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Abstract

We investigate the problem of finite entailment of ontology-
mediated queries. We consider the expressive query lan-
guage, unions of conjunctive regular path queries (UCR-
PQs), extending the well-known class of union of conjunc-
tive queries, with regular expressions over roles. We look at
ontologies formulated using the description logic ALC, and
show a tight 2EXPTIME upper bound for entailment of UCR-
PQs. At the core of our decision procedure, there is a novel
automata-based technique introducing a stratification of inter-
pretations induced by the deterministic finite automaton un-
derlying the input UCRPQ.

1 Introduction
At the intersection of knowledge representation and
database theory lies the fundamental problem of ontology-
mediated query entailment (OMQE), where the background
knowledge provided by an ontology is used to enrich the
answers to queries posed to databases. In this context, de-
scription logics (DLs) are a widely accepted family of logics
used to formulate ontologies. By now, the OMQE problem
under the unrestricted semantics (reasoning over arbitrary
models) is well understood for various query languages and
DLs (Schneider and Simkus 2020). In contrast, for the finite
OMQE problem, where one is interested in reasoning over
finite models only, the overall landscape is rather incom-
plete. However, in recent years, the study of finite OMQE
has been gaining traction, considering both lightweight
and expressive DLs and (mostly) unions of conjunctive
queries (Rosati 2008; Ibáñez-Garcı́a, Lutz, and Schneider
2014; Rudolph 2016; Gogacz, Ibáñez-Garcı́a, and Murlak
2018; Gogacz et al. 2019; Danielski and Kieronski 2019;
Gogacz et al. 2020; Bednarczyk and Kieroński 2022).

In this paper we consider the problem of finite OMQE
with unions of conjunctive regular path queries (UCRPQs)
as the query language. UCRPQs (Florescu, Levy, and Su-
ciu 1998; Calvanese et al. 2000) are a powerful navigational
query language for graph databases in which one can ex-
press that two entities are related by a path of edges that
can be specified by a regular language over binary relations.
So, UCRPQs extend unions of conjunctive queries (UCQs)
with atoms that might contain regular expressions that tra-
verse the edges of the database. Indeed, path navigation is
included in the query language XPath 2.0 for XML data, and

it is also present in the SPARQL 1.1 query language for RDF
data through the property path feature. Given the resem-
blance of instance data stored in ABoxes in DLs to graph-
like data, several investigations on unrestricted entailment of
various types of navigational query languages mediated by
DL ontologies have been carried out (Stefanoni et al. 2014;
Calvanese, Eiter, and Ortiz 2014; Bienvenu, Ortiz, and
Simkus 2015; Gutiérrez-Basulto, Ibáñez-Garcı́a, and Jung
2018; Gogacz et al. 2019; Bednarczyk and Rudolph 2019),
yielding algorithmic approaches and optimal complexity
bounds. For finite entailment of regular path queries medi-
ated by DL ontologies, there are only undecidability results
available (Rudolph 2016). The most relevant positive news
are the decidability and computational complexity results by
Danielski and Kieronski (2019) and Gogacz et al. (2020) on
finite entailment of conjuctive queries with transitive closure
over roles mediated by expressive DL ontologies.

We focus on ontologies formulated using the description
logic ALC. Note that entailment of UCRPQs over ALC
ontologies is not finitely controllable, i.e. finite and unre-
stricted entailment do not coincide as it is not the case that
for anyALC knowledge baseK and any UCRPQ ϕ, it holds
that K entails ϕ over all (unrestricted) models iff K entails
ϕ over all finite models. By assuming that the represented
world is finite, we can therefore not reuse existing complex-
ity bounds or algorithmic approaches to UCRPQ entailment.
From a usability perspective, the suitability of this assump-
tion depends on the potential applications. A particular in-
terest for navigational queries comes from bioinformatics
and cheminformatics (Lysenko et al. 2016; Cook et al. 2016;
Galgonek et al. 2016; Hu, Qiu, and Dumontier 2015; Rajabi
and Sanchez-Alonso 2021; Chen et al. 2020). For instance,
experts often need to find associations between entities in
protein, cellular, drug, and disease networks (represented as
graph databases), so that e.g. gene-disease-drug associations
(corresponding to paths in the database) can be discovered
for developing new treatment methods. In this type of appli-
cations, databases and the models they represent are clearly
meant to be finite. Importantly, biochemical networks con-
tain complex motifs involving e.g. cycles or cliques. This
type of patterns can be described using UCRPQs, however,
without the finiteness assumption these patterns could be
disregarded as the associated query might not be entailed
when reasoning over all models (including infinite ones).



Contribution
The main technical contribution of our investigation is the
development of a dedicated automata-based method for en-
tailment of UCRPQs over ALC ontologies, providing an
optimal upper bound. More precisely, we obtain the fol-
lowing result, where the matching lower bound is inherited
from (Ortiz and Simkus 2014).

Theorem 1. Finite entailment of UCRPQs over ALC on-
tologies is 2EXPTIME-complete.

In prior work, Rudolph (2016) showed that finite entail-
ment of 2RPQs in ALCIOF is undecidable. Theorem 1
thus provides a key step towards delimiting the decidability
boundary of finite OMQE with navigational queries.

At the heart of our approach to finite entailment of UCR-
PQs in ALC there is a stratification of interpretations in-
duced by the deterministic finite automaton underlying the
UCRPQ. This stratification builds upon the so-called tape
construction, previously used to efficiently evaluate queries
in the extension of XPath 1.0 where arbitrary regular expres-
sions may appear as path expressions (Bojańczyk and Parys
2011). To realize the tape construction, our method repre-
sents UCRPQs by means of a semiautomaton B (Ginzburg
1968) and defines an expansion of B, allowing to trace runs
of B that begin in all possible states, on all infixes of the in-
put word. We make interpretations I knowledgeable of the
expansion by enriching paths of I with its possible runs and
by associating edges of I with levels ` induced by the tran-
sitions of the expansion. In a similar fashion we also make
CRPQs sensible of levels. With this at hand, we tackle fi-
nite entailment by eliminating the lowest level from a query
and from an interpretation, and then recursively solving the
simpler problem. At each step of this process, we should
be able to arrange solutions to simpler problems in a hier-
archical way so that we can reason over them. To this aim,
we consider a variant of entailment that includes an envi-
ronment, which will provide the necessary information to
position the arranged solutions to simpler problems in the
context of larger interpretations. To better keep track of the
complexity of our recursive method, we introduce a modi-
fication of the entailment problem modulo environment in
which we look at a particular type of finite models: (`, `′)-
models, which are models with edges of levels ` or higher
that are ‘consistent’ w.r.t. queries referring to edges of level
`′ or higher. We solve the problem of finding (`, `′)-models
recursively by increasing ` and `′ in an alternating way, until
both reach the maximum level n + 1, with n the number of
states of B. This will mean solving finite entailment modulo
environment, and thus standard finite entailment as well.

Missing proofs can be found in the technical report avail-
able at https://arxiv.org/pdf/2204.14261.pdf.

Related Work
We next discuss some existing work relevant to our study.
OMQE of Navigational Queries. As previously discussed,
there exist various works on unrestricted entailment of navi-
gational query languages mediated by DL ontologies. Most
of them concentrate on extensions of regular path queries

(RPQs), such as UCRPQs, and consider both Horn (Bien-
venu, Ortiz, and Simkus 2015) and expressive DLs (Cal-
vanese, Eiter, and Ortiz 2014; Gutiérrez-Basulto, Ibáñez-
Garcı́a, and Jung 2018; Gogacz et al. 2019; Bednarczyk
and Rudolph 2019). There have been also some studies on
entailment of graph XPath queries (Stefanoni et al. 2014;
Bienvenu et al. 2014; Kostylev, Reutter, and Vrgoc 2014).

Finite OMQE. There exist various decidability results
and optimal complexity bounds for finite entailment of
union of conjunctive queries in Horn DLs (Rosati 2008;
Ibáñez-Garcı́a, Lutz, and Schneider 2014) and in expres-
sive DLs from the S family (Gogacz, Ibáñez-Garcı́a, and
Murlak 2018; Gogacz et al. 2019; Danielski and Kieronski
2019). In most cases, the computational complexity coin-
cides with that of the unrestricted case, but the algorith-
mic approaches are completely different. On the negative
side, undecidability of finite entailment of UCQs in the more
expressive DL SHOIF was shown by (Rudolph 2016),
as well as the undecidability result for finite entailment of
2RPQs in ALCIOF . Closer to our work are the posi-
tive results on finite entailment of UCQs with transitive clo-
sure over roles in expressive DLs allowing for transitivity or
transitive closure over roles (Danielski and Kieronski 2019;
Gogacz et al. 2020). These results close the distance to the
undecidability frontier for finite entailment from a different
angle by considering ontology languages more expressive
than ALC, but a subclass of UCRPQs as query language.
In the context of database theory research, finite OMQE
(also called open-world query entailment) has also been
investigated; for instance, Amarilli and Benedikt (2020)
study finite OMQE for inclusion dependencies and func-
tional dependencies over relations of arbitrary arity, and
Pratt-Hartmann (2009) looks at finite OMQE in the two-
variable fragment of FOL with counting quantifiers.

Finite Controllability. There have been also a few works
on finite controllability in the context of DLs. For instance,
Bednarczyk and Kieroński (2022) recently showed that the
ZOI and ZOQ members of the Z family are finitely con-
trollable for UCQs. Beyond DLs, there have been several
works on UCQ-finite controllability: for the guarded frag-
ment of FOL (Bárány, Gottlob, and Otto 2014) or for var-
ious fragments of existential rules (Civili and Rosati 2012;
Gogacz and Marcinkowski 2013; Baget et al. 2011; Amen-
dola, Leone, and Manna 2018; Gottlob, Manna, and Pieris
2018). Closer to our study, is the work by Figueira, Figueira,
and Baque (2020) on the classification of finitely and non-
finitely controllable subclasses of CRPQs over ontologies
formulated in the guarded-negation fragment of FOL or in
the frontier fragment of existential rules. However, no com-
plexity results or algorithms for finite entailment are pro-
vided for the non-finitely controllable cases.

2 Preliminaries
2.1 Description Logics
We consider a vocabulary consisting of countably infinite
disjoint sets of concept names NC, role names NR, and in-
dividual names NI. ALC-concepts C,D are defined by the
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grammar

C,D ::= A | ¬C | C uD | ∃r.C

where A ∈ NC and r ∈ NR. We use standard abbreviations
⊥, >, C tD and ∀r.C.

AnALC-TBox T is a finite set of concept inclusions (CIs)
C v D, where C,D are ALC-concepts. An ABox A is
a finite non-empty set of concept and role assertions of the
formA(a), r(a, b), whereA ∈ NC, r ∈ NR and {a, b} ⊆ NI.
We write ind(A) for the set of individual names occurring
in A. A knowledge base (KB) is a pair K = (T ,A). We
write CN(K) and rol(K) for the sets of all concept and role
names occurring in K. We let ‖K‖ be the total size of the
representation of K.

Without loss of generality, we assume throughout the pa-
per that all CIs are in one of the following normal forms:

l

i

Ai v
⊔
j

Bj , A v ∃r.B, A v ∀r.B,

where A,Ai, B,Bj ∈ NC, r ∈ NR, and empty disjunction
and conjunction are equivalent to⊥ and>, respectively. Ad-
ditionally, for each A ∈ CN(K) there is a complementary
Ā ∈ CN(K) axiomatized with > v A t Ā and A u Ā v ⊥.

2.2 Interpretations
The semantics is given as usual via interpretations I =
(∆I , ·I) consisting of a non-empty domain ∆I and an in-
terpretation function ·I mapping concept names to subsets
of the domain and role names to binary relations over the
domain, and individual names to elements of the domain.
The interpretation of complex concepts C is defined in the
usual way (Baader et al. 2017). An interpretation I is a
model of a TBox T , written I |= T if CI ⊆ DI for all CIs
C v D ∈ T . It is a model of an ABox A, written I |= A, if
ind(A) ⊆ ∆I , aI = a for each a ∈ ind(A), (a, b) ∈ rI for
all r(a, b) ∈ A, and a ∈ AI for all A(a) ∈ A. The first two
conditions constitute the so-called standard name assump-
tion. Finally, I is a model of a KB K = (T ,A), written
I |= K, if I |= T and I |= A.

An interpretation I is finite if ∆I is finite. An interpre-
tation I ′ is a sub-interpretation of I, written as I ′ ⊆ I, if
∆I
′ ⊆ ∆I , AI

′ ⊆ AI , and rI
′ ⊆ rI for all A ∈ NC and

r ∈ NR. For Σ ⊆ NC ∪ NR, I is an interpretation over sig-
nature Σ if AI = ∅ and rI = ∅ for all A ∈ NC \ Σ and
r ∈ NR \ Σ. The union I ∪ J of I and J is an interpreta-
tion such that ∆I∪J = ∆I ∪∆J , AI∪J = AI ∪ AJ , and
rI∪J = rI ∪ rJ for all A ∈ NC and r ∈ NR.

A unary K-type is a subset of CN(K) including either A
or Ā for each A ∈ CN(K). For an interpretation I and an
element d ∈ ∆I , the unary K-type of d in I is tpI(d) ={
A ∈ CN(K)

∣∣ d ∈ AI}. We say that I realizes a unary K-
type τ if τ = tpI(d) for some d ∈ ∆I .

2.3 Queries and Finite Entailment
We next introduce the query language. We concentrate on
Boolean queries, that is, queries without answer variables.
The extension to queries with answer variables is standard;

see, for example, (Glimm et al. 2008). A conjunctive regular
path query (CRPQ) is a first-order formula

ϕ = ∃xψ(x)

such that ψ(x) is constructed using ∧ over atoms of the form
A(t) or E(t, t′) where A ∈ NC, t, t′ are variables from x or
individual names from NI, and E is a path expression defined
by the grammar

E , E ′ ::= r | E∗ | E ∪ E ′ | E ◦ E ′

where r ∈ NR. Thus, E is essentially a regular expression
over the (infinite) alphabet {r | r ∈ NR}. The set of individ-
ual names in ϕ is denoted with ind(ϕ). A conjunctive query
(CQ) is a CRPQ that does not use the operators ∗,∪ and ◦ in
path expressions, and a regular path query (RPQ) consists
of a single atom of the form E(t, t′).

The semantics of CRPQs is defined via matches. Let us
fix a CRPQ ϕ = ∃xψ(x) and an interpretation I. A match
for ϕ in I is a function

π : x ∪ ind(ϕ)→ ∆I

such that π(a) = a, for all a ∈ ind(ϕ), and I, π |= ψ(x)
under the standard semantics of first-order logic extended
with a rule for atoms of the form E(t, t′). More formally, we
define:
• I, π |= ψ1 ∧ ψ2 iff I, π |= ψ1 and I, π |= ψ2;
• I, π |= A(t) iff π(t) ∈ AI ;
• I, π |= E(t, t′) iff (π(t), π(t′)) ∈ EI , where EI is defined

inductively as (E∗)I = (EI)∗, (E1 ∪ E2)I = EI1 ∪ EI2 ,
(E1 ◦ E2)I = EI1 ◦ EI2 .

An interpretation I satisfies ϕ, written I |= ϕ, if there exists
a match for ϕ in I. A union of CRPQs (UCRPQ) is a finite
set of CRPQs and a union of CQs (UCQ) is a finite set of
CQs. An interpretation I satisfies an UCRPQ Φ, written
as I |= Φ, if I |= ϕ for some ϕ ∈ Φ. We say that K
finitely entails Φ, written K |=fin Φ, if each finite model of
K satisfies Φ. A model of K that does not satisfy Φ is a
counter-model. The finite entailment problem asks if a given
KB K finitely entails a given query Φ.

2.4 UCRPQs via Semiautomata
We work with UCRPQs represented by means of a semi-
automaton (Ginzburg 1968) B = (Q,Γ, δ) where Q is
a finite set of states, Γ ⊆ {r | r ∈ NR} is a finite
alphabet—throughout the paper we assume Γ = rol(K), and
δ : Q× Γ→ Q is the transition function. A semiautomaton
is essentially a deterministic finite automaton without initial
and final states; a run of a semiautomaton B over a word w
is defined just like for a finite automaton, except that it can
begin in any state and there is no notion of accepting runs.
Under this representation, an RPQ is an atom over a binary
predicate of the form Bq,q′ where q, q′ ∈ Q are states of
B. We let I, π |= Bq,q′(t, t′) iff (π(t), π(t′)) ∈ BIq,q′ where
BIq,q′ is the set of pairs (e, e′) such that for some n ∈ N there
exist r1, . . . , rn ∈ Γ and e0, . . . , en ∈ ∆I such that
• e0 = e and en = e′;



• (ei−1, ei) ∈ (ri)
I for all i ∈ {1, . . . , n};

• there exists a run of B on the word r1 . . . rn that begins in
state q and ends in state q′.

We also allow edge atoms of the form r(x, x′) for r ∈ Γ.
Each UCRPQ Φ can be effectively rewritten into a

UCRPQ Φ′ expressed by means of a semiautomaton B of
size k · 2O(m) where k is the number of path expressions in
Φ and m is their maximal size. The size of CRPQs in Φ′ is
bounded by the size of CRPQs in Φ and |Φ′| = 2poly‖Φ‖,
where ‖Φ‖ is the total size of Φ.

For simplicity we work with KBs K = (T ,A) where the
ABox A is trivial; that is, ind(A) = {a} for some a ∈ NI

and A contains only concept assertions. The general finite
entailment problem can be reduced to this special case using
the following lemma.
Lemma 1. Given an oracle for finite entailment for trivial
ABoxes, the general finite entailment (T ,A) |=fin Φ can
be decided in time 2poly(‖(T ,A)‖)·2poly(‖Φ‖)

using calls to the
oracle for K′ = (T ,A′) and Φ′ consisting of 2poly(‖Φ‖)

CRPQs of linear size over the same semiautomaton as Φ.

2.5 Entailment Modulo Environment
We solve the entailment problem using a divide-and-conquer
approach in which counter-models are decomposed into
simpler ones, whose existence is easier to decide. Each level
of this recursive procedure will involve certain modifications
to the TBox. For complexity reasons we need to pay close
attention to these changes, making sure that no blow-up is
involved. To make it easier, we generalize the entailment
problem by turning the modifications into a separate part of
the input, which allows fixing the TBox for the duration of
the whole procedure. At every level of the recursion, we
will need to reason ‘externally’ about the way simpler pieces
are put together to form the larger counter-model, and ‘inter-
nally’ about how to specify the required properties of a piece
depending on what is happening outside. We will think of
the models as induced subinterpretations of a larger interpre-
tation. Dually, the remaining part of the larger interpretation
can be seen as an external context, in which our models live.
The relevant features of this context will be represented by
environments, which we now define.

An environment E = (Θ, ε) consists of a set Θ of unary
types and a function ε : Θ → 2rol(K)×CN(K). The intended
meaning is that only types from Θ are allowed and each el-
ement of an allowed unary type τ has an r-edge to an ele-
ment in the extension of B in the external context for each
(r,B) ∈ ε(τ). Accordingly, we say that I is a model of K
modulo E and write I |=E K if I realizes only unary types
from Θ and it is a model of K under the following relaxed
semantics of existential restrictions:
• for every existential restriction ∃r.B in K and every ele-

ment d ∈ ∆I , d ∈ (∃r.B)I iff either there is an r-edge in
I from d to an element e ∈ BI or (r,B) ∈ ε

(
tpI(d)

)
.

(The semantics of universal restrictions is not altered and
it is the environment’s reponsibility to account for them.)
Correspondingly, a query Φ is finitely entailed by K mod-
ulo E , written K |=Efin Φ, if for each finite interpretation I, if

I |=E K then I |= Φ. The problem of finite entailment mod-
ulo environment is to decide for a given KB K, environment
E , and query Φ if K |=Efin Φ.

Note that finite entailment modulo environment and ordi-
nary finite entailment are interreducible. In one direction, it
is enough to take the set of all unary K-types for Θ and set
ε(τ) = ∅ for all τ ∈ Θ. In the other direction, the condi-
tions imposed on unary types and the relaxed semantics of
existential restrictions can be expressed easily in the TBox.
The latter reduction, however, might significantly increase
the size of the TBox. It is easier to control the size of the in-
put at different levels of the recursion when these conditions
are explicitly represented in the environment.

3 Expansion and Decorations
In order to handle UCRPQs expressed by means of a semi-
automaton B we need to be able to trace runs of B that begin
in all possible states, on all infixes of the input word. We
achieve this using the following construction.

Let us fix an arbitrary linear order on the setQ of the states
of B. The expansion of B is a semiautomaton B̂ whose set of
states is the set Q̂ of all permutations ofQ. Thus, an element
of Q̂ can be seen as a tuple p = (p1, p2, . . . , pn) such that
pi is the image of the ith state of B under the respective
permutation. We refer to positions in this tuple as levels. In
particular, the level of q ∈ Q in p is the unique i such that
q = pi. Assuming δ : Q × rol(K) → Q is the transition
function of B, we define the transition function

δ̂ : Q̂× rol(K)→ Q̂

of B̂ by letting δ̂
(
p, r
)

be the permutation p′ obtained by
listing all states appearing in the sequence

δ(p, r) =
(
δ(p1, r), δ(p2, r), . . . , δ(pn, r)

)
in the order of their first appearances, followed by all re-
maining states of B ordered as in Q. Note that the level
of δ(pi, r) in p′ is at most i. Consider the set P ⊆
{1, 2, . . . , n} of levels i such that the level of δ(pi, r) in
p′ is equal to i. It follows from the definition of p′ that
P = {1, 2, . . . , `} for some ` ∈ {1, 2, . . . , n}. We call this
number ` the level of transition p

r−→ p′.
From each run of B̂ on a word w we can reconstruct all

runs ofB onw. Let p0,p1, . . . ,pm be a run of B̂ onw. Con-
sider a run q0, q1, . . . , qm of B on w. For i = 0, 1, . . . ,m,
let `i be the level of qi in pi. Any sequence `0, `1, . . . , `m
associated like this with a run of B will be called a thread
in the run of B̂ (see Fig. 1). Notice that two threads that be-
gin at different levels can meet at the same level somewhere
along the run; if this happens they remain equal until the end
of the run. Also, threads can be born in the middle of a run
of B̂, but they never disappear. A crucial property of threads
is that they are non-increasing sequences: the level of qi+1

in pi+1 is bounded by the level of qi in pi.

Lemma 2. Let p0,p1, . . . ,pm be a run of B̂ on w, and let
q, q′ be states of B. There is a run of B on w from q to q′ iff
there exist positions 0 ≤ j1 < j2 < · · · < jk = m, levels
n ≥ `1 > `2 > · · · > `k ≥ 1, and states q0, q1, . . . , qk with
1 ≤ k ≤ n such that q0 = q, qk = q′, and
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q3

<latexit sha1_base64="t3cmUxALaw7VtHy/zcMpM6052cw=">AAAB6nicbZA7SwNBFIXvxlcSX1FLm8EgWEjYsVDLgI1lRPOAZAmzs7PJkNnZdWZWCEsaGysbC0Vsbf0zdv4anTwKTTww8HHOvcy9108E18Z1v5zc0vLK6lq+UFzf2NzaLu3sNnScKsrqNBaxavlEM8ElqxtuBGslipHIF6zpDy7GefOOKc1jeWOGCfMi0pM85JQYa13fdnG3VHYr7kRoEfAMytXCQ/DxfX9c65Y+O0FM04hJQwXRuo3dxHgZUYZTwUbFTqpZQuiA9FjboiQR0142GXWEDq0ToDBW9kmDJu7vjoxEWg8j31ZGxPT1fDY2/8vaqQnPvYzLJDVM0ulHYSqQidF4bxRwxagRQwuEKm5nRbRPFKHGXqdoj4DnV16ExkkFn1bwFS5XXZgqD/twAEeA4QyqcAk1qAOFHjzCM7w4wnlyXp23aWnOmfXswR857z/DtpEY</latexit>

q1

<latexit sha1_base64="vx4ydFi1Xl/2HbeKPXXnrH0GVxg=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PAi8eI5gHJEmYns8mQ2dl1plcISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuLaiFg94DjhfkQHSoSCUbTS/WPvoleuuFV3BrJMvJxUIEe9V/7q9mOWRlwhk9SYjucm6GdUo2CST0rd1PCEshEd8I6likbc+Nns1Ak5sUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophtd+JlSSIldsvihMJcGYTP8mfaE5Qzm2hDIt7K2EDammDG06JRuCt/jyMmmeVb3Lqnd3Xqm5eRxFOIJjOAUPrqAGt1CHBjAYwDO8wpsjnRfn3fmYtxacfOYQ/sD5/AEDpI2R</latexit>

q5

<latexit sha1_base64="Sp4CD3atOIWVS1wuYqD2HDMogNI=">AAAB6nicbZA7SwNBFIXv+kziK2ppMxgECwk7ImoZsLGMaB6QLGF2djYZMju7zswKYUljY2VjoYitrX/Gzl+jk0ehiQcGPs65l7n3+ong2rjul7OwuLS8sprLF9bWNza3its7dR2nirIajUWsmj7RTHDJaoYbwZqJYiTyBWv4/YtR3rhjSvNY3phBwryIdCUPOSXGWte3nZNOseSW3bHQPOAplCr5h+Dj+/6o2il+toOYphGThgqidQu7ifEyogyngg0L7VSzhNA+6bKWRUkipr1sPOoQHVgnQGGs7JMGjd3fHRmJtB5Evq2MiOnp2Wxk/pe1UhOeexmXSWqYpJOPwlQgE6PR3ijgilEjBhYIVdzOimiPKEKNvU7BHgHPrjwP9eMyPi3jK1yquDBRDvZgHw4BwxlU4BKqUAMKXXiEZ3hxhPPkvDpvk9IFZ9qzC3/kvP8AyEKRGw==</latexit>

q4

<latexit sha1_base64="emzqdfvp2W6jnj5MV5dGAwnb8wo=">AAAB6HicbVBNS8NAEJ34WetX1aOXYBE8lUREPRa8eGzBfkAbymY7adduNmF3IpTSX+DFgyJe/Une/Ddu2xy09cHA470ZZuaFqRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNk2SaY4MnMtHtkBmUQmGDBElspxpZHEpshaO7md96Qm1Eoh5onGIQs4ESkeCMrFSnXqnsVbw53FXi56QMOWq90le3n/AsRkVcMmM6vpdSMGGaBJc4LXYzgynjIzbAjqWKxWiCyfzQqXtulb4bJdqWIneu/p6YsNiYcRzazpjR0Cx7M/E/r5NRdBtMhEozQsUXi6JMupS4s6/dvtDISY4tYVwLe6vLh0wzTjabog3BX355lTQvK/51xa9flateHkcBTuEMLsCHG6jCPdSgARwQnuEV3pxH58V5dz4WrWtOPnMCf+B8/gDct4zs</latexit>

t
<latexit sha1_base64="Aaq6ZJHVY6OfEIrDYj0WrU5tUUM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6pereo1ryt1N4+jCGdwDpfgwQ3U4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/bM4zr</latexit>

s
<latexit sha1_base64="bKnnsOc/V+vRparQFZCxViGQwGQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6pereo1ryt1N4+jCGdwDpfgwQ3U4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/Zr4zq</latexit>

r
<latexit sha1_base64="emzqdfvp2W6jnj5MV5dGAwnb8wo=">AAAB6HicbVBNS8NAEJ34WetX1aOXYBE8lUREPRa8eGzBfkAbymY7adduNmF3IpTSX+DFgyJe/Une/Ddu2xy09cHA470ZZuaFqRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNk2SaY4MnMtHtkBmUQmGDBElspxpZHEpshaO7md96Qm1Eoh5onGIQs4ESkeCMrFSnXqnsVbw53FXi56QMOWq90le3n/AsRkVcMmM6vpdSMGGaBJc4LXYzgynjIzbAjqWKxWiCyfzQqXtulb4bJdqWIneu/p6YsNiYcRzazpjR0Cx7M/E/r5NRdBtMhEozQsUXi6JMupS4s6/dvtDISY4tYVwLe6vLh0wzTjabog3BX355lTQvK/51xa9flateHkcBTuEMLsCHG6jCPdSgARwQnuEV3pxH58V5dz4WrWtOPnMCf+B8/gDct4zs</latexit>

t
<latexit sha1_base64="bKnnsOc/V+vRparQFZCxViGQwGQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6pereo1ryt1N4+jCGdwDpfgwQ3U4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/Zr4zq</latexit>

r
<latexit sha1_base64="bKnnsOc/V+vRparQFZCxViGQwGQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6pereo1ryt1N4+jCGdwDpfgwQ3U4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/Zr4zq</latexit>

r
<latexit sha1_base64="bKnnsOc/V+vRparQFZCxViGQwGQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6pereo1ryt1N4+jCGdwDpfgwQ3U4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/Zr4zq</latexit>

r
<latexit sha1_base64="Aaq6ZJHVY6OfEIrDYj0WrU5tUUM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6pereo1ryt1N4+jCGdwDpfgwQ3U4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/bM4zr</latexit>

s

<latexit sha1_base64="CpJQL9aP6MBDtlQHZN5FjfaltIU=">AAAB83icbVC7SgNBFL0bX0l8RS1tBoNgIWHXQi0DNpYRzAOyS5idnU2GzM4OM7NCWNLY+Ac2ForY5mfs/BqdPApNPDBwOOde7pkTSs60cd0vp7C2vrG5VSyVt3d29/YrB4ctnWaK0CZJeao6IdaUM0GbhhlOO1JRnISctsPhzdRvP1ClWSruzUjSIMF9wWJGsLGS7yfYDMI4l+Oe26tU3Zo7A1ol3oJU66WnaPL9eN7oVT79KCVZQoUhHGvd9Vxpghwrwwin47KfaSoxGeI+7VoqcEJ1kM8yj9GpVSIUp8o+YdBM/b2R40TrURLayWlGvexNxf+8bmbi6yBnQmaGCjI/FGccmRRNC0ARU5QYPrIEE8VsVkQGWGFibE1lW4K3/OVV0rqoeZc1786r1l2YowjHcAJn4MEV1OEWGtAEAhKe4RXenMx5cd6dj/lowVnsHMEfOJMf31SVNg==</latexit>

p0

<latexit sha1_base64="T7YXrhw8wKBlFBP7sgCUii12+TM=">AAAB83icbVC7SgNBFL3rM4mvqKXNYBAsJOymUMuAjWUE84DsEmZnZ5Mhs7PDzKwQljQ2/oGNhSK2+Rk7v0Ynj0ITDwwczrmXe+aEkjNtXPfLWVvf2NzaLhRLO7t7+wflw6OWTjNFaJOkPFWdEGvKmaBNwwynHakoTkJO2+HwZuq3H6jSLBX3ZiRpkOC+YDEj2FjJ9xNsBmGcy3Gv1itX3Ko7A1ol3oJU6sWnaPL9eNHolT/9KCVZQoUhHGvd9Vxpghwrwwin45KfaSoxGeI+7VoqcEJ1kM8yj9GZVSIUp8o+YdBM/b2R40TrURLayWlGvexNxf+8bmbi6yBnQmaGCjI/FGccmRRNC0ARU5QYPrIEE8VsVkQGWGFibE0lW4K3/OVV0qpVvcuqd+dV6i7MUYATOIVz8OAK6nALDWgCAQnP8ApvTua8OO/Ox3x0zVnsHMMfOJMf4lyVOA==</latexit>

p2

<latexit sha1_base64="W9RedcGenNzLwLE13Rldx5joTGs=">AAAB83icbVDLSgMxFL3js62vqks3wSK4kDKjoC4LblxWsA9oh5LJZNrQTCYkGaEM3bjxD9y4UMRtf8adX6OZtgttPRA4nHMv9+QEkjNtXPfLWVldW9/YLBRLW9s7u3vl/YOmTlJFaIMkPFHtAGvKmaANwwynbakojgNOW8HwJvdbD1Rploh7M5LUj3FfsIgRbKzU7cbYDIIok+PeRa9ccavuFGiZeHNSqRWfwsn341m9V/7shglJYyoM4VjrjudK42dYGUY4HZe6qaYSkyHu046lAsdU+9k08xidWCVEUaLsEwZN1d8bGY61HsWBncwz6kUvF//zOqmJrv2MCZkaKsjsUJRyZBKUF4BCpigxfGQJJorZrIgMsMLE2JpKtgRv8cvLpHle9S6r3p1XqbkwQwGO4BhOwYMrqMEt1KEBBCQ8wyu8Oanz4rw7H7PRFWe+cwh/4Ex+AOPglTk=</latexit>

p3

<latexit sha1_base64="uiJA34TBxYw5xxQEVGc00Uf/jdg=">AAAB83icbVC7SgNBFL3rM4mvqKXNYBAsJOxaGMuAjWUE84BsCLOzs8mQ2dlhZlYISxob/8DGQhHb/IydX6OzSQpNPDBwOOde7pkTSM60cd0vZ219Y3Nru1As7ezu7R+UD49aOkkVoU2S8ER1AqwpZ4I2DTOcdqSiOA44bQejm9xvP1ClWSLuzVjSXowHgkWMYGMl34+xGQZRJif9Wr9ccavuDGiVeAtSqRefwun340WjX/70w4SkMRWGcKx113Ol6WVYGUY4nZT8VFOJyQgPaNdSgWOqe9ks8wSdWSVEUaLsEwbN1N8bGY61HseBncwz6mUvF//zuqmJrnsZEzI1VJD5oSjlyCQoLwCFTFFi+NgSTBSzWREZYoWJsTWVbAne8pdXSeuy6l1VvTuvUndhjgKcwCmcgwc1qMMtNKAJBCQ8wyu8Oanz4rw7H/PRNWexcwx/4Ex/AOnwlT0=</latexit>

p7

<latexit sha1_base64="vdfSObV1mc0mhZ8i6XmyH+lxKJA=">AAAB83icbVC7SgNBFL0bX0l8RS1tFoNgIWHHQi0DNpYRzAOyS5idnU2GzM4OM7NCWNLY+Ac2ForY5mfs/BqdPApNPDBwOOde7pkTSs608bwvp7C2vrG5VSyVt3d29/YrB4ctnWaK0CZJeao6IdaUM0GbhhlOO1JRnISctsPhzdRvP1ClWSruzUjSIMF9wWJGsLGS7yfYDMI4l+Me6lWqXs2bwV0laEGq9dJTNPl+PG/0Kp9+lJIsocIQjrXuIk+aIMfKMMLpuOxnmkpMhrhPu5YKnFAd5LPMY/fUKpEbp8o+YdyZ+nsjx4nWoyS0k9OMetmbiv953czE10HOhMwMFWR+KM64a1J3WoAbMUWJ4SNLMFHMZnXJACtMjK2pbEtAy19eJa2LGrqsoTtUrXswRxGO4QTOAMEV1OEWGtAEAhKe4RXenMx5cd6dj/lowVnsHMEfOJMf4NiVNw==</latexit>

p1

<latexit sha1_base64="BfpnndivGsAOZ52lwEUKPvvQBxs=">AAAB83icbVC7SgNBFL3rM4mvqKXNYBAsJOxaaMqAjWUE84BsCLOzs8mQ2dlhZlYISxob/8DGQhHb/IydX6OzSQpNPDBwOOde7pkTSM60cd0vZ219Y3Nru1As7ezu7R+UD49aOkkVoU2S8ER1AqwpZ4I2DTOcdqSiOA44bQejm9xvP1ClWSLuzVjSXowHgkWMYGMl34+xGQZRJif9Wr9ccavuDGiVeAtSqRefwun340WjX/70w4SkMRWGcKx113Ol6WVYGUY4nZT8VFOJyQgPaNdSgWOqe9ks8wSdWSVEUaLsEwbN1N8bGY61HseBncwz6mUvF//zuqmJar2MCZkaKsj8UJRyZBKUF4BCpigxfGwJJorZrIgMscLE2JpKtgRv+curpHVZ9a6q3p1XqbswRwFO4BTOwYNrqMMtNKAJBCQ8wyu8Oanz4rw7H/PRNWexcwx/4Ex/AOt0lT4=</latexit>

p8

<latexit sha1_base64="QEvI0vYKVADVE4nJjN/bD07U4oY=">AAAB83icbVDLSgMxFL3js62vqks3wSK4kDIj+FgW3LisYB/QDiWTybShmUxIMkIZunHjH7hxoYjb/ow7v0YzbRfaeiBwOOde7skJJGfauO6Xs7K6tr6xWSiWtrZ3dvfK+wdNnaSK0AZJeKLaAdaUM0EbhhlO21JRHAectoLhTe63HqjSLBH3ZiSpH+O+YBEj2Fip242xGQRRJse9i1654lbdKdAy8eakUis+hZPvx7N6r/zZDROSxlQYwrHWHc+Vxs+wMoxwOi51U00lJkPcpx1LBY6p9rNp5jE6sUqIokTZJwyaqr83MhxrPYoDO5ln1IteLv7ndVITXfsZEzI1VJDZoSjlyCQoLwCFTFFi+MgSTBSzWREZYIWJsTWVbAne4peXSfO86l1WvTuvUnNhhgIcwTGcggdXUINbqEMDCEh4hld4c1LnxXl3PmajK8585xD+wJn8AObolTs=</latexit>

p5

<latexit sha1_base64="zGln2cTBHxyZ3e+Xvsf2R1cjm+U=">AAAB83icbVDLSgMxFL3js62vqks3wSK4kDIjoi4LblxWsA9oh5LJZNrQTCYkGaEM3bjxD9y4UMRtf8adX6OZtgttPRA4nHMv9+QEkjNtXPfLWVldW9/YLBRLW9s7u3vl/YOmTlJFaIMkPFHtAGvKmaANwwynbakojgNOW8HwJvdbD1Rploh7M5LUj3FfsIgRbKzU7cbYDIIok+PeRa9ccavuFGiZeHNSqRWfwsn341m9V/7shglJYyoM4VjrjudK42dYGUY4HZe6qaYSkyHu046lAsdU+9k08xidWCVEUaLsEwZN1d8bGY61HsWBncwz6kUvF//zOqmJrv2MCZkaKsjsUJRyZBKUF4BCpigxfGQJJorZrIgMsMLE2JpKtgRv8cvLpHle9S6r3p1XqbkwQwGO4BhOwYMrqMEt1KEBBCQ8wyu8Oanz4rw7H7PRFWe+cwh/4Ex+AOVklTo=</latexit>

p4

<latexit sha1_base64="w+Hp4G7DRdpNc4kqUcEbc2DotcM=">AAAB83icbVC7SgNBFL3rM4mvqKXNYBAsJOxaRMuAjWUE84BsCLOzs8mQ2dlhZlYISxob/8DGQhHb/IydX6OzSQpNPDBwOOde7pkTSM60cd0vZ219Y3Nru1As7ezu7R+UD49aOkkVoU2S8ER1AqwpZ4I2DTOcdqSiOA44bQejm9xvP1ClWSLuzVjSXowHgkWMYGMl34+xGQZRJif9Wr9ccavuDGiVeAtSqRefwun340WjX/70w4SkMRWGcKx113Ol6WVYGUY4nZT8VFOJyQgPaNdSgWOqe9ks8wSdWSVEUaLsEwbN1N8bGY61HseBncwz6mUvF//zuqmJrnsZEzI1VJD5oSjlyCQoLwCFTFFi+NgSTBSzWREZYoWJsTWVbAne8pdXSeuy6tWq3p1XqbswRwFO4BTOwYMrqMMtNKAJBCQ8wyu8Oanz4rw7H/PRNWexcwx/4Ex/AOhslTw=</latexit>

p6

<latexit sha1_base64="Sp4CD3atOIWVS1wuYqD2HDMogNI=">AAAB6nicbZA7SwNBFIXv+kziK2ppMxgECwk7ImoZsLGMaB6QLGF2djYZMju7zswKYUljY2VjoYitrX/Gzl+jk0ehiQcGPs65l7n3+ong2rjul7OwuLS8sprLF9bWNza3its7dR2nirIajUWsmj7RTHDJaoYbwZqJYiTyBWv4/YtR3rhjSvNY3phBwryIdCUPOSXGWte3nZNOseSW3bHQPOAplCr5h+Dj+/6o2il+toOYphGThgqidQu7ifEyogyngg0L7VSzhNA+6bKWRUkipr1sPOoQHVgnQGGs7JMGjd3fHRmJtB5Evq2MiOnp2Wxk/pe1UhOeexmXSWqYpJOPwlQgE6PR3ijgilEjBhYIVdzOimiPKEKNvU7BHgHPrjwP9eMyPi3jK1yquDBRDvZgHw4BwxlU4BKqUAMKXXiEZ3hxhPPkvDpvk9IFZ9qzC3/kvP8AyEKRGw==</latexit>

q4

<latexit sha1_base64="vx4ydFi1Xl/2HbeKPXXnrH0GVxg=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PAi8eI5gHJEmYns8mQ2dl1plcISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuLaiFg94DjhfkQHSoSCUbTS/WPvoleuuFV3BrJMvJxUIEe9V/7q9mOWRlwhk9SYjucm6GdUo2CST0rd1PCEshEd8I6likbc+Nns1Ak5sUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophtd+JlSSIldsvihMJcGYTP8mfaE5Qzm2hDIt7K2EDammDG06JRuCt/jyMmmeVb3Lqnd3Xqm5eRxFOIJjOAUPrqAGt1CHBjAYwDO8wpsjnRfn3fmYtxacfOYQ/sD5/AEDpI2R</latexit>

q5

<latexit sha1_base64="t3cmUxALaw7VtHy/zcMpM6052cw=">AAAB6nicbZA7SwNBFIXvxlcSX1FLm8EgWEjYsVDLgI1lRPOAZAmzs7PJkNnZdWZWCEsaGysbC0Vsbf0zdv4anTwKTTww8HHOvcy9108E18Z1v5zc0vLK6lq+UFzf2NzaLu3sNnScKsrqNBaxavlEM8ElqxtuBGslipHIF6zpDy7GefOOKc1jeWOGCfMi0pM85JQYa13fdnG3VHYr7kRoEfAMytXCQ/DxfX9c65Y+O0FM04hJQwXRuo3dxHgZUYZTwUbFTqpZQuiA9FjboiQR0142GXWEDq0ToDBW9kmDJu7vjoxEWg8j31ZGxPT1fDY2/8vaqQnPvYzLJDVM0ulHYSqQidF4bxRwxagRQwuEKm5nRbRPFKHGXqdoj4DnV16ExkkFn1bwFS5XXZgqD/twAEeA4QyqcAk1qAOFHjzCM7w4wnlyXp23aWnOmfXswR857z/DtpEY</latexit>

q1

<latexit sha1_base64="vx4ydFi1Xl/2HbeKPXXnrH0GVxg=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PAi8eI5gHJEmYns8mQ2dl1plcISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuLaiFg94DjhfkQHSoSCUbTS/WPvoleuuFV3BrJMvJxUIEe9V/7q9mOWRlwhk9SYjucm6GdUo2CST0rd1PCEshEd8I6likbc+Nns1Ak5sUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophtd+JlSSIldsvihMJcGYTP8mfaE5Qzm2hDIt7K2EDammDG06JRuCt/jyMmmeVb3Lqnd3Xqm5eRxFOIJjOAUPrqAGt1CHBjAYwDO8wpsjnRfn3fmYtxacfOYQ/sD5/AEDpI2R</latexit>

q5
<latexit sha1_base64="Sp4CD3atOIWVS1wuYqD2HDMogNI=">AAAB6nicbZA7SwNBFIXv+kziK2ppMxgECwk7ImoZsLGMaB6QLGF2djYZMju7zswKYUljY2VjoYitrX/Gzl+jk0ehiQcGPs65l7n3+ong2rjul7OwuLS8sprLF9bWNza3its7dR2nirIajUWsmj7RTHDJaoYbwZqJYiTyBWv4/YtR3rhjSvNY3phBwryIdCUPOSXGWte3nZNOseSW3bHQPOAplCr5h+Dj+/6o2il+toOYphGThgqidQu7ifEyogyngg0L7VSzhNA+6bKWRUkipr1sPOoQHVgnQGGs7JMGjd3fHRmJtB5Evq2MiOnp2Wxk/pe1UhOeexmXSWqYpJOPwlQgE6PR3ijgilEjBhYIVdzOimiPKEKNvU7BHgHPrjwP9eMyPi3jK1yquDBRDvZgHw4BwxlU4BKqUAMKXXiEZ3hxhPPkvDpvk9IFZ9qzC3/kvP8AyEKRGw==</latexit>

q4
<latexit sha1_base64="Sp4CD3atOIWVS1wuYqD2HDMogNI=">AAAB6nicbZA7SwNBFIXv+kziK2ppMxgECwk7ImoZsLGMaB6QLGF2djYZMju7zswKYUljY2VjoYitrX/Gzl+jk0ehiQcGPs65l7n3+ong2rjul7OwuLS8sprLF9bWNza3its7dR2nirIajUWsmj7RTHDJaoYbwZqJYiTyBWv4/YtR3rhjSvNY3phBwryIdCUPOSXGWte3nZNOseSW3bHQPOAplCr5h+Dj+/6o2il+toOYphGThgqidQu7ifEyogyngg0L7VSzhNA+6bKWRUkipr1sPOoQHVgnQGGs7JMGjd3fHRmJtB5Evq2MiOnp2Wxk/pe1UhOeexmXSWqYpJOPwlQgE6PR3ijgilEjBhYIVdzOimiPKEKNvU7BHgHPrjwP9eMyPi3jK1yquDBRDvZgHw4BwxlU4BKqUAMKXXiEZ3hxhPPkvDpvk9IFZ9qzC3/kvP8AyEKRGw==</latexit>

q4

<latexit sha1_base64="vx4ydFi1Xl/2HbeKPXXnrH0GVxg=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PAi8eI5gHJEmYns8mQ2dl1plcISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuLaiFg94DjhfkQHSoSCUbTS/WPvoleuuFV3BrJMvJxUIEe9V/7q9mOWRlwhk9SYjucm6GdUo2CST0rd1PCEshEd8I6likbc+Nns1Ak5sUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophtd+JlSSIldsvihMJcGYTP8mfaE5Qzm2hDIt7K2EDammDG06JRuCt/jyMmmeVb3Lqnd3Xqm5eRxFOIJjOAUPrqAGt1CHBjAYwDO8wpsjnRfn3fmYtxacfOYQ/sD5/AEDpI2R</latexit>

q5
<latexit sha1_base64="W5HTfN9MR4njWuogh9kLgA1862M=">AAAB6nicbZA7SwNBFIXv+kziK2ppMxgECwm7KdQyYGMZ0TwgWcLs7GwyZGZ2nZkVwpLGxsrGQhFbW/+Mnb9GJ49CEw8MfJxzL3PvDRLOtHHdL2dpeWV1bT2XL2xsbm3vFHf3GjpOFaF1EvNYtQKsKWeS1g0znLYSRbEIOG0Gg4tx3ryjSrNY3phhQn2Be5JFjGBjrevbbqVbLLlldyK0CN4MStX8Q/jxfX9S6xY/O2FMUkGlIRxr3fbcxPgZVoYRTkeFTqppgskA92jbosSCaj+bjDpCR9YJURQr+6RBE/d3R4aF1kMR2EqBTV/PZ2Pzv6ydmujcz5hMUkMlmX4UpRyZGI33RiFTlBg+tICJYnZWRPpYYWLsdQr2CN78yovQqJS907J35ZWqLkyVgwM4hGPw4AyqcAk1qAOBHjzCM7w43HlyXp23aemSM+vZhz9y3n8AxTqRGQ==</latexit>

q2
<latexit sha1_base64="Sp4CD3atOIWVS1wuYqD2HDMogNI=">AAAB6nicbZA7SwNBFIXv+kziK2ppMxgECwk7ImoZsLGMaB6QLGF2djYZMju7zswKYUljY2VjoYitrX/Gzl+jk0ehiQcGPs65l7n3+ong2rjul7OwuLS8sprLF9bWNza3its7dR2nirIajUWsmj7RTHDJaoYbwZqJYiTyBWv4/YtR3rhjSvNY3phBwryIdCUPOSXGWte3nZNOseSW3bHQPOAplCr5h+Dj+/6o2il+toOYphGThgqidQu7ifEyogyngg0L7VSzhNA+6bKWRUkipr1sPOoQHVgnQGGs7JMGjd3fHRmJtB5Evq2MiOnp2Wxk/pe1UhOeexmXSWqYpJOPwlQgE6PR3ijgilEjBhYIVdzOimiPKEKNvU7BHgHPrjwP9eMyPi3jK1yquDBRDvZgHw4BwxlU4BKqUAMKXXiEZ3hxhPPkvDpvk9IFZ9qzC3/kvP8AyEKRGw==</latexit>

q4

<latexit sha1_base64="W5HTfN9MR4njWuogh9kLgA1862M=">AAAB6nicbZA7SwNBFIXv+kziK2ppMxgECwm7KdQyYGMZ0TwgWcLs7GwyZGZ2nZkVwpLGxsrGQhFbW/+Mnb9GJ49CEw8MfJxzL3PvDRLOtHHdL2dpeWV1bT2XL2xsbm3vFHf3GjpOFaF1EvNYtQKsKWeS1g0znLYSRbEIOG0Gg4tx3ryjSrNY3phhQn2Be5JFjGBjrevbbqVbLLlldyK0CN4MStX8Q/jxfX9S6xY/O2FMUkGlIRxr3fbcxPgZVoYRTkeFTqppgskA92jbosSCaj+bjDpCR9YJURQr+6RBE/d3R4aF1kMR2EqBTV/PZ2Pzv6ydmujcz5hMUkMlmX4UpRyZGI33RiFTlBg+tICJYnZWRPpYYWLsdQr2CN78yovQqJS907J35ZWqLkyVgwM4hGPw4AyqcAk1qAOBHjzCM7w43HlyXp23aemSM+vZhz9y3n8AxTqRGQ==</latexit>

q2
<latexit sha1_base64="vx4ydFi1Xl/2HbeKPXXnrH0GVxg=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PAi8eI5gHJEmYns8mQ2dl1plcISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuLaiFg94DjhfkQHSoSCUbTS/WPvoleuuFV3BrJMvJxUIEe9V/7q9mOWRlwhk9SYjucm6GdUo2CST0rd1PCEshEd8I6likbc+Nns1Ak5sUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophtd+JlSSIldsvihMJcGYTP8mfaE5Qzm2hDIt7K2EDammDG06JRuCt/jyMmmeVb3Lqnd3Xqm5eRxFOIJjOAUPrqAGt1CHBjAYwDO8wpsjnRfn3fmYtxacfOYQ/sD5/AEDpI2R</latexit>

q5

<latexit sha1_base64="HDNeOTQ7XrQDhyBKrAq/Eb2gLxQ=">AAAB6nicbZA7SwNBFIXv+kziK2ppMxgECwk7CmoZsLGMaB6QLGF2djYZMju7zswKYUljY2VjoYitrX/Gzl+jk0ehiQcGPs65l7n3+ong2rjul7OwuLS8sprLF9bWNza3its7dR2nirIajUWsmj7RTHDJaoYbwZqJYiTyBWv4/YtR3rhjSvNY3phBwryIdCUPOSXGWte3nZNOseSW3bHQPOAplCr5h+Dj+/6o2il+toOYphGThgqidQu7ifEyogyngg0L7VSzhNA+6bKWRUkipr1sPOoQHVgnQGGs7JMGjd3fHRmJtB5Evq2MiOnp2Wxk/pe1UhOeexmXSWqYpJOPwlQgE6PR3ijgilEjBhYIVdzOimiPKEKNvU7BHgHPrjwP9eMyPi3jK1yquDBRDvZgHw4BwxlU4BKqUAMKXXiEZ3hxhPPkvDpvk9IFZ9qzC3/kvP8Axr6RGg==</latexit>

q3
<latexit sha1_base64="HDNeOTQ7XrQDhyBKrAq/Eb2gLxQ=">AAAB6nicbZA7SwNBFIXv+kziK2ppMxgECwk7CmoZsLGMaB6QLGF2djYZMju7zswKYUljY2VjoYitrX/Gzl+jk0ehiQcGPs65l7n3+ong2rjul7OwuLS8sprLF9bWNza3its7dR2nirIajUWsmj7RTHDJaoYbwZqJYiTyBWv4/YtR3rhjSvNY3phBwryIdCUPOSXGWte3nZNOseSW3bHQPOAplCr5h+Dj+/6o2il+toOYphGThgqidQu7ifEyogyngg0L7VSzhNA+6bKWRUkipr1sPOoQHVgnQGGs7JMGjd3fHRmJtB5Evq2MiOnp2Wxk/pe1UhOeexmXSWqYpJOPwlQgE6PR3ijgilEjBhYIVdzOimiPKEKNvU7BHgHPrjwP9eMyPi3jK1yquDBRDvZgHw4BwxlU4BKqUAMKXXiEZ3hxhPPkvDpvk9IFZ9qzC3/kvP8Axr6RGg==</latexit>

q3

<latexit sha1_base64="Sp4CD3atOIWVS1wuYqD2HDMogNI=">AAAB6nicbZA7SwNBFIXv+kziK2ppMxgECwk7ImoZsLGMaB6QLGF2djYZMju7zswKYUljY2VjoYitrX/Gzl+jk0ehiQcGPs65l7n3+ong2rjul7OwuLS8sprLF9bWNza3its7dR2nirIajUWsmj7RTHDJaoYbwZqJYiTyBWv4/YtR3rhjSvNY3phBwryIdCUPOSXGWte3nZNOseSW3bHQPOAplCr5h+Dj+/6o2il+toOYphGThgqidQu7ifEyogyngg0L7VSzhNA+6bKWRUkipr1sPOoQHVgnQGGs7JMGjd3fHRmJtB5Evq2MiOnp2Wxk/pe1UhOeexmXSWqYpJOPwlQgE6PR3ijgilEjBhYIVdzOimiPKEKNvU7BHgHPrjwP9eMyPi3jK1yquDBRDvZgHw4BwxlU4BKqUAMKXXiEZ3hxhPPkvDpvk9IFZ9qzC3/kvP8AyEKRGw==</latexit>

q4

<latexit sha1_base64="vx4ydFi1Xl/2HbeKPXXnrH0GVxg=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PAi8eI5gHJEmYns8mQ2dl1plcISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuLaiFg94DjhfkQHSoSCUbTS/WPvoleuuFV3BrJMvJxUIEe9V/7q9mOWRlwhk9SYjucm6GdUo2CST0rd1PCEshEd8I6likbc+Nns1Ak5sUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophtd+JlSSIldsvihMJcGYTP8mfaE5Qzm2hDIt7K2EDammDG06JRuCt/jyMmmeVb3Lqnd3Xqm5eRxFOIJjOAUPrqAGt1CHBjAYwDO8wpsjnRfn3fmYtxacfOYQ/sD5/AEDpI2R</latexit>

q5

<latexit sha1_base64="t3cmUxALaw7VtHy/zcMpM6052cw=">AAAB6nicbZA7SwNBFIXvxlcSX1FLm8EgWEjYsVDLgI1lRPOAZAmzs7PJkNnZdWZWCEsaGysbC0Vsbf0zdv4anTwKTTww8HHOvcy9108E18Z1v5zc0vLK6lq+UFzf2NzaLu3sNnScKsrqNBaxavlEM8ElqxtuBGslipHIF6zpDy7GefOOKc1jeWOGCfMi0pM85JQYa13fdnG3VHYr7kRoEfAMytXCQ/DxfX9c65Y+O0FM04hJQwXRuo3dxHgZUYZTwUbFTqpZQuiA9FjboiQR0142GXWEDq0ToDBW9kmDJu7vjoxEWg8j31ZGxPT1fDY2/8vaqQnPvYzLJDVM0ulHYSqQidF4bxRwxagRQwuEKm5nRbRPFKHGXqdoj4DnV16ExkkFn1bwFS5XXZgqD/twAEeA4QyqcAk1qAOFHjzCM7w4wnlyXp23aWnOmfXswR857z/DtpEY</latexit>

q1
<latexit sha1_base64="t3cmUxALaw7VtHy/zcMpM6052cw=">AAAB6nicbZA7SwNBFIXvxlcSX1FLm8EgWEjYsVDLgI1lRPOAZAmzs7PJkNnZdWZWCEsaGysbC0Vsbf0zdv4anTwKTTww8HHOvcy9108E18Z1v5zc0vLK6lq+UFzf2NzaLu3sNnScKsrqNBaxavlEM8ElqxtuBGslipHIF6zpDy7GefOOKc1jeWOGCfMi0pM85JQYa13fdnG3VHYr7kRoEfAMytXCQ/DxfX9c65Y+O0FM04hJQwXRuo3dxHgZUYZTwUbFTqpZQuiA9FjboiQR0142GXWEDq0ToDBW9kmDJu7vjoxEWg8j31ZGxPT1fDY2/8vaqQnPvYzLJDVM0ulHYSqQidF4bxRwxagRQwuEKm5nRbRPFKHGXqdoj4DnV16ExkkFn1bwFS5XXZgqD/twAEeA4QyqcAk1qAOFHjzCM7w4wnlyXp23aWnOmfXswR857z/DtpEY</latexit>

q1
<latexit sha1_base64="t3cmUxALaw7VtHy/zcMpM6052cw=">AAAB6nicbZA7SwNBFIXvxlcSX1FLm8EgWEjYsVDLgI1lRPOAZAmzs7PJkNnZdWZWCEsaGysbC0Vsbf0zdv4anTwKTTww8HHOvcy9108E18Z1v5zc0vLK6lq+UFzf2NzaLu3sNnScKsrqNBaxavlEM8ElqxtuBGslipHIF6zpDy7GefOOKc1jeWOGCfMi0pM85JQYa13fdnG3VHYr7kRoEfAMytXCQ/DxfX9c65Y+O0FM04hJQwXRuo3dxHgZUYZTwUbFTqpZQuiA9FjboiQR0142GXWEDq0ToDBW9kmDJu7vjoxEWg8j31ZGxPT1fDY2/8vaqQnPvYzLJDVM0ulHYSqQidF4bxRwxagRQwuEKm5nRbRPFKHGXqdoj4DnV16ExkkFn1bwFS5XXZgqD/twAEeA4QyqcAk1qAOFHjzCM7w4wnlyXp23aWnOmfXswR857z/DtpEY</latexit>

q1

<latexit sha1_base64="vx4ydFi1Xl/2HbeKPXXnrH0GVxg=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PAi8eI5gHJEmYns8mQ2dl1plcISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuLaiFg94DjhfkQHSoSCUbTS/WPvoleuuFV3BrJMvJxUIEe9V/7q9mOWRlwhk9SYjucm6GdUo2CST0rd1PCEshEd8I6likbc+Nns1Ak5sUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophtd+JlSSIldsvihMJcGYTP8mfaE5Qzm2hDIt7K2EDammDG06JRuCt/jyMmmeVb3Lqnd3Xqm5eRxFOIJjOAUPrqAGt1CHBjAYwDO8wpsjnRfn3fmYtxacfOYQ/sD5/AEDpI2R</latexit>

q5

<latexit sha1_base64="HDNeOTQ7XrQDhyBKrAq/Eb2gLxQ=">AAAB6nicbZA7SwNBFIXv+kziK2ppMxgECwk7CmoZsLGMaB6QLGF2djYZMju7zswKYUljY2VjoYitrX/Gzl+jk0ehiQcGPs65l7n3+ong2rjul7OwuLS8sprLF9bWNza3its7dR2nirIajUWsmj7RTHDJaoYbwZqJYiTyBWv4/YtR3rhjSvNY3phBwryIdCUPOSXGWte3nZNOseSW3bHQPOAplCr5h+Dj+/6o2il+toOYphGThgqidQu7ifEyogyngg0L7VSzhNA+6bKWRUkipr1sPOoQHVgnQGGs7JMGjd3fHRmJtB5Evq2MiOnp2Wxk/pe1UhOeexmXSWqYpJOPwlQgE6PR3ijgilEjBhYIVdzOimiPKEKNvU7BHgHPrjwP9eMyPi3jK1yquDBRDvZgHw4BwxlU4BKqUAMKXXiEZ3hxhPPkvDpvk9IFZ9qzC3/kvP8Axr6RGg==</latexit>

q3

<latexit sha1_base64="HDNeOTQ7XrQDhyBKrAq/Eb2gLxQ=">AAAB6nicbZA7SwNBFIXv+kziK2ppMxgECwk7CmoZsLGMaB6QLGF2djYZMju7zswKYUljY2VjoYitrX/Gzl+jk0ehiQcGPs65l7n3+ong2rjul7OwuLS8sprLF9bWNza3its7dR2nirIajUWsmj7RTHDJaoYbwZqJYiTyBWv4/YtR3rhjSvNY3phBwryIdCUPOSXGWte3nZNOseSW3bHQPOAplCr5h+Dj+/6o2il+toOYphGThgqidQu7ifEyogyngg0L7VSzhNA+6bKWRUkipr1sPOoQHVgnQGGs7JMGjd3fHRmJtB5Evq2MiOnp2Wxk/pe1UhOeexmXSWqYpJOPwlQgE6PR3ijgilEjBhYIVdzOimiPKEKNvU7BHgHPrjwP9eMyPi3jK1yquDBRDvZgHw4BwxlU4BKqUAMKXXiEZ3hxhPPkvDpvk9IFZ9qzC3/kvP8Axr6RGg==</latexit>

q3

<latexit sha1_base64="t3cmUxALaw7VtHy/zcMpM6052cw=">AAAB6nicbZA7SwNBFIXvxlcSX1FLm8EgWEjYsVDLgI1lRPOAZAmzs7PJkNnZdWZWCEsaGysbC0Vsbf0zdv4anTwKTTww8HHOvcy9108E18Z1v5zc0vLK6lq+UFzf2NzaLu3sNnScKsrqNBaxavlEM8ElqxtuBGslipHIF6zpDy7GefOOKc1jeWOGCfMi0pM85JQYa13fdnG3VHYr7kRoEfAMytXCQ/DxfX9c65Y+O0FM04hJQwXRuo3dxHgZUYZTwUbFTqpZQuiA9FjboiQR0142GXWEDq0ToDBW9kmDJu7vjoxEWg8j31ZGxPT1fDY2/8vaqQnPvYzLJDVM0ulHYSqQidF4bxRwxagRQwuEKm5nRbRPFKHGXqdoj4DnV16ExkkFn1bwFS5XXZgqD/twAEeA4QyqcAk1qAOFHjzCM7w4wnlyXp23aWnOmfXswR857z/DtpEY</latexit>

q1

<latexit sha1_base64="Sp4CD3atOIWVS1wuYqD2HDMogNI=">AAAB6nicbZA7SwNBFIXv+kziK2ppMxgECwk7ImoZsLGMaB6QLGF2djYZMju7zswKYUljY2VjoYitrX/Gzl+jk0ehiQcGPs65l7n3+ong2rjul7OwuLS8sprLF9bWNza3its7dR2nirIajUWsmj7RTHDJaoYbwZqJYiTyBWv4/YtR3rhjSvNY3phBwryIdCUPOSXGWte3nZNOseSW3bHQPOAplCr5h+Dj+/6o2il+toOYphGThgqidQu7ifEyogyngg0L7VSzhNA+6bKWRUkipr1sPOoQHVgnQGGs7JMGjd3fHRmJtB5Evq2MiOnp2Wxk/pe1UhOeexmXSWqYpJOPwlQgE6PR3ijgilEjBhYIVdzOimiPKEKNvU7BHgHPrjwP9eMyPi3jK1yquDBRDvZgHw4BwxlU4BKqUAMKXXiEZ3hxhPPkvDpvk9IFZ9qzC3/kvP8AyEKRGw==</latexit>

q4
<latexit sha1_base64="t3cmUxALaw7VtHy/zcMpM6052cw=">AAAB6nicbZA7SwNBFIXvxlcSX1FLm8EgWEjYsVDLgI1lRPOAZAmzs7PJkNnZdWZWCEsaGysbC0Vsbf0zdv4anTwKTTww8HHOvcy9108E18Z1v5zc0vLK6lq+UFzf2NzaLu3sNnScKsrqNBaxavlEM8ElqxtuBGslipHIF6zpDy7GefOOKc1jeWOGCfMi0pM85JQYa13fdnG3VHYr7kRoEfAMytXCQ/DxfX9c65Y+O0FM04hJQwXRuo3dxHgZUYZTwUbFTqpZQuiA9FjboiQR0142GXWEDq0ToDBW9kmDJu7vjoxEWg8j31ZGxPT1fDY2/8vaqQnPvYzLJDVM0ulHYSqQidF4bxRwxagRQwuEKm5nRbRPFKHGXqdoj4DnV16ExkkFn1bwFS5XXZgqD/twAEeA4QyqcAk1qAOFHjzCM7w4wnlyXp23aWnOmfXswR857z/DtpEY</latexit>

q1

<latexit sha1_base64="Sp4CD3atOIWVS1wuYqD2HDMogNI=">AAAB6nicbZA7SwNBFIXv+kziK2ppMxgECwk7ImoZsLGMaB6QLGF2djYZMju7zswKYUljY2VjoYitrX/Gzl+jk0ehiQcGPs65l7n3+ong2rjul7OwuLS8sprLF9bWNza3its7dR2nirIajUWsmj7RTHDJaoYbwZqJYiTyBWv4/YtR3rhjSvNY3phBwryIdCUPOSXGWte3nZNOseSW3bHQPOAplCr5h+Dj+/6o2il+toOYphGThgqidQu7ifEyogyngg0L7VSzhNA+6bKWRUkipr1sPOoQHVgnQGGs7JMGjd3fHRmJtB5Evq2MiOnp2Wxk/pe1UhOeexmXSWqYpJOPwlQgE6PR3ijgilEjBhYIVdzOimiPKEKNvU7BHgHPrjwP9eMyPi3jK1yquDBRDvZgHw4BwxlU4BKqUAMKXXiEZ3hxhPPkvDpvk9IFZ9qzC3/kvP8AyEKRGw==</latexit>

q4
<latexit sha1_base64="W5HTfN9MR4njWuogh9kLgA1862M=">AAAB6nicbZA7SwNBFIXv+kziK2ppMxgECwm7KdQyYGMZ0TwgWcLs7GwyZGZ2nZkVwpLGxsrGQhFbW/+Mnb9GJ49CEw8MfJxzL3PvDRLOtHHdL2dpeWV1bT2XL2xsbm3vFHf3GjpOFaF1EvNYtQKsKWeS1g0znLYSRbEIOG0Gg4tx3ryjSrNY3phhQn2Be5JFjGBjrevbbqVbLLlldyK0CN4MStX8Q/jxfX9S6xY/O2FMUkGlIRxr3fbcxPgZVoYRTkeFTqppgskA92jbosSCaj+bjDpCR9YJURQr+6RBE/d3R4aF1kMR2EqBTV/PZ2Pzv6ydmujcz5hMUkMlmX4UpRyZGI33RiFTlBg+tICJYnZWRPpYYWLsdQr2CN78yovQqJS907J35ZWqLkyVgwM4hGPw4AyqcAk1qAOBHjzCM7w43HlyXp23aemSM+vZhz9y3n8AxTqRGQ==</latexit>

q2

<latexit sha1_base64="vx4ydFi1Xl/2HbeKPXXnrH0GVxg=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PAi8eI5gHJEmYns8mQ2dl1plcISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuLaiFg94DjhfkQHSoSCUbTS/WPvoleuuFV3BrJMvJxUIEe9V/7q9mOWRlwhk9SYjucm6GdUo2CST0rd1PCEshEd8I6likbc+Nns1Ak5sUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophtd+JlSSIldsvihMJcGYTP8mfaE5Qzm2hDIt7K2EDammDG06JRuCt/jyMmmeVb3Lqnd3Xqm5eRxFOIJjOAUPrqAGt1CHBjAYwDO8wpsjnRfn3fmYtxacfOYQ/sD5/AEDpI2R</latexit>

q5

<latexit sha1_base64="W5HTfN9MR4njWuogh9kLgA1862M=">AAAB6nicbZA7SwNBFIXv+kziK2ppMxgECwm7KdQyYGMZ0TwgWcLs7GwyZGZ2nZkVwpLGxsrGQhFbW/+Mnb9GJ49CEw8MfJxzL3PvDRLOtHHdL2dpeWV1bT2XL2xsbm3vFHf3GjpOFaF1EvNYtQKsKWeS1g0znLYSRbEIOG0Gg4tx3ryjSrNY3phhQn2Be5JFjGBjrevbbqVbLLlldyK0CN4MStX8Q/jxfX9S6xY/O2FMUkGlIRxr3fbcxPgZVoYRTkeFTqppgskA92jbosSCaj+bjDpCR9YJURQr+6RBE/d3R4aF1kMR2EqBTV/PZ2Pzv6ydmujcz5hMUkMlmX4UpRyZGI33RiFTlBg+tICJYnZWRPpYYWLsdQr2CN78yovQqJS907J35ZWqLkyVgwM4hGPw4AyqcAk1qAOBHjzCM7w43HlyXp23aemSM+vZhz9y3n8AxTqRGQ==</latexit>

q2
<latexit sha1_base64="t3cmUxALaw7VtHy/zcMpM6052cw=">AAAB6nicbZA7SwNBFIXvxlcSX1FLm8EgWEjYsVDLgI1lRPOAZAmzs7PJkNnZdWZWCEsaGysbC0Vsbf0zdv4anTwKTTww8HHOvcy9108E18Z1v5zc0vLK6lq+UFzf2NzaLu3sNnScKsrqNBaxavlEM8ElqxtuBGslipHIF6zpDy7GefOOKc1jeWOGCfMi0pM85JQYa13fdnG3VHYr7kRoEfAMytXCQ/DxfX9c65Y+O0FM04hJQwXRuo3dxHgZUYZTwUbFTqpZQuiA9FjboiQR0142GXWEDq0ToDBW9kmDJu7vjoxEWg8j31ZGxPT1fDY2/8vaqQnPvYzLJDVM0ulHYSqQidF4bxRwxagRQwuEKm5nRbRPFKHGXqdoj4DnV16ExkkFn1bwFS5XXZgqD/twAEeA4QyqcAk1qAOFHjzCM7w4wnlyXp23aWnOmfXswR857z/DtpEY</latexit>

q1

<latexit sha1_base64="Sp4CD3atOIWVS1wuYqD2HDMogNI=">AAAB6nicbZA7SwNBFIXv+kziK2ppMxgECwk7ImoZsLGMaB6QLGF2djYZMju7zswKYUljY2VjoYitrX/Gzl+jk0ehiQcGPs65l7n3+ong2rjul7OwuLS8sprLF9bWNza3its7dR2nirIajUWsmj7RTHDJaoYbwZqJYiTyBWv4/YtR3rhjSvNY3phBwryIdCUPOSXGWte3nZNOseSW3bHQPOAplCr5h+Dj+/6o2il+toOYphGThgqidQu7ifEyogyngg0L7VSzhNA+6bKWRUkipr1sPOoQHVgnQGGs7JMGjd3fHRmJtB5Evq2MiOnp2Wxk/pe1UhOeexmXSWqYpJOPwlQgE6PR3ijgilEjBhYIVdzOimiPKEKNvU7BHgHPrjwP9eMyPi3jK1yquDBRDvZgHw4BwxlU4BKqUAMKXXiEZ3hxhPPkvDpvk9IFZ9qzC3/kvP8AyEKRGw==</latexit>

q4

<latexit sha1_base64="W5HTfN9MR4njWuogh9kLgA1862M=">AAAB6nicbZA7SwNBFIXv+kziK2ppMxgECwm7KdQyYGMZ0TwgWcLs7GwyZGZ2nZkVwpLGxsrGQhFbW/+Mnb9GJ49CEw8MfJxzL3PvDRLOtHHdL2dpeWV1bT2XL2xsbm3vFHf3GjpOFaF1EvNYtQKsKWeS1g0znLYSRbEIOG0Gg4tx3ryjSrNY3phhQn2Be5JFjGBjrevbbqVbLLlldyK0CN4MStX8Q/jxfX9S6xY/O2FMUkGlIRxr3fbcxPgZVoYRTkeFTqppgskA92jbosSCaj+bjDpCR9YJURQr+6RBE/d3R4aF1kMR2EqBTV/PZ2Pzv6ydmujcz5hMUkMlmX4UpRyZGI33RiFTlBg+tICJYnZWRPpYYWLsdQr2CN78yovQqJS907J35ZWqLkyVgwM4hGPw4AyqcAk1qAOBHjzCM7w43HlyXp23aemSM+vZhz9y3n8AxTqRGQ==</latexit>

q2

<latexit sha1_base64="W5HTfN9MR4njWuogh9kLgA1862M=">AAAB6nicbZA7SwNBFIXv+kziK2ppMxgECwm7KdQyYGMZ0TwgWcLs7GwyZGZ2nZkVwpLGxsrGQhFbW/+Mnb9GJ49CEw8MfJxzL3PvDRLOtHHdL2dpeWV1bT2XL2xsbm3vFHf3GjpOFaF1EvNYtQKsKWeS1g0znLYSRbEIOG0Gg4tx3ryjSrNY3phhQn2Be5JFjGBjrevbbqVbLLlldyK0CN4MStX8Q/jxfX9S6xY/O2FMUkGlIRxr3fbcxPgZVoYRTkeFTqppgskA92jbosSCaj+bjDpCR9YJURQr+6RBE/d3R4aF1kMR2EqBTV/PZ2Pzv6ydmujcz5hMUkMlmX4UpRyZGI33RiFTlBg+tICJYnZWRPpYYWLsdQr2CN78yovQqJS907J35ZWqLkyVgwM4hGPw4AyqcAk1qAOBHjzCM7w43HlyXp23aemSM+vZhz9y3n8AxTqRGQ==</latexit>

q2

<latexit sha1_base64="HDNeOTQ7XrQDhyBKrAq/Eb2gLxQ=">AAAB6nicbZA7SwNBFIXv+kziK2ppMxgECwk7CmoZsLGMaB6QLGF2djYZMju7zswKYUljY2VjoYitrX/Gzl+jk0ehiQcGPs65l7n3+ong2rjul7OwuLS8sprLF9bWNza3its7dR2nirIajUWsmj7RTHDJaoYbwZqJYiTyBWv4/YtR3rhjSvNY3phBwryIdCUPOSXGWte3nZNOseSW3bHQPOAplCr5h+Dj+/6o2il+toOYphGThgqidQu7ifEyogyngg0L7VSzhNA+6bKWRUkipr1sPOoQHVgnQGGs7JMGjd3fHRmJtB5Evq2MiOnp2Wxk/pe1UhOeexmXSWqYpJOPwlQgE6PR3ijgilEjBhYIVdzOimiPKEKNvU7BHgHPrjwP9eMyPi3jK1yquDBRDvZgHw4BwxlU4BKqUAMKXXiEZ3hxhPPkvDpvk9IFZ9qzC3/kvP8Axr6RGg==</latexit>

q3

<latexit sha1_base64="W5HTfN9MR4njWuogh9kLgA1862M=">AAAB6nicbZA7SwNBFIXv+kziK2ppMxgECwm7KdQyYGMZ0TwgWcLs7GwyZGZ2nZkVwpLGxsrGQhFbW/+Mnb9GJ49CEw8MfJxzL3PvDRLOtHHdL2dpeWV1bT2XL2xsbm3vFHf3GjpOFaF1EvNYtQKsKWeS1g0znLYSRbEIOG0Gg4tx3ryjSrNY3phhQn2Be5JFjGBjrevbbqVbLLlldyK0CN4MStX8Q/jxfX9S6xY/O2FMUkGlIRxr3fbcxPgZVoYRTkeFTqppgskA92jbosSCaj+bjDpCR9YJURQr+6RBE/d3R4aF1kMR2EqBTV/PZ2Pzv6ydmujcz5hMUkMlmX4UpRyZGI33RiFTlBg+tICJYnZWRPpYYWLsdQr2CN78yovQqJS907J35ZWqLkyVgwM4hGPw4AyqcAk1qAOBHjzCM7w43HlyXp23aemSM+vZhz9y3n8AxTqRGQ==</latexit>

q2
<latexit sha1_base64="HDNeOTQ7XrQDhyBKrAq/Eb2gLxQ=">AAAB6nicbZA7SwNBFIXv+kziK2ppMxgECwk7CmoZsLGMaB6QLGF2djYZMju7zswKYUljY2VjoYitrX/Gzl+jk0ehiQcGPs65l7n3+ong2rjul7OwuLS8sprLF9bWNza3its7dR2nirIajUWsmj7RTHDJaoYbwZqJYiTyBWv4/YtR3rhjSvNY3phBwryIdCUPOSXGWte3nZNOseSW3bHQPOAplCr5h+Dj+/6o2il+toOYphGThgqidQu7ifEyogyngg0L7VSzhNA+6bKWRUkipr1sPOoQHVgnQGGs7JMGjd3fHRmJtB5Evq2MiOnp2Wxk/pe1UhOeexmXSWqYpJOPwlQgE6PR3ijgilEjBhYIVdzOimiPKEKNvU7BHgHPrjwP9eMyPi3jK1yquDBRDvZgHw4BwxlU4BKqUAMKXXiEZ3hxhPPkvDpvk9IFZ9qzC3/kvP8Axr6RGg==</latexit>

q3

<latexit sha1_base64="HDNeOTQ7XrQDhyBKrAq/Eb2gLxQ=">AAAB6nicbZA7SwNBFIXv+kziK2ppMxgECwk7CmoZsLGMaB6QLGF2djYZMju7zswKYUljY2VjoYitrX/Gzl+jk0ehiQcGPs65l7n3+ong2rjul7OwuLS8sprLF9bWNza3its7dR2nirIajUWsmj7RTHDJaoYbwZqJYiTyBWv4/YtR3rhjSvNY3phBwryIdCUPOSXGWte3nZNOseSW3bHQPOAplCr5h+Dj+/6o2il+toOYphGThgqidQu7ifEyogyngg0L7VSzhNA+6bKWRUkipr1sPOoQHVgnQGGs7JMGjd3fHRmJtB5Evq2MiOnp2Wxk/pe1UhOeexmXSWqYpJOPwlQgE6PR3ijgilEjBhYIVdzOimiPKEKNvU7BHgHPrjwP9eMyPi3jK1yquDBRDvZgHw4BwxlU4BKqUAMKXXiEZ3hxhPPkvDpvk9IFZ9qzC3/kvP8Axr6RGg==</latexit>

q3

<latexit sha1_base64="W5HTfN9MR4njWuogh9kLgA1862M=">AAAB6nicbZA7SwNBFIXv+kziK2ppMxgECwm7KdQyYGMZ0TwgWcLs7GwyZGZ2nZkVwpLGxsrGQhFbW/+Mnb9GJ49CEw8MfJxzL3PvDRLOtHHdL2dpeWV1bT2XL2xsbm3vFHf3GjpOFaF1EvNYtQKsKWeS1g0znLYSRbEIOG0Gg4tx3ryjSrNY3phhQn2Be5JFjGBjrevbbqVbLLlldyK0CN4MStX8Q/jxfX9S6xY/O2FMUkGlIRxr3fbcxPgZVoYRTkeFTqppgskA92jbosSCaj+bjDpCR9YJURQr+6RBE/d3R4aF1kMR2EqBTV/PZ2Pzv6ydmujcz5hMUkMlmX4UpRyZGI33RiFTlBg+tICJYnZWRPpYYWLsdQr2CN78yovQqJS907J35ZWqLkyVgwM4hGPw4AyqcAk1qAOBHjzCM7w43HlyXp23aemSM+vZhz9y3n8AxTqRGQ==</latexit>

q2

<latexit sha1_base64="HDNeOTQ7XrQDhyBKrAq/Eb2gLxQ=">AAAB6nicbZA7SwNBFIXv+kziK2ppMxgECwk7CmoZsLGMaB6QLGF2djYZMju7zswKYUljY2VjoYitrX/Gzl+jk0ehiQcGPs65l7n3+ong2rjul7OwuLS8sprLF9bWNza3its7dR2nirIajUWsmj7RTHDJaoYbwZqJYiTyBWv4/YtR3rhjSvNY3phBwryIdCUPOSXGWte3nZNOseSW3bHQPOAplCr5h+Dj+/6o2il+toOYphGThgqidQu7ifEyogyngg0L7VSzhNA+6bKWRUkipr1sPOoQHVgnQGGs7JMGjd3fHRmJtB5Evq2MiOnp2Wxk/pe1UhOeexmXSWqYpJOPwlQgE6PR3ijgilEjBhYIVdzOimiPKEKNvU7BHgHPrjwP9eMyPi3jK1yquDBRDvZgHw4BwxlU4BKqUAMKXXiEZ3hxhPPkvDpvk9IFZ9qzC3/kvP8Axr6RGg==</latexit>

q3
<latexit sha1_base64="t3cmUxALaw7VtHy/zcMpM6052cw=">AAAB6nicbZA7SwNBFIXvxlcSX1FLm8EgWEjYsVDLgI1lRPOAZAmzs7PJkNnZdWZWCEsaGysbC0Vsbf0zdv4anTwKTTww8HHOvcy9108E18Z1v5zc0vLK6lq+UFzf2NzaLu3sNnScKsrqNBaxavlEM8ElqxtuBGslipHIF6zpDy7GefOOKc1jeWOGCfMi0pM85JQYa13fdnG3VHYr7kRoEfAMytXCQ/DxfX9c65Y+O0FM04hJQwXRuo3dxHgZUYZTwUbFTqpZQuiA9FjboiQR0142GXWEDq0ToDBW9kmDJu7vjoxEWg8j31ZGxPT1fDY2/8vaqQnPvYzLJDVM0ulHYSqQidF4bxRwxagRQwuEKm5nRbRPFKHGXqdoj4DnV16ExkkFn1bwFS5XXZgqD/twAEeA4QyqcAk1qAOFHjzCM7w4wnlyXp23aWnOmfXswR857z/DtpEY</latexit>

q1

<latexit sha1_base64="W5HTfN9MR4njWuogh9kLgA1862M=">AAAB6nicbZA7SwNBFIXv+kziK2ppMxgECwm7KdQyYGMZ0TwgWcLs7GwyZGZ2nZkVwpLGxsrGQhFbW/+Mnb9GJ49CEw8MfJxzL3PvDRLOtHHdL2dpeWV1bT2XL2xsbm3vFHf3GjpOFaF1EvNYtQKsKWeS1g0znLYSRbEIOG0Gg4tx3ryjSrNY3phhQn2Be5JFjGBjrevbbqVbLLlldyK0CN4MStX8Q/jxfX9S6xY/O2FMUkGlIRxr3fbcxPgZVoYRTkeFTqppgskA92jbosSCaj+bjDpCR9YJURQr+6RBE/d3R4aF1kMR2EqBTV/PZ2Pzv6ydmujcz5hMUkMlmX4UpRyZGI33RiFTlBg+tICJYnZWRPpYYWLsdQr2CN78yovQqJS907J35ZWqLkyVgwM4hGPw4AyqcAk1qAOBHjzCM7w43HlyXp23aemSM+vZhz9y3n8AxTqRGQ==</latexit>

q2

<latexit sha1_base64="HDNeOTQ7XrQDhyBKrAq/Eb2gLxQ=">AAAB6nicbZA7SwNBFIXv+kziK2ppMxgECwk7CmoZsLGMaB6QLGF2djYZMju7zswKYUljY2VjoYitrX/Gzl+jk0ehiQcGPs65l7n3+ong2rjul7OwuLS8sprLF9bWNza3its7dR2nirIajUWsmj7RTHDJaoYbwZqJYiTyBWv4/YtR3rhjSvNY3phBwryIdCUPOSXGWte3nZNOseSW3bHQPOAplCr5h+Dj+/6o2il+toOYphGThgqidQu7ifEyogyngg0L7VSzhNA+6bKWRUkipr1sPOoQHVgnQGGs7JMGjd3fHRmJtB5Evq2MiOnp2Wxk/pe1UhOeexmXSWqYpJOPwlQgE6PR3ijgilEjBhYIVdzOimiPKEKNvU7BHgHPrjwP9eMyPi3jK1yquDBRDvZgHw4BwxlU4BKqUAMKXXiEZ3hxhPPkvDpvk9IFZ9qzC3/kvP8Axr6RGg==</latexit>

q3

<latexit sha1_base64="Sp4CD3atOIWVS1wuYqD2HDMogNI=">AAAB6nicbZA7SwNBFIXv+kziK2ppMxgECwk7ImoZsLGMaB6QLGF2djYZMju7zswKYUljY2VjoYitrX/Gzl+jk0ehiQcGPs65l7n3+ong2rjul7OwuLS8sprLF9bWNza3its7dR2nirIajUWsmj7RTHDJaoYbwZqJYiTyBWv4/YtR3rhjSvNY3phBwryIdCUPOSXGWte3nZNOseSW3bHQPOAplCr5h+Dj+/6o2il+toOYphGThgqidQu7ifEyogyngg0L7VSzhNA+6bKWRUkipr1sPOoQHVgnQGGs7JMGjd3fHRmJtB5Evq2MiOnp2Wxk/pe1UhOeexmXSWqYpJOPwlQgE6PR3ijgilEjBhYIVdzOimiPKEKNvU7BHgHPrjwP9eMyPi3jK1yquDBRDvZgHw4BwxlU4BKqUAMKXXiEZ3hxhPPkvDpvk9IFZ9qzC3/kvP8AyEKRGw==</latexit>

q4
<latexit sha1_base64="vx4ydFi1Xl/2HbeKPXXnrH0GVxg=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PAi8eI5gHJEmYns8mQ2dl1plcISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuLaiFg94DjhfkQHSoSCUbTS/WPvoleuuFV3BrJMvJxUIEe9V/7q9mOWRlwhk9SYjucm6GdUo2CST0rd1PCEshEd8I6likbc+Nns1Ak5sUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophtd+JlSSIldsvihMJcGYTP8mfaE5Qzm2hDIt7K2EDammDG06JRuCt/jyMmmeVb3Lqnd3Xqm5eRxFOIJjOAUPrqAGt1CHBjAYwDO8wpsjnRfn3fmYtxacfOYQ/sD5/AEDpI2R</latexit>

q5
<latexit sha1_base64="vx4ydFi1Xl/2HbeKPXXnrH0GVxg=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PAi8eI5gHJEmYns8mQ2dl1plcISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuLaiFg94DjhfkQHSoSCUbTS/WPvoleuuFV3BrJMvJxUIEe9V/7q9mOWRlwhk9SYjucm6GdUo2CST0rd1PCEshEd8I6likbc+Nns1Ak5sUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophtd+JlSSIldsvihMJcGYTP8mfaE5Qzm2hDIt7K2EDammDG06JRuCt/jyMmmeVb3Lqnd3Xqm5eRxFOIJjOAUPrqAGt1CHBjAYwDO8wpsjnRfn3fmYtxacfOYQ/sD5/AEDpI2R</latexit>

q5

<latexit sha1_base64="t3cmUxALaw7VtHy/zcMpM6052cw=">AAAB6nicbZA7SwNBFIXvxlcSX1FLm8EgWEjYsVDLgI1lRPOAZAmzs7PJkNnZdWZWCEsaGysbC0Vsbf0zdv4anTwKTTww8HHOvcy9108E18Z1v5zc0vLK6lq+UFzf2NzaLu3sNnScKsrqNBaxavlEM8ElqxtuBGslipHIF6zpDy7GefOOKc1jeWOGCfMi0pM85JQYa13fdnG3VHYr7kRoEfAMytXCQ/DxfX9c65Y+O0FM04hJQwXRuo3dxHgZUYZTwUbFTqpZQuiA9FjboiQR0142GXWEDq0ToDBW9kmDJu7vjoxEWg8j31ZGxPT1fDY2/8vaqQnPvYzLJDVM0ulHYSqQidF4bxRwxagRQwuEKm5nRbRPFKHGXqdoj4DnV16ExkkFn1bwFS5XXZgqD/twAEeA4QyqcAk1qAOFHjzCM7w4wnlyXp23aWnOmfXswR857z/DtpEY</latexit>

q1
<latexit sha1_base64="bR9k1hrFaqO6tGfb23cyHwHZi4s=">AAAB8nicbVDLSgMxFM34rPVVdekmWARXZaYLFVcFNy4r2AdMh5LJZNrQTDIkd5Qy9DPcuFDErV/jzr8xnc5CWw8EDufcS+45YSq4Adf9dtbWNza3tis71d29/YPD2tFx16hMU9ahSijdD4lhgkvWAQ6C9VPNSBIK1gsnt3O/98i04Uo+wDRlQUJGksecErCSz2WaAX5SOroZ1upuwy2AV4lXkjoq0R7WvgaRolnCJFBBjPE9N4UgJxo4FWxWHWSGpYROyIj5lkqSMBPkxckzfG6VCMdK2ycBF+rvjZwkxkyT0E4mBMZm2ZuL/3l+BvF1kBe5mKSLj+JMYFB4nh9HXDMKYmoJoZrbWzEdE00o2JaqtgRvOfIq6TYb3mXDu2/WW25ZRwWdojN0gTx0hVroDrVRB1Gk0DN6RW8OOC/Ou/OxGF1zyp0T9AfO5w8ujZEg</latexit>

input word:
<latexit sha1_base64="bKnnsOc/V+vRparQFZCxViGQwGQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6pereo1ryt1N4+jCGdwDpfgwQ3U4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/Zr4zq</latexit>

r

Figure 1: A thread in a run of the expansion of a semiautomaton.

• the level of q0 in p0 is `1 and the level of qk in pm is `k;
• for all i ∈ {1, 2, . . . , k−1}, the level of qi in pji is `i and

the level of δ
(
qi, w[ji + 1]

)
in pji+1 is `i+1;

• for all i ∈ {1, 2, . . . , k}, each transition taken in the seg-
ment of the run from pji−1+1 (or p0 for i = 1) to pji has
level at least `i.
As an illustration of Lemma 2, consider the run of the

expanded semiautomaton shown in Fig. 1. Tracing the run
of the original semiautomaton on the same word, starting in
state q4, we discover the positions j1 = 3 and j2 = 7 where
the corresponding thread drops to a lower level. Between
these positions, the thread stays at the same level, beginning
with `1 = 4 (taking transitions of levels 5, 4, 5 ≥ `1), fol-
lowed by `2 = 3 (taking transitions of levels 5, 3, 5 ≥ `2),
and `3 = 1 (taking a transition of level 5 ≥ `3).

The next step is to account for the possible runs of B̂ over
paths in the interpretation. Towards this goal, we decorate
elements of the interpretation with states of B̂. To avoid
additional blow-up, we represent states of B̂ using combina-
tions of fresh concept names Cq,` where q is a state of B and
` ∈ {1, 2, . . . , n} is a level; we write CN(B̂) for the set of
all Cq,`. For a state p = (p1, p2, . . . , pn) of B̂, by Cp we
mean the concept Cp1,1 u Cp2,2 u · · · u Cpn,n. We say that
an element e ∈ ∆I is decorated with state p if e ∈ CIp . An
interpretation I is B̂-decorated if no element has incoming
edges over different roles from rol(K) and I satisfies the CIs

Cp v ∀r.Cδ̂(p,r) , Cp u Cp′ v ⊥ , > v
⊔
p∈Q̂

Cp

for all states p,p′ of B̂ such that p 6= p′. The axiomatization
above is exponential in the size of B, but we can do better.
Lemma 3. Given B one can compute in polynomial time a
TBox T̂B such that I |= T̂B iff I is B̂-decorated.

To every edge in a B̂-decorated interpretation I we can as-
sign a level as follows. Consider elements e, e′ ∈ ∆I such
that (e, e′) ∈ rI for some r ∈ rol(K). Note that (e, e′) /∈ sI
for every s ∈ rol(K) \ {r}. Let p and p′ be the states deco-
rating e and e′, respectively. It holds that p r−→ p′. By the
level of the edge (e, e′) we shall understand the level of this

transition. A level-` interpretation is a B̂-decorated inter-
pretation that does not contain edges of level strictly below
`; if ` > n, this means that there are no edges at all. The
following lemma is the key to our algorithm.

Lemma 4. Consider a level-` interpretation I and elements
e ∈ CIq,` and e′ ∈ CIq′,`. Then, (e, e′) ∈ BIq,q′ iff there is a
path from e to e′ in I.

We make use of Lemma 4 by decomposing RPQs into
segments corresponding to different levels, as was done for
the runs of B̂ in Lemma 2. To facilitate this, we make our
queries aware of levels. A B̂-decorated CRPQ is a CRPQ ϕ
represented by means of semiautomaton B that contains ex-
actly one atom of the form Cq,`(x) and exactly one atom of
the form Cq′,`′(x

′) for each atom Bq,q′(x, x′) in ϕ. We call
` and `′ the begin level and the end level of atom Bq,q′(x, x′)
in ϕ, respectively. Because levels never increase in a thread
of a run of B̂, we can assume without loss of generality
that ` ≥ `′ always holds. A level-` CRPQ is a B̂-decorated
CRPQ that contains no RPQ atoms of end level strictly be-
low `. As all end levels are at most n, a level-` CRPQ for
` > n contains no RPQ atoms; that is, it is a CQ. To com-
plete a CRPQ ϕ means to turn it into a B̂-decorated CRPQ
ϕ′ by adding unary atoms over concepts Cq,` in an arbitrary
minimal way. Each resulting ϕ′ is called a completion of
ϕ. Over B̂-decorated interpretations, ϕ is equivalent to the
union of its completions. The completion of a UCRPQ Φ is
the union of all completions of all CRPQs in Φ.

We conclude this section by showing how to turn any
counterexample to K |=Efin Φ into a B̂-decorated one. Let
I be an interpretation over CN(K)∪ rol(K). The product of
I and B̂ is the interpretation I × B̂ over CN(B̂) ∪ CN(K) ∪
rol(K) such that

• ∆I×B̂ = ∆I × rol(K)× Q̂,

• CI×B̂ = CI × rol(K)× Q̂ for all C ∈ CN(K),

• CI×B̂q,` = ∆I × rol(K)×{(p1, p2, . . . , pn) ∈ Q̂ : p` = q}
for all q ∈ Q and ` ∈ {1, 2, . . . , n},

• rI×B̂ =
{(

(e, s,p), (e′, r,p′)
)

: (e, e′) ∈ rI ,p r−→ p′,

s ∈ rol(K)
}

for r ∈ rol(K).



Note that if I is finite, so is I × B̂.
Lemma 5. Let Φ be a UCRPQ,K anALC KB with a trivial
ABox, and E an environment.

• I × B̂ is a B̂-decorated interpretation.
• If I 6|= Φ then I × B̂ 6|= Φ.

• If I |=E K then I × B̂ |=E K up to identifying the unique
individual a in K with some (a, r,p) ∈ ∆I×B̂.

4 Core Computational Problem
To solve the entailment problem we eliminate the lowest
level from the query and from the interpretation, and solve
the problem with fewer levels recursively. Eliminating each
level will involve interpretations built from pieces that are
solutions for the simplified problem. Evaluating CRPQs
over such interpretations requires breaking them down into
fragments and it must accommodate single RPQs witnessed
across multiple pieces.

For a UCRPQ Φ let Φ̃ be the completion of an equiva-
lent UCRPQ represented by means of a semiautomaton B.
A fragment of ϕ ∈ Φ̃ is either of the following:

• a B̂-decorated CRPQ of the form Cq1,`1(y1) ∧
Bq1,q2(y1, y2)∧Cq2,`2(y2) orCq1,`1(y1)∧Bq1,q2(y1, y2)∧
Cq2,`2(y2) ∧ r(y2, y3) ∧ Cq3,`3(y3) where y1, y2, y3 are
fresh variables and r ∈ rol(K),

• a connected B̂-decorated CRPQ that can be obtained from
ϕ by dropping selected atoms, replacing selected RPQ
atoms Bq,q′(x, x′) by a subset of Bq,q1(x, y1), r(y1, y2),
Bq3,q′(y3, x

′) for some fresh variables y1, y2, y3 and
r ∈ rol(K), and completing the resulting CRPQ.

A fragment of Φ is a fragment of any of the CRPQs in Φ̃.
Importantly, a fragment of a fragment of Φ is also a fragment
of Φ, and each ϕ ∈ Φ̃ is a fragment of Φ. Up to renaming
fresh variables, Φ has 2poly(‖Φ‖) different fragments, despite
B being exponential in ‖Φ‖.

We now enrich interpretations again by including infor-
mation about matched fragments of Φ. For each fragment ϕ
of Φ and each ∅ 6= V ⊆ var(ϕ) we choose a fresh concept
name Aϕ,V . We call an interpretation I correct (wrt. Φ) if
e ∈ AIϕ,V iff π(V ) = {e} for some match π for ϕ in I. As-
suming I is correct, I |= Φ iff AIϕ,V 6= ∅ for some ϕ ∈ Φ̃

and ∅ 6= V ⊆ var(ϕ). Correctness is not compositional: the
union of two correct interpretations sharing a single element
need not be correct. As our method of eliminating levels
relies on such decompositions of interpretations, we replace
correctness with a notion that is weaker, but compositional.

We first abstract the decomposition of a B̂-decorated
CRPQ induced by a match in a union of disjoint ‘periph-
eric’ interpretations, each sharing a single element with a
single ‘core’ interpretation (Fig. 2 shows three ‘peripheric’
interpretations connected to the ‘core’ by single edges, in-
cluded in the ‘peripheric’ interpretations). A partition of a
B̂-decorated CRPQ ϕ into ϕ′, ϕ1, . . . , ϕk is obtained as fol-
lows. Choose X ′, X1, . . . Xk ⊆ var(ϕ) such that
• Xi ∩Xj = ∅ for all i 6= j;

Figure 2: CRPQ ϕ is distributed over the bags constituting I.

• for each atom of the form r(x, x′) in ϕ there exists i such
that either {x, x′} ⊆ Xi or {x, x′} ⊆ X ′.

Based on X ′, X1, . . . Xk define ϕ′, ϕ1, . . . , ϕk as follows.
For each atom of the form r(x, x′) in ϕ choose i such that
{x, x′} ⊆ Xi and add r(x, x′) to ϕi or add r(x, x′) to ϕ′
provided that {x, x′} ⊆ X ′. For each RPQ atomBq,q′(x, x′)
of begin level ` and end level `′ in ϕ do one of the following:
• provided that {x, x′} ⊆ X ′, add Bq,q′(x, x′) to ϕ′;
• choose i such that {x, x′} ⊆ Xi but {x, x′} 6⊆ X ′, and

add Bq,q′(x, x′) to ϕi (light green RPQ in Fig. 2);
• choose i such that x ∈ X ′ \ Xi and x′ ∈ Xi \ X ′, a

level m such that ` ≥ m ≥ `′, a state p of B, and a
fresh variable y, and add Bq,p(x, y) ∧ Cp,m(y) to ϕ′ and
Cp,m(y) ∧ Bp,q′(y, x′) to ϕi (blue and orange in Fig. 2);

• choose i such that x ∈ Xi \ X ′ and x′ ∈ X ′ \ Xi, a
level m such that ` ≥ m ≥ `′, a state p of B, and a
fresh variable y, and add Bq,p(x, y) ∧ Cp,m(y) to ϕi and
Cp,m(y) ∧ Bp,q′(y, x′) to ϕ′ (dark green in Fig. 2);

• choose i 6= j such that x ∈ Xi \ X ′ and x′ ∈ Xj \ X ′,
levelsm,m′ such that ` ≥ m ≥ m′ ≥ `′, states p, p′ of B,
and fresh variables y, y′, add Bq,p(x, y) ∧ Cp,m(y) to ϕi,
Cp,m(y)∧Bp,p′(y, y′)∧Cp′,m′(y′) to ϕ′, andCp′,m′(y′)∧
Bp′,q′(y′, x′) to ϕj (purple in Fig. 2).

Note that for each Bq,q′(x, x′) exactly one of the above ac-
tions can be performed and the choice of i and j is unique.
To complete the construction, add to ϕ′ all unary atoms of
ϕ over variables already used in ϕ′, and similarly for each
ϕi. Observe that for each X ′ ⊆ var(ϕ) there is exactly one
choice of X1, X2, . . . , Xk (up to a permutation) such that
the resulting ϕ1, ϕ2, . . . , ϕk are connected (regardless of the
choice of p, p′ and m,m′). Assuming that ϕ is a fragment
of Φ, it then holds that so are ϕ1, ϕ2, . . . , ϕk.

We call I consistent (wrt. Φ) if for each partition of a frag-
ment ϕ of Φ into a CRPQ ϕ′ and fragments ϕ1, ϕ2, . . . , ϕk
with var(ϕi) ∩ var(ϕj) = ∅ for i 6= j, Vi = var(ϕi) ∩
var(ϕ′), and ∅ 6= V ⊆ var(ϕ)∩var(ϕ′), there is no match π
for ϕ′ in I such that π(Vi) = {ei} ⊆

(
Aϕi,Vi

)I
for all i but

π(V ) = {e} 6⊆
(
Aϕ,V

)I
. Clearly, all correct interpretations



are consistent. The converse is not true in general, but the
following key property is preserved.
Lemma 6. For every UCRPQ Φ and every consistent
B̂-decorated interpretation I, if AIϕ,V = ∅ for each ϕ ∈ Φ̃

and ∅ 6= V ⊆ var(ϕ), then I 6|= Φ.
Consistency is sufficient to express entailment, but it does

not yield well to the recursive elimination of levels. We gen-
eralize it by refining the information about matched frag-
ments of Φ. We introduce fresh concepts Aκϕ,V where ϕ is a
fragment of Φ, ∅ 6= V ⊆ var(ϕ),

κ : var(ϕ)→ {1, 2, . . . , `} ,
and κ(V ) = {`} for some ` ∈ {1, 2, . . . , n + 1}. We
write CNΦ

` for the set of Aκψ,V such that κ(V ) = {`}. Intu-
itively, κ is a synopsis of when specific fragments of ψ were
matched during the recursive search for the model. Specif-
ically, κ(x) = ` indicates that x was matched after all lev-
els strictly below ` had been eliminated from the query, but
while level ` was still present. Accordingly, `-consistency,
defined below, ensures that the synopses built so far are con-
sistently updated while level ` is being handled.

We call I `-consistent (wrt. Φ) if for each partition of a
fragment ϕ of Φ into a CRPQ ϕ′ of level ` and fragments
ϕ1, ϕ2, . . . , ϕk with var(ϕi) ∩ var(ϕj) = ∅ for i 6= j, Vi =
var(ϕi) ∩ var(ϕ′), and ∅ 6= V ⊆ var(ϕ) ∩ var(ϕ′), there is
no match π for ϕ′ in I such that π(Vi) = {ei} ⊆

(
Aκi

ϕi,Vi

)I
for all i but π(V ) = {e} 6⊆ (Aκϕ,V )I where

• κi(x) ≤ ` for all x ∈ var(ϕi) ,
• κ(x) = κi(x) for all x ∈ var(ϕi) \ Vi ,
• κ(x) = ` for all x ∈ var(ϕ) ∩ var(ϕ′) .
We stress that while ϕ′ has level `, fragments ϕ,ϕ1, . . . , ϕk
can have any level. Note also that `-consistency speaks only
of concept names in CNΦ

1 ∪ CNΦ
2 ∪ · · · ∪ CNΦ

` . Identifying
Aϕ,V with Aκϕ,V for κ constantly equal to 1, we get that
consistency and 1-consistency are equivalent.

In what follows, by an (`, `′)-interpretation we mean an
`′-consistent level-` interpretation. By an (`, `′)-model of
K modulo E we mean an (`, `′)-interpretation that is model
of K modulo E . The actual problem we will be solving is
the following (`, `′)-model problem for ` ≤ `′: Given a KB
K with a trivial ABox, an environment E , and a UCRPQ Φ
decide if there exists a finite (`, `′)-model of K modulo E .

By Lemma 5, entailment modulo environment (with triv-
ial ABox) can be reduced to the (1, 1)-model problem by
modifying the environment to forbid all unary types contain-
ing Aκϕ,V for any ϕ ∈ Φ̃, ∅ 6= V ⊆ var(ϕ), and κ constantly
equal 1. Note that the reduction does not affect the query Φ,
nor the KB K. However, it introduces up to 2poly(‖Φ‖) new
concept namesAϕ,V and Cq,`. Consequently, the number of
unary types is at most 2|CN(K)|+2poly(‖Φ‖)

. It follows that the
size of the environment is bounded by 2‖K‖+2poly(‖Φ‖)

.
To solve the (1, 1)-model problem we will proceed recur-

sively, incrementing ` and `′ in an alternating fashion, until
` = `′ = n + 1. At each level of the recursion we will
be making multiple recursive calls. During the recursion

the UCRPQ Φ and the TBox T will remain unchanged, but
the ABox and the environment will evolve. Importantly, we
will not introduce any new concepts, so the size of the envi-
ronment will always be bounded by 2‖K‖+2poly(‖Φ‖)

. The
size of the ABox will be bounded by ‖K‖ + 2poly(‖Φ‖)

and the number of individuals will never grow. In con-
sequence, the total cost of the algorithm can be computed
as the cost of a single recursion step times the number of
steps. In the following sections we will show that each re-
cursion step can be carried out in time 2O(‖K‖)+2poly(‖Φ‖)

,
excluding the cost of the recursive calls. The depth of the
recursion is O(n) = 2poly(‖Φ‖). The number of recur-
sive calls within a single recursion step is also bounded by
2O(‖K‖)+2poly(‖Φ‖)

. This means that the total number of re-
cursion steps is 2‖K‖·2

poly(‖Φ‖)
and so is the overall complex-

ity of the recursive algorithm for the (1, 1)-model problem.

5 Incrementing the Level of Queries
The main goal of this section is to solve the (`, `)-model
problem by reduction to multiple instances of the (`, `+ 1)-
model problem for ` ≤ n. The (n+1, n+1)-model problem
is discussed briefly at the end of the section.

As a first step, we observe that it is enough to consider in-
terpretations whose DAG of strongly connected components
is a tree. For this purpose we define tree-like interpretations
as those that can be decomposed into multiple finite subin-
terpretations, called bags, arranged into a (possibly infinite)
tree such that: (1) all bags are pairwise disjoint; (2) between
each parent and child bag there is a single edge, pointing
from an element of the parent bag to an element of the child
bag; (3) all other edges are between elements of the same
bag. We think of edges between bags as 2-element interpre-
tations, called edge-bags, sharing the origin with the parent
bag and the target with the child bag. A tree-like interpre-
tation is then a union of all its bags and edge-bags. Fig. 2
shows a tree-like interpretation with 4 bags and 3 edge-bags.
In tree-like interpretations `-consistency is a local property.
Lemma 7. A tree-like interpretation is `-consistent iff each
of its bags and edge-bags is `-consistent.

Lemma 8. There is a finite (`, `′)-model of K modulo E iff
there is a finite tree-like (`, `′)-model of K modulo E whose
bags are strongly connected.

The next step is to eliminate the lowest level from the
queries. An (` + 1)-reduct of a level-` CRPQ ϕ is any
CRPQ that can be obtained from ϕ by first splitting each
RPQ atom Bq1,q2(x1, x2) of begin level `1 > ` and end level
` into Bq1,q′1(x1, x

′
1)∧Cq′1,`′1(x′1)∧ r(x′1, x′2)∧Cq′2,`(x

′
2)∧

Bq′2,q2(x′2, x2) where `1 ≥ `′1 ≥ ` + 1, and then drop-
ping from the resulting CRPQ all atoms whose begin and
end level is ` (all unary atoms are kept). Note that each
(`+1)-reduct ϕ′ of ϕ is a conjunction of at most |ϕ| disjoint
fragments of ϕ and that var(ϕ) ⊆ var(ϕ′).

Lemma 9. Over B̂-decorated interpretations, each level-`
CRPQ implies the union of its (`+1)-reducts. Over strongly-
connected level-` interpretations, each level-` CRPQ is
equivalent to the union of its (`+ 1)-reducts.



Because Lemma 8 guarantees tree-like solutions with
strongly connected bags, we can replace `-consistency with
strong `-consistency: the only difference is that π ranges
over matches of all possible (`+1)-reducts of ϕ′, rather than
over matches of ϕ′ itself. We restate Lemma 8 as follows.

Lemma 10. There is a finite (`, `)-model of K modulo E iff
there is a finite tree-like level-` model of K modulo E whose
edge bags are `-consistent and bags strongly `-consistent.

It remains to show how to find models of the latter form.
Let us first see how to find one consisting of a single bag;
that is, how to find a finite strongly `-consistent level-`
model of K modulo E . We will show that this amounts to
finding a finite (`, ` + 1)-model of K modulo E ′ for one of
the (`+ 1)-reducts E ′ of E described below.

Consider a fragment ϕ, a non-empty set V ⊆ var(ϕ),
a partition of ϕ into a CRPQ ϕ′ of level `, and frag-
ments ϕ1, ϕ2, . . . , ϕk, as in the definition of (strong) `-
consistency. Let κ : var(ϕ) → {1, 2, . . . , `} be such that
κ
(
var(ϕ) ∩ var(ϕ′)

)
= {`}. Let ψ′ be an (`+ 1)-reduct of

ϕ′. Consider CRPQs ψ with var(ϕ) ⊆ var(ψ) that can be
partitioned into ψ′ and ϕ1, ϕ2, . . . , ϕk. Choose the one with
minimal var(ψ). This amounts to merging back all RPQ
atoms split during the partition of ϕ, provided that their seg-
ments were not affected by replacing ϕ′ with ψ′. The CRPQ
ψ is not a fragment, because it need not be connected: Fig-
ure 2 right illustrates passing from ϕ to ψ consisting of two
disconnected fragments. Let ψ1, ψ2, . . . , ψm be the frag-
ments constituting ψ and let Ui = V ∩ var(ψi). An (`+ 1)-
reduct E ′ of E is constructed by iterating over all possible
choices of ϕ, V , ϕ′, ϕ1, ϕ2, . . . , ϕk, ψ′, κ, as above, and
pruning E for each choice in one of the following ways:

• either pick i such that Ui = ∅ and remove all unary types
that contain any Aκi

ψi,Wi
with Wi ⊆ var(ψi) ∩ var(ψ′),

κi
(
var(ψi) ∩ var(ψ′)

)
= {` + 1}, and κi(x) = κ(x) for

all x ∈ var(ψi) \ var(ψ′) ;

• or remove all unary types that contain some Aκi

ψi,Ui
with

κi
(
var(ψi) ∩ var(ψ′)

)
= {` + 1} and κ(x) = κi(x) for

all x ∈ var(ψi) \ var(ψ′), for each i such that Ui 6= ∅, but
do not contain Aκϕ,V .

Lemma 11. I is a strongly `-consistent level-` model of
K modulo E iff some interpretation that agrees with I over
all role names and all concept names except CNΦ

`+1 is an
(` + 1)-consistent level-` model of K modulo E ′ for some
(`+ 1)-reduct E ′ of E .

Finite models consisting of multiple bags can be con-
structed bottom-up by a least fixed point procedure, using
Lemma 11 to find each bag.

Lemma 12. The (`, `)-model problem for an ALC KB K, a
UCRPQ Φ, and an environment E can be solved in time

2O(‖K‖)+2poly(‖Φ‖)

given an oracle for the (`, ` + 1)-model problem (with the
same UCRPQ and TBox).

At the bottom of the recursion we need to check if there
exists a (n + 1, n + 1)-model for K modulo E . Now, a B̂-
decorated interpretation is level-(n+1) iff it is discrete; that
is, it has no edges at all. This allows solving the problem
by a direct inspection. Because the ABox is trivial and `-
consistency is preserved under restrictions of the domain, it
is enough to go through all singleton interpretations.

Lemma 13. The (n+ 1, n+ 1)-model problem for anALC
KB K, a UCRPQ Φ, and an environment E can be solved in
time 2O(‖K‖)+2poly(‖Φ‖)

.

6 Incrementing the Level of Models
In this section we solve the (`, `′)-model problem by reduc-
tion to multiple instances of the (`′, `′)-model problem for
` < `′; that is, we eliminate level-` edges from the interpre-
tations. Like in Section 5, we rely on tree-like models of a
special form; this time, however, they may be infinite and an
additional step is needed to turn them into finite ones.

A B̂-decorated interpretation is `′-flat if it is a tree-like in-
terpretation where all edges between bags have level strictly
below `′, whereas all edges inside bags have level at least `′.

Lemma 14. If there exists a finite (`, `′)-model ofK modulo
E then there exists an `′-flat (`, `′)-model of K modulo E
with bounded degree and bag size.

In contrast to Lemma 8, the above only shows that the re-
formulated condition is necessary. We show that it is suffi-
cient, by turning an arbitrary `′-flat (`, `′)-model of K mod-
ulo E with bounded degree and bag size into a finite (`, `′)-
model of K modulo E . For this we use coloured blocking.
For d ∈ ∆I , the m-neighbourhood NIm(d) of d is the in-
terpretation obtained by restricting I to elements e ∈ ∆I

within distance m from d in I, enriched with a fresh con-
cept interpreted as {d}. A colouring of I with k colours is
an extension I ′ of I to k fresh concept names B1, . . . , Bk
such that BI

′

1 , . . . , B
I′
k is a partition of ∆I

′
= ∆I . We say

that d ∈ BI′i has colour Bi. We call I ′ m-proper if for each
d ∈ ∆I

′
all elements of NI

′

m (d) have different colours.

Fact 1 (Gogacz, Ibáñez-Garcı́a, and Murlak 2018). If I has
bounded degree, then for allm ≥ 0 there exists anm-proper
colouring I ′ of I with finitely many colours. Consider in-
terpretation J obtained from I ′ by redirecting some edges
such that the old target and the new target have isomorphic
m-neighbourhoods in I ′. Then, for each conjunctive query
ϕ with at most

√
m binary atoms, if I 6|= ϕ, then J 6|= ϕ.

Let I be an `′-flat (`, `′)-model of K modulo E of
bounded degree with bags of size at most M . In or-
der to make Fact 1 applicable, we need to express the `′-
consistency condition over I by means of a finite set of con-
junctive queries, rather than CRPQs. Towards this end, we
show that over I each level-`′ CRPQ is equivalent to a UCQ.
We rely on the following observation.

Lemma 15. In a match of a B̂-decorated CRPQ in a B̂-
decorated interpretation, each path witnessing an RPQ atom
of end level at least `′ uses at most n − `′ edges of level
strictly below `′.



We say that a CRPQ ϕ is bounded by K over an interpre-
tation J if for each match of ϕ in J each RPQ atom of ϕ
can be witnessed by a path of length at most K.

Lemma 16. Let J be B̂-decorated interpretation made up
of disjoint level-`′ interpretations of size at most M con-
nected by edges of level strictly below `′. Assuming `′ ≤ n,
each level-`′ CRPQ is bounded by M(n− `′ + 1)2 over J .

For a B̂-decorated CRPQϕ, letϕ(K) be the UCQ obtained
by taking the union of all CQs that can be obtained from
ϕ by eliminating each RPQ atom Bq,q′(x, x′) in one of the
following ways: either remove the atom and equate variables
x and x′, or replace the atom with a CQ of the form

r1(x, y1) ∧ r2(y1, y2) ∧ · · · ∧ rN (yN−1, x
′)

where N ≤ K, y1, . . . , yN−1 are fresh variables, and there
is a run of B on r1 . . . rN that begins in q and ends in q′.

Fact 2. If a B̂-decorated CRPQ ϕ is bounded by K on an
interpretation J , then J |= ϕ iff J |= ϕ(K).

The final step before we can apply Fact 1 is to express
`′-consistency as query evaluation. Consider a partition of
a fragment ϕ of Φ into a CRPQ ϕ′ of level `′ and frag-
ments ϕ1, ϕ2, . . . , ϕk with var(ϕi)∩ var(ϕj) = ∅ for i 6= j,
Vi = var(ϕi) ∩ var(ϕ′), and ∅ 6= V ⊆ var(ϕ) ∩ var(ϕ′).
Let ψ be the CRPQ obtained from ϕ′ as follows. Begin
from a copy of ϕ′. For each i ∈ {1, . . . , k}, add to ψ an
atom Aκi

ϕi,Vi
(u) for some κi satisfying κi(x) ≤ ` for all

x ∈ var(ϕi) and κi(x) = ` for all x ∈ Vi, and some variable
u in Vi (Vi is nonempty, because ϕ is connected), and equate
all variables in Vi. Similarly, add to ψ the atom Āϕ′,V (u)
for some κ satisfying κ(x) = ` for all x ∈ var(ϕ)∩ var(ϕ′)
and κ(x) = κi(x) for all x ∈ var(ϕ) ∩ var(ϕi), and some
u ∈ V , and equate all variables in V . Let Φ`′ be the union
of all CRPQs ψ obtained as above for different choices of ϕ,
ϕ′, ϕ1, ϕ2, . . . , ϕk, V , and κ1, κ2, . . . , κk. Note that Φ`′ is
a union of level-`′ CRPQs. If `′ > n, Φ`′ is a UCQ.

Lemma 17. If J is a B̂-decorated interpretation, then J is
`′-consistent iff J 6|= Φ`′ .

Let K = M(n − `′ + 1)2. Let t be the maximal number
of binary atoms in one CQ in Φ

(K)
`′ . (Note that if `′ > n,

the query Φ`′ is a UCQ and Φ
(K)
`′ coincides with Φ`′ .) Fix

m = t2 and let I ′ be an m-proper colouring of I. On each
infinite branch, select the first bag M such that for some
bagM′ higher on this branch, the m-neighbourhood of the
target element e of the edge from the parent of M to M
is isomorphic to the m-neighbourhood of the target e′ of
the edge from the parent of M′ to M′. Because the num-
ber of non-isomorphic m-neighbourhoods in a structure of
bounded degree is bounded, the depth of the selected bags
in the tree of bags is also bounded. The set of selected bags
is finite and forms a maximal antichain. Let F be the inter-
pretation obtained by taking the union of all strict ancestors
of the selected bags, and for each element e as above, redi-
rect the edge coming from the parent ofM to e′.

Clearly, F is a finite level-` interpretation. It is routine
to check that F |=E K. It remains to prove that F is `′-
consistent. We know that I is `′-consistent. By Lemma 17,

I 6|= Φ`′ . By Lemma 16 and Fact 2, I 6|= Φ
(K)
`′ . By Fact 1,

F 6|= Φ
(K)
`′ . By construction, F satisfies the assumptions of

Lemma 16. Hence, by Lemma 16 and Fact 2, F 6|= Φ`′ . We
conclude that F is `′-consistent using Lemma 17.

Thus we have proved the converse of Lemma 14.

Lemma 18. If there exists an `′-flat (`, `′)-model of K mod-
ulo E with bounded degree and bag size then there exists a
finite (`, `′)-model of K modulo E .

Combining Lemmas 6, 14, and 18, we get that there is a
finite (`, `′)-model of K modulo E iff there is a bounded-
degree `′-flat model of K modulo E whose bags are `′-
consistent and have bounded size. As in an `′-flat model
each bag is a level-`′ interpretation, when we restrict our
search to one-bag models the problem is an instance of the
(`′, `′)-model problem. Models consisting of multiple bags
can be built coinductively top-down by means of a greatest
fixed point algorithm (similar to type elimination), using the
(`′, `′)-model problem to check if each bag exists.

Lemma 19. The (`, `′)-model problem for an ALC KB K,
a UCRPQ Φ, and an environment E can be solved in time

2O(‖K‖)+2poly(‖Φ‖)

given an oracle for the (`′, `′)-model problem (with the same
UCRPQ and TBox).

7 Looking Forward (and Back)
This paper provides first positive results on finite entailment
of navigational queries over DLs ontologies. The main tech-
nical contribution is an optimal automata-based 2EXPTIME
upper bound for finite entailment of UCRPQs in ALC.

Let us take a look back at our journey. We devised an
expansion of the semiautomaton used to represent UCRPQs
to keep track of its runs that begin in all possible states, on
all infixes of the input word. By making interpretations and
CRPQs knowledgeable of the runs of this expansion, we are
able to associate levels to them as dictated by the transi-
tions of the expansion. To solve the entailment problem,
we use a recursive method eliminating the lowest level from
the query and from the interpretation, and solving then the
simpler problem. In particular, we look at problem of find-
ing (`, `′) models, and solve it by recursively increasing `
and `′ in an alternating way, until both reach a maximum
level: Section 5 and 6 respectively address the increment of
the query level and of the model. We finally showed what
to do when ` = `′ = n + 1, which as argued, is enough to
solve the original finite entailment problem.

As for future work, the first immediate step is to extend
our method to deal with test atoms of the formA?, which are
usually available in UCRPQs. For the ontology language,
we believe our method can be adapted to allow inverses,
nominals or counting. Regarding more expressive query lan-
guages, the natural next step is to consider two-way CRPQs.
Our current approach relies on the fact that information only
flows forward, and it is not clear whether it can be adapted
to deal with queries that can go back.
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2014. The complexity of answering conjunctive and navi-
gational queries over OWL 2 EL knowledge bases. J. Artif.
Intell. Res. 51:645–705.



A Additional Definitions
Let us fix K = (T ,A). A homomorphism from interpre-
tation I to interpretation J , written as h : I → J is a
function h : ∆I → ∆J that preserves roles, concepts, and
individual names: that is, for all r ∈ NR, (h(d), h(e)) ∈ rJ
whenever (d, e) ∈ rI , for allA ∈ NC, h(d) ∈ AJ whenever
d ∈ AI , and h(a) = a for all a ∈ ind(A).

B Proofs
Lemma 1. Given an oracle for finite entailment for trivial
ABoxes, the general finite entailment (T ,A) |=fin Φ can
be decided in time 2poly(‖(T ,A)‖)·2poly(‖Φ‖)

using calls to the
oracle for K′ = (T ,A′) and Φ′ consisting of 2poly(‖Φ‖)

CRPQs of linear size over the same semiautomaton as Φ.

Proof. Let I be a finite model of K = (T ,A) such that
I 6|= Φ. We can think of A as an interpretation with domain
ind(A). Then, I contains a subinterpretation I ′ that is an
isomorphic copy ofA, except that the extension of concepts
over ind(A) is kept as in I. Let J be the interpretation ob-
tained by starting from I ′ and for each a ∈ ind(A), adding
an isomorphic copy Ia of I sharing only a with I ′. Clearly,
J is a model of K and J 6|= Φ, because I is a homomor-
phic image of J . Note also, that Ia |= T for all a ∈ ind(A).
This shows that it suffices to look for counter models that are
unions of a core interpretation J ′ that is a copy of A up to
the interpretations of concept names, and a collection of dis-
joint peripheric models Ja of T such that ∆Ia∩∆J

′
= {a}

for a ∈ ind(A).
The algorithm iterates through all possible core models

J ′. For each J ′ it needs to decide if there exist peripheric
models Ja for a ∈ ind(A) such that no partial match π of
ϕ ∈ Φ in J ′ can be extended to a full match of ϕ in the
whole J . For this it is enough to know if (T ,A′) |=fin Φ′

where A′ ranges over trivial ABoxes using a fixed individ-
ual a and concept names from CN(K), and Φ′ ranges over
sets of CRPQs ϕU for ϕ ∈ Φ and U ⊆ var(ϕ) defined as
follows. The CRPQ ϕU is obtained from ϕ by

• dropping all atoms that involve no variable from U , as
well as all edge atoms involving a variable not in U ;

• replacing each Bq,q′(x, x′) such that x ∈ U and x /∈ U
with Bq,p(x, a) for some p′, and each Bq,q′(x, x′) such
that x /∈ U and x′ ∈ U with Bp,q′(a, x′) for some p.

Note that |Φ′| = 2poly(‖Φ‖) but all CRPQs in Φ′ have size
bounded by maxϕ∈Φ |ϕ| and the underlying semiautomaton
B is not altered.

The number of possible choices of A′ and Φ′ is

2CN(K) · 22poly(‖Φ‖)
.

The number of distinguishable choices for each peripheric
model Ia is

22poly(‖Φ‖)
.

This gives up to

2|CN(K)|·|ind(A)| · 22poly(‖Φ‖)·|ind(A)| = 2poly(‖K‖)·2poly(‖Φ‖)

choices for the algorithm. For each choice there are |Φ| ·
|ind(A)|O(m) partial matches to consider. The cost of veri-
fying a single match is polynomial in the size of J ′ and the
size of a single Φ′; that is, poly(‖K‖, 2poly(‖Φ‖)). Overall,
the complexity of the algorithm is

22poly(‖Φ‖)·poly(‖K‖) .

Lemma 2. Let p0,p1, . . . ,pm be a run of B̂ on w, and let
q, q′ be states of B. There is a run of B on w from q to q′ iff
there exist positions 0 ≤ j1 < j2 < · · · < jk = m, levels
n ≥ `1 > `2 > · · · > `k ≥ 1, and states q0, q1, . . . , qk with
1 ≤ k ≤ n such that q0 = q, qk = q′, and

• the level of q0 in p0 is `1 and the level of qk in pm is `k;
• for all i ∈ {1, 2, . . . , k−1}, the level of qi in pji is `i and

the level of δ
(
qi, w[ji + 1]

)
in pji+1 is `i+1;

• for all i ∈ {1, 2, . . . , k}, each transition taken in the seg-
ment of the run from pji−1+1 (or p0 for i = 1) to pji has
level at least `i.

Proof. (⇒) The run of B from q to q′ induces a thread in
the run of B̂. We can split the thread into segments that stay
at the same level, giving levels `1, `2, . . . , `k, separated by
transitions that decrease the level. Clearly, 1 ≤ k ≤ n. The
last positions on the subsequent levels give j1, j2, . . . , jk.
It is easy to check that the corresponding states satisfy the
conditions specified in the lemma.

(⇐) The first and third condition, combined with the fact
that threads are non-increasing, imply that between indexes
ji + 1 and ji+1 the thread—from δ(qi, w[ji + 1]) in pji+1

to qi+1 (or q′ for i = m − 1) in pji+1—stays at the same
level; similarly for the prefix and suffix. Combined with the
transitions mentioned in the second condition they give a
single thread witnessing a run of B from q to q′ on w.

Lemma 3. Given B one can compute in polynomial time a
TBox T̂B such that I |= T̂B iff I is B̂-decorated.

Proof. It is straightforward to express the condition that
no element has incoming edges over different roles from
rol(K). Pick a fresh concept name Ar for each r ∈ rol(K)
and include axioms > v ∀r.Ar and Ar u As v ⊥ for all
r, s ∈ rol(K) with r 6= s.

We next provide an alternative axiomatization of

Cp v ∀r.Cδ̂(p,r) (1)

Cp u Cp′ v ⊥ (2)

> v
⊔
p∈Q̂

Cp (3)

To encode conditions (3) we include the following axioms
for every ` ∈ {1, . . . , n}.

> v
⊔
q∈Q

Cq,`

and
Cq,` u Cq′,` v ⊥



with q, q′ ∈ Q such that q 6= q′. These, together with the
following will enforce condition (2).

Cq,` u Cq,`′ v ⊥

for each pair `, `′ with ` 6= `′ and each q ∈ Q.
To ensure that the transitions of B̂ are faithfully repre-

sented, we will use auxiliary concepts Ari,j , D
r
i,j , B

r
i with

i, j ∈ {1, . . . , n}, and r a role name.
Let p = (p1, . . . , pn) ∈ Q̂, and let δ(p, r) =

(p′1, . . . , p
′
n), for some arbitrary (but fixed) role name r. We

will use concept Ari,j is to indicate that δ(qpi, r) = p′k for
some k ∈ {1, 2, . . . , i}. Further, Dr

i,j will indicate that
δ(pi, r) = p′j . Finally, Br` will help to indicate that the level
of p′ is equal to `. More precisely, if an element d in the do-
main encodes the state p, and the level of δ(p, r) is `, then
every r-successor of d must satisfy Br` (see (9)) below.

We have the following axioms:

> v Ar1,1 (4)

For every triple q, `, `′ with q ∈ Q and `, `′ ∈ {1, . . . , n}

Cq,` uAr`,`′ v ∀r.(
⊔

1≤k≤`′
Cδ(q,r),k) (5)

Cq,` u ∃r.Cδ(q,r),`′ v Dr
`,`′ (6)

For every `, k with 1 ≤ `, k < n:

Dr
`,k uAr`,k v Ar`+1,k+1 (7)

Dr
`,k′ uAr`,k v A`+1,k for every k′ < k (8)

For every k ∈ {1, . . . , n}, and every ` < k,

Dr
n,` uArn,k v ∀r.Brk (9)

And for every ` < n,

Br` v (
⊔
i<j

(Cqi,` u Cqj ,`+1)) (10)

Finally, we require that for every `, k, k′ ∈ {1, . . . , n} such
that k 6= k′:

Ar`,k uAr`,k′ v ⊥ (11)

Dr
`,k uDr

`,k′ v ⊥ (12)

Brk uBrk′ v ⊥ (13)

Intuitively, the axioms encode the listing order of
(δ(p1), . . . , δ(pn)) in δ̂(p) = (p′1, . . . , p

′
n) as follows. (4)

encodes that the first position of the tuple is (the only) avail-
able for δ(p1, r). Further, by (5) we have that if q = p` and
the next available position for p` is `′, then δ(p`, r) = p′k
for some 1 ≤ k ≤ `′, which means in particular that
δ(p1, r) = p′1.

As mentioned above, (6) is used for “recording” the level
of δ(p`, r) using the concept Dr

`,`′ . That is, Dr
`,`′ holds

whenever δ(p`, r) = p′`′ .
Clearly, if δ(p`, r) = p′k, and its next available posi-

tion was k, then the next available position for δ(p`+1) is
k + 1. This situation is captured by (7). On the other hand,

if δ(p`, r) does not takes position k (which is only possi-
ble if δ(p`, r) = p′k′ , with k′ < k) then k is available for
δ(p`+1, r), as captured by (8).

Now, we need to account for the positions not taken by
any δ(pi, r). By the way the positions are taken, it is enough
to record the smallest position unused. This information is
encoded using the concept Brk. Thus, if Arn,k and Dn,`, for
some ` < k, are both satisfied then k is the next available
position for listing the remaining states ordered as in Q =
q1, . . . qn. This is captured by (9) and (10).

Finally, the role of CIs (11)–(13) is to ensure the consis-
tency of the information encoded.

With this intuition in mind, it is not difficult to see (1) is
faithfully encoded.

Lemma 4. Consider a level-` interpretation I and elements
e ∈ CIq,` and e′ ∈ CIq′,`. Then, (e, e′) ∈ BIq,q′ iff there is a
path from e to e′ in I.

Proof. (⇒) This is obvious because the definition of BIq,q′
requires a path from e to e′ in I.

(⇐) Consider a path from e to e′ in I and the correspond-
ing run of the automaton B̂. We will focus on the thread
starting in the state q. It starts on level ` because e ∈ CIq,`
and cannot drop below level ` because I is a level-` inter-
pretation. Hence, the thread ends in e′ on level `. But the
state in e′ on level ` is q′. Thus, this thread corresponds to a
correct run of B from q to q′.

Lemma 5. Let Φ be a UCRPQ,K anALC KB with a trivial
ABox, and E an environment.

• I × B̂ is a B̂-decorated interpretation.
• If I 6|= Φ then I × B̂ 6|= Φ.

• If I |=E K then I × B̂ |=E K up to identifying the unique
individual a in K with some (a, r,p) ∈ ∆I×B̂.

Proof. I×B̂ is a B̂-decorated interpretation by construction.
The mapping (e, r,p) 7→ e from I × B to I is a homo-

morphism. Should some φ ∈ Φ be matched in I × B̂, one
could compose the match with the homomorphism above to
obtain a match in I.

Assume that I |= K. Satisfaction of the ABox transfers
directly to I×B. Let us see that I×B is a model of the TBox
of K. For CIs of the forms

⋂
iAi v

⊔
j Bj and A v ∀r.B

this follows from the existance of a homomorphic mapping
from I × B to I, described above. For CIs of the form
A v ∀r.B the reason is that the transition function of B̂ is
defined for each state p of B̂ and each r ∈ rol(K), thus each
r-edge originating in e will have its counterpart originating
in (e, s,p) for each s and p.

Lemma 6. For every UCRPQ Φ and every consistent
B̂-decorated interpretation I, if AIϕ,V = ∅ for each ϕ ∈ Φ̃

and ∅ 6= V ⊆ var(ϕ), then I 6|= Φ.

Proof. By contradiction, suppose that I |= Φ. Then there
exists a match π of some φ ∈ Φ̃ in I. Take any element e
in the image of π. The definition of consistency applied for



the trivial partition with ϕ = ϕ′ implies that e ∈ AIϕ,V for
V = π−1(a).

Lemma 7. A tree-like interpretation is `-consistent iff each
of its bags and edge-bags is `-consistent.

Proof. Left to right implication is obvious. For right to left
implication assume the contrary, that all bags and edge-bags
are `-consistent, but there is:

• a fragment ϕ of Φ,
• a partition of ϕ into a CRPQ ϕ′ of level ` and fragments
ϕ1, ϕ2, . . . , ϕk, and sets V , V1, V2, . . . , Vk such that:
– var(ϕi) ∩ var(ϕj) = ∅ for i 6= j,
– Vi = var(ϕi) ∩ var(ϕ′),
– ∅ 6= V ⊆ var(ϕ) ∩ var(ϕ′);

• a match π for ϕ′ in I and functions κ, κ1, . . . , κk such
that:
– π(Vi) = {ei} ⊆

(
Aκi

ϕi,Vi

)I
for all i,

– π(V ) = {e} 6⊆ (Aκϕ,V )I ,
– κi(x) ≤ ` for all x ∈ var(ϕi) ,
– κ(x) = κi(x) for all x ∈ var(ϕi) \ Vi ,
– κ(x) = ` for all x ∈ var(ϕ) ∩ var(ϕ′) .

For each RPQ atom Bq,q′(x, y) in ϕ′, choose a path from
π(x) to π(y) witnessing that the atom is satisfied. Pick
the parameters above and the witnessing paths for which π
spans through the smallest number of bags and edge-bags
(we count a bag if some edge atom in ϕ′ is mapped by π
to an edge of this bag, or if some witnessing path shares an
edge with this bag). Note that the match of ϕ′ given by π
and the witnessing paths is connected. This is because the
whole query ϕ is connected and because π(Vi) consists of
just one element for each i – the query ϕ′ itself might not be
connected, although it would be if we equated all variables
in each Vi. The number of bags π spans through must be at
least two: were it contained in one bag, this bag would be
inconsistent. Essentially, we will show that we can derive
the fact that e ∈ (Aκϕ,V )I from `-consistency conditions for
some matches spanning through smaller number of bags.

Let b be the bag of e (not edge-bag, so it is unique). The
match π necessarily spans through the bag b: otherwise no
edge or RPQ is matched inside b, so ϕ′ consists only of
unary atoms, which means that k = 1, ϕ1 = ϕ and e = e1,
which easily leads to contradiction. Let ψ′, ψ1, . . . , ψm be a
partition of ϕ taking into account the bag b, match π and the
chosen witnessing paths, where ψ1, . . . , ψm are fragments.
That is, in the definition of a partition:

• the initial set X ′ is the set of variables of ϕ which are
mapped by π to the bag b (note that π is defined only on
var(ϕ′));

• each RPQ is split (or not) in an appropriate way, depend-
ing on whether the corresponding witnessing path has
zero, one, or two endpoints in the bag b, and the fresh
variables are assigned level and state according to the last
(or first) elements in b on the corresponding witnessing
paths;

• the setsXi are chosen in the way which results in ψi being
fragments.

Let Ui = var(ψi) ∩ var(ψ′) and π′ be a match agreeing
with π on var(ψ′) ∩ var(ϕ′), extended with fresh variables
mapped to the appropriate elements on witnessing paths.
The set π′(Ui) consists of exactly one element, call it e′i.
Indeed, for some i there is j such that ψi = ϕj and Ui = Vj ,
and so π′(Ui) = π(Vj) = {ej}; and for other i, ψi consists
of some part of ϕ′, possibly merged with some ϕj , with all
the variables shared with ψ′ being matched to an endpoint
of an edge leaving or entering bag b.

We claim that for each i, e′i ∈ A
λi

ψi,Ui
for some appropri-

ate λi, such that we can use `-consistency for b to show that
e ∈ (Aκϕ,V )I .

To show that, we need to relate all ϕj to some ψi. Specif-
ically, for each i ∈ {1, . . . ,m}, consider all j ∈ {1, . . . , k}
such that var(ψi) ∩ var(ϕj) 6= ∅. Note that variables in
all ψ′, ψ1, . . . , ψm are exactly the variables of ϕ, along with
some fresh variables splitting some RPQs, and analogously
for ϕ′, ϕ1, . . . , ϕk (and each of the fragments ϕj shares at
least one variable with ϕ). Since ψ′ can be seen as a part
of ϕ′

(
in particular, var(ϕ) ∩ var(ψ′) ⊆ var(ϕ) ∩ var(ϕ′)

)
,

it is easy to see that each j will be assigned to some i. For
each i, ψi can be (yet again) partitioned into ψ′i (intuitively
being the common part of ϕ′ and ψi) and ϕj for all j as-
signed to this i. There is also a match πi agreeing with π on
var(ψ′i) ∩ var(ϕ′), as usual, extended with fresh variables
from Ui mapped to the appropriate elements on witnessing
paths. Since this match spans through fewer bags than π
(it does not span through the bag b, as all edges and parts of
RPQs that were mapped inside b are in ψ′), the `-consistency
condition must be satisfied for this choice of parameters;
since π(Vj) = {ej} ⊆

(
A
κj

ϕj ,Vj

)I
for all j, we get that

e′i ∈ A
λi

ψi,Ui
for λi which agrees with κj on all var(ϕj) \Vj ,

and is equal to ` on all other variables. Using this fact for all
i and using `-consistency in the bag b for the match π′, we
get that e ∈ (Aκϕ,V )I for κ which agrees with each κi on all
variables from ϕi apart from Vi and is equal to ` on all other
variables, which is exactly what needed to be shown.

Lemma 8. There is a finite (`, `′)-model of K modulo E iff
there is a finite tree-like (`, `′)-model of K modulo E whose
bags are strongly connected.

Proof. This is proved by routine unravelling. Let I be a fi-
nite (`, `′)-model of K modulo E . For each element d in
I define Id as the subinterpretation of I obtained by re-
stricting the domain of I to the elements in the maximal
strongly connected subset of ∆I that contains d. Recall that
the ABox A of K is trivial. Let a be the unique element of
ind(A). Begin the construction of a tree-like model J by
taking a copy of Ia. Then, as long as there exists an ele-
ment e in J and a CI A v ∃r.B in the TBox of K such that
e ∈ AJ but there is yet no e′ ∈ BJ such that (e, e′) ∈ rJ ,
find the original d of e in I and an element d′ ∈ BI such
that (d, d′) ∈ rI . Add to J a copy of Id′ as a new bag, with
an r-edge from e to the copy of d′. This construction gives a
finite interpretation: the height of the tree of bags associated



to J is bounded by the height of the DAG of strongly con-
nected components of I. It is straightforward to check that
J is a level-` model of K modulo E . It is also clear that J
can be mapped homomorphically to I by mapping each ele-
ment of J to its original in I. Because `′-consistency is de-
fined in terms of forbidden matches it follows immediately
that `′-consistency of I implies `′-consistency of J .

Lemma 9. Over B̂-decorated interpretations, each level-`
CRPQ implies the union of its (`+1)-reducts. Over strongly-
connected level-` interpretations, each level-` CRPQ is
equivalent to the union of its (`+ 1)-reducts.

Proof. Use Lemma 4 and the definition of reducts.

Lemma 11. I is a strongly `-consistent level-` model of
K modulo E iff some interpretation that agrees with I over
all role names and all concept names except CNΦ

`+1 is an
(` + 1)-consistent level-` model of K modulo E ′ for some
(`+ 1)-reduct E ′ of E .

Proof. The proof will use constructions that are very sim-
ilar to the ones used in the proof of Lemma 7. Let us
start with right to left implication. Let I be some (` + 1)-
consistent model of K modulo E ′ for some (` + 1)-reduct
E ′ of E . We will show that the exact same model I is a
strongly `-consistent model of K modulo E (note that strong
`-consistency does not mention concept names from CNΦ

`+1,
so adjusting them is not necessary for this implication). As-
sume the contrary; so there is:

• a fragment ϕ,
• a partition of ϕ into a CRPQ ϕ′ of level ` and fragments
ϕ1, ϕ2, . . . , ϕk, and sets V , V1, V2, . . . , Vk such that:
– var(ϕi) ∩ var(ϕj) = ∅ for i 6= j,
– Vi = var(ϕi) ∩ var(ϕ′),
– ∅ 6= V ⊆ var(ϕ) ∩ var(ϕ′);

• a match π for some (`+ 1)-reduct ψ′ of ϕ′ in I and func-
tions κ, κ1, . . . , κk such that:

– π(Vi) = {ei} ⊆
(
Aκi

ϕi,Vi

)I
for all i,

– π(V ) = {e} 6⊆ (Aκϕ,V )I ,

– κi(x) ≤ ` for all x ∈ var(ϕi) ,
– κ(x) = κi(x) for all x ∈ var(ϕi) \ Vi ,
– κ(x) = ` for all x ∈ var(ϕ) ∩ var(ϕ′) .

For each RPQ atom Bq,q′(x, y) in ψ′, choose a path from
π(x) to π(y) witnessing that the atom is satisfied.

When constructing E ′, the exact same parameters were
considered (ϕ, its partition into ϕ′, ϕ1, ϕ2, . . . , ϕk, (` +
1)-reduct ψ′ of ϕ′, the set V and the function κ), sets
U1, . . . , Um and fragments ψ1, . . . , ψm were defined (note
that for a fixed match π and witnessing paths, partial
matches and partial witnessing paths for ψi can also be ob-
tained, for the parts common with ψ′), and a choice was
made:

• either pick i such that Ui = ∅ and remove all unary types
that contain any Aλi

ψi,Wi
with Wi ⊆ var(ψi) ∩ var(ψ′),

λi
(
var(ψi) ∩ var(ψ′)

)
= {` + 1}, and λi(x) = κ(x) for

all x ∈ var(ψi) \ var(ψ′) ;

• or remove all unary types that contain some Aλi

ψi,Ui
with

λi
(
var(ψi) ∩ var(ψ′)

)
= {` + 1} and κ(x) = λi(x) for

all x ∈ var(ψi) \ var(ψ′), for each i such that Ui 6= ∅, but
do not contain Aκϕ,V .

For each i ∈ {1, . . . ,m} consider a partition of ψi into ψ′i
(intuitively being the common part of ψi and ψ′) and frag-
ments ϕj for all j such that var(ϕj) ∩ var(ψi) 6= ∅, and a
match πi of ψ′i agreeing with π and the choice of witnessing
paths.

If the first choice was made, take the chosen i, choose any
element e′ in the image of var(ψi)∩var(ψ′) under πi, and let
Wi be the preimage of e′ under πi. By (` + 1)-consistency,
we see that e′ ∈ Aλi

ψi,Wi
, where λi agrees with κj (and κ) on

var(ϕj) \ Vj for all j such that var(ϕj) ∩ var(ψi) 6= ∅, and
is equal to ` + 1 on all other variables. However, all unary
types containing this concept were forbidden in E ′, which is
a contradiction with I being a model of K modulo E ′.

If the second choice was made, use (` + 1)-consistency
for each ψi with Ui 6= ∅ and its partition as described above,
which proves that e ∈ Aλi

ψi,Ui
for some λi agreeing with

κj (and κ) on var(ϕj) \ Vj for all j such that var(ϕj) ∩
var(ψi) 6= ∅, and is equal to ` + 1 on all other variables.
Thus, because of the environment E ′, Aκϕ,V must also be
satisfied. (Note that the union of var(ψi) \ var(ψ′) for all i
with Ui 6= ∅ is equal to the union of var(ϕj) \ Vj for all ϕj
which are not disjoint with all ψi considered here).

Now we will prove left to right implication. Assume that
I is a strongly `-consistent model of K modulo E . Let I ′
be an interpretation that agrees with I over all role and con-
cept names except CNΦ

`+1, and in which the interpretation of
these concept names is correct in the following sense. First,

for each e ∈
(
Aκϕ,V

)I′
with CNΦ

` we let e ∈
(
Aκ
′

ϕ,V

)I′
where κ′(x) = ` + 1 for x ∈ V and κ′(x) = κ(x) for
x ∈ var(ϕ) \ V . Then, we add element e to (Aκϕ,V )I

′
with

(Aκϕ,V )I
′ ∈ CNΦ

`+1 if and only if there exists some partition
of ϕ into ϕ′, ϕ1, . . . , ϕk, sets V1, . . . , Vk and a match π for
ϕ′ in I ′ with all requirements exactly as in the definition of
(` + 1)-consistency, in which additionally κi(x) ≤ ` for all
x ∈ var(ϕi) \ Vi and κi(x) = ` + 1 for all x ∈ Vi, for
i ∈ {1, . . . , k}. Note that this does not leave many choices
regarding the partition: all variables x such that κ(x) = `+1
must be in ϕ′, all other variables of ϕ must be outside ϕ′, so
it is even known which RPQ atoms are split; only the levels
and states of the fresh variables might differ between differ-
ent partitions.

The interpretation I ′ is (`+ 1)-consistent, since any par-
tition of some ϕ and a corresponding match (as in the defi-
nition of (` + 1)-consistency) for which κi(Vi) = {` + 1}
for some i, can be “unwrapped” to ones satisfying the cor-
rectness condition, as follows. If ei ∈ Aκi

ϕi,Vi
and κi(Vi) =



{` + 1}, by the correctness condition, there is a partition
of ϕi and an appropriate match witnessing that. This par-
tition and match of ϕi can me “merged” into the partition
and match of ϕ. Applying this procedure for all i such that
κi(Vi) = {` + 1} results in a partition and a match of ϕ to
which the correctness condition can be applied.

Now we will construct an appropriate (` + 1)-reduct E ′
of E . Consider some parameters κ, ϕ,ϕ′, ϕ1, . . . , ϕk, ψ

′,
V , define ψ1, . . . , ψm, U1, . . . , Um as when constructing an
(`+1)-reduct of the environment; recall that κ uses levels at
most `, and κ

(
var(ϕ)∩ var(ϕ′)

)
= {`}. We need to choose

one of the two options mentioned in the construction. If
for some i such that Ui = ∅, the interpretation I ′ does not
violate the restrictions imposed by the first choice (that is,
there are no elements in concept Aκi

ψi,Wi
in I ′ for all Wi and

κi as defined during the construction of a reduct), choose
this option and this i. Otherwise, choose the second option,
knowing that in I ′ for each i such that Ui = ∅ there is some
element ei ∈ Aκi

ψi,Wi
for some Wi and κi such that Wi ⊆

var(ψi) ∩ var(ψ′), κi
(
var(ψi) ∩ var(ψ′)

)
= {` + 1}, and

κi(x) = κ(x) for all x ∈ var(ψi) \ var(ψ′).
We claim that I ′ is a model ofK modulo the environment

E ′ constructed as above. Suppose this is not the case. By
the construction of E ′, the interpretation I ′ satisfies all the
requirements imposed by the first choice. Hence, it must be
the case that I ′ does not satisfy the requirements imposed
by the second choice; that is, in I ′ there is an element e in
conceptsAκi

ψi,Ui
where κi

(
var(ψi)∩var(ψ′)

)
= {`+1} and

κ(x) = κi(x) for all x ∈ var(ψi) \ var(ψ′), for all i such
that Ui 6= ∅, but not in Aκϕ,V .

For each i ∈ {1, . . . ,m} and the witnessing element

ei ∈
(
Aκi

ψi,Wi

)I′
(if Ui 6= ∅, we let ei = e and Wi = Ui),

take the partition and match πi guaranteed by the correctness
condition; all variables from var(ψi) ∩ var(ψ′) are guaran-
teed to be in the domain of πi. Merge all these matches
together into one match π′. It is nearly a match of ψ′; since
κi determines for each iwhich RPQ atoms in ψi will be split
in the partition, and it agrees with κ on this matter, we can
identify the splitting variables in ψ′ and in the domain of πi;
but these variables

(
var(ψ′) \

⋃
i var(ψi)

)
might have dif-

ferent states and levels assigned in π′; since I is a level-`
interpretation, the assigned levels are at most `. Let ψ̃′ be an
(`+ 1)-reduct of ψ′ with states and levels of these variables
adjusted to match the ones in π′. Let π̃ be π′ adjusted to ψ̃′
(it is easy to modify a match for a CRPQ to a match of its
(`+ 1)-reduct). We get that there is a partition of ϕ into ϕ̃′,
ϕ̃1, . . . , ϕ̃h, sets Ṽ1, . . . , Ṽh and the match π̃ of an (` + 1)-

reduct ψ̃′ of ϕ̃′ to I ′, where π̃(Ṽi) = {ẽi}, ẽi ∈
(
Aλi

ϕ̃i,Ṽi

)I′
,

and λi do not use level `+ 1.
Using strong `-consistency of I with these parameters

gives us that e ∈
(
Aλϕ,V

)I
for some λ. One just needs

to show that λ(x) = κ(x) for all x ∈ var(ϕ) to arrive
at a contradiction. The matches πi obtained from correct-

ness condition for ei ∈
(
Aκi

ψi,Wi

)I′
guarantee that κi(x) =

κ(x) for all x ∈ var(ψi) \ var(ψ′). We also know that
all x ∈ var(ψi) ∩ var(ψ′) are in the domain of πi, so
(by the above use of strong `-consistency) λ(x) = ` for
x ∈ var(ψi) ∩ var(ψ′), and λ(x) = κ(x) for all other vari-
ables of ϕ, which is exactly what is needed.

Lemma 12. The (`, `)-model problem for an ALC KB K, a
UCRPQ Φ, and an environment E can be solved in time

2O(‖K‖)+2poly(‖Φ‖)

given an oracle for the (`, ` + 1)-model problem (with the
same UCRPQ and TBox).

Proof. By Lemma 10 it suffices to decide if there is a finite
tree-like level-` model of K = (T ,A) modulo E = (Θ, ε)
whose edge-bags are `-consistent and bags are strongly `-
consistent. Our algorithm will compute the set of unary
types that are realizable in such interpretations of increas-
ing height. Here, by the height of a tree-like interpretation
we mean the number of edges on the longest path from the
root bag to a leaf bag.

Th algorithm begins from the empty set of types Φ0 = ∅.
In round h = 1, 2, . . . , based on the set Φh−1 it computes
the set Φh of types that can be realized in models of height
h − 1. The type τ is added to Φh iff there exists a finite
strongly `-consistent level-` model of Kτ = (T ,Aτ ) mod-
ulo Eh where

Aτ =
{
A(a)

∣∣ A ∈ τ}
for a designated a ∈ NI and Eh is defined based on E
and Φh−1 as explained below; for the existence test we use
Lemma 11.

For unary types τ1, τ2 and a role name r let J(τ1,r,τ2)

be the edge-bag built from an element e1 of type τ1 and
an element e2 of type τ2 connected by an r-edge. We let
Eh = (Θ, εh) and include (r,B) in εh(τ1) for τ1 ∈ Θ iff
either (r,B) ∈ ε(τ1) or there exists τ2 ∈ Θh−1 such that
B ∈ τ2 and I(τ1,r,τ2) is an (`, `)-interpretation and satisfies
all CIs of the form A′ v ∀r.B′ in T . Recall that the first
condition amounts to checking that I(τ1,r,τ2) is B̂-decorated
(I(τ1,r,τ2) |= T̂B), level-`, and `-consistent.

Because the computed sets satisfy

Φ0 ⊆ Φ1 ⊆ · · · ⊆ Φh−1 ⊆ Φh ⊆ . . . ,

after at most 2|CN(K)|+2poly(‖K‖)
rounds the sets Φh stabi-

lize. The algorithm should return yes iff the last Φh con-
tains a unary type compatible with the assertions made by
the Abox A of K about the unique individual it mentions.
It is not hard to check that each round can be performed in
time 2O(‖K‖)+2poly(‖K‖)

, yielding the desired complexity up-
per bound.

Lemma 13. The (n+ 1, n+ 1)-model problem for anALC
KB K, a UCRPQ Φ, and an environment E can be solved in
time 2O(‖K‖)+2poly(‖Φ‖)

.

Proof. Let us first see when a discrete interpretation is
(n+1)-consistent. Consider a partition of a fragment ϕ into
ϕ′, ϕ1, . . . , ϕk like in the definition of (n + 1)-consistency.



Because ϕ′ has level n + 1, it must be a UCQ. If ϕ′ con-
tains a binary atom, it cannot be matched in a discrete in-
terpretation. Hence, we can assume that ϕ′ contains no bi-
nary atoms. Fragments ϕ1, . . . , ϕk share no variables, but
ϕ is connected, so k = 1. It follows that ϕ1 = ϕ and
V ⊆ var(ϕ′) ⊆ V1. Then, (n + 1)-consistency reduces to
the conditionAκϕ,V1

v Aκϕ,V for all κ such that κ(x) = n+1

for all x ∈ V1. We can capture (n + 1)-consistency of the
model by replacing E with the environment E ′ = (Θ′, ε′)
obtained from E by filtering out unary types that violate this
condition. This can be done in time polynomial in the size
of E .

It remains to decide if there is a discrete model ofK mod-
ulo E ′. This is the case iff for the individual a mentioned in
A there is a type τ ∈ Θ′ compatible with the assertions on
a in A such that for each concept inclusion A v ∃r.B in T
if A ∈ τ then (r,B) ∈ ε′(τ). This can be checked in time
polynomial in the size of K and E ′.

Overall, the existence of an (n + 1, n + 1)-model of K
modulo E can be decided in time polynomial in the size of
K and E ; that is, in time 2O(‖K‖)+2poly(‖Φ‖)

.

Lemma 14. If there exists a finite (`, `′)-model ofK modulo
E then there exists an `′-flat (`, `′)-model of K modulo E
with bounded degree and bag size.

Proof. This is also proved by routine unravelling, much like
Lemma 8. The difference is that this time for Id we take
the interpretation I with all edges of level strictly below `′

removed. This unravelling procedure may pass through the
same element multiple times on the same branch, so the re-
sulting tree-like structure J may be infinite. Because new
bags are added to J only when a witness is missing in the
parent bag, it follows that all edges between bags have level
strictly below `′ (all edges of level at least `′ are already
copied in the parent bag, together with their targets). Hence,
J is `′-flat. The size of each bag is equal to the size of I
and the degree within each bag is bounded by the maximal
degree in I. The number of child bags connected to the
same element in the parent bag is bounded by the size of the
TBox. Hence, the degree in J is bounded. Checking that J
is a (`, `′)-model of K modulo E is straightforward, just like
in Lemma 8.

Lemma 15. In a match of a B̂-decorated CRPQ in a B̂-
decorated interpretation, each path witnessing an RPQ atom
of end level at least `′ uses at most n − `′ edges of level
strictly below `′.

Proof. Suppose a B̂-decorated CRPQ ϕ is matched in a B̂-
decorated interpretation J . Each path in J corresponds to
the run ρ of B̂ obtained by reading the states decorating the
elements on the path. Such a path witnesses an RPQ atom
Bq,q′(x, x′) iff the thread of ρ beginning in q ends in q′. If
the atom has end level at least `′, then the level of q′ in the
last state of ρ must be at least `′. Observe however that each
edge of level strictly below `′ brings all threads from levels
`′ and higher at least one level down. Consequently, the path
may use at most n− `′ edges of level strictly below `′.

Lemma 16. Let J be B̂-decorated interpretation made up
of disjoint level-`′ interpretations of size at most M con-
nected by edges of level strictly below `′. Assuming `′ ≤ n,
each level-`′ CRPQ is bounded by M(n− `′ + 1)2 over J .

Proof. Consider a level-`′ CRPQ ϕmatched in J . Consider
a witnessing path e0, e1, . . . , ek in J . Let p0,p1, . . . ,pk
be the run of B̂ corresponding to the witnessing path and
let `0, `1, . . . , `k be the thread in ρ that corresponds to the
witnessing run q0, q1, . . . , qk of B. We have `0 ≥ `1 ≥
· · · ≥ `k ≥ `′. Suppose that for some i < j we have ei = ej
and `i = ` = j. It follows immediately that pi = pj and
qi = qj . Thus, we can choose a shorter witnessing path
by skipping ei+1, ei+2, . . . , ej . Consequently, it is enough
to look at witnessing paths that visit each element at most
(n−`′+1) times. From the assumption on the structure ofJ
and from Lemma 15 it follows that every simple witnessing
path has length at most M(n− `′ + 1)2.

Lemma 19. The (`, `′)-model problem for an ALC KB K,
a UCRPQ Φ, and an environment E can be solved in time

2O(‖K‖)+2poly(‖Φ‖)

given an oracle for the (`′, `′)-model problem (with the same
UCRPQ and TBox).

Proof. By Lemma 14 it suffices to decide if there exists an
`′-flat (`, `′)-model ofKmodulo E with bounded degree and
bag size. Using Lemma 7 and the definition of `′-flatness
this is amounts to deciding if there exists a (possibly in-
finite) tree-like model of K modulo E such that each bag
is a finite (`′, `′)-interpretation, each edge-bag is an (`, `′)-
interpretation but not level-`′, and the size of bags and the
degree of elements is bounded.

The algorithms is similar to the one in Lemma 12. The
main difference is that the model can now be infinite. Sup-
pose for a while, however, that we are interested in com-
puting only finite models. Then we can proceed just like in
Lemma 12, computing sets

∅ = Φ0 ⊆ Φ1 ⊆ Φ2 ⊆ . . .

but as we are after `′-consistent bags, rather than strongly
`′-consistent, we reduce directly to the (`′, `′)-model prob-
lem for Kτ defined like before, and Eh define almost like
before, the difference being that we additionally require that
the edge in J(τ1,r,τ2) has level strictly below `′. We do not
need to do anything about the size of the bags and the degree,
because in a finite interpretation these are always bounded.

In order to take into account also infinite models, we re-
place induction by co-induction. The algorithm proceeds
just like described above but it starts from Φ0 containing all
unary types over CN(K) and concepts Cq,k and Aκψ,V . It
follows that

Φ0 ⊇ Φ1 ⊇ · · · ⊇ Φh−1 ⊇ Φh ⊇ . . . .

Like before, the sequence must stabilize after at most
2|CN(K)|+2poly(‖K‖)

steps. We claim that the algorithm can
answers yes iff the last computed Φh contains a type com-
patible with the ABox ofK. This is because one can built the



potentially infinite model top down plugging in as bags the
models witnessing the addition of τ to Φh in the last round.
Importantly, the number of these witnesses is finite, because
the number of invoked instances of the (`′, `′)-model prob-
lem is finite. Consequently, the size of bags in the con-
structed model is bounded. The number of child bags at-
tached to each element is bounded by the number of exis-
tential restrictions in the TBox of K, so the degree in the
constructed model is also bounded. The complexity bound
follows like in Lemma 12.


	Introduction
	Preliminaries
	Description Logics
	Interpretations
	Queries and Finite Entailment
	UCRPQs via Semiautomata
	Entailment Modulo Environment

	Expansion and Decorations
	Core Computational Problem
	Incrementing the Level of Queries
	Incrementing the Level of Models
	Looking Forward (and Back)
	Additional Definitions
	Proofs

