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Learning-based Intrinsic Reflectional Symmetry
Detection

Yi-Ling Qiao, Lin Gao∗, Shu-Zhi Liu, Ligang Liu, Yu-Kun Lai, and Xilin Chen∗

Abstract—Reflectional symmetry is a ubiquitous pattern in nature. Previous works usually solve this problem by voting or sampling,

suffering from high computational cost and randomness. In this paper, we propose a learning-based approach to intrinsic reflectional

symmetry detection. Instead of directly finding symmetric point pairs, we parametrize this self-isometry using a functional map matrix,

which can be easily computed given the signs of Laplacian eigenfunctions under the symmetric mapping. Therefore, we manually label

the eigenfunction signs for a variety of shapes and train a novel neural network to predict the sign of each eigenfunction under

symmetry. Our network aims at learning the global property of functions and consequently converts the problem defined on the

manifold to the functional domain. By disentangling the prediction of the matrix into separated bases, our method generalizes well to

new shapes and is invariant under perturbation of eigenfunctions. Through extensive experiments, we demonstrate the robustness of

our method in challenging cases, including different topology and incomplete shapes with holes. By avoiding random sampling, our

learning-based algorithm is over 20 times faster than state-of-the-art methods, and meanwhile, is more robust, achieving higher

correspondence accuracy in commonly used metrics.

Index Terms—Mesh Processing, Symmetry Detection, Deep Learning, Intrinsic Reflectional Symmetry, Laplacian, Eigenanalysis

✦

1 INTRODUCTION

S
YMMETRY is a common pattern that appears ubiquitously in

the world. The majority of living things, including humans

(Figure 1), animals, and plants (e.g. flowers) have some form of

symmetry. It is also a widely employed design principle in man-

made objects, including buildings, furniture, vehicles, to name a

few.

Due to its wide applicability, symmetry patterns have been

exploited in many tasks, including shape matching [1], segmen-

tation [2], editing [3], completion [4], and understanding [5].

In these application systems, symmetry detection is usually an

integral component, so efficient symmetry detection has significant

benefits, e.g., to avoid impeding real-time performance in 3D

acquisition/reconstruction, and for improved user experience in

interactive shape editing by reducing users’ waiting time.

To study symmetry, researchers mainly focus on the spatial

domain, including extrinsic symmetry defined in Euclidean space

or intrinsic symmetry defined in non-Euclidean (manifold) space.

Extrinsic symmetry refers to shape invariance w.r.t. rigid (includ-

ing reflectional) transformations. Compared to extrinsic symmetry,

intrinsic symmetry is more difficult to detect due to its much larger

solution space, as discussed in the previous work [6], [7], [8].
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Given a shape model, intrinsic symmetry detection aims to

estimate a self-homeomorphism on the manifold that preserves the

geodesic distance between each point pair. Usually, the manifold is

discretized as a triangle mesh, and algorithms predict a point-wise

correspondence matrix to represent symmetric pairs. State-of-the-

art methods for intrinsic symmetry detection is largely based

on embedding the symmetry space to some lower-dimensional

spaces, such as Möbius transformation space [7], Global Point

Signature (GPS) space [8], or functional map space [6], [9] and

performing random sampling or voting, which suffers from high

computational cost and uncertainty of results due to randomness.

Despite great effort, efficient and robust detection of intrinsic

symmetry remains challenging. Existing state-of-the-art methods

typically take several seconds or longer to analyze one shape [9],

and may produce unreliable results for difficult cases. To address

this, we design the first learning-based intrinsic symmetry detec-

tion method to handle the intrinsic symmetry problem. Like most

existing works, we focus on intrinsic reflectional symmetry as it

is most common in the real world. Learning intrinsic symmetry

directly on meshes is challenging, due to their irregular connectiv-

ity, and the global nature of symmetry. We simplify this problem

when designing the neural network, such that it does not directly

process the edges and faces of the mesh, but instead takes intrinsic

features as input.

Similar to [9], given an input mesh, the symmetry mapping

defined on it can be represented using a functional map, or

equivalently using a functional map matrix. Laplace-Beltrami

eigenfunctions can be extracted to provide a basis for analysis.

In the matrix, entries corresponding to eigenfunctions associated

with non-repeating eigenvalues are determined by the sign (odd or

even) of the eigenfunction after the symmetry mapping is applied.

State-of-the-art work [9] determines the sign of the eigenfunction

through random sampling. Although it is faster than previous

methods, this sampling-based method is still slow (requiring

several seconds for a typical mesh), and may not be sufficiently
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Fig. 1. Intrinsic symmetry on human bodies, detected by our method.

robust.

In comparison, sign patterns can be easily recognized by a

human at a glance (see Figure 3). Inspired by this, we label a

training dataset for eigenfunction signs and train a neural network

to learn such patterns. We design SignNet, a neural network

for sign prediction, that in addition to the eigenfunction to be

predicted, also takes the first few Laplacian eigenfunctions as

input, which effectively encode intrinsic descriptions of the mesh

characteristics, while avoiding coping with mesh connectivity

explicitly. After predicting eigenfunction signs as entries of the

functional map matrix, we apply post-processing to further fine-

tune the results (addressing issues such as near-identical eigenval-

ues and slight non-isometry) and convert the functional map to

one-to-one point correspondence. The data and code is available

in the repository https://github.com/YilingQiao/intrinsicSym.git.

The main contributions of this work are:

• We propose the first learning-based method to detect

global intrinsic reflectional symmetry of shapes. Com-

pared to previous works, our method is much more ef-

ficient than state-of-the-art (over 20 times faster). Our

method also achieves higher accuracy and is more robust.

• To compute the entries of the functional map matrix, we

labeled a dataset containing 3,000 eigenfunctions along

with corresponding signs, and design a novel neural net-

work to predict the sign of each eigenfunction. The data

and code for annotation, training, and visualization will

also be publicly released.

2 RELATED WORK

We now review papers most related to our work, namely those

on intrinsic symmetry detection and 3D shape analysis with deep

learning.

2.1 Intrinsic Symmetry Detection

Many previous works cast their attention on intrinsic symmetry

detection tasks. Ovsjanikov et al. [8] formulate the concept of

intrinsic symmetry. They propose to use the Global Point Sig-

nature (GPS) [10] to transform the intrinsic symmetry of shapes

into the Euclidean symmetry in the signature embedding space.

The symmetry is detected by first deciding the sign sequence

of eigenfunctions and then finding the nearest neighbors of the

GPS of points. Xu et al. [11], [12] extend the concept of intrinsic

symmetry and introduce partial symmetry where some parts of an

object are symmetric. In this paper, we focus on global intrinsic

symmetry due to its wide applicability, as most research in this

area does.

To address the large solution space, some works parametrize

intrinsic symmetry to some lower dimensional space. A highly

related problem is investigated by Mitra et al. [13] who propose

a method to symmetrize imperfectly symmetric objects. They find

intrinsically symmetric point pairs by voting, and then parametrize

possible transformations in a canonical space and optimize the

transformation to align symmetric pairs. Kim et al. [7] use another

parametrization of symmetry transformations. They find a set

of symmetric points by detecting critical points of the Average

Geodesic Distance (AGD) function, and generate candidate anti-

Möbius transformations that can describe the symmetric transfor-

mation by enumerating subsets of the points. As a voting-based

method, the running-time could be an issue. Also, the use of anti-

Möbius transformation limits the method to handle genus-zero

manifolds. Lipman et al. [14] detect symmetry by finding the orbit

of points under symmetric transformations. A fuzzy point-wise

symmetry correspondence matrix is generated randomly, based

on which they further compute a Symmetry Factored Embedding

(SFE) and Symmetry Factored Distance (SFD). However, the com-

putation of the correspondence matrix is very time-consuming.

Raviv et al. [15] formulate full and partial symmetries and solve

the symmetries through a numerical framework. [16] proposes a

matching algorithm which can also detect intrinsic symmetries in

order to eliminate the symmetric ambiguity in the correspondence

between two shapes. They achieve this by minimizing a linear

objective function for the sign of eigenfunctions. ZoomOut [17]

proposes a general method to efficiently refine mapping and

correspondence, which can also be used to optimize intrinsic

symmetries.

The relationship between symmetry groups and matrices is

studied in [14]. Similarly, Wang et al. [6] establish a homeomor-

phism between the symmetry group and the multiplication group

of matrices. They introduce the functional map to parametrize

the symmetry and limit the search space of matrix entries to

the subspace of eigenfunctions. However, due to the noise in

manifolds and errors during the numerical calculation, eigenvalues

which are ideally identical are usually calculated as different

values in practice, making it difficult to determine true subspaces

and resulting in poor symmetry detection. As described in [6]

the continuity and sparsity make functional maps a suitable

representation for correspondence problems, including intrinsic

symmetry. Functional maps are also used in the work [9]. As

also mentioned in [8], eigenfunctions are invariant under self-

isometry, apart from sign ambiguity, and the diagonal entries of

the functional map matrix are related to the sign of corresponding

eigenfunctions. To decide the signs, landmark symmetric point

pairs and the geodesic lines connecting them are selected. Nagar

and Raman [9] design an explicit solution to this problem, but

since their method depends on the landmark pairs, the random

sampling requires a trade-off between robustness and computation

complexity.

Compared to state-of-the-art methods, our learning-based

method avoids explicit sampling and is much faster (over 20 times

faster for a typical example). It circumvents the randomness of

sampling, and is thus more robust and accurate.

2.2 Shape Analysis with Deep Learning

Our method learns the properties of eigenfunctions defined on

manifolds using neural networks. We review research that suc-

cessfully apply neural networks in tasks related to 3D shapes [18],
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Fig. 2. Pipeline of our method. Given a triangle mesh of a shape, our method can predict point-wise intrinsically symmetric correspondences. First,
we compute the Laplace-Beltrami eigenvectors of the mesh. Then we retain the eigenvectors associated with the first K smallest eigenvalues
(excluding eigenvalue 0) for analysis. We train a neural network called SignNet, that predicts the sign of each eigenfunction φi (i = 1, 2, . . . ,K),
under reflectional symmetry transformation T , i.e., whether φi ◦T = φi or φi ◦T = −φi. Instead of feeding the extrinsic positions as input, we use
as input the first t eigenvectors along with the i-th eigenfunction φi, which are invariant under isometric transformation. The second box visualizes
the shapes using the first three eigenvectors (φ1,φ2,φ3) as the coordinates and φi as the color (where blue is small and red is large). The output
is a two-dimensional vector, indicating the sign. We later combine K signs and convert them to a diagonal functional map matrix whose entries cii
are either +1 or −1. This induces an initial point-wise symmetry map. To correct errors led by repeating eigenvalues and imperfect symmetry, we
refine the diagonal matrix and obtain a better symmetry mapping as shown in the last box through post-processing.

[19], [20], [21], [22]. Boscaini et al. [23] design an anisotropic

convolutional neural network to learn correspondences across

shapes. Masci et al. [24] also design a network in the spatial

domain.

Alternatively, another category of work constructs neural net-

works in the spectral domain. Bruna et al. [25] introduce a

spectral convolutional layer on graphs, which can be viewed as

a general form of meshes. As described in [26], a fundamental

problem of spectral convolution is its dependency on the basis,

making it difficult to be generalized to different domains. To

mitigate this, Yi et al. [27] propose a network architecture to

synchronize the spectral domains and then perform convolutional

operations on it. Rodolà et al. [28] design the first network for

finding correspondence between shapes using functional maps;

however, it does not address the symmetric ambiguity explicitly.

Roufosse et al. [29] design fully connected networks to learn

features that can generate functional map matrices; however, fully

connected networks may suffer from overfitting, and they do not

learn on the functional space. Donati et al. [30] propose to learn

functional maps in an unsupervised manner, but it can not solve

the symmetries of shapes. Li et al. design OptCuts [31] to refine

the non-rigid functional map results, which can be adopted as a

post-processing step in tasks like correspondence and symmetry

detection. Halimi et al. [32] propose an unsupervised method to

learn the correspondence between non-rigid shapes, but it is not

designed for symmetries.

3 REPRESENTING INTRINSIC SYMMETRY BY

FUNCTIONAL MAPS

To cope with discrete and high-dimensional point-wise corre-

spondence matrices, we use functional maps to represent the

self-mapping. The functional map was introduced in [33], first

used to describe the correspondences between two shapes. In our

problem, a self-isometry T can also be viewed as a self-mapping

T : M → M on manifold M, which naturally introduces

a bijective transformation Tf ∈ GL(L2(M)) in the square-

integrable space L2(M), such that

∀f ∈ L2(M),m ∈ M, Tf (f)(m) = f(T (m)). (1)

Assume that L2(M) is equipped with an orthogonal basis

{φi}i=1,2,.... For each T , the functional map can be represented

by a matrix C , with entries cij =< Tf (φi),φj >. For each

function f =
∑

i biφi ∈ L2(M) with coefficient vector b =
(b1, b2, . . . ), the coefficient vector of map Tf (f) is Cb. In this

way, we can represent the mapping by the matrix C.

Following the choice of [33], we use the eigenfunctions of

the Laplace-Beltrami operator as the basis. For a mesh with N

vertices, the discrete Laplacian operator on the mesh is defined as

an N ×N matrix [34]

L = A−1(D −W ), (2)

where A = diag(a1, . . . , aN ) contains vertex weights, with ai
equal to the Voronoi area of the vertex (i.e., a third of the sum

of one-ring neighborhood areas). W = {wij}i,j=1,...,N is the

sparse cotangent weight matrix, D is the degree matrix which is

a diagonal matrix with diagonal entries dii =
∑N

j=1 wij .

The aforementioned eigenfunction basis φ = {φi}i=1,2,...,N

is the solution of Lφ = Λφ, where Λ is a diagonal ma-

trix whose diagonal entries are eigenvalues in ascending order,

λ0 ≤ λ1 ≤ · · · ≤ λN . For efficiency and robustness, we

take the eigenfunctions corresponding to the first K smallest

eigenvalues (K << N ). Note λ0 = 0 and the corresponding

trivial eigenfunction is ignored.

4 METHOD

4.1 Overview

Our goal is to detect the intrinsic symmetry of shapes. An intrinsic

symmetry is the self-homeomorphism of a smooth surface M,



ACCEPTED BY IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

Fig. 3. The Laplace-Beltrami eigenfunction maps on shapes. In
this figure, we visualize the eigenfunctions on shapes from SHREC
2007 [35], elephant, and flamingo [36]. Red vertices represent positive
values of eigenfunctions and blue values are negative values. First row
shows eigenfunctions where φi ◦ T = φi (i.e. positive cases), and
the second row presents negative cases, satisfying φi ◦ T = −φi.
Obvious symmetric/antisymmetric patterns can be observed in these
non-repeating eigenfunctions. We further develop a neural network to
predict the signs.

written as T : M → M, which preserves geodesic distances dg

∀m,n, T (m), T (n) ∈ M, dg(m,n) = dg(T (m), T (n)). (3)

Instead of directly computing a point-wise correspondence matrix,

we use a functional map to describe this self-mapping. The

functional map defined on the Laplacian basis is represented as

a matrix, which is the coordinate transformation matrix w.r.t.

the source and target bases. Since the Laplace-Beltrami operator

is invariant under isometric transformation, the eigenfunction

space stays invariant under self-mapping. Therefore, the matrix

C corresponding to the self-mapping T is a block diagonal

matrix. More specifically, only one of the two cases holds for

eigenfunction φi associated with non-repeating eigenvalues (see

also in [8]):

• φi ◦ T = φi, where φi is called positive.

• φi ◦ T = −φi, where φi is called negative.

Therefore, the entry cii in the matrix corresponding to each

non-repeating eigenfunction φi should be either +1 or -1, de-

pending on whether φi is positive or negative. Figure 2 shows

the pipeline of our method. We train a network called SignNet

to distinguish the sign of eigenfunctions under reflectional sym-

metry. To provide sufficient guidance, we train the network in

a supervised fashion with our annotated data. Given an input

shape, once the signs of Laplacian eigenfunctions are predicted

using our SignNet, we can fill in the diagonal of the initial

functional map matrix C̃ with +1 and -1. However, most of

the time the intrinsic symmetry is imperfect, where some areas

experience non-isometric deformation. Moreover, there could also

be eigenfunction spaces associated with repeating eigenvalues,

in which condition the diagonal matrix cannot fully express the

mapping. Therefore we use a postprocessing step to fine-tune the

initial matrix C̃ to obtain the final matrix C.

4.2 Learning Intrinsic Symmetry

We now discuss the steps involved in learning intrinsic symmetry

using our method.

4.2.1 Diagonal entries of the functional map matrix

As described in Section 3, we detect intrinsic symmetry by

computing the functional map matrix C. Although the dimension

of K × K functional map matrix C is already much lower than

the N ×N point-wise correspondence matrix, predicting the full

K × K matrix is still challenging for optimization methods or

neural networks since there are still too many variables. We further

utilize the sparse structure of the symmetry functional map to

make it much easier to predict the mapping.

For an intrinsic mapping T defined in Equation (3) and a

Laplacian eigenfunction φi associated with a non-repeating eigen-

value λi, φi ◦ T = ±φi. Generally, the entries of transformation

matrix are cij = < Tf (φi),φj >. If all eigenvalues are non-

repeating, then the entries of C can be computed by cij = si, if

i = j, or 0 otherwise. More detailed proofs can be found in [8].

This means that C is a block diagonal matrix, where the

diagonal entry associated with the non-repeating eigenvalue λi

is si.

4.2.2 Predicting the sign of eigenfunctions

So the problem is much simplified and disentangled, such that we

can derive the whole matrix by separately considering the sign

of each eigenfunction. The visualization of the eigenfunctions on

shapes is shown in Figure 3. From the figure it can be seen that

symmetric patterns are rather obvious: positive functions appear

symmetric under reflectional symmetry, while negative ones are

skew-symmetric. Nagar and Raman [9] propose a sampling-based

method to decide the sign of the function. However, this approach

depends on random samples and computation of geodesic dis-

tances, which takes a long time to compute and may occasionally

fail. In this paper, we propose to train a neural network to learn

the sign of eigenfunctions.

Figure 2 illustrates the pipeline of our method. Given an

input shape, we first compute its Laplacian matrix and the first

K eigenfunctions (excluding the trivial eigenfunction associated

with eigenvalue 0). Instead of taking the whole shape along with

the eigenfunctions as input, which requires the neural network

to deal with irregular mesh connectivity, our neural network

(SignNet) processes each eigenfunction φi separately. Assuming

the i-th eigenfunction φi is being processed, the input to the

network includes not only φi, but also the first t eigenfunctions

φ1,φ2, . . . ,φt, which capture the characteristics of the input

mesh and are also intrinsic.

The output of SignNet is a 2-dimensional softmax vector. The

distributions of the eigenfunctions on the mesh can reflect the

pattern of the sign to a great extent. Here we do not use the original

positions of vertices as input since they are extrinsic features.

In contrast, the first t dimensions of Laplacian eigenvectors are

intrinsic, thus more suitable for detecting intrinsic symmetry.

To visualize this, in the second block of Figure 2, we plot

the embedding of vertices taking the first three eigenfunctions

(φ1(p),φ2(p),φ3(p)) evaluated at vertex p as vertex coordinates

and φi(p) as the color (blue to red means small value to large

value). It can be observed that the shapes of the embedding

are extrinsically symmetric even if the mesh is only intrinsically

symmetric. Also, we can see that those eigenfunctions are either

symmetric or skew-symmetric, corresponding to positive or nega-

tive eigenfunctions.

In the SignNet neural network, we use Multi-Layer Percep-

trons (MLPs) to extract vertex features with increasing complexity.

Then a max-pooling is applied on all vertices to aggregate global

features. Following the pooling layers are several fully-connected

layers with decreasing numbers of channels. In the end, the

network predicts a two-dimensional score vector vi = (vi,1, vi,2),
i.e.

vi = SignNet(φ1,φ2, . . . ,φt;φi), (4)
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Fig. 4. Eigenfuntions with repeated eigenvalues are neither odd nor
even. Those eigenfunctions are labeled as ‘0’ and discarded in the later
training process.

Fig. 5. Our method generalizes well to various shapes including male,
female, gorilla, horse, wolf, and dog [38], [39].

such that the sign is predicted to be negative if argmaxk vi,k = 1,

or positive if argmaxk vi,k = 2, for k = 1, 2. Let ŝi be a two-

dimensional vector, ŝi = (1, 0) if si = −1, and ŝi = (0, 1) if

si = 1. The loss function is designed as the cross entropy between

vi and ground-truth sign label ŝi, formulated as

Loss = CrossEntropy(vi, ŝi). (5)

4.3 Training Data

Our learning-based approach requires a dataset for training. For

this purpose, we choose as a training set a fusion of sets SHREC

2007 [35], elephant, and flamingo [36]. This dataset contains

deformed shapes which are intrinsically symmetric. As a shape

retrieval dataset, SHREC dataset includes shapes of different

categories. Meanwhile, they are also independent from the test

sets (SCAPE [37] and TOSCA [38]). This ensures fairness and

evaluates the generalizability of our learning-based approach. Our

method thus generalizes well to various kinds of shapes and poses

as in Figure 5.

We built a simple user interface to visualize and manually label

each Laplacian eigenfunction as either positive, negative or neither

under reflectional symmetry transform. In the labeling process, we

first compute the eigenfunctions and visualize them on the meshes

(similar to Figure 3 and Figure 4). As a human, we can easily

differentiate the “sign” of an eigenfunction in a short time. For

example, eigenfunctions in the first row in Figure 3 are symmetric

(even) and labeled as ‘+1’, while those in the second row are

anti-symmetric (odd) and labeled as ‘-1’. There are also some

eigenfunctions that are neither even nor odd as shown in Figure 4.

Usually, those eigenfunctions are only partially even/odd. We

label them as ‘0’ and do not use them for training. The dataset

is released to the community to facilitate future research.

4.4 Network Architecture

In our SignNet, the input placeholder is set to work with 4500

points, which are padded with 0 if the mesh has less than 4500

vertices, and for meshes with more than 4500 vertices, they

are downsampled to 4500 points. As shown in Fig. 2, we use

multi-layer perceptrons (MLPs), max-pooling layers, and fully

connected layers. There are five MLP layers, having 64, 128, 256,

512, 4096 channels respectively, and there are ReLU activation

layers and batch normalization layers right after the output of each

MLP layer. Then we use a max-pooling layer to aggregate the

global features. Such a combination of shared-weight MLP layers

and max-pooling layers are proven to be effective to fit functions

defined on the point set (see the appendix in [40]). Then, four

fully connected layers are applied to the global features. Their

output channels are 512, 128, 32, 2. The first three layers are also

connected with ReLU activation, batch normalization, and (70%)

dropout layers.

Although both [29] and our method use deep learning models

and the concept of functional maps, the problem settings and

the input/output/structure of the network are all different. Their

approach cannot be naively used to solve the intrinsic symmetry

problem. Considering the design of the network, compared to their

fully-connected network, our share-weight MLP network defined

on the eigenfunction space uses fewer parameters and is invariant

under different input vertex orders.

4.5 Post-processing

Most of the time, the meshes that we are processing are not

perfectly intrinsically symmetric. The entries of functional ma-

trices would not be exactly -1 and +1. Moreover, owing to

the imperfect triangulation and discretization of the Laplacian

operator, in numerical computation, eigenvalues are mostly non-

repeating, but there are actually eigenfunction spaces with mul-

tiple eigenfunctions. Therefore, the entries associated with sub-

eigenfunction spaces need more entries, usually in the form of an

orthogonal sub-matrix, to describe the functional map.

In consideration of the above two reasons, we use a post-

processing step to correct the matrix and convert it to point-wise

correspondence. Similar to [9], we use functional constraints [33]

to align the correspondences. As shown in Figure 7, this can

correct initially imprecise mappings.

5 RESULTS AND EVALUATION

We first describe the implementation details of our method in

Section 5.1. In Section 5.2 we compare our method with existing

methods, both qualitatively and quantitatively. In addition to

the accuracy of symmetry, we also measure the run time of

different methods, showing the significant superiority of our

method in efficiency. We further test the robustness of our method

in Section 5.4. Due to the shared-weight structure of our network,

our method stays robust under different topology and vertex

numbers.

5.1 Implementation Details

We now present details of the training and test process of our

SignNet.

The computation of the Laplacian matrix and eigenvectors

are described in Section 3. Please refer to [34] for more imple-

mentation details related to these steps. We implement the neural
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TABLE 1
Comparison of correspondence rate, mesh rate, and running time on
the SCAPE dataset. We compare our method with MT [7], BIM [42],

OFM [43], GRS [6], ZO [17], and FA [9].

MT BIM OFM GRS ZO FA Ours

Corr. Rate(%) 82.0 84.8 91.7 94.5 94.2 97.5 97.9
Mesh Rate(%) 71.8 76.1 97.2 98.6 93.05 100 100

Time(s) 18.0 304.26 50.70 20.28 51.58 6.77 0.24

TABLE 2
Correspondence rate (%) comparison on TOSCA.

MT BIM OFM GRS ZO FA Ours

Cat 66.0 93.7 90.0 96.5 94.6 95.6 96.0
Centaur 92.0 100 96.0 92.0 92.0 100 100
David 82.0 97.4 94.8 92.5 96.5 96.2 97.2
Dog 91.0 100 93.2 97.4 96.8 98.8 100

Horse 92.0 97.1 95.2 99.5 100 97.3 96.4
Michael 87.0 98.9 94.6 91.4 94.7 96.5 98.7
Victoria 83.0 98.3 98.7 95.5 92.8 96.2 97.8

Wolf 100 100 100 100 100 100 100
Gorilla - 98.9 98.9 100 100 100 100

Average 85.0 98.0 95.1 94.5 96.4 97.8 98.1

network architecture with Tensorflow. The network is optimized

using Adam [41] solver. The initial learning rate is set to 1×10−4

and momentum is 0.9. We choose to truncate at first 12 lowest

eigenvectors (i.e., K = 12), and by default, the input feature has

4 dimensions, composed of the first 3 eigenvectors (i.e., t = 3)

and the i-th eigenvector. We train the network for 150 epochs on a

PC with an NVIDIA 1080TI GPU and an Intel i7-7700 CPU. The

network inference time is 0.06s. When we train the network using

batch size = 4, the GPU memory used is 5.8G. The preprocessing

time for computing eigenvectors is 0.03s, and the postprocessing

time to finetune the results is 0.24s. In total, our method is still at

least 20 times faster than the previous methods.

5.2 Comparison of Results

As one of the biggest advantages of learning-based methods, our

algorithm runs much faster than previous sampling based intrinsic

symmetry detection algorithms. Also, the neural network can

learn some common properties of eigenfunctions across models

to distinguish the sign of eigenfunctions. This would avoid ran-

domness of sampling, so also has better performance in terms

of correspondence accuracy. In this section, we compare our

method with state-of-the-art methods including MT [7], BIM [42],

OFM [43], GRS [6], ZO [17], and FA [9] in the following two

metrics, widely used in the literature:

1) Correspondence rate: Assume that (m,m′),m,m′ ∈
M is a ground truth correspondence pair, and the algo-

rithm’s prediction is (m,T (m)). If the geodesic distance

dg(m
′, T (m)) between m′ and T (m) is less than the

threshold

√

area(M)
20 , then we count this point as a

correct matching. Correspondence rate measures the ratio

of labeled points that are correctly matched.

2) Mesh rate: It measures the percentage of meshes whose

correspondence rate is above the threshold β. We use

β = 75%, the same as [6], [9].

We run experiments on SCAPE [37] and TOSCA [38] datasets

which contain intrinsically symmetric meshes, and the ground

truth symmetric correspondences are from [44]. We also test our

method on Handstand, Swing [45] and FAUST [39] datasets for

qualitative evaluation, as no ground truth correspondences are

Fig. 6. Qualitative comparison with previous work. (a) is symmetry
predicted by our method; (b) is from FA [9]; (c) is result of GRS [6].
We can see that our method has the least artifacts when detecting
symmetry.

available. As we mentioned in Section 4.3, our training set is

independent of the test sets, to ensure fairness.

The results on the SCAPE dataset of deformed human shapes

are reported in Table 1. As can be seen, our method achieves

the best accuracy: improving the correspondence rate from the

previous best 97.5% (FA) to 97.9%. Both our method and FA

achieve 100% mesh correct rate. In terms of runtime, our method

is over 20 times faster than FA, and even more than other existing

methods.

The results on the TOSCA dataset are reported in Tables 2

and 3 for the comparisons of correspondence rate and mesh

rate, respectively. We report performance on individual object

categories and the overall average. Our method has similar im-

provements compared with existing methods. Some qualitative

comparison is shown in Figure 6.

5.3 Evaluation of Design Choices

As we said before, by default we use the first three Laplacian

eigenfunctions as the coordinates to embed vertices into an intrin-

sic space. Compared to Laplacian eigenfunctions, the raw posi-

tions are not invariant under global rigid transformation, nor under

non-rigid isometric deformation, so not suitable for predicting

the sign of eigenfunctions on the mesh. In this experiment, we

compare using the positions (x,y, z,φi) versus eigenfunctions
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TABLE 3
Mesh rate (%) comparison on TOSCA.

MT BIM OFM GRS ZO FA Ours

Cat 54.6 90.9 90.9 100 90.9 100 100
Centaur 100 100 100 100 100 100 100
David 57.1 100 100 100 100 100 100
Dog 88.9 100 88.9 100 89.9 100 100

Horse 100 100 87.5 100 100 100 100
Michael 75 100 100 100 100 100 100
Victoria 63.6 100 100 100 91.7 100 100

Wolf 100 100 100 100 100 100 100
Gorilla - 100 100 100 100 100 100

Average 76 98.7 92.6 100 96.3 100 100

(φ1,φ2,φ3,φi) as input. Table 4 lists the average accuracy of

sign prediction on TOSCA and SCAPE datasets. It shows that the

accuracy using the position (denoted as Pos.) is much lower than

that of our design. During experiments, we observe that when

models have scales in a large range, the network with position

input performs even worse.

We compute the functional map matrix by independently

predicting the sign of eigenfunctions. This strategy circumvents

the flip of signs and permutation of eigenfunctions. To show the

advantage of this strategy, we design another network which takes

all the eigenfunctions as input and predicts the whole K diagonal

entries at once. We denote this alternative design as Diag. in

Table 4. We can see the accuracy of sign prediction is much

lower than ours. This is probably because the input and output

dimensions are too high for the network to learn.

The input to the network is the first t eigenfunctions as well

as the i-th eigenfunction, i.e., [φ1, ...,φt;φi]. Too small the t

value would make different vertices indistinguishable, impossible

to determine the sign. And if t is too big, it would make the

network more complex, and introduce more redundant noisy

high-frequency eigenvectors. Here we vary t from 2 to 4. The

table shows that t = 3 (Ours) achieves the best performance.

Our input is defined on vertices. Although existing point-based

deep learning methods such as PointNet [40] take extrinsic point

coordinates as input, it is possible to feed the same intrinsic input

to such architectures for prediction. So we also test this by feeding

our input directly to PointNet [40] and report the accuracy of

sign prediction. The performance is also lower than that of our

method. This is probably due to our compact network design that

generalizes well to new data.

TABLE 4
Evaluation of our design choices. We compare the accuracy (=number
of correctly predicted signs/total number of eigenfunctions) of different

design choices.

Ours Pos. Diag. 2 Eig. 4 Eig. PointNet

Acc.(%) 98.4 60.6 66.1 96.3 94.1 96.2

5.4 Robustness

Different topology. Since the geodesic distance and the eigen-

functions are defined on the manifold M, the topology of M
would contribute significantly to the computation of intrinsic

symmetry. For example, MT [7] requires the topology to be

genus-zero. In our method, since the eigenfunctions can work

consistently under different topology, the network can stay robust

with topological changes. As shown in Figure 7, we reconstruct

those meshes with self-intersection in space and the produced

meshes are high-genus. The first row shows the original shapes

Fig. 7. Test with different topology. In this figure, we change the topology
of models from SHREC and TOSCA to test the robustness of our
method in difficult topology. We reconstruct the meshes by sticking
spatially adjacent faces on the meshes together, so the shapes are no
longer genus-zero. Meanwhile, the intrinsic symmetry correspondences
obtained by our method are still reasonable. We also show both the
initial symmetry and the refined symmetry in the second row. Since
the reconstructed meshes are changed and are no longer perfectly
intrinsically symmetric, the refinement step is important to polish the
correspondences.

Fig. 8. Symmetry detection on incomplete surfaces.

with problematic regions highlighted. The second row shows the

initial correspondences of intrinsic symmetry mapping and the

correspondences after refinement. For those challenging cases,

intrinsic symmetry is no longer precisely satisfied, and the re-

finement is effective in improving detected symmetry.

Incomplete shapes. Sometimes there could be missing data

on shapes due to imperfect scanning or mesh modeling. We

expect an intrinsic symmetry detection algorithm to work on such

incomplete shapes. We perform a test by making some holes on the

surface of the models. Figure 8 shows the results of our method.

It can be seen that the symmetry pairs on the shapes are still

reasonable.

Simple shape. We try to run intrinsic symmetry detection on

a simple and regular shape as shown in Fig. 10, which is far from

the training set. The code of [9], however, crashes because they

rely on landmark pairs while there are more than two vertices

with the same signature. In fact, [9] would crash on all such

“regular” meshes with more than one symmetry. Our method
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Fig. 9. An example with multiple symmetries. Our method (b)
outperforms [9] (a) in the ant case where more than one symmetry
exists. The up-to-down symmetry is not obvious but will confuse the
landmark points finding algorithm in [9]. Our method can predict the
symmetry correctly because it is based on the global properties of the
eigenfunctions.

(a) Triangular prism (b) Detected symmetry

Fig. 10. Symmetry detection on a simple triangular prism. This model is
far from the training data, but our method can find the correct symmetry
in (b). [9] crashes on this shape.

works on the global property of eigenfunctions and thus is more

robust. “Axiomatic” methods more or less have corner cases and

require clean meshes, so robustness is another reason besides

higher efficiency that we apply deep learning in intrinsic symmetry

detection.

Multiple symmetries. Some shapes, including many crea-

tures, actually have more than one intrinsic symmetry. The ant

in Fig. 9 seemly has two symmetries, up-to-down and left-to-

right. The up-to-down symmetry is not obvious but will confuse

the landmark points finding algorithm in traditional intrinsic

symmetry algorithms. As a comparison, [9] fails on this case,

while our method can still predict the signs of eigenfunctions

correctly, thus output a correct symmetry result, because it is based

on the global properties of the eigenfunctions.

5.5 Failure Case

As shown by the statistics, our method works well in most cases.

However, due to the deterministic network structure, our method

can only predict one symmetry result for a certain object, even if it

has multiple intrinsic symmetries. In Figure 11, the table has more

than one reflectional symmetry plane, while our method cannot

predict all of them. It would be our future work to extend our

method to predict the entire symmetry group end-to-end.

Our method can also fail when the topology of an intrinsically

symmetric shape changes too much. An example is shown in

Figure 12 where the cat’s jaw and claw are glued together. The left

side shows the shape and estimated correspondence. Our method

fails for this case. The right side of the figure presents the 3rd-

6th eigenfunctions on the shape. They are all neither symmetric

nor antisymmetric, making our functional map based method fail.

Actually, according to the definition, this new shape should no

longer be considered as intrinsically symmetric.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a novel learning-based approach

to intrinsic reflectional symmetry detection. Our method is based

Fig. 11. A failure case of our method. (a) is the symmetry detection result
of the 151st model in SHREC 2007 [35] computed by our method, (b)
is the symmetry plane corresponding to our result, and (c) is another
possible symmetry plane.

Fig. 12. A failure case when we glue the jaw and claw of a cat. The blue
lines are the estimated symmetric point pairs. The eigenfunctions on
the right are neither symmetric nor antisymmetric. The changed shape
might not be considered as intrinsically symmetric by definition, and our
method fails to find the intrinsic symmetry in this case.

on functional maps and further develops a neural network ar-

chitecture that predicts the sign of a Laplacian eigenfunction at

a time. We design the network to take the first few Laplacian

eigenfunctions, in addition to the eigenfunction to be predicted.

Extensive experiments show higher efficiency and superior accu-

racy compared with state-of-the-art methods. We also performed

experiments to validate design choices and robustness of our

method in challenging cases.

This work addresses global intrinsic reflectional symmetry,

which is most common in practice. Note that it can also detect

some kind of rotational symmetries where there are only two

elements in the rotation group. As future work, it would be

interesting to also include rotational symmetry detection, although

the property of the rotational symmetry functional map matrix

is more complicated. Another possible direction is to extend this

learning-based algorithm to partial symmetry detection. We would

also provide the source code of this research work with Jittor

implementation in the future, the Jittor is a fully just-in-time (JIT)

compiled deep learning framework.

ACKNOWLEDGMENT

This work was supported by the Beijing Municipal Natural

Science Foundation for Distinguished Young Scholars (No.

JQ21013), the National Natural Science Foundation of China

(No. 62061136007 and No. 61872440), Royal Society Newton

Advanced Fellowship (No. NAF\R2\192151) and the Youth

Innovation Promotion Association CAS.

REFERENCES

[1] A. Tevs, Q. Huang, M. Wand, H.-P. Seidel, and L. Guibas, “Relating
shapes via geometric symmetries and regularities,” ACM Transactions

on Graphics (TOG), vol. 33, no. 4, p. 119, 2014.



ACCEPTED BY IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

[2] A. Dessein, W. A. Smith, R. C. Wilson, and E. R. Hancock,
“Symmetry-aware mesh segmentation into uniform overlapping patches,”
in Computer Graphics Forum, vol. 36, no. 8. Wiley Online Library,
2017, pp. 95–107.

[3] N. J. Mitra, M. Wand, H. Zhang, D. Cohen-Or, V. Kim, and Q.-X. Huang,
“Structure-aware shape processing,” in ACM SIGGRAPH 2014 Courses.
ACM, 2014, p. 13.

[4] P. Speciale, M. R. Oswald, A. Cohen, and M. Pollefeys, “A symmetry
prior for convex variational 3d reconstruction,” in European Conference

on Computer Vision. Springer, 2016, pp. 313–328.

[5] N. J. Mitra, Y.-L. Yang, D.-M. Yan, W. Li, M. Agrawala et al.,
“Illustrating how mechanical assemblies work,” 2010.

[6] H. Wang and H. Huang, “Group representation of global intrinsic
symmetries,” in Computer Graphics Forum, vol. 36, no. 7. Wiley Online
Library, 2017, pp. 51–61.

[7] V. G. Kim, Y. Lipman, X. Chen, and T. Funkhouser, “Möbius
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differential-geometry operators for triangulated 2-manifolds,” pp. 35–57,
2003.

[35] D. Giorgi, S. Biasotti, and L. Paraboschi, “Shrec: shape retrieval contest:
Watertight models track,” Online]: http://watertight. ge. imati. cnr. it,
vol. 7, 2007.
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