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Abstract: The thermodynamic properties of a substance are key to predicting its behavior in physical
and chemical systems. Specifically, the enthalpy of formation and entropy of a substance can be used
to predict whether reactions involving that substance will proceed spontaneously under conditions
of constant temperature and pressure, and if they do, what the heat and work yield of those reactions
would be. Prediction of enthalpy and entropy of substances is therefore of value for substances
for which those parameters have not been experimentally measured. We developed a database
of 2869 experimental values of enthalpy of formation and 1403 values for entropy for substances
composed of stable small molecules, derived from the literature. We developed a model for predicting
enthalpy of formation and entropy from semiempirical quantum mechanical calculations of energy
and atom counts, and applied the model to a comprehensive database of 16,417 small molecules. The
database of small-molecule thermodynamic properties will be useful for predicting the outcome of
any process that might involve the generation or destruction of volatile products, such as atmospheric
chemistry, volcanism, or waste pyrolysis. Additionally, the collected experimental thermodynamic
values will be of value to others developing models to predict enthalpy and entropy.

Dataset: 10.5281/zenodo.4661783.

Dataset License: CC BY (SA).

Keywords: thermodynamics; enthalpy of formation; entropy; free energy; database; prediction

1. Summary

We present a dataset for the prediction of thermodynamic parameters for compounds
and its application to a set of 16,411 small molecules [1]. The dataset addresses the gas-
phase enthalpy of formation, the entropy of molecules, and the change of both parameters
with temperature. The dataset contains a compilation of measured enthalpy of formation
for 2869 compounds, measured entropy for 1403 compounds, and temperature dependence
of parameters for 172 compounds. These can be used as a reference source in their own
right, or used to build a model for predicting these values for new compounds. We describe
building such a model and applying it to 16,411 small molecules in the ‘All Small Molecules’
collection [1].

For context, we first provide material on the importance of enthalpy and entropy.
The enthalpy and entropy of formation of a compound are key parameters for predicting
whether reactions involving a compound will proceed spontaneously under isobaric and
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isothermal (constant pressure and temperature) conditions. Specifically, if the Gibbs free
energy change (∆G) of a system in which a chemical reaction takes place is negative, and
the system is at constant pressure and temperature, then that system, at equilibrium, will
contain more of the products of that reaction than of the reactants, and the reaction is said to
proceed spontaneously in the forward direction. This condition is usually met in chemistry
happening in an unenclosed space at the surface of a planet, where the pressure is constant
but the reactants can change volume as they form products. (If volume is constant but
pressure changes, as might be true in confined gas bubbles in a rock, for example, then the
change in Helmholtz free energy (∆F) is the appropriate measure of reaction spontaneity,
but this can also be calculated from change in enthalpy and in pressure.) A negative ∆G
does not imply that the reaction will proceed. How fast a reaction proceeds is the domain of
kinetics, not of thermodynamics. However, if the reaction does proceed, then at equilibrium
thermodynamics will predict whether the products of the reaction will dominate.

Because ∆G is only measured by changes of state of a system, the free energy of a
chemical is practically defined as the free energy change when forming a molecule from its
constituent elements at standard state (298 K, 1 bar), an energy change that is called the
standard free energy of formation of a compound (∆G◦). Knowledge of the ∆G◦ values of
the reactants and products of a reaction allows the Gibbs free energy change of that reaction
to be calculated:

∆G
◦
= ∑ ∆G

◦
p −∑ ∆G

◦
r (1)

where ∆G
◦
p are the standard free energies of formation of the products and ∆G

◦
r are the

standard free energies of formation of the reactants. ∆G◦ reactants can be calculated from
the enthalpy of formation (∆H, heat released when forming a compound from its elements)
and the entropy change of the reaction (∆S) via

∆G = ∆H − T∆S (2)

where T is the absolute temperature and ∆S is defined as

∆S
◦
= ∑ S

◦
p −∑ S

◦
r (3)

where S
◦
p is the entropy of the products and S

◦
r is the entropy of the reactants. Thus,

knowledge of ∆H and S of a substance is important in predicting the likely outcome of a
chemical reaction involving that substance.

∆H and S have been experimentally measured for thousands of compounds, but
this is a small fraction of the millions known, and of the almost boundless number of
possible molecules [2]. Computational methods for predicting ∆H and S are therefore
valuable. A range of approaches have been used, including quantum mechanical (QM)
ab initio and semiempirical methods, molecular mechanics (MM) methods, and group-
additive methods, as well as combined methods (e.g., [3,4]). The QM methods seek to
predict molecular properties from first principles based on the arrangement of electron
orbitals around the nuclei in a molecule (for example, see [5–9]). MM methods treat atoms
as indivisible and model their interactions through empirically derived force fields [10].
Group-additive methods seek an empirical approach of providing a table of ∆H and ∆S
values contributed by different chemical groups in a molecule; the ∆H and ∆S of the
molecule is then the sum of the values of those chemical groups (for example, [11–13]). MM
and group-additive approaches can be very accurate when parameterized for narrowly
defined sets of molecules (e.g., alkanes [5,6,10]), but are inaccurate if applied outside their
specific domains.

In this paper, we present a dataset for a combined QM and group-additive approach.
We provide a set of reference data on the measured gas-phase enthalpy and entropy of
formation of compounds, computed QM and group parameters from which ∆H and ∆S
can be calculated, the results of that modelling, and the application of those models to the
‘All Small Molecules’ dataset of 16,417 small, potentially volatile molecules generated for
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atmospheric chemistry studies [1]. Because this dataset was developed to be deployed in
atmospheric chemistry studies, the relevant thermodynamic parameters for the gas phase
have been collected and modelled. However, the presented data resource and model also
provide a basis that can be built on to provide energies of vaporization and condensed
phase data for compounds such as urea and glycine, which are unlikely to be present in the
gas phase.

2. Data Description
2.1. Summary of Data

The dataset presented in this paper are a set of data for modelling the thermodynamic
properties—enthalpy of formation and entropy—of arbitrary molecules in the gas phase
containing the elements H, B, C, N, O, F, Si, P, S, Cl, Ge, As, Se, Br, and I. The data
are used in two ways, as summarized in Figure 1. In building the models, molecular
structures are used to generate quantum mechanics-calculated estimates of enthalpy and
entropy, which are then adjusted to fit known values (red lines above) using an algorithm
based on the count of the number of atoms in a molecule built in the StarDrop software
(http://www.optibrium.com/stardrop/). The same model can then be used with the same
input but without literature value input (i.e., without the red lines in Figure 1) to predict
the thermodynamic properties of molecules for which the thermodynamic parameters are
unknown. The semiempirical QM methods also directly predict the change in ∆H◦ and S◦,
and hence in ∆G◦, with temperature.
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Figure 1. Summary of process used in this work. See text for details.

In this paper, we present the training data for building the models, with links to the
original literature, the model files for StarDrop, and the result of predicting the thermody-
namic properties of 16,417 molecules in a comprehensive dataset of small molecules [1].

2.2. Enthalpy of Formation
2.2.1. Measured Values for Enthalpy

Enthalpy data were collected from 11 compilations of enthalpy, supplemented with
11 smaller sets of data to fill in the data for elements not commonly used in organic
chemistry, notably B, Ge, Si, and Se. A number of collections contained enthalpy data on
radicals and isolated ions; these were not included as the purpose of the dataset was to
predict the enthalpy of stable molecules. Some of the collections had multiple values, and

http://www.optibrium.com/stardrop/
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so are represented by several columns in the data. The statistics on the sources of data,
number of columns, and number of compounds represented are shown in Table 1. Overall,
enthalpy data on 2869 compounds were collected.

Table 1. Sources for enthalpy of formation data.

Code Reference Number of Columns Number of
Compounds

AtCT [14,15] 1 248
Cioslowski [16] 1 1429

Cox [17] 7 1920
JANAF [18,19] 1 172

Jorgensen [20] 1 53
NIST [21] 5 1889

Pedley [22] 1 2949
Sander [23] 1 137
Stewart [24] 1 709
Winget [9] 1 1179
Yaws [25] 1 1441

Add Lit [26–36] 5 270

The data schema for this dataset is summarized in Table 2. The schema includes data
used in modelling enthalpy (discussed below in Section 3.1).

Table 2. Data schema for dataset Measured_enthalpy.

Column Header Description

1 Name Chemical name. These are not necessarily
IUPAC names

2 SMILES Structure of the compound in the SMILES
[37] format

3–26 Source code as in Table 1 Values for enthalpy of formation, in kJ/mol

27 Filter
Flag for data that showed excessive range of
values, and so was excluded from modelling

(1 = excluded, blank = retained)
28 PM3 Predicted values for enthalpy of formation

calculated by the QM semiempirical method,
in kCal/mol

29 PM6
30 PM7

31–45 C, H, As, B, Br, Cl, F, Ge, I, N, O, P,
S, Se, Si Atom counts

2.2.2. Measured Values for Entropy

Entropy data were collected from eight data collections, as listed in Table 3. The data
schema for the dataset is summarized in Table 4. Note that what is listed in this dataset
is absolute entropy S, not entropy of formation ∆S. Entropy of formation can readily be
derived from absolute entropy from Equation (3). As was the case for the enthalpy data,
only molecules with conventional bonding, and not radicals or isolated ions, were included,
and sources with multiple entries are represented by multiple columns. Only a subset
of data was taken from Yaws. The statistics on the sources of data, number of columns,
and number of compounds represented are shown in Table 3. Overall, entropy data on
1403 compounds were collected.
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Table 3. Sources for entropy of formation data.

Code Reference Number of Columns Number of
Compounds

JANAF [19] 1 171
Mu and He [38] 1 1098

NIST [21] 2 107
Rihani [39] 1 54
Sander [23] 1 138

Sarangam [40] 1 79
Yaws [25] 1 541

Table 4. Data schema for dataset Measured_entropy.

Column Header Description

1 Name Chemical name. These are not necessarily
IUPAC names

2 SMILES Structure of the compound in the SMILES
[37] format

3–10 Source code as in Table 3 Values for enthalpy of formation, in kJ/mol
11 PM3 Predicted values for entropy calculated by

the QM semiempirical method, in kCal/mol12 PM6
13 PM7

14–28 C, H, As, B, Br, Cl, F, Ge, I, N, O, P,
S, Se, Si Atom counts

2.2.3. Measured Values for Change in Enthalpy with Temperature

Enthalpy of formation and entropy change with temperature. Data on the change in
enthalpy of formation and entropy with temperature of a set of 174 molecules were ex-
tracted from [19]. The data for trichloromethylsilane (CH3SiCl3) and trifluoromethylsilane
(CH3SiF3) were internally inconsistent, in that the tabulated free energy of formation was
not the same as the free energy of formation that can be calculated from tabulated entropy,
enthalpy of formation, and the respective elemental entropies. No other silicon or fluorine
compound shows this inconsistency, so this is not a systemic problem with this dataset. As
there is no obvious explanation for this inconsistency, or of which of the tabulated ∆H, S, or
∆G are in error, these entries were removed from the dataset. The resulting 172 molecules
are provided in a dataset. The data are provided as described in Table 5 in the form of the
difference between the respective values at temperatures between 300 and 1500 K and the
value at 298 K (standard state).

Table 5. Data schema for dataset Change_in_DH_and_S_with_temperature.

Column Header Description

1 SMILES Structure of the compound in the SMILES
[37] format

2 Formula Empirical formula

3 Name Chemical name. Note these are not
necessarily IUPAC names

4–16 H−Ho
Values for ∆H−∆H◦ (value of ∆H at the
specified temperature minus the value at

298 K) in 100 K steps from 300 K

18–30 S−So Values for S−∆S◦ (value of S at the specified
temperature minus the value at 298 K)

32–44 H−Ho (PM7) Value of H−Ho modelled by PM7
semiempirical QM method

46–58 S−So (PM7) Value of S−So modelled by PM7
semiempirical QM method
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2.2.4. All Small Molecules (ASM) Dataset

We previously described a list of 16,417 molecules (ASM) containing no more than
6 non-hydrogen atoms [1] as a repository of potentially volatile compounds. The ASM
database of small molecules was built as a comprehensive list of potential biosignature
gases, that is, gases that indicate the presence of life in a world (see [41–44] for a review of
biosignatures). To extend the value of the ASM dataset, we calculated entropy and enthalpy
of formation for these molecules, as described below. The extended dataset contains the
original dataset, the calculated values required for calculating enthalpy and entropy as
described in Section 3 below, and the output results. The schema for the data is described
in Table 6.

Table 6. Data schema for dataset All_Small_Molecules (ASM).

Column Header Description

1 SMILES Structure of the compound in the SMILES [37] format
2 DB.Number Unique identified number for the original ASM database
3 M.Wt. Molecular weight (daltons)
4 Formula Empirical molecular formula
5 Name Name of substance (NB not necessarily IUPAC name)
6 InChI Code Unique InChI code [45] for this molecule
7 Model_Enthalpy Modelled values of enthalpy of formation ∆H

8 Model + Measured_Enthalpy
Measured enthalpy from the dataset ‘Measured_enthalpy’

where that is available, modelled enthalpy where no measured
value is available

9 Model_Entropy Modelled values of entropy S

10 Model + Measured_entropy ‘Measured_entropy’ where that is available, modelled entropy
where no measured value is available

11–25 C, H, As, B, Br, Cl, F, Ge, I, N, O, P, S, Se, Si Element counts for the molecule
26 PM6 Entropy Entropy of molecules as output by PM6, in Cal/mol/K
27 PM7 Enthalpy Enthalpy of molecules as output by PM7, in kCal/mol

28–40 PM7 H−Ho (nnn K)
H−Ho values from PM7 output, for 13 temperatures between

300 K and 1500 K, derived directly from PM7 output,
in kCal/mol

41–53 PM7 S–So (nnn K)
S–So values from PM7 output, for 13 temperatures between

300 K and 1500 K, derived directly from PM7 output,
in Cal/mol/K

54–67 ∆G (nnn K)
Calculated free energy of formation for 13 temperatures

between 300 K and 1500 K, derived from modelled enthalpy,
entropy, and PM7 outputs, in kJ/mol

The columns ‘Model + Measured_Enthalpy’ and ‘Model + Measured_Entropy’ list
measured values for enthalpy and entropy, respectively, where those are known, and
modelled values where no measured values are known. These values are therefore the
most accurate values of enthalpy and entropy available. The Gibbs free energy (relevant
to reaction at constant pressure and temperature, as noted) is listed. Calculating Gibbs
free energy requires the elemental entropy and H−Ho values to be known; these are
provided in the file ‘elemental_thermodynamics.xlsx’, with data for As, Se, and Ge derived
from [25,46,47], and all other values from [19].

The ∆G values from the thermodynamic data have been integrated with the prior ‘All
Small Molecules’ (ASM) database. The data schema for the flat file version of the dataset is
shown in Table 7. The ASM dataset is available for download at www.allmols.org.

www.allmols.org
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Table 7. Data schema for release version of ASM database.

Column Header Description

1 SMILES Structure of the compound in the SMILES [37] format
2 Database number Unique number for this entry, for future tracking
3 M. Wt. Molecular weight (daltons)
4 Formula Molecular formula
5 IUPAC chemical name Chemical name consistent with IUPAC convention
6 Number of atoms Total number of atoms
7 Non-H atoms Number of atoms other than hydrogen
8 InChI Code Unique code generated according to the InChI standard [45]

9 InChI Key 27-character hashed key generated from InChI Code. Note that
in this implementation no stereochemistry data is coded

10 BP Estimated boiling point at 1 bar

11 BP basis Basis for the BP value: Exp = Experimentally derived value,
Est = estimated by EPISUITE prediction software [48,49]

12 MP Melting point

13 MP basis Basis for the MP value: Exp = Experimentally derived value,
Est = estimated by EPISUITE prediction software [48,49]

14 Produced by life Flag for whether this is known to be made by terrestrial life.
Y = made by life

15 Ref for life Reference for production by life (example reference for
commonly made compounds)

16–30 C, H, As, B, Br, Cl, F, Ge, I, N, O, P, S, Se, Si Element counts for the molecule

31–44 ∆G (nnn K)
Calculated free energy of formation for 13 temperatures

between 298 K and 1500 K, derived from modelled enthalpy,
entropy, and PM7 outputs, in kJ/mol

3. Methods

To calculate the free energy of formation of a substance, its enthalpy of formation
and entropy need to be known. These values were calculated separately using quantum
mechanical calculations, and then corrected for systematic biases using heuristics developed
from reference datasets described above.

3.1. Measured Thermodynamic Values

Literature compilations of thermodynamic values were identified initially by search of
Google Scholar (scholar.google.com) with keywords for thermodynamics (thermodynamics,
entropy, enthalpy, free energy, heat of formation) and data collections (database, collection,
table). Compounds of specific elements were further identified using thermodynamic terms
and terms relevant to the element (e.g., arsenic, arsenous, organoarsenic). These initial
papers were followed up by searching for (a) references in the papers identified as relevant
and (b) papers citing the papers found.

3.1.1. Measured Enthalpy of Formation (∆H◦) Values

Measured values of enthalpy of formation (∆H◦) of compounds were collected from
literature sources. Several papers [9,14–17,20–22,24,25] provide compilations of ∆H◦ as
part of studies of the prediction of ∆H◦ using a variety of methods. For this study, only data
for stable molecules were collected. These collections were complemented with data from
more specific papers on the ∆H◦ for compounds containing arsenic, phosphorus, selenium,
and silicon [26–36].

3.1.2. Inconsistencies and Errors in Published ∆H

Of 2869 substances, 1602 were present only in one data source. For substances
for which ∆H◦ values were present in more than one source, in some cases there was
substantial difference in the values provided by those sources. Thus, for example, the
∆H◦ of sulfur hexachloride (SCl6) is reported as 91.58 kJ/mol by [9] but −82.80 kJ/mol
by [24]. Tetraiodomethane (CI4) is variously reported to have a ∆H◦ of 267.94, 326.9, or
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452.49 kJ/mol. While half of the 1236 substances represented by more than one data source
had ranges of 1 kJ/mol or less, a substantial fraction of the range of ∆H◦ values was much
larger (Figure 2). This was after correcting for typographical errors and correcting some of
the most egregious differences by recalculating from the original literature. Despite these
data correction procedures, 35 compounds listed a range of listed ∆H values in excess of
50 kJ/mol. Compounds with ranges of >50 kJ/mol were excluded from further analysis.
Some spot checks suggested that applying a lower exclusion limit did not improve the
match between QM-predicted ∆H and experimental values. The excluded values are
retained in the database for future reference and flagged in column 27. The filtered set
contained 2834 molecules, of which 1232 had more than one source for the DH◦ value.

The presented data correction and curation procedures do not remove all errors. For
example, [22] lists the condensed phase ∆H of 2-fluoro-2,2-dinitroethanol as −480.3 kJ/mol
but the gas-phase ∆H as −181.8 kJ/mol, implying a heat of vaporization of ~300 kJ/mol,
which is similar to that of diamond. This example was excluded from the dataset, but others
less obvious in error and present as only a single-source entry may have been retained.

Three entries in the NIST-JANAF online tables are inconsistent between the PDF
version [18], including the PDFs on the online database, and the online version [19]. Specif-
ically, entries for phosphoryl tribromide (Br3OP), thiophosphoryl tribromide (Br3PS) and
phosphine (PH3) were significantly different between the two versions. In addition, the
data in the PDF version of the entry for phosphine were internally inconsistent. The ∆G
values tabulated were different from those that could be calculated from the tabulated
∆H and S◦ values. This was not a systematic error in phosphorus compounds, as other
phosphorus compounds did not show these inconsistencies. The online database values of
the ∆G◦ values for phosphine were systematically higher (i.e., more positive) than those
from the PDF versions. We note that [50] used the values from the PDF version in [18] in
all calculations. Bains et al.’s [50] conclusions would not be changed by using the updated
online values; indeed they would be strengthened, suggesting that phosphine is less likely
to be formed in Venus’s atmosphere than they calculated in their paper.
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Figure 2. Distribution of range (maximum value minus minimum value) for experimentally derived
enthalpy of formation values in the literature, with values >100 kJ/mol excluded. Y-axis: number of
collected entries in the dataset. X-axis: range of ∆H◦ values (kJ/mol).

In some cases, initial modelling pointed to errors in experimental ∆H values, which
we could correct. For example, on an initial run of the model the highest difference between
modelled and experimental ∆H value was for diphenyl disulfone, with a modelled value
of −279.09 kJ/mol and a reported experimental value of −481.02 kJ/mol. The extreme
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value of this difference for a relatively unexceptional molecule led us to recalculate the
experimental value from the original data given in [51]. A small correction for the heat
of formation of liquid water [18], assuming that sulfuric acid dissolved in water in the
bomb calorimeter at the end of the experiment, would be in the form of sulfate ions and
not undissociated sulfuric acid (∆H values taken from [52]), and updating the heat of
vaporization of water, we recalculated the heat of formation as −240.04 kJ/mol. This is not
a unique example, and Stewart comments that one use of such modelling is to point out
potentially questionable reported experimental data [7].

With these corrections made where this was possible, an average ∆H◦ was used in
this work. Future work could recalculate ∆H◦ from original literature data for all the com-
pounds (if the data are published, and not just the derived thermodynamic parameters), but
using modern values for reference enthalpies of elements and end products of combustion.

3.1.3. Measured Entropy (S◦) Values

Measured values of entropy (S◦) of compounds were collected from literature sources
[19,21,23,25,38–40]. In contrast to ∆H data, the entropy data were much more internally
consistent. Among the 418 entries for which more than one value was available, 381 had
ranges of <8 J/mol/K (Figure 3). The most extreme range was for acetic acid (CH3COOH),
with values between 282.84 [21] and 404.04 [39]. A difference in S◦ of 167 J/mol/K at 298
K is equivalent to a difference of 36 kJ/mol in ∆G (Equation (2)). Although it is large, the
S◦ difference for acetic acid implies a ∆G difference of less than the 50 kJ/mol cutoff used
to eliminate extremely divergent values from the ∆H dataset, so for consistency with the
enthalpy dataset, no values were excluded from the entropy dataset. The distribution of
ranges in the 418 entries for which more than one value was found is shown in Figure 3.
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3.2. Modelling Thermodynamic Values for New Molecules
3.2.1. Modelling Method

In principle, enthalpy of formation can be calculated for any molecules using ab
initio quantum mechanics (QM) methods. In practice, this is impractical for the molecules
considered here for two reasons. First, ab initio computational methods are computationally
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intensive, especially if high accuracy is required. The enthalpy of formation of a molecule
can be calculated from the difference between the total energy of the molecule and the
total energy of its component elements. Total energy (the energy released by assembling
the molecule from nuclei and electrons at infinite separation) is an output of ab initio
methods. However, the total energy is a very large number; for example, the total energies
of H2, O2, and H2O calculated to B3LYP/6-311G level of accuracy are −3071.5, −394,346.8,
and −200,532.4 kJ/mol, respectively. These values have to be calculated to at least five
significant figures to calculate the enthalpy of formation to within 20 kJ/mol, which, due to
computing time required, is impractical for a large number (16,417) of molecules collected
in the ASM database. Second, the most accurate QM methods are not parameterized for
atoms heavier than neon, and so most of the molecules of interest would be inaccessible
to them.

We therefore chose the semiempirical QM methods [8] as the basis for calculating
enthalpy of formation. Specifically, we used the MOPAC2016 [53] implementation of
PM3 [24,54], PM6 [55], and PM7 [56] semiempirical calculations of thermodynamic parame-
ters. The three methods represent a successive improvement of the semiempirical approach,
so we used all three to test their accuracy on our specific dataset. We comment further on
the comparison between ab initio and semiempirical methods below.

The accuracy of the three methods in predicting enthalpy of formation and entropy is
listed in Table 8.

Table 8. Accuracy of semiempirical methods on this dataset.

Method RMS Error in ∆H◦ (kJ/mol) RMS Error in S◦ (J/mol/K)

PM3 42.72 29.31
PM6 42.30 21.41
PM7 37.17 27.51

Unexpectedly, PM6 proved more accurate in this dataset for predicting entropy than
PM7. It is unclear why this might be, but PM6 was used for entropy calculations and PM7
for enthalpy calculations for all subsequent modelling.

A ∆H that is only accurate to within 37 kJ/mol is not sufficiently accurate to predict
the outcome of a reaction. As an example, the reaction of nitrogen with hydrogen to
form ammonia

1
2

N2 + 1
1
2

H2 ↔ NH3

has a free energy of reaction of −16.327 kJ/mol at 25 ◦C [18], predicting that the reaction
will form NH3 at 25 ◦C if the reaction happens at all. An error of 38 kJ/mol on this value
would suggest a range of −54.3 to +21.7 kJ/mol; the former value of ∆H◦ suggests that an
equilibrium mixture of N2, H2, and NH3 at 25 ◦C would contain essentially 100% NH3; and
the latter value of ∆H◦ suggests that an equilibrium mixture would contain 6·10−5 NH3.
We therefore sought to improve the accuracy of the energy of formation calculation with a
group additive approach. We tried atom counts, bond counts, and larger functional group
counts as the basis for the possible improvement of the accuracy of the energy of formation
calculation, but found that atom counts gave as good a match as bond or group counts, and
required fewest free variables.

Modelling was performed in Optibrium’s StarDrop software (www.optibrium.com/
startdrop), which is optimized for matching molecular properties to molecular structure [57].
The reader is directed to StarDrop user documentation for details of this technology. In sum-
mary, data are input as a set of structures (coded as SMILES strings), enthalpy endpoints, and
atom counts. The AutoModeller function of StarDrop then follows the following procedure:

1. Splits the data into three sets: 50% of the structures into a training set, 25% into a
validation set, 25% into a test set. Splitting is performed on the basis of Tanimoto
coefficient clustering of molecules.

www.optibrium.com/startdrop
www.optibrium.com/startdrop
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2. Attempts to fit the enthalpy data for the training set to a function of the molecular
descriptors in that set using all of the following methods (readers are directed to
StarDrop documentation for details of modelling methods):

a. Partial least squares
b. Radial basis function
c. Random forest regression
d. Gaussian process
e. Radial basis function with input descriptors selected by genetic algorithm

3. Applies all models to the independent validation set and selects the best model based
on validation set fit.

4. Applies this model to the test set to provide an independent measure of model accuracy.

3.2.2. Modelling Enthalpy of Formation

The method above was used to model the enthalpy of formation based on the measured
values in the dataset described in Section 2.2.1. Using atom counts and PM7 semi-empirical
QM output as inputs, a radial basis function (RBF) model was found to give the best
prediction, with r2 = 0.997 and RMS error of 24.33 kJ/mol on the test set. Including bond
counts or ab initio QM calculations to atom counts did not significantly change the accuracy
of the model. Model performance on the validation and test data subsets of data is shown
in Figure 4 (because a fitted radial basis function is required to pass through all the training
data points, the training data are always exactly matched).
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Figure 4. Output from StarDrop modelling of enthalpy. X axis: observed (literature reported) values
for enthalpy of formation, in kJ/mol. Y axis: predicted values from the model. The RBF method
inherently fits all the training data to the model, and so training set fit is 100%. This shows that the
model correctly predicts the enthalpy of formation of the reference molecule set to an r2 of 0.99757.

3.2.3. Comparison with Other Methods

A wide range of methods have been used to calculate enthalpy, so it is useful to bench-
mark this method to them. Published data on model performance are rarely comparable, as
they are tested on different sets of molecules. Those that are benchmarked against similar
molecule sets usually select chemically limited molecules (e.g., alkanes), which do not
represent the chemical diversity we are capturing with this work. We therefore used the
same method as described above to develop models optimized for our dataset, but based
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on different input parameters, specifically, ab initio quantum mechanics, semiempirical
quantum mechanics, and group contribution. Ab initio QM methods were implemented
in GAMESS [58]. Because of the diversity of the compounds being considered in this
work, the only group contribution method that can be applied is to consider the smallest
possible ‘group’—two atoms joined by a bond. This is the same as calculating the enthalpy
of a molecule as being the sum of the enthalpy of formation of its component bonds. We
deployed this sum_of_bonds method here. The results are summarized in Table 9; more de-
tails on the methods used and the performance of specific methods are given in Appendix A.
We emphasize that much better performance can be obtained with all the methods listed in
Table 9 for more limited chemical spaces, and group contribution methods can be used for
them. However, as our goal was to predict the thermodynamic properties of any covalent
molecule containing any of 15 elements, our approach of semiempirical QM corrected by
atom counts in an RBF model is the most accurate solution.

Table 9. Accuracy of different methods on predicting enthalpy in this dataset.

Method Class Method Summary Description RMS Error in ∆H◦
(kJ/mol) r2 in ∆H

Semiempirical QM PM3, PM6, PM7 Semiempirical QM methods,
implemented in MOPAC 37.17–42.72 0.9864–0.9885

Ab initio QM Various (see Appendix A)
Ab initio absolute energy

corrected for energy of
component atoms

61.71–126.32 0.4654–0.9524

Bond energy sums See Appendix A Energy of molecule is sum of
bond energies 114.58 0.8358

Semiempirical QM + bond counts See Appendix A PM7 corrected by weighted
counts of atom–atom bonds 29.07 0.9906

Semiempirical + atom counts Model implemented in
this work

PM7 corrected by weighted
counts of atoms 24.12 0.9947

3.2.4. Entropy Modelling

A prediction accuracy of 29 J/mol/K in predicting entropy is also insufficient for our
purposes, and so we also sought to improve the accuracy of entropy prediction. Entropy
modelling was performed using the same procedure as enthalpy modelling. StarDrop
modelling was then performed as described above to correct the GAMESS output based
on element counts. The best model fit was found to be GP2DSearch, with r2 = 0.9248 and
RMS error of 12.85 on the test set. A model performance on the three data subsets of data is
shown in Figure 5.
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We note that the semiempirical methods make a number of simplifications that could
contribute to the inaccuracy of prediction of enthalpy and entropy. For example, entropy
calculations do not include conformational terms, which could contribute significantly to
some molecules. These will not be adequately corrected by any modelling that includes
just atom or bond counts, such as the modelling described above. Thus there is room for
further work to improve the predictions of thermodynamic parameters reported here.

3.2.5. Change in Enthalpy and Entropy with Temperature

In contrast with enthalpy of formation and entropy, the change in enthalpy and entropy
with temperature was well predicted by the PM7 method, as shown in Figure 6.
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Figure 6. Errors in semiempirical prediction of the difference between enthalpy at 298 K and enthalpy
at other temperatures (H−Ho) and the entropy at 298 K and at other temperatures (S–So). X-axis:
temperature. Y-axis: root mean square difference between predicted S–So and actual S–So (left axis)
and predicted H−Ho and actual H−Ho (right axis). Actual values are taken from [19]. This shows
that the semiempirical methods correctly predict the change in enthalpy of formation and change in
entropy of the reference molecule set with temperature with an error of less than the average range of
measured values.

We therefore used the PM7 predicted values for the change in enthalpy and entropy
with temperature without further adjustment (except to convert from calories to joules). We
note, however, that the MOPAC semiempirical methods do not predict change in enthalpy
of formation. The PM7 output provides for

∆H = ∆H◦ + (H-H◦)

whereas a prediction of ∆H should calculate

∆H = ∆H◦ + (∆H-∆H◦)
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where ∆H is the enthalpy of formation of a molecule from its component elements. The
H−Ho values can be readily converted to ∆H–∆H◦ values by correcting the H−Ho values
of the elements according to Equation (4):

∆H = ∆H
◦
+

[
H−H

◦
]
−∑ ne × (H−H◦)e (4)

where ∆H◦ is the enthalpy of formation of the compound at 298 K (modelled in Section 3.2.2
above), [H−Ho] is the increase in absolute enthalpy between 298 K and the target tempera-
ture, ne is the number of atoms of element e in the molecule, and [H−Ho]e is the increase
in absolute entropy of element e between 298 K and the target temperature.

3.3. Application of All Small Molecules (ASM) Database

The models described above were run on the All Small Molecules (ASM) dataset [1] to
provide predicted Gibbs free energy of formation data for those molecules, which is appli-
cable to calculating equilibria in the gas phase at constant temperature and pressure. Mod-
elling was performed exactly as above, and ∆G calculated according to Equations (2)–(4).
Both the inputs to the models and the outputs from the models are provided in the data file
provided in this set so that others can develop improved models.

We note that the ASM molecule list is a list of small molecules with a wide range of
volatility (with boiling point as a proxy of volatility; see [1] for details on the ASM molecule
selection process and the creation of ASM database itself). Some molecules in the list, such
as urea or glycine, are very unlikely to be stably present in the gas phase except at extremely
low pressures. The calculations presented in this work are for the gas phase only. However,
we included the results for less volatile molecules here as well for two reasons. First, this
work could be extended with estimates of heats and entropy of vaporization to predict
enthalpy and entropy of the solid state. The gas-phase data, therefore, act as a base on
which further work could be built. Second, it is possible that such chemical species could be
fleeting intermediates in gas-phase chemistry (as phosphorous acid has been proposed to
be in the phosphorus chemistry of Venus’s lower atmosphere, despite its thermal instability
below the clouds [50]). The thermodynamics of such less volatile molecules could therefore
be of interest for modelling such processes. Future work will seek to build comparable
models for solid-phase thermodynamics, and hence for heats of vaporization, so that such
mixed-phase calculations can be performed.

The same calculation of ∆G, starting from PM6 and PM7 output and atom counts, was
performed for the 172 molecules from the [19] dataset used above in Section 3.2.5. For these
molecules, measured values of ∆H and ∆S are known, and so a ‘measured’ value of ∆G can
be derived. The root mean square difference between ∆G calculated from semiempirical
QM methods and atom counts as described and that tabulated in [19] is shown in Figure 7.

We note that the [19] set of compounds does not include any As, Se, or Ge compounds,
and so this is only an estimate of the error in the wider dataset. The error we expect in the
setoff compounds is

e(∆G) = e(∆H) + e(∆S) × T (5)

where e(∆G) = RMS error in ∆G, e(∆H) = RMS error in ∆H, e(∆S) = RMS error in ∆S, and
T = temperature. Surprisingly, the error in ∆G is substantially smaller than this estimate.
This suggests that errors in estimating the various input parameters are not independent
and partially cancel each other when values of ∆H and S estimated from semiempirical
QM methods are used to calculate ∆G.
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Appendix A

Detailed Model Results

Table A1 shows the results of developing models for predicting ∆H from a variety of
inputs using the dataset described in the main paper. We emphasize that the accuracy of
any model is domain specific, and much greater accuracy might have been achievable with
a much larger dataset to use to train models, or more limited chemical space to predict.

www.allmols.org
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Table A1. Results of models. Statistics are for the Test set for Stardrop models (i.e., the independent
set not used in model generation or selection).

Method Number Method RMS Error in Predicting ∆H r2 Between Model
Prediction and ∆H

1 Ab Initio + atom weights 126.32 0.4654

2 Ab Initio + atom counts 72.77 0.9374

3 Ab Initio Plus + atom counts 61.71 0.9524

4 Bond energy based 114.58 0.8358

5 Semi-empirical PM3 42.72 0.9864

6 Semi-empirical PM6 42.03 0.9855

7 Semi-empirical PM7 37.17 0.9885

8 Semi-empirical PM7 + atom counts RBF 24.12 0.9947

9 Semi-empirical PM7 + bond counts 29.07 0.9906

AbAb initio QM calculations on the enthalpy Test set were done using GAMESS [58].
Calculations were done using DFT using B3LYP at 3–21 level of accuracy. Higher levels of
accuracy frequently failed to converge for molecules containing atoms heavier than neon,
and many are not parameterized for atoms heavier than argon. Data was extracted from the
output file for the absolute energy (AE), and five other intermediate energy contributions; total
potential energy, total kinetic energy, 1-electron energy, 2-electron energy, nuclear repulsion
energy and nuclear-electron interaction energy. Models were built with just the total Ab Initio
energy (“Ab Initio”) or using all six energy measures as input (“Ab Initio plus”).

In principle the enthalpy of formation of a compound can be determined from the
absolute energy by subtracting the absolute energy of the elements from which the com-
pound is composed. We attempted two approaches to this. The first was to optimize the
values of Ee in Equation (A1)

∆H = A−∑ ne × Ee (A1)

where A is the absolute energy of the molecule as calculated by GAMESS, ne is the number
of atoms of element e in the molecule and Ee is the notional energy of that element in the
standard state. Values of Ee were adjusted using a simulated annealing approach [59] to
minimize the RMS error in predicting ∆H. This approach resulted in some Ee values that
were positive, which is unphysical, and in any case produced a poor match (Method 1 in
Table A1). We therefore used the StarDrop model building software to build a model from
either Ab Initio (Method 2) or Ab Initio Plus (Method 3) data and the count of the number
of atoms, using the same protocol as described in the main paper. This results in output
that can be a non-linear function of the inputs, and improved performance considerably, at
the expense of not being readily physically interpretable.

An approximation to the total enthalpy of a molecule is the enthalpy of each of the
bonds in the molecule. This is a substantial simplification of the energetics of a molecule;
for example, it neglects aromatization energies, delocalization of electrons across several
atoms, and partial bond structures (such as the overlap of bonds in the amide bond which
prevents rotation around the C-N bond in peptides). Despite these limitations, ‘typical
bond energies’ are often cited in chemistry textbooks as meaningful, so we used StarDrop
to model ∆H based solely on the counts of bonds between atoms, each combination of two
atoms and one bond type (Single, double or triple) being counted separately. The result
(Model 4) was a poor match, and this approach was not explored further.

Semi-empirical methods PM3, PM6 and PM7 (Methods 4, 5, 6) are included here for
comparison. All are better than any ab initio calculation in this modelling, but none are
good enough for useful chemical prediction. We therefore sought to reduce the errors in
the semi-empirical method by including data on the atom (model 8) or bond (model 9)



Data 2022, 7, 33 17 of 19

counts in the StarDrop input. Including atom counts reduced errors by ~40%, and so this
approach was adopted for the main paper. Unexpectedly, including bond data resulted in
slightly poorer performance. This was unexpected as the atom count data is implicit in the
bond count data. The poorer performance may simply be due to the noise in a sparsely
populated, wide input dataset overwhelming the modelling—there are 15 elements but
151 bond types as input, many of which are only present in 1 or 2 molecules, and the noise
in this data may overwhelm any realistic modelling.
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