1− g) ∗ Ges (10)
{W3, W4} ∈ R2d×2d and {b3, b4} ∈ R2d×1 are the parame-
ters to learn. g is the reset gate, and G̃e ∈ R2d×1 is the final
entity representation.

To transform the fused feature to the original vector size,
we use one linear layer: He = W5G̃e + b5, where W5 ∈
Rd×2d and b5 ∈ Rd×1 are learnable parameters. He is the
final entity representation enhanced by relation and type.

(a) Generalization on FB15k-237 (Q2B datasets) FB15k NELL
Method 1p 2p 3p 2i 3i pi ip 2u up Avg Avg Avg
GQE 41.3 21.5 15.2 26.5 38.5 16.7 8.8 17.1 15.8 22.4 40.1 23.5
+TEMP 47.6 29.6 24.7 36.3 48.4 25.5 13.4 30.2 21.0 30.7 56.6 38.2
Q2B 47.1 24.9 19.4 33.2 46.4 21.8 11.3 25.3 19.3 27.6 51.2 31.1
+TEMP 45.7 27.8 23.4 36.9 49.6 22.9 11.7 27.6 18.9 29.4 55.4 37.3
BETAE 42.6 25.4 21.6 30.2 43.3 20.7 9.2 24.2 18.3 26.2 50.6 33.4
+TEMP 43.3 27.2 22.7 35.3 47.5 24.3 10.6 26.7 18.2 28.4 53.6 34.5
LOGICE 45.6 27.8 24.1 34.7 46.5 23.5 12.0 27.1 20.8 29.1 54.2 39.1
+TEMP 46.6 29.2 25.0 35.8 47.9 24.9 13.5 28.7 21.0 30.3 55.7 39.1

(b) Deductive Reasoning on FB15k-237 (Q2B datasets) FB15k NELL
GQE 56.4 30.1 24.5 35.9 51.2 25.1 13.0 25.8 22.0 31.6 43.7 49.8
+TEMP 76.3 48.6 39.0 49.7 60.4 36.9 22.1 59.0 36.3 47.6 71.4 75.5
Q2B 58.5 34.3 28.1 44.7 62.1 23.9 11.7 40.5 22.0 36.2 43.7 51.1
+TEMP 87.2 59.6 47.9 67.2 72.7 49.1 29.8 78.6 43.4 59.5 69.6 90.4
BETAE 77.9 52.6 44.5 59.0 67.8 42.2 23.5 63.7 35.1 51.8 60.6 80.2
+TEMP 84.7 58.3 49.4 62.3 68.8 45.3 28.5 74.5 41.1 57.0 60.6 81.5
LOGICE 81.5 54.2 46.0 58.1 67.1 44.0 28.5 66.6 40.8 54.1 65.5 85.3
+TEMP 84.5 59.8 51.9 59.3 68.1 47.0 33.4 70.8 45.4 57.8 67.1 84.6

Table 1: Hits@3 results on the Q2B datasets testing generalization and deductive reasoning. Please see appendix for full results on FB15k
and NELL.

5 Experiments
Our aim is to analyse the impact of adding TEMP to existing
QE models on their generalization, deductive and inductive
reasoning abilities.

Datasets and Queries. For generalization and deductive
reasoning, we use three standard benchmark KGs with
official training/validation/test splits: FB15k [Bordes et
al., 2013], FB15k-237 [Toutanova and Chen, 2015], and
NELL995 (NELL) [Xiong et al., 2017], and two query
datasets: one with 9 query structures without negation from
Query2Box (Q2B) [Ren et al., 2020] and another with 14 (9
positive + 5 with negation) from BETAE [Ren and Leskovec,
2020]. To test inductive reasoning, we use the datasets
FB15k-237-V2 and NELL-V3 provided by GraIL [Teru et
al., 2020], ensuring that the test and training sets have a dis-
joint set of entities. Note that we generate queries over these
datasets as done for BETAE datasets. We choose Hit@K and
Mean Reciprocal Rank (MRR) as two evaluation metrics2.

Baselines. We embed TEMP on four state-of-the-art base-
lines for complex QA on KGs: Q2B, BETAE, GQE [Hamil-
ton et al., 2018], and LOGICE [Luus et al., 2021].

Generalization. The goal is to find non-trivial answers to
FOL queries over incomplete KGs, i.e. answers cannot get
using subgraph matching. We follow the evaluation protocol
in [Ren and Leskovec, 2020]. Briefly, three KGs are built:
Gtrain containing only training triples, Gvalid containing Gtrain
plus validation triples, and Gtest containing Gvalid as well as
test triples. The models are trained using Gtrain to evaluate the
generalization ability because queries have at least one edge
to predict to find an answer.

2Refer to appendix for details on datasets, queries, and metrics.

Deductive Reasoning. The goal is to test the ability of
finding answers only using standard reasoning. Follow-
ing [Sun et al., 2020], we train models using the full KG
(Gtrain ∪ Gvalid ∪ Gtest), so only inference (not generalization)
is used to get correct answers.

Inductive Reasoning. All baseline models have inductive
ability at the query level as they can answer queries with
structures that are not seen during training. For example,
the Q2B and BETAE datasets consider five query structures
during the training and validation phase and four ‘unseen’
structures are used during testing. However, it is not known
whether they have entity-level inductive ability, i.e. during
testing, the query structure has entities that do not appear
in the training phase. We will analyse this for the first time.

5.1 Main Results
We compare the performance of the four baseline models
with their counterparts after adding our TEMP model in four
different aspects: 1) generalization, 2) deductive reasoning,
3) inductive reasoning, and 4) queries with negation.

Generalization. Table 1(a) shows that for long-chain
queries 2p and 3p, the improvement brought by TEMP ex-
ceeds that of short-chain 1p, confirming the suitability of type
information for dealing with long-chain queries. In addi-
tion, TEMP-enhanced models also achieve improvements on
queries ip/pi/2u/up, which do not occur in the training KG,
showing that type information is also helpful to improve in-
ductive ability at the query-level structure. Notably, for GQE,
adding type information can shorten the gap or even surpass
the state-of-the-art baseline models (without TEMP).

Deductive Reasoning. Table 1(b) shows that after adding
type information, the reasoning ability of the baselines are
significantly improved on all datasets consistently. Specifi-

cally, the improvement of embedding models based on geo-
metric operations (GQE, Q2B) is more significant than that of
BETAE or LOGICE. Remarkably, Q2B + TEMP surpasses the
state-of-the-art baseline models (without TEMP). The main
reason for the modest gain for BETAE and LOGICE is that
they impose excessive restrictions on the embedding of enti-
ties and relations. For instance, in LOGICE, the logic embed-
dings with bounded support change the type-enriched vector
representations, thus affecting the effect of type information.

Data Method 1p 2p 3p 2i 3i pi ip 2u up Avg

FB
15

k-
23

7-
V

2

GQE 0.5 5.5 1.8 0.5 0.6 7.1 13.1 2.1 6.1 4.1
+TEMP 14.6 22.1 14.1 13.9 14.4 15.7 22.0 9.7 20.1 16.3

Q2B 0.5 5.5 1.7 0.7 0.7 7.8 12.9 2.7 6.1 4.3
+TEMP 12.9 12.7 12.3 10.0 10.4 13.7 10.7 7.8 9.5 11.1

BETAE 0.9 0.5 0.4 0.7 0.3 0.7 0.4 1.0 0.3 0.6
+TEMP 10.8 15.0 10.6 10.8 10.1 11.3 13.6 5.5 13.6 11.3

LOGICE 0.7 2.5 1.1 1.0 0.9 1.0 3.1 0.3 1.6 1.4
+TEMP 15.7 17.1 15.1 14.6 13.8 13.6 16.3 7.0 14.2 14.2

N
E

L
L

-V
3

GQE 0.3 2.3 0.6 0.4 0.1 3.2 4.9 1.8 3.2 1.9
+TEMP 9.6 5.7 6.0 7.2 8.1 4.7 6.2 4.0 4.0 6.2

Q2B 0.2 2.2 0.5 0.3 0.2 2.6 4.8 1.8 2.8 1.7
+TEMP 8.0 5.6 6.0 7.6 7.1 4.6 5.3 4.1 3.2 5.7

BETAE 0.4 0.1 0.1 0.5 0.1 0.2 0.1 0.3 0.2 0.2
+TEMP 8.4 4.7 5.7 5.6 5.8 4.1 4.5 4.5 3.0 5.1

LOGICE 0.2 0.5 0.3 0.1 0.3 0.2 0.3 0.2 0.4 0.3
+TEMP 10.7 5.0 5.8 7.6 8.1 5.3 5.5 4.7 3.4 6.2

Table 2: Hits@10 results on queries generated from the FB15k-237-
V2 and NELL-V3 inductive datasets from GraIL.

Datasets Model Our model 2in 3in inp pin pni Avg

FB15k BETAE None 14.3 14.7 11.5 6.5 12.4 11.8
+TEMP 15.2 15.6 11.5 6.8 13.4 12.5

LOGICE None 15.1 14.2 12.5 7.1 13.4 12.5
+TEMP 15.2 14.7 12.7 7.6 13.7 12.8

FB15k-237 BETAE None 5.1 7.9 7.4 3.6 3.4 5.4
+TEMP 4.3 8.0 7.6 3.5 2.9 5.3

LOGICE None 4.9 8.2 7.7 3.6 3.5 5.6
+TEMP 5.4 8.7 7.9 4.0 3.8 6.0

NELL BETAE None 5.1 7.8 10.0 3.1 3.5 5.9
+TEMP 5.1 7.5 10.5 3.1 3.3 5.9

LOGICE None 5.3 7.5 11.1 3.3 3.8 6.2
+TEMP 5.4 7.6 11.3 3.4 3.9 6.3

Table 3: MRR Results on the BETAE Datasets for BETAE and LOG-
ICE on queries with negation. See appendix for results for other
query structures.

Inductive Reasoning. Table 2 shows that the addition of
TEMP significantly outperforms all baselines in the (entity-
level) inductive setting, by 12.2%, 6.8%, 10.7%, and 12.8%,
in terms of Hits@10 in the FB15k-237-V2 dataset. The main
reason is that in TEMP entity and relation representations are
mainly characterized by the type information. So, newly
emerging entities or relations can be captured through their

type information, making unnecessary the coupling between
entities and entity set, and relations and relation set.
Queries with Negation. Table 3 shows the results of BE-
TAE and LOGICE on queries with negation in the BETAE
dataset. The main reason for the small gains is that, unlike
BETAE and LOGICE, TEMP does not have specific mecha-
nisms to deal with negation. Specifically, TEMP lacks mech-
anisms to associate type information to the negation of a re-
lation, i.e., a way to ‘negate’ a type. Boosting queries with
negation using type information is left as an interesting fu-
ture work.

5.2 Ablation Studies
We select GQE and Q2B, as they benefit the most by adding
type information, and conduct ablation experiments on the
three datasets to study the effect of separately using type-
enhancement on entities or relations, see Table 4. We further
study different implementations of entity and relation type ag-
gregation models, see Figure 3 and Figure 4.

Models TER TRR FB15k-237 FB15k NELL

GQE
$ $ 19.4 32.8 19.3
" $ 23.5 42.1 26.8
$ " 26.3 50.8 33.2
" " 28.2 50.9 34.5

Q2B
$ $ 24.2 43.4 25.7
" $ 24.7 44.3 29.1
$ " 25.8 47.7 33.4
" " 26.8 49.7 33.9

Table 4: Average MRR results on the Q2B datasets with TER or
TRR. See appendix for detailed results.

Figure 3: MRR results with
different entity type aggrega-
tors.

Figure 4: MRR results with
different relation type aggre-
gators.

Type-enhancement on relations is consistently better than
on entities, this is explained by the fact that enhancing re-
lation representations is more helpful for queries with long
chains of existentially quantified variables as it better deals
with cascading errors introduced by relation projections. We
also show that using type-enhancement on both entities and
relations usually leads to even better performance.

6 Conclusions
We proposed TEMP, a type-aware plug-and-play model for
answering FOL queries on incomplete KGs. We experimen-
tally show that TEMP can significantly improve four state-
of-the-art models in terms of generalization, deductive and
inductive reasoning abilities across three benchmark datasets
consistently.

Acknowledgments
This work has been supported by the National
Key Research and Development Program of China
(No.2020AAA0106100), by the National Natural Sci-
ence Foundation of China (No.61936012), by the Chang
Jiang Scholars Program (J2019032), by a Leverhulme Trust
Research Project Grant (RPG-2021-140), and by the Centre
for Artificial Intelligence, Robotics and Human-Machine
Systems (IROHMS) at Cardiff University.

References
[Arakelyan et al., 2021] Erik Arakelyan, Daniel Daza,

Pasquale Minervini, and Michael Cochez. Complex query
answering with neural link predictors. In ICLR, 2021.

[Bordes et al., 2013] Antoine Bordes, Nicolas Usunier,
Alberto Garcı́a-Durán, Jason Weston, and Oksana
Yakhnenko. Translating embeddings for modeling
multi-relational data. In NeurIPS, 2013.

[Chen et al., 2021] Jiajun Chen, Huarui He, Feng Wu, and
Jie Wang. Topology-aware correlations between relations
for inductive link prediction in knowledge graphs. In
AAAI, pages 6271–6278, 2021.

[Choudhary et al., 2021a] Nurendra Choudhary, Nikhil Rao,
Sumeet Katariya, Karthik Subbian, and Chandan Reddy.
Probabilistic entity representation model for reasoning
over knowledge graphs. In NeurIPS, 2021.

[Choudhary et al., 2021b] Nurendra Choudhary, Nikhil Rao,
Sumeet Katariya, Karthik Subbian, and Chandan K Reddy.
Self-supervised hyperboloid representations from logical
queries over knowledge graphs. In WWW, 2021.

[Daza et al., 2021] Daniel Daza, Michael Cochez, and Paul
Groth. Inductive entity representations from text via link
prediction. In WWW, 2021.

[Hamilton et al., 2018] William L Hamilton, Payal Bajaj,
Marinka Zitnik, Dan Jurafsky, and Jure Leskovec. Em-
bedding logical queries on knowledge graphs. In NeurIPS,
2018.

[Liu et al., 2016] Yang Liu, Chengjie Sun, Lei Lin, and Xi-
aolong Wang. Learning natural language inference us-
ing bidirectional LSTM model and inner-attention. arXiv
preprint arXiv:1605.09090, 2016.

[Luus et al., 2021] Francois Luus, Prithviraj Sen, Pavan Ka-
panipathi, Ryan Riegel, Ndivhuwo Makondo, Thabang
Lebese, and Alexander Gray. Logic embeddings for com-
plex query answering. In NeurIPS, 2021.

[Niu et al., 2020] Guanglin Niu, Bo Li, Yongfei Zhang, Shil-
iang Pu, and Jingyang Li. Autoeter: Automated entity
type representation for knowledge graph embedding. In
EMNLP, 2020.

[Pan et al., 2016] J.Z. Pan, G. Vetere, J.M. Gomez-Perez,
and H. Wu. Exploiting Linked Data and Knowledge
Graphs for Large Organisations. Springer, 2016.

[Pan et al., 2021] Weiran Pan, Wei Wei, and Xianling Mao.
Context-aware entity typing in knowledge graphs. In
EMNLP, 2021.

[Pan, 2009] Jeff Z. Pan. Resource description framework. In
Handbook on Ontologies, pages 71–90. 2009.

[Reimers and Gurevych, 2019] Nils Reimers and Iryna
Gurevych. Sentence-BERT: Sentence embeddings using
siamese BERT-networks. In EMNLP, 2019.

[Ren and Leskovec, 2020] Hongyu Ren and Jure Leskovec.
Beta embeddings for multi-hop logical reasoning in
knowledge graphs. In NeurIPS, 2020.

[Ren et al., 2020] Hongyu Ren, Weihua Hu, and Jure
Leskovec. Query2box: Reasoning over knowledge graphs
in vector space using box embeddings. In ICLR, 2020.

[Srivastava et al., 2015] Rupesh Kumar Srivastava, Klaus
Greff, and Jürgen Schmidhuber. Highway networks. arXiv
preprint arXiv:1505.00387, 2015.

[Sun et al., 2020] Haitian Sun, Andrew O. Arnold, Tania
Bedrax-Weiss, Fernando Pereira, and William W. Co-
hen. Faithful embeddings for knowledge base queries. In
NeurIPS, 2020.

[Tai et al., 2015] Kai Sheng Tai, Richard Socher, and
Christopher D. Manning. Improved semantic represen-
tations from tree-structured long short-term memory net-
works. In ACL, pages 1556–1566, 2015.

[Teru et al., 2020] Komal Teru, Etienne Denis, and Will
Hamilton. Inductive relation prediction by subgraph rea-
soning. In ICML, pages 9448–9457, 2020.

[Toutanova and Chen, 2015] Kristina Toutanova and Danqi
Chen. Observed versus latent features for knowledge base
and text inference. In ACL, pages 57–66, 2015.

[Wang et al., 2021] Hongwei Wang, Hongyu Ren, and Jure
Leskovec. Relational message passing for knowledge
graph completion. In SIGKDD, pages 1697–1707, 2021.

[Wiharja et al., 2020] Kemas Wiharja, Jeff Z. Pan, Martin J.
Kollingbaum, and Yu Deng. Schema Aware Iterative
Knowledge Graph Completion. Journal of Web Seman-
tics, 2020.

[Xiong et al., 2017] Wenhan Xiong, Thien Hoang, and
William Yang Wang. Deeppath: A reinforcement learn-
ing method for knowledge graph reasoning. In EMNLP,
2017.

[Yao et al., 2019] Liang Yao, Chengsheng Mao, and Yuan
Luo. Kg-bert: Bert for knowledge graph completion.
arXiv preprint arXiv:1909.03193, 2019.

[Zhang et al., 2020] Shuailiang Zhang, Hai Zhao, Yuwei
Wu, Zhuosheng Zhang, Xi Zhou, and Xiang Zhou.
Dcmn+: Dual co-matching network for multi-choice read-
ing comprehension. In AAAI, 2020.

[Zhang et al., 2021] Zhanqiu Zhang, Jie Wang, Jiajun Chen,
Shuiwang Ji, and Feng Wu. Cone: Cone embeddings for
multi-hop reasoning over knowledge graphs. In NeurIPS,
2021.

[Zhao et al., 2020] Yu Zhao, Anxiang Zhang, Ruobing Xie,
Kang Liu, and Xiaojie Wang. Connecting embeddings for
knowledge graph entity typing. In ACL, 2020.

Queries Training Validation Test
Reasoning Type Datasets 1p/2p/3p/2i/3i 2in/3in/inp/pin/pni 1p others 1p others

Deductive Reasoning
FB15k 273,710 27,371 59,097 8,000 67,016 8,000

FB15k-237 149,689 14,9,68 20,101 5,000 22,812 5,000
NELL995 107,982 10,798 16,927 4,000 17,034 4,000

Inductive Reasoning FB15k-237-V2 9,964 - 1,738 2,000 791 1,000
NELL995-V3 12,010 - 2,197 2,000 1,167 1,500

Table 5: Number of training, validation, and test queries generated for different query structures on BETAE datasets. For Q2B datasets,
except 2in/3in/inp/pin/pni, the remaining number of queries is consistent with the BETAE datasets. - denotes that we did not generate the
query structures with negation operation for inductive reasoning.

Appendix
A Details about Experiments
A.1 Datasets
For a fair comparison, we use the same datasets and query
structures as in Q2B [Ren et al., 2020] and BETAE [Ren and
Leskovec, 2020]. For testing the inductive reasoning ability,
we select GraIL [Teru et al., 2020] providing datastes FB15k-
237-V2 and NELL995-V3. We generate queries over these
datasets following [Ren and Leskovec, 2020]. The statistics
on the number of different queries in different datasets with
different reasoning abilities can be found in Table 5.

A.2 Training Protocol
We run all the experiments on a single Tesla V100 32G GPU
card. All the models are implemented in Pytorch. We adopt
the original training objective and experimental parameters of
each model. The best hyperparameters are shown in Table 6,
note that we use the same parameters before and after adding
TEMP.

model emb dim lr batch size neg size margin
GQE 800 0.0001 512 128 24
Q2B 400 0.0001 512 128 24

BETAE 400 0.0001 512 128 60
LOGICE 400 0.0001 512 128 0.375
Table 6: emb dim represents the embedding dimension, lr means the
learning rate, neg size is the negative sample size, and margin means
the margin size.

A.3 Query Structures
Figure 5 shows the query structures on the BETAE datasets.
The queries on the left of the black dotted line are used in
the training phase. All fourteen queries in Figure 5 are used
in both the validation and test phases. The queries within
the green solid area are queries containing existential variable
nodes. Unlike the BETAE datasets, the datasets provided by
Q2B do not include query structures with negation operations
(2in/3in/inp/pni/pin). We refer readers to the original Q2B
and BETAE papers for technical details.

A.4 Evaluation Metrics
The metrics Hit@K and MRR can be defined as follows:

Hits@K(q) =
1

|Aq|
∑
v∈Aq

Φ(Rank(v) ≤ K) (11)

MRR =
1

|Aq|
∑
v∈Aq

1

Rank(v)
(12)

Aq represents the answer set of q, Rank(v) denotes as the rank
of v entity. Φ(·) is an indicator function, when x ≤ K, it

1p 2p 3p2i 3i 2u

upip2in 3in inp

pi

pni pin

Anchor Nodes Target NodesVariable Nodes Projection Negation Disjunction

Figure 5: Fourteen queries considered in the experiments. Where
‘p’, ‘i’, ‘u’, and ‘n’ stand for ‘projection’, ‘intersection’, ‘union’, and
‘negation’, respectively.
equals to 1; 0 otherwise. Clearly, higher Hits@K and MRR
indicate better prediction performance.

B Design Alternatives
In our ablation experiments, we test TEMP with the following
alternative models. In particular, when aggregating the type
of an entity, we propose two alternatives for aggregator, in-
stead of the highway aggregator in Eqs. (1), (2), and (3).
Mean aggregator.

H̃K
s =

1

n

∑
i

HK
si (13)

Here, the mean operation does not require a loop operation,
so the value of K is 0. HK

si ∈ Rd×1 represents the i-th com-
ponent of the vector HK

s ∈ Rd×n.
Max aggregator.

H̃K
s = Max(HK

si) (14)
Max(·) represents the element-wise maximum operation
among the entity’s type information. K also takes 0.
Concatenation-based intersection. Inspired by [Liu et al.,
2016] and [Reimers and Gurevych, 2019], we apply an inter-
active concatenation to pair of the representations Ger and
Ges in Eqs.(9) and (10), and then perform a linear layer oper-
ation. The interactive concatenation can be specified as:

G̃e = W [Ger,Ges,Ger + Ges,Ger × Ges] + b, (15)
where + and × represent the element-wise addition and mul-
tiplication between two matrices Ger and Ges, respectively.
[·, ·, ·, ·] is used to concatenate the vector in row level.

C Additional Results
1. Table 7 shows detailed MRR results on the BETAE

datasets, testing the generalization ability.
2. Table 8 shows detailed MRR results on the Q2B datasets

with TER or TRR used separately or together.
3. Table 9 shows detailed Hits@3 results on the Q2B

datasets about the generalization and deductive reason-
ing ability.

Generalization Method 1p 2p 3p 2i 3i pi ip 2u up Avg

FB15k

GQE 54.6 15.3 10.8 39.7 51.4 27.6 19.1 22.1 11.6 28.0
+TEMP 74.9 31.4 26.0 59.3 69.4 47.3 35.9 47.8 27.4 46.6
Q2B 68.0 21.0 14.2 55.1 66.5 39.4 26.1 35.1 16.7 38.0

+TEMP 74.8 25.6 22.3 61.7 72.6 43.7 29.0 44.1 22.5 44.0
BETAE 65.1 25.7 24.7 55.8 66.5 43.9 28.1 40.1 25.2 41.6
+TEMP 70.3 28.9 25.8 58.2 68.4 45.8 32.2 44.3 27.3 44.6

LOGICE 72.3 29.8 26.2 56.1 66.3 42.7 32.6 43.4 27.5 44.1
+TEMP 74.9 30.9 27.3 58.3 68.2 43.8 33.8 46.1 28.9 45.8

FB15k-237

GQE 35.0 7.2 5.3 23.3 34.6 16.5 10.7 8.2 5.7 16.3
+TEMP 42.9 12.3 10.1 34.4 47.6 26.0 15.1 15.1 10.1 23.7
Q2B 40.6 9.4 6.8 29.5 42.3 21.2 12.6 11.3 7.6 20.1

+TEMP 40.9 11.0 9.2 33.7 48.2 21.4 12.3 12.9 9.1 22.1
BETAE 39.0 10.9 10.0 28.8 42.5 22.4 12.6 12.4 9.7 20.9
+TEMP 39.9 11.8 10.5 32.6 46.7 24.9 13.6 12.5 10.2 22.5

LOGICE 41.3 11.8 10.4 31.4 43.9 23.8 14.0 13.4 10.2 22.3
+TEMP 41.9 13.0 11.2 32.4 45.4 25.5 15.2 14.6 10.9 23.3

NELL

GQE 32.8 11.9 9.6 27.5 35.2 18.4 14.4 8.5 8.8 18.6
+TEMP 57.7 17.2 14.1 40.6 49.9 27.0 18.5 15.9 11.6 28.0
Q2B 42.2 14.0 11.2 33.3 44.5 22.4 16.8 11.3 10.3 22.9

+TEMP 56.5 15.0 12.9 40.8 52.0 21.1 16.0 14.2 9.4 26.4
BETAE 53.0 13.0 11.4 37.6 47.5 24.1 14.3 12.2 8.5 24.6
+TEMP 54.1 14.2 12.4 38.1 48.9 23.9 16.0 12.8 9.2 25.5

LOGICE 58.3 17.7 15.4 40.5 50.4 27.3 19.2 15.9 12.7 28.6
+TEMP 58.4 18.1 14.9 40.7 50.6 27.9 19.1 16.7 12.8 28.8

Table 7: Detailed MRR results on the BETAE’s datasets testing generalization.

Datasets Methods TER TRR 1p 2p 3p 2i 3i pi ip 2u up Avg

FB15k

GQE
$ $ 55.1 30.7 22.5 38.6 49.3 24.9 14.6 34.3 25.1 32.8
" $ 65.3 38.1 29.4 52.1 64.3 35.5 17.9 44.6 31.4 42.1
$ " 74.2 49.8 42.0 56.2 66.6 44.3 27.3 59.1 37.7 50.8
" " 75.2 50.4 42.0 56.9 67.1 44.5 28.2 59.5 34.0 50.9

Q2B
$ $ 68.3 39.0 28.5 52.2 64.0 37.4 20.1 50.6 30.1 43.4
" $ 72.4 37.3 28.6 55.7 67.7 36.0 17.4 57.1 26.3 44.3
$ " 69.9 46.1 38.8 56.2 68.6 41.8 25.6 52.7 29.3 47.7
" " 75.6 45.5 38.4 60.0 71.0 43.1 23.6 62.7 27.4 49.7

FB15k-237

GQE
$ $ 35.0 19.2 14.4 22.1 31.4 14.5 8.8 14.8 14.5 19.4
" $ 40.3 22.2 17.5 27.0 38.3 17.3 9.9 21.1 18.1 23.5
$ " 43.9 26.8 22.5 28.2 37.6 20.4 11.9 24.9 20.9 26.3
" " 43.0 27.7 23.4 32.6 44.4 23.4 13.2 26.5 20.0 28.2

Q2B
$ $ 40.7 23.1 18.1 27.9 38.9 19.2 10.9 21.1 17.8 24.2
" $ 42.1 23.1 17.6 29.6 41.3 18.1 9.9 22.7 17.7 24.7
$ " 42.2 26.0 21.6 29.6 42.0 18.6 12.2 22.1 17.8 25.8
" " 41.2 25.8 21.9 33.1 45.0 21.0 11.4 24.4 17.7 26.8

NELL

GQE
$ $ 31.3 18.2 16.8 22.4 30.4 15.8 10.0 16.8 12.1 19.3
" $ 51.2 21.9 21.7 28.5 40.6 17.5 9.2 35.1 15.6 26.8
$ " 55.5 31.8 31.7 33.6 46.1 23.0 14.1 38.9 24.4 33.2
" " 56.7 33.6 32.4 35.5 47.2 23.6 14.8 41.6 24.8 34.5

Q2B
$ $ 41.8 23.1 21.2 28.9 41.7 19.7 12.2 26.9 15.5 25.7
" $ 54.4 22.9 23.0 33.7 47.4 15.9 10.1 38.7 15.8 29.1
$ " 55.9 31.1 31.3 34.8 48.9 19.4 14.0 41.2 23.6 33.4
" " 57.1 31.9 31.3 36.6 49.5 19.4 13.5 41.7 23.8 33.9

Table 8: Detailed MRR results on the Q2B datasets with TER or TRR.

Generalization Method 1p 2p 3p 2i 3i pi ip 2u up Avg

FB15k

GQE 71.7 36.1 25.9 47.5 60.8 30.0 15.8 45.2 28.1 40.1
+TEMP 83.0 54.6 46.0 64.1 74.8 50.0 30.8 68.7 37.3 56.6
Q2B 82.1 43.0 31.7 62.7 74.5 44.4 22.4 66.7 33.5 51.2

+TEMP 84.0 49.8 42.2 67.4 77.9 48.3 26.1 72.7 30.0 55.4
BETAE 75.0 45.1 40.0 62.2 75.4 47.1 22.3 58.9 29.6 50.6
+TEMP 79.5 50.2 44.3 63.7 74.4 48.8 27.4 64.5 30.0 53.6

LOGICE 80.5 50.5 45.8 62.2 72.5 47.5 28.3 63.9 36.8 54.2
+TEMP 83.2 51.5 46.4 64.0 73.8 47.8 28.6 69.0 36.9 55.7

FB15k-237

GQE 41.3 21.5 15.2 26.5 38.5 16.7 8.8 17.1 15.8 22.4
+TEMP 47.6 29.6 24.7 36.3 48.4 25.5 13.4 30.2 21.0 30.7
Q2B 47.1 24.9 19.4 33.2 46.4 21.8 11.3 25.3 19.3 27.6

+TEMP 45.7 27.8 23.4 36.9 49.6 22.9 11.7 27.6 18.9 29.4
BETAE 42.6 25.4 21.6 30.2 43.3 20.7 9.2 24.2 18.3 26.2
+TEMP 43.3 27.2 22.7 35.3 47.5 24.3 10.6 26.7 18.2 28.4

LOGICE 45.6 27.8 24.1 34.7 46.5 23.5 12.0 27.1 20.8 29.1
+TEMP 46.6 29.2 25.0 35.8 47.9 24.9 13.5 28.7 21.0 30.3

NELL

GQE 42.7 21.6 19.3 27.0 37.4 17.7 10.3 21.7 13.4 23.5
+TEMP 62.5 36.6 35.2 40.2 52.6 25.6 15.8 48.2 27.4 38.2
Q2B 56.2 27.1 24.1 34.7 49.2 21.8 12.7 37.5 16.5 31.1

+TEMP 62.5 34.3 34.2 41.0 55.2 20.9 14.1 47.7 26.2 37.3
BETAE 58.4 29.1 30.7 35.2 48.4 22.5 10.5 44.5 21.2 33.4
+TEMP 58.7 31.7 32.7 37.3 51.3 22.8 11.7 43.7 20.6 34.5

LOGICE 64.3 35.9 36.0 41.1 54.8 26.8 14.7 51.0 27.6 39.1
+TEMP 64.3 36.2 35.9 41.2 54.9 25.4 15.5 51.1 27.9 39.1

Deductive Reasoning Method 1p 2p 3p 2i 3i pi ip 2u up Avg

FB15k

GQE 73.8 40.5 32.1 49.8 64.7 36.1 18.9 47.2 30.4 43.7
+TEMP 92.8 71.5 62.0 74.6 83.8 64.4 48.0 85.5 60.0 71.4
Q2B 68.0 39.4 32.7 48.5 65.3 32.9 16.2 61.4 28.9 43.7

+TEMP 92.8 67.1 57.3 79.2 87.6 62.8 39.8 87.3 52.4 69.6
BETAE 83.2 57.3 51.0 71.1 81.4 56.9 32.7 70.4 41.0 60.6
+TEMP 84.0 58.8 51.8 68.7 78.4 55.6 34.8 71.6 41.9 60.6

LOGICE 88.4 64.0 57.9 70.8 80.6 59.0 41.0 76.6 51.0 65.5
+TEMP 91.0 64.7 58.7 72.3 81.4 60.5 42.2 81.2 51.5 67.1

FB15k-237

GQE 56.4 30.1 24.5 35.9 51.2 25.1 13.0 25.8 22.0 31.6
+TEMP 76.3 48.6 39.0 49.7 60.4 36.9 22.1 59.0 36.3 47.6
Q2B 58.5 34.3 28.1 44.7 62.1 23.9 11.7 40.5 22.0 36.2

+TEMP 87.2 59.6 47.9 67.2 72.7 49.1 29.8 78.6 43.4 59.5
BETAE 77.9 52.6 44.5 59.0 67.8 42.2 23.5 63.7 35.1 51.8
+TEMP 84.7 58.3 49.4 62.3 68.8 45.3 28.5 74.5 41.4 57.0

LOGICE 81.5 54.2 46.0 58.1 67.1 44.0 28.5 66.6 40.8 54.1
+TEMP 84.5 59.8 51.9 59.3 68.1 47.0 33.4 70.8 45.4 57.8

NELL

GQE 72.8 58.0 55.2 45.9 57.3 34.2 24.8 59.0 40.7 49.8
+TEMP 93.3 84.1 73.3 73.4 81.4 60.8 45.8 90.3 76.8 75.5
Q2B 83.9 57.7 47.8 49.9 66.3 29.6 19.9 73.7 31.0 51.1

+TEMP 98.3 95.4 86.0 92.2 95.2 86.1 69.5 98.5 92.8 90.4
BETAE 94.3 88.2 76.2 84.0 90.2 68.8 46.6 92.5 81.4 80.2
+TEMP 95.1 89.8 79.5 83.3 89.3 69.0 51.1 93.0 83.3 81.5

LOGICE 96.2 90.7 84.1 84.1 89.5 76.0 65.2 94.7 87.1 85.3
+TEMP 96.5 91.0 83.2 82.7 88.9 72.6 64.1 95.2 86.9 84.6

Table 9: Detailed Hits@3 results on the Q2B datasets testing generalization and deductive reasoning.

	Introduction
	Related Work
	Background
	Semantically-enriched Embeddings
	TER: Type-aware Entity Representations
	TRR: Type-aware Relation Representations
	Step 1: Type Graph Construction
	Step 2: Relation Type Aggregation
	Step 3: Pairwise Representation Integration

	Experiments
	Main Results
	Ablation Studies

	Conclusions

