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Abstract 

Psychotic symptoms, defined as the occurrence of delusions or hallucinations, are frequent in 

Alzheimer disease (AD with psychosis, AD+P). AD+P affects ~50% of individuals with AD, 

identifies a subgroup with poor outcomes, and is associated with a greater degree of cognitive 

impairment and depressive symptoms, compared to subjects without psychosis (AD-P). 

Although the estimated heritability of AD+P is 61%, genetic sources of risk are unknown. We 

report a genome-wide meta-analysis of 12,317 AD subjects, 5,445 AD+P. Results showed 

common genetic variation accounted for a significant portion of heritability. Two loci, one in 

ENPP6 (rs9994623, O.R. (95%CI) 1.16 (1.10, 1.22), p=1.26x10-8) and one spanning the 3’-UTR 

of an alternatively spliced transcript of SUMF1 (rs201109606, O.R. 0.65 (0.56-0.76), p=3.24x10-

8), had genome-wide significant associations with AD+P. Gene-based analysis identified a 

significant association with APOE, due to the APOE risk haplotype 4. AD+P demonstrated 

negative genetic correlations with cognitive and educational attainment and positive genetic 

correlation with depressive symptoms. We previously observed a negative genetic correlation 

with schizophrenia; instead, we now found a stronger negative correlation with the related 

phenotype of bipolar disorder. Analysis of polygenic risk scores supported this genetic 

correlation and documented a positive genetic correlation with risk variation for AD, beyond the 

effect of 4. We also document a small set of SNPs likely to affect risk for AD+P and AD or 

schizophrenia. These findings provide the first unbiased identification of the association of 

psychosis in AD with common genetic variation and provide insights into its genetic architecture.  

 

  



Introduction 

Psychotic symptoms, defined as the occurrence of delusions or hallucinations,  constitute a 

phenotype within Alzheimer disease (AD+Psychosis, AD+P) that affects ~ 40% to 60% of 

individuals with AD and is associated with poor outcomes.1 In comparison to AD subjects 

without psychosis (AD-P), AD+P subjects have greater cognitive impairments and experience 

more rapid declines in cognition and function that begin prior to psychosis onset.2-9 AD+P is also 

often associated with increased rates of concurrent neuropsychiatric symptoms, including 

agitation,10 aggression,11,12 and depression.5,13-15 As a consequence, AD+P is associated with 

increased rates of other poor outcomes, including greater distress for family and caregivers,16 

higher institutionalization rates,17-20 worse health,21 and increased mortality22 compared to AD-P 

patients.  

 

The AD+P phenotype is well suited for genetic studies when careful attention is paid to 

excluding potential phenocopies of both AD+P and AD-P. For example, we have shown that the 

heritability of AD+P is greatest when requiring the presence of multiple or recurrent psychotic 

symptoms, rather than a one-time occurrence of a single symptom.23 Similarly, because 

psychotic symptoms typically emerge in the transition from mild to moderate stages of AD,5 

individuals without psychosis who are still in the early stages of disease may later manifest 

psychosis, and therefore, need to be excluded from analysis. Using these approaches to 

phenotypic characterization, we have previously reported familial aggregation of AD+P,24 which 

has since been replicated in two independent cohorts.5,25 We further estimated the heritability of 

the presence or absence of psychosis in AD at 61%.23,26  

 

Thus, AD+P is likely to be strongly influenced by genetic variation. To date, no study has 

identified genome-wide significant associations with AD+P, largely due to the small sample 

sizes of prior studies. However, in prior reports we identified negative genetic correlation of 



AD+P risk with risk for schizophrenia.27,28 We now report a large genome-wide association 

meta-analysis of 12,317 AD subjects with and without psychosis. We identified two loci with 

genome-wide significant associations with AD+P, in ENPP6 and SUMF1. In gene-based 

analyses, only APOE (p=1.23x10-6) reached the criterion for genome-wide significance. AD+P 

was negatively genetically correlated with educational attainment and positively with depressive 

symptoms. Surprisingly, AD+P was not significantly genetically correlated with schizophrenia, 

but it was negatively correlated with bipolar disorder. Analysis of polygenic risk scores derived 

from schizophrenia (PRSSZ), and bipolar disorder (PRSBP) GWAS, support these genetic 

correlations. However, the relationship of schizophrenia risk to AD+P is more subtle. Some 

established risk SNPs for schizophrenia also confer risk for AD+P, while others confer 

protection.  

 

Materials and Methods 

Subjects 

This study analyzed samples from 12,317 subjects diagnosed with possible, probable,29 and 

when available, autopsy-confirmed definite30 Alzheimer disease (for subject characteristics see 

Table 1A). Diagnoses were made based on diagnostic evaluations, cognitive testing, and in 

some cases neuropathologic assessment, conducted during subjects’ participation in the 

following eight source programs as previously described: the Fundació ACE Barcelona 

Alzheimer Treatment and Research Center (ACE/GR@ACE),31-33 a Consortium of National 

Institute on Aging Alzheimer Disease Centers (ADC),34 Eli Lilly and Company (LILLY),35,36  the 

Norwegian, Exeter and King’s College Consortium for Genetics of Neuropsychiatric Symptoms 

in Dementia (NEXGENS),37-42 the National Institute on Aging’s Late Onset Alzheimer’s Disease 

Family Study (NIA-LOAD),5,26 the National Institute of Mental Health Genetics Initiative AD 

Cohort (NIMH),24 the University of Pittsburgh Alzheimer Disease Research Center (PITT 

ADRC),43,44 and the MRC genetic resource for Late-onset AD included in the Genetic and 



Environmental Risk in AD Consortium  (UK-Cardiff).27,31,45 Collection of clinical data and genetic 

samples were approved by each source program’s local Institutional Review Board or Medical 

Ethics Committee, as appropriate. 

 

Characterization of Psychosis 

Subjects were characterized for the presence or absence of delusions and hallucinations within 

the individual source programs (including their sub-studies) using the CERAD behavioral rating 

scale46 (PITT ADRC and NIA-LOAD), Neuropsychiatric Inventory Questionnaire (NPI-Q,47 NIA-

LOAD, ADC, NEXGENS), NPI-Q Spanish Language Version48 (ACE/GR@ACE), NPI49 (UK-

Cardiff, NEXGENS, LILLY), and Brief Psychiatric Rating Scale50 (NIMH). Each of these 

instruments has established reliability in AD,5,51 and we have previously used all successfully in 

analyses of psychosis in AD subjects.4,5,7,23,43 AD+P was defined by the presence of persistent 

hallucinations or delusions throughout the course of dementia, AD-P was defined by the 

absence of all symptoms at all assessments. However, because psychotic symptoms typically 

emerge in the transition from mild to moderate stages of AD5, individuals without psychosis, but 

who were still in the early stages of disease at their last assessment (CDR® Dementia Staging 

Instrument52 score < 1, mini-mental state examination score53 > 20), were considered to be at 

substantial risk of developing AD+P later in their course. Thus, these individuals were excluded 

from the analysis. We have used these approaches to characterizing and defining AD+P and 

AD-P in multiple studies demonstrating the heritability and association with genetic variation of 

the AD+P phenotype.5,23,24,26-28,54  

 

For additional detail of each source program’s clinical assessment methodology and 

demographics, see Supplementary Material. 

 

Genotypes 



Six of the eight program sources provided us with either blood (ACE/GR@ACE) or DNA 

samples (PITT ADRC, UK-Cardiff, NIA-LOAD, ADC, NIMH), all of which were processed by the 

Genomics Core Lab at the University of Pittsburgh. Genomic DNA was extracted from whole 

blood samples using the Qiamp Blood Mini kit (Qiagen, Valencia, CA). All DNA was quantitated 

by Pico Green (Thermo Fisher, Pittsburgh, PA) and diluted to a DNA concentration of 23ng/µl. 

Samples without the required amount of DNA were plated for whole genome amplification 

(WGA) and re-quantified. The above samples were genotyped at the Children’s Hospital of 

Philadelphia (CHoP, Philadelphia, PA) using Illumina’s Global Screening Array (Illumina, San 

Diego, CA). Prior to genotyping, ChoP confirmed DNA concentrations by Pico Green assay, and 

performed additional WGA on samples when necessary.   

 

In addition to the above-mentioned blood and DNA samples, ACE/GR@ACE, LILLY, and NIA-

LOAD provided us with single nucleotide polymorphism (SNP) array data. For the ADC, SNP 

array data was provided by the Alzheimer's Disease Genetics Consortium (ADGC). NEXGENS 

provided genome-wide association (GWA) statistics for the comparison of AD-P and AD+P. 

Additional details of the generation of SNP array data for all programs can be found in the 

Supplementary Material.  

 

Analysis 

Data from the eight program sources were processed as four cohorts (Phase 1, Phase 2, 

GR@ACE, and NEXGENS), based on timing of receipt of the data. Data processing, QC, and 

statistical analyses were uniform across three of the cohorts for which there were genotypes 

(Phase 1, Phase 2, GR@ACE), whereas only summary statistics were available for the fourth 

cohort (NEXGENS).  All cohorts were analyzed separately for GWA, then statistics per SNP 

from these analyses were combined by meta-analysis using METAL.55 Below we describe 

quality control procedures for the three genotyped cohorts and an overview of other methods. 



For more detail, see the Supplementary Material. Additional details for the NEXGENS cohort 

have also been described previously.56 Methods were implemented within Plink57,58 unless 

otherwise noted. 

 

Quality Control (QC) was completed by both genotype and by sample from Phase 1, Phase 2, 

and GR@ACE. After QC, 6,872 AD-P and 5,445 AD+P subjects, distributed across the four 

cohorts, remained for analysis (Table 1B). We determined ancestry using GemTools analysis59 

of a subset of autosomal SNPs with non-call rate < 0.001 and MAF > 0.05  for Phase 1, Phase 

2, and GR@ACE. These SNPs were pruned such that, within a 50 SNP block and a 5 SNP 

step-size, the linkage disequilibrium r2 < 0.01. For each of the three cohorts, a different subset 

of SNPs was chosen for ancestry analysis, and the resulting ancestry plots were used to identify 

the samples in the major European ancestry cluster. Analysis of NEXGENS56 was restricted to 

individuals of European ancestry using genetic principal components computed by 

EIGENSTRAT.60  

 

Genotypes were imputed using the Sanger Imputation Server,61 the 1000 Genomes Phase3 

reference panel,62 and EAGLE2 for pre-phasing63 for Phase 1, Phase 2, and GR@ACE. Before 

imputation, the genotypes were harmonized using the perl script HRC-1000G-check-bim-

v4.2.5.pl. This resulted in 85,057,462 imputed or genotyped SNPs for each sample. QC of the 

imputed SNPs included the requirement that the INFO score for a SNP in each data set > 0.81; 

MAF > 0.01; and, among all European ancestry subpopulations defined by GemTools, Fst < 

0.005. For NexGENS Phasing and imputation was done via the Sanger Imputation Service 

using the Haplotype Reference Consortium (r1.1) reference panel on all cohorts. After 

imputation only SNPs with an imputation quality (INFO) score > 0.4 and MAF > 0.05 were 

retained.  

 



Separate GWA analyses were performed for the Phase 1, Phase 2, and GR@ACE cohorts, to 

contrast AD+P versus AD-P for the 9,200,578 SNPs using the Plink option --logistic and with 

adjustment for the three ancestry dimensions (Supplementary Figures S3-S5). For 

chromosome X, an additional covariate for sex was included. For NEXGENS, separate logistic 

regressions, implemented in PLINK for each of the 5 NEXGENS consortium datasets (Tables 

S11.1-S11.5), was used to contrast AD+P versus AD-P for each SNP, with adjustment for the 

first 10 ancestry principal components. METAL software was used to conduct inverse-variance 

weighted fixed effects meta-analysis across the 5 NEXGENS datasets, applying genomic 

control,55 to generate the summary statistics used in the current analysis. The four GWAS 

statistics (Phase 1, Phase 2, GR@ACE, NEXGENS summary), per SNP, were then meta-

analyzed using METAL.  

 

Heritability of AD+P using GenomicSEM was estimated from 1,126,265 summary statistics from 

our METAL analysis. Of the 7,105,229 SNPs used for GWAS, 1,126,265 matched to those 

available on the GenomicSEM website. Also, using genome-wide complex trait analysis 

(GCTA),64 heritability was estimated from 9,031 subjects of European ancestry drawn from the 

Phase 1, Phase 2, and GR@ACE cohorts for which individual genotypes were available (Table 

1B). Two eigenvectors were used to control for ancestry, 997,105 SNPs were included in the 

analysis.  

 

Individuals of European ancestry from all four cohorts were used to estimate genetic 

correlations using LD Score65 and LD Hub (version 1.9.3).66 We selected phenotypes for 

analysis based on prior studies showing correlations with psychosis in AD (years of schooling, 

depressive symptoms) or  genetic association with AD+P (schizophrenia), or because they are 

closely related with the above four phenotypes. Specifically, we included intelligence, which is 

genetically correlated with years of schooling, bipolar disorder which is strongly genetically 



correlated with both depressive symptoms and schizophrenia. Finally, we included AD as it is a 

necessary condition of AD±P, and two other neurodegenerative diseases, amyotrophic lateral 

sclerosis (ALS) and Parkinson’s disease, each of which is associated with a neuropathology 

that may contribute to psychosis risk in AD. 

 

We evaluated how well three different polygenic risk scores could differentiate 9,031 AD+P and 

AD-P subjects of European ancestry. We used the pruning and thresholding approach67 to 

compute a PRS for our subjects, developed from GWAS results for AD (PRSAD), 42 

schizophrenia (PRSSZ),68 and bipolar disorder (PRSBP),69 separately. We used a set of GWAS p-

value thresholds for SNP inclusion in each score (5x10-8, 0.0001, 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 

0.5).  

 

Gene-based analyses were performed on the summary association statistics using the most 

recent version (1.08b) of MAGMA.70 For the primary analysis, SNPs were assigned to genes if 

they lay within the gene boundaries (as defined by NCBI) and the MAGMA “mean” method was 

used to derive the gene-wide association statistic (the sum of the squared Z statistics for 

individual SNPs). A secondary analysis assigned SNPs to genes if they lay within 35kb 

upstream or 10kb downstream of the gene boundary, to capture regulatory regions.71 

 

Gene set enrichment analyses were performed in MAGMA,70 correcting for the number of SNPs 

in each gene, linkage disequilibrium (LD) between SNPs and LD between genes. The measure 

of pathway enrichment is the MAGMA “competitive” test (where the association statistic for 

genes in the pathway is compared to those of all other protein-coding genes).72  

 

Transcriptome-wide association (TWAS) was implemented using the FUSION package73 was 

used to perform a TWAS using dorsolateral prefrontal cortex expression data from the 



CommonMind Consortium and expression data from 13 Brain tissues from the GTEx 

(Genotype-Tissue expression) consortium ( v7).74 Results were corrected for multiple testing of 

multiple genes within each tissue using the Bonferroni method.  

 

See Supplementary Methods for additional details of QC, PRS calculation, pathway analyses 

and TWAS. 

 

 

Results 

Association Analyses 

A total of 12,317 subjects, 6,872 AD-P and 5,445 AD+P, were included in this GWAS analysis 

(Table 1A). Contrasting AD-P to AD+P genotypes across the genome revealed two significant 

loci (Fig. 1, Supplementary Table 1). One locus was at 4q24, mapping to an intron of ENPP6 

(best SNP rs9994623, O.R. (95%CI) 1.16 (1.10, 1.22), p=1.2610-8). The other locus was at 

3p26.1 (best SNP rs201109606, O.R. 0.65 (0.56-0.76), p=3.2410-8). This locus spans the 3’ 

untranslated region (3’-UTR) of an alternatively spliced variant of SUMF1 (SUMF1-204 

ENST00000448413.5). None of the SNPs showing significant association in these loci are 

annotated as expression quantitative trait loci (eQTL) in GTEx. Behavior of the association 

statistics, as assessed by probability-probability plot (Supplementary Figure 1), is consistent 

with the expectation for such analyses, and the genomic control estimate,75 GC=1.03, shows no 

evidence for confounding by ancestry.  

 

For the gene-based analyses (Supplementary Table S2), only APOE (p=1.2310-6) reached the 

criterion for genome-wide significance (p<2.510-6).76 This association was only significant for 

SNPs within APOE itself. When the 35/10kb window around genes was used to assign SNPs, 



no genes reached genome-wide significance. There was substantial association signal for SNPs 

in and near APOE, however: the smallest p-value achieved was at rs283811 (z = 5.15, p = 

2.5510-7), which falls in an intron of NECTIN2 (PVRL2 protein), the second smallest p-value 

occurred for rs429358 (z = 5.12, p = 2.9610-7), which is one of the two SNPs comprising the 

APOE risk haplotype 4. These two SNPs, separated by 23,441 bp, were in modest LD (r2 = 

0.52, D’ = 0.9177) in the 1000G CEU population sample. To determine if 4 count could explain 

the AD+P association signal at this locus, we first analyzed a subset of our subjects who were 

characterized for the 4 haplotype (2414 AD+P and 2509 AD-P) by logistic regression of AD+P 

status (yes/no) on 4 count. The odds increased significantly with count of 4 haplotypes (OR = 

1.21; 95% CI: 1.11-1.31; p = 8.6410-6). Next, using the same subjects, we determined the LD 

of 4, in terms of r2, with 120 SNPs in the APOE locus, all of which had association statistic |z| > 

2.0 based on the GWAS of AD+P. We then regressed the statistics for these SNPs, |z|, on their 

LD with 4, yielding a strongly positive slope (b=3.14, p = 1.9010-41) and explaining 78.5% of 

the variance in the observed AD+P z-statistics. Thus, we conclude that the preponderance of 

AD+P association signal in this locus arises from 4. 

 

For the pathway enrichment analyses (Supplementary Table S3), only the Pathway Interaction 

Database (PID) IGF1 pathway showed significant enrichment after correction for multiple testing 

(p=1.1710-6, q=0.011), although it was no longer significant when the 35/10kb window was 

used (p=0.0469, q=0.920). Interestingly, one of the pathways found to be significantly enriched 

for AD risk in Kunkle et al.78 (GO:48156, tau protein binding) showed significant enrichment 

(p=6.4410-4 and p=2.2110-3 respectively), albeit not withstanding correction for multiple 

testing. Given that this pathway includes APOE, the enrichment analysis was repeated 

excluding genes within 1Mb of APOE (a total of 70 genes), with results shown in Supplementary 



Table S3. Removing the genes in the APOE region greatly reduces the significance of 

GO:48156 (p=0.0106), suggesting that its enrichment is mainly due to APOE.  

 

TWAS comprised a total of 44,185 gene-tissue combinations (Supplementary Tables S4 and 

S5). No TWAS association was significant after correction for the number of tests performed in 

all genes and tissues combined (p<1.1310-6, Bonferroni correction for 44,185 tests). Two 

associations were significant after Bonferroni correction for the number of genes tested in their 

particular tissue: VN1R108P in GTEx7 hippocampus (p=2.9410-6) and FAM182B in GTEx7 

cerebellum (p=5.5110-6). For both genes, an increase in gene expression was associated with 

the presence of psychosis. 

 

SNP-Based Heritability 

While earlier studies the AD+P phenotype have shown strong clustering in families and 

substantial heritability, SNP-based heritability has not been estimated. We estimated it in two 

ways. First, by analyzing our GWAS statistics using GenomicSEM, SNP-based heritability was 

estimated at 0.181   0.064 (Chi-square = 8.0, df=1, p = .005). An alternative approach, using 

the GCTA software, evaluated genotypes genome-wide to determine relationships among the 

samples and how they partitioned within and between AD+P and AD-P sets. This estimate was 

0.312   0.053 (Chi-square = 34.98, df=1, p = 3.310-9). The larger estimate probably arises due 

to greater information contained in estimated genetic relationships, relative to our modestly 

powered GWAS, although the heritability estimates are not significantly different. The GCTA 

analysis focused on subjects of European ancestry, genetically determined, to avoid 

confounding of ancestry.  

 

Genetic Correlation, Polygenic Risk Score, and Risk SNP Analyses 



Subjects of European ancestry were also used to estimate genetic correlations of AD+P with 

select phenotypes available from LD Hub (Table 2). Consistent with clinical observations, AD+P 

is significantly genetically correlated with “Years of Schooling” (and nearly so with the related 

phenotype, “Intelligence”) and with “Depressive Symptoms”. In contrast, AD+P was not 

significantly genetically correlated with AD (Table 2).  Nor was AD+P significantly genetically 

correlated with the two other neurodegenerative disorders evaluated, ALS and Parkinson 

disease (Table 2). 

 

We previously found a significant relationship between risk for AD+P and schizophrenia.28 

Specifically, we genotyped 94 of 128 SNPs that showed genome-wide-significance for 

association with schizophrenia in a sample of AD+P subjects. We constructed a predictive score 

for schizophrenia risk from these SNPs, then assessed whether this score predicted AD+P 

status in the AD sample. There was a significant negative correlation between the risk score for 

schizophrenia and AD+P status, which we then replicated by genotyping 60 of the 94 risk SNPs 

in an independent sample. Now, using SNPs from across the genome and a larger set of AD 

subjects, results from LD HUB show a negative, but non-significant, genetic correlation with 

schizophrenia, while showing a negative and significant genetic correlation with bipolar disorder 

(Table 2). In fact, no SNP with p value <10-4 for association with psychosis in AD had a p value 

<10-5 in the 108 loci associated with schizophrenia.79 

 

Because bipolar disorder and schizophrenia are genetically correlated, we next asked if our 

original result for the 94 SNPs could be explained by an overlap of risk SNPs for schizophrenia 

and bipolar disorder. To do so, we tested whether the odds ratios for association of these SNPs 

for these disorders69,79 were independent. They were not (Supplementary Figure 2), 91 of 94 

SNPs had odds ratios exceeding one for both disorders, whereas 47 were expected under 

independence (sign test, p = 5.810-20).   



 

Given the somewhat surprising results for the genetic correlations of AD+P with schizophrenia, 

bipolar disorder and AD, we examined whether PRS  scores for each of these disorders could 

differentiate AD+P versus AD-P subjects. In agreement with the genetic correlation, the PRSBP 

differentiated AD+P from AD-P, whereas PRSSZ showed little ability to differentiate AD+P from 

AD-P subjects (Table 3).  

 

By contrast, the PRSAD did not agree with the genetic correlation of AD and AD+P from LD Hub. 

PRSAD significantly predicted AD+P status, in the direction of increased risk for AD+P. Even 

when we removed the SNP representing the APOE locus, predictions remained positive. Yet the 

genetic correlation between our AD+P GWAS and Alzheimer’s disease, as estimated in LD 

HUB, was negative, although non-significant. Notably, PRSAD was built on results from a larger 

AD GWAS42 than LD Hub uses.45 Based on our analyses, we believe sample size explains the 

difference. For example, when we analyzed the genetic correlation of the two AD studies in LD 

Hub, the genetic correlation was 0.9 with standard error of 0.11; likewise, when we computed 

two PRS from these two AD GWAS, the results were in qualitative agreement in their ability to 

distinguish AD+P and AD-P.  

 

Because “uncorrelated” is not the same as “independent”, we evaluated one more dimension of 

these data. Specifically, we evaluated the GWAS-significant SNPs (GWAS SNPs) for 

schizophrenia,68 bipolar disorder,69 and AD42 to determine whether they also had signal in our 

AD+P GWAS. We approached this question in two ways. First, we queried the GWAS SNPs to 

determine if their p-values for AD+P were less than 10-4: 11 crossed the threshold, all in the 

APOE locus and all associated with AD. Next, we reasoned that if some GWAS SNPs also 

generated risk for or protection from AD+P, whereas others did not, then those AD+P statistics 

would be represented by a mixture of distributions. We found support for a mixture of 



distributions for schizophrenia and separately for AD (Supplementary Figures S6-S8), while for 

bipolar disorder there were too few independent GWAS SNPs to have any confidence in our 

results (See Supplementary Methods for details). Curiously, while AD GWAS SNPs were 

consistent in their effects on AD and AD+P, effects of schizophrenia GWAS SNPs were not. 

Instead, risk alleles for schizophrenia could impart risk or protection for AD+P (Supplementary 

Methods and Figure S9).  In addition, using the mixture model results, we identified a set of 

SNPs likely to affect risk to AD+P and either AD or schizophrenia (Supplementary Table S6).   

 

 

   

 

Discussion 

We identified evidence of genome-wide significant association with psychosis risk in AD at 

SNPs within ENPP6, and in the 3’-UTR of an alternatively spliced transcript of SUMF1. 

Exploration of multiple data sets did not reveal any current evidence linking the SNPs at these 

loci to variation in expression of ENPP6, SUMF1, or other genes. Similarly, although the 

alternatively spliced SUMF1-204 transcript is expressed in brain,80 AD+P risk SNPs in the 

SUMF1 locus were not associated with brain expression of SUMF1-204 (S. Sieberts, Personal 

Communication). Nor were SNPs at these loci linked to other potential genetic mechanisms, 

such as variation in epigenetic modifications. However, we note that for SUMF1, the locus is 

located in the 3’-UTR, a region that often serves a substantial role in regulating protein levels via 

post-transcriptional mechanisms.81   

 

ENPP6 encodes a glycerophosphodiesterase that is highly expressed in new oligodendrocytes 

as they differentiate from their precursors.82 Recent data in mice have demonstrated that 

differentiation of oligodendrocytes from their precursors (as indicated by increased ENPP6 



mRNA expression) is a necessary component of early,83 i.e. synaptic,84 phases of new (motor) 

learning. ENPP6 protein can be expressed both on the myelin membrane and as a soluble form 

that is found extracellularly.85,86 ENPP6 acts as a hydrolase that severs choline from substrates, 

including lysophosphatidylcholine, glycerophosphorylcholine, and 

sphingosylphosphorylcholine.86 Of these, it has highest catalytic efficiency towards 

sphingosylphosphorylcholine,85 releasing both sphingosine and phosphocholine. Sphingosine is 

phosphorylated to generate sphingosine-1-phosphate, which signals via the g-protein-coupled 

sphingosine-1-phosphate receptor (S1PR1). It is of some interest, therefore, that the S1PR1 

modulator, fingolimod,87 has been previously shown to increase excitatory synaptic 

transmission88 and improve psychosis-associated behaviors in a genetic animal model of β-

amyloid overproduction.89  

 

The locus on chromosome 3 maps to introns spanning the 3’-UTR of an alternatively spliced 

transcript of SUMF1.  SUMF1 encodes formylglycine-generating enzyme, which serves as a 

master activator of lysosomal sulfatases by converting conserved cysteines to formylglycine in 

their active sites. As a consequence, genetic disruption of SUMF1 leads to a multiple sulfatase 

deficiency syndrome.90,91 Importantly, the transcript of SUMF1 (SUMF1-204, 

ENST00000448413.5) within which our locus is located encodes an isoform of formylglycine-

generating enzyme (isoform 3, Uniprot Accession Q8NBK3-3) lacking the enzymatically active 

Cys341 residue.92 The functional consequences of this change are not established, but would 

be anticipated to reduce or eliminate the primary enzymatic function. The function of the novel 

sequence that replaces the c-terminal of formylglycine-generating enzyme in isoform 3 is also 

not known, and BLAST of this sequence against the UNIPROT database does not identify 

homologous proteins. Nevertheless, speaking to the potential functional impact in AD+P, 

ENST00000448413.5 is detectable in cerebral cortex.80  

 



Recently, an appreciation of how lysosomal storage dysfunction also leads to impaired 

autophagy has emerged.93 It is thus not surprising, therefore, that selective depletion of SUMF1 

in either astrocytes or neurons results in neurodegeneration.94 How alterations in function of 

formylglycine-generating enzyme due to a potential change in levels of isoform 3 may modify 

the course of AD through these mechanisms and thus result in the AD+P phenotype remains 

speculative. We have previously shown, however, that preservation of synaptic protein levels in 

the context of AD neuropathology is associated with reduced psychosis risk.89 Thus, genetic 

alterations that impact degradation of synaptic proteins by the lysosome to autophagosome 

pathway are likely to influence risk of psychosis.  

 

We and others34 have previously evaluated the association of psychosis in AD with APOE risk 

haplotype 4, finding inconsistent evidence of association.34 Our current findings, obtained from 

by far the largest cohort to address this question, shed further light on these prior observations. 

We found that SNPs within APOE demonstrate gene-based significant association with AD+P, 

and that this association appears attributable to the presence of the 4 haplotype itself, without 

a detectable contribution from other SNPs.  Because the impact of 4 on AD+P risk is not large, 

increasing the odds by 1.21, prior inconsistent associations with AD+P likely resulted from the 

much smaller sample sizes in all prior studies.  

 

APOE 4 has been shown to increase the accumulation of amyloid β and phosphorylated tau, 

and, even in the absence of Aβ overproduction, lead to reductions in dendritic markers and 

synaptic proteins.95 For example, we have shown that human 4 carriers and mice with targeted 

replacement of 4 had down-regulation of numerous glutamate signaling and synaptic 

proteins.96 Increased phosphotau and reduced synaptic proteins (but not altered amyloid β 

accumulation) have all been associated with psychosis in AD.97 Future human and animal 



model studies of 4 that control for the contribution of other loci to the genetic risk for AD+P 

would be helpful in determining the relative contributions of these mechanisms to AD+P. 

 

We previously identified, and independently replicated, an inverse association between 

polygenic risk for schizophrenia, defined by a limited set of schizophrenia risk SNPs79, and risk 

for psychosis in AD.28 It was thus somewhat surprising that we saw a non-significant genetic 

correlation between these two disorders when considering both a larger set of SNPs and a 

substantially enlarged cohort of AD subjects with and without psychosis. Instead, we identified a 

negative genetic correlation with risk for bipolar disorder, a disorder that has substantial genetic 

overlap with schizophrenia. Because our prior analyses relied on a subset of SNPs significantly 

associated with risk for schizophrenia, and this set also shows enrichment for affecting risk for 

bipolar disorder (Supplementary Figure 2), this overlap probably explains the discrepancy we 

now observe between our earlier results and the current results for genetic correlations. 

However, the lack of genetic correlation of AD+P with schizophrenia conceals an underlying 

complexity.  We observed that schizophrenia risk SNPs evidenced significant mixture regarding 

AD+P risk, such that risk alleles for schizophrenia could impart risk or protection for AD+P.  

 

In contrast, we observed a positive genetic correlation between risk for depressive symptoms 

and AD+P risk, consistent with clinical observations of co-occurrence of depressive and 

psychotic symptoms in AD patients,5,13-15 and evidence that antidepressant medications may 

have some effect in reducing psychotic symptoms in AD.98,99 We also observed a significant 

negative genetic correlation of educational level with psychosis risk in AD and a similar pattern, 

but not quite significant relationship with intelligence. Greater cognitive impairment increases 

the risk for psychosis in AD; moreover, psychosis in AD is further associated with a more rapid 

rate of cognitive decline2-9 (see also review in100). The current findings extend these earlier 

observations, by showing genetic overlap with measures that may be better construed as 



indicative of cognitive reserve, as they reflect early life cognitive attainment. Cognitive reserve 

has long been recognized as protective against developing a degree of cognitive and functional 

impairment sufficient to lead to a diagnosis of AD.101 However, somewhat counter-intuitively, 

once AD is diagnosed, individuals with greater cognitive reserve decline more rapidly.101 Thus, 

the genetic correlations we observed may point to a biology underlying the presence of greater 

cognitive impairment in AD, but not the more rapid decline associated with AD+P. 

 

The above findings are subject to several potential limitations. Although our analysis is the 

largest GWA study of AD+P to date, it is nevertheless modest in sample size in comparison to 

studies of related complex traits.78,79 As our heritability results show, a substantial increase in 

sample size will identify many additional loci as having a significant association with psychosis 

risk in AD. Similarly, increased sample size is needed to provide the necessary power to identify 

genes, transcripts, genetically correlated traits, and pathways in the corresponding analyses 

that derive from the SNP-based associations.  

 

One of our GWAS-significant SNPs, rs201109606, falls in a genomic region marked as simple 

repeats. Perhaps because the SNP is difficult to impute, it did not pass QC for some of our data. 

Nonetheless, the largest two of the four datasets contribute to this result and the estimates of 

the odds ratios for the two data sets are remarkably similar, 0.684 and 0.637. Moreover, other 

SNPs at this locus also support the findings (Supplementary Table S1), although those 

associations are not quite GWAS significant. Thus, this result requires replication.  For 

additional discussion of other findings and potential limitations, see Supplementary Material. 

 

Currently established treatments for psychosis in AD patients are suboptimal, perhaps reflecting 

in part that these treatments were not derived to prevent or reverse an identified biology of 

AD+P.100 The development of effective, specific, therapeutic targets will therefore require as a 



first step delineating this underlying biology. Our study provides the first unbiased evidence of 

association of specific genetic loci with psychosis in AD and, can thus serve as an initial road 

map to AD+P biology. These findings, in conjunction with available functional genomic and post-

mortem data, provide multiple links to mechanisms influencing synaptic function as contributors 

to psychosis in AD.  
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Figure Legends 

Figure 1. SNP associations with psychosis in AD. A. Manhattan plot. The x axis shows 

genomic position for autosomes and the X chromosome. The y axis shows statistical significance 

as −log10 (P). Each point represents an analyzed SNP. The dashed line represents the threshold 

for genome-wide significance (p = 5 x 10-8). B-C. Zoom plots of the two genome-wide 

significant loci. The x axis shows genomic position. The left y axis shows statistical significance 

as −log10 (P). Each point represents an analyzed SNP, coded by degree of linkage dysequilibrium 

relative to the most significant SNP within the locus. Recombination rate through the region is 

shown on the right y axis. LD: linkage disequilibrium; cM: centimorgans; Mb: megabase 

 

  



Table 1A. Subject Characteristics. 

 

AD-P  
6,872 (55.8%) 

 
N (%) or Mean (SD) 

AD+P 
5,445 (44.2%) 

 
N (%) or Mean (SD) 

Total 
12,317 (100.0%) 

 
N (%) or Mean (SD) 

Female 4,008 (58.3) 3,649 (67.0) 7,657 (62.2) 

Age of Onset1 74 (8.3) 73.4 (8.0) 73.8 (8.2) 

Age at Consent 75.6 (7.0) 77.0 (6.9) 76.2 (7.0) 

Age at Last Visit1 80.5 (8.1) 81.3 (7.7) 80.9 (7.9) 

Last MMSE1 16.0 (6.5) 13.7 (6.8) 15.0 (6.8) 

Last CDR1  

0.0 2 (0.0) 5 (0.1) 7 (0.1) 

0.5 244 (3.8) 186 (3.8) 430 (3.8) 

1.0 2,469 (38.4) 967 (19.6) 3,436 (30.2) 

2.0 1,560 (24.3) 1,586 (32.2) 3,146 (27.7) 

3.0 986 (15.3) 1,340 (27.2) 2,326 (20.5) 

4.0 759 (11.8) 482 (9.8) 1,241 (10.9) 

5.0 410 (6.4) 363 (7.4) 773 (6.8) 

AD-P: Alzheimer disease without psychosis; AD+P: Alzheimer disease with psychosis; MMSE: Mini 

mental state exam; CDR: CDR® Dementia Staging Instrument; 1Data not available for some 

subjects/source programs; see Supplementary Tables 3-10 for details. 

 

Table 1B. Sample size for each cohort contributing to the meta-analysis. 

GWA Phase 1 Phase 2 GR@ACE NEXGENS Total 

Diagnosis AD-P AD+P AD-P AD+P AD-P AD+P AD-P AD+P AD-P AD+P 

ALL 3529 3525 1045 495 1646 762 652 663 6872 5445 

EUR 2665 2732 833 394 1646 762 652 663 5796 4551 

GWA: Genome-wide association; AD-P: Alzheimer disease without psychosis; AD+P: Alzheimer disease 

with psychosis; EUR: European ancestry 

 

  



Table 2. Genetic correlations (rg) of psychosis in Alzheimer disease with selected 

relevant phenotypes. Correlations were obtained from LD Hub.66 Phenotypes in bold were 

chosen, a priori, based on phenotypic or genetic (schizophrenia, bipolar disorder) analyses. 

Phenotype rg Se z p-value 

Alzheimer disease -0.374 0.321 -1.168 0.243 

Amyotrophic lateral sclerosis -0.307 0.300 -1.021 0.307 

Parkinson disease 0.142 0.186 0.763 0.446 

Years of schooling -0.312 0.111 -2.816 0.005 

Intelligence -0.200 0.121 -1.650 0.099 

Schizophrenia -0.094 0.081 -1.164 0.244 

Depressive symptoms 0.327 0.141 2.316 0.021 

Bipolar disorder -0.287 0.145 -1.976 0.048 

 

  



Table 3. Prediction of psychosis in Alzheimer disease by polygenic risk scores built 

using GWAS results for Bipolar disorder, Schizophrenia, and Alzheimer disease and the 

pruning and thresholding approach. 

Bipolar Disorder      

P Value Cut Off N OR l95 OR u95 OR P Value R2 

0.00000005 22 0.968 0.928 1.010 1.293E-01 3.304E-03 

0.0001 785 0.961 0.921 1.003 6.525E-02 3.468E-03 

0.001 3112 0.980 0.938 1.023 3.499E-01 3.091E-03 

0.01 14748 0.959 0.918 1.002 6.404E-02 3.473E-03 

0.1 79818 0.950 0.908 0.994 2.499E-02 3.711E-03 

0.2 134250 0.955 0.913 0.999 4.466E-02 3.563E-03 

0.3 182119 0.953 0.911 0.997 3.505E-02 3.624E-03 

0.4 225630 0.957 0.915 1.001 5.550E-02 3.509E-03 

0.5 265136 0.958 0.916 1.002 5.984E-02 3.490E-03 

       

Schizophrenia       

P Value Cut Off N OR l95.OR u95.OR P Value R2 

0.00000005 329 1.051 1.008 1.096 2.063E-02 8.018E-04 

0.0001 3161 1.012 0.970 1.056 5.738E-01 4.733E-05 

0.001 8488 1.009 0.967 1.052 6.910E-01 2.363E-05 

0.01 26064 1.004 0.962 1.048 8.440E-01 5.795E-06 

0.1 99775 1.006 0.963 1.052 7.824E-01 1.141E-05 

0.2 153878 1.007 0.963 1.053 7.583E-01 1.416E-05 

0.3 198913 1.009 0.965 1.055 6.985E-01 2.244E-05 

0.4 238902 1.011 0.967 1.057 6.236E-01 3.602E-05 

0.5 274264 1.013 0.969 1.059 5.680E-01 4.876E-05 

       

Alzheimer Disease      

P Value Cut Off N OR l95.OR u95.OR P Value R2 

0.00000005 63 1.088 1.043 1.135 9.750E-05 2.275E-03 

0.0001 488 1.048 1.005 1.093 2.847E-02 7.182E-04 

0.001 1962 1.059 1.015 1.105 7.760E-03 1.061E-03 

0.01 12301 1.069 1.025 1.115 1.986E-03 1.432E-03 

0.1 83722 1.095 1.050 1.142 2.301E-05 2.686E-03 

0.2 144621 1.096 1.051 1.143 2.115E-05 2.710E-03 

0.3 195758 1.096 1.051 1.143 2.073E-05 2.716E-03 

0.4 239694 1.088 1.043 1.134 9.392E-05 2.285E-03 

0.5 277645 1.088 1.043 1.135 8.795E-05 2.304E-03 

 
P Value Cut Off: GWAS p-value threshold used for SNP included in calculating the PRS; N: 

number of SNPs meeting the threshold; OR: Odds ratio; l95 OR: lower limit of the 95% 



confidence interval for OR; u95 OR: upper limit of the 95% confidence interval for OR; R2: partial 

pseudo-R2 attributable to the PRS after adjusting for the first 2 ancestry eigenvectors. 

 

 

URLs 
METAL http://csg.sph.umich.edu/abecasis/metal/index.html 

GemTools http://www.compgen.pitt.edu/GemTools/GemTools.htm 

PLINK https://www.cog-genomics.org/plink2/ 

NCBI RS names https://ftp.ncbi.nih.gov/snp/redesign/latest_release/VCF/ 

LD-Hub: http://ldsc.broadinstitute.org/ldhubLD Hub/  

Sanger Imputation Service: https://imputation.sanger.ac.uk 

Psychiatric Genetics Consortium: https://www.med.unc.edu/pgc/ 

Imputation preparation: https://www.well.ox.ac.uk/~wrayner/tools/ 

CMC/AMP-AD eQTL Meta-analysis: https://www.synapse.org/#!Synapse:syn16984815 

NCBI gene2go file: ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/  

Reactome: https://reactome.org/download-data  

Gene Ontology: http://geneontology.org/docs/download-ontology/  

Molecular Signatures Database: https://www.gsea-msigdb.org/gsea/msigdb/index.jsp  

R package qvalue: http://github.com/jdstorey/qvalue  

LD Score Regression (LDSC) software : v1.0.0 : https://github.com/bulik/ldsc  

HapMap 3 https://www.sanger.ac.uk/resources/downloads/human/hapmap3.html 

Common mind consortium: https://www.nimhgenetics.org/resources/commonmind 

FUSION software  http://gusevlab.org/projects/fusion/ 
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1. RESULTS- SUPPLEMENTARY FIGURES 1 & 2 
 

 
 
Supplementary Figure 1. Observed versus expected -log10 probabilities of statistics for genome-wide 
association with Alzheimer disease without versus with psychosis. Genomic control estimate,1 GC=1.03, 
indicating there is no evidence for confounding by ancestry.  
 
 
 

 
Supplementary Figure 2. Log of the odds ratios of 94 SNPs showing significant association with 
schizophrenia2 versus their odds ratios for association with bipolar disorder.3 Ninety-one of 94 SNPs 
had odds ratios exceeding one for both disorders, whereas 47 were expected under independence (sign test, p 
= 5.8 x 10-20). 
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2. METHODS- SUBJECT RECRUITMENT AND PSYCHOSIS CHARACTERIZATION 
Overview. Subjects included in this GWA meta-analysis were provided from 8 different source programs: the 
Fundació ACE Barcelona Alzheimer Treatment and Research Center (ACE/GR@ACE), a consortium of 
National Institute on Aging Alzheimer Disease Centers (ADC), Eli Lilly and Company (LILLY), the Norwegian, 
Exeter and King’s College Consortium for Genetics of Neuropsychiatric Symptoms in Dementia (NEXGENS), 
the National Institute on Aging’s Late Onset Alzheimer’s Disease Family Study (NIA-LOAD), the National 
Institute of Mental Health Genetics Initiative AD Cohort (NIMH), the University of Pittsburgh Alzheimer Disease 
Research Center (PITT ADRC), and the MRC Genetic Resource for Late-onset Alzheimer’s disease as part of 
the Genetic and Environmental Risk in AD Consortium (UK-Cardiff). Collection of clinical data and genetic 
samples were approved by each site’s local Institutional Review Board or Medical Ethics Committee, as 
appropriate. Methods used for selection of subjects from each program source are described in sections 2.1-
2.8. 
 
Phenotype data were provided to us by each institution. A total of 12,317 samples were used in this analysis, 
and their psychosis status is shown in Supplementary Table S7.   
 
Supplementary Table S7. Psychosis Status of Subjects by Cohort. 

Source 
AD-P 
N (%) 

AD+P 
N (%) 

Total 
N (%) 

ACE/GR@ACE 1,841 (67.8) 875 (32.2) 2,716 (22.1) 

ADC 2,017 (67.8) 957 (32.2) 2,974 (24.1) 

LILLY 1,360 (62.5) 815 (37.5) 2,175 (17.7) 

NEXGENS 652 (49.6) 663 (50.4) 1,315 (10.7) 

NIA-LOAD 168 (25.0) 505 (75.0) 673 (5.4) 

NIMH 157 (26.5) 435 (73.5) 592 (4.8) 

PITT ADRC 405 (31.7) 874 (68.3) 1,279 (10.4) 

UK-Cardiff 272 (45.9) 321 (54.1) 593 (4.8) 

TOTAL 6,872 (55.7) 5,445 (44.3) 12,317 (100.0) 

AD-P: Alzheimer disease without psychosis; AD+P: Alzheimer disease with psychosis 
 

2.1. Subject Recruitment and Psychosis Characterization – ACE/GR@ACE. Subjects in the ACE sample 
and the GR@ACE Stage I cohort were recruited from Fundació ACE Institut Català de Neurociències 
Aplicades, an Alzheimer’s disease center serving the population of central Barcelona, Spain. All subjects 
received a structured neurological evaluation and cognitive testing as previously described.4-6 They met criteria 
for a primary diagnosis of either possible or probable AD according to the National Institute on Aging and 
Alzheimer’s Association’s 2011 guidelines for defining AD,7 as determined by a multidisciplinary working-
group. Any subjects with a primary diagnosis of Dementia with Lewy bodies8 were excluded.  

Subjects were rated for psychotic symptoms on a validated Spanish language version of the Neuropsychiatric 
Inventory Questionnaire (NPI-Q9). Ratings of psychotic symptoms were performed at initial and follow up visits. 
The presence of psychosis at a visit was defined by either delusions or hallucinations of moderate or greater 
severity, or by both delusions and hallucinations of mild severity. Subjects were classified as AD+P if they were 
rated as having psychosis at any visit. For subjects without psychosis to be classified as AD-P, they had to 
have a score of 0 on the NPI-Q psychosis items at all visits and a last observed Mini Mental State Exam10 
score < 20 or a CDR® Dementia Staging Instrument11 score > 1. See Supplementary Table S8 for a 
summary of clinical and demographic data for these subjects. 
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2.2. Subject Recruitment and Psychosis Characterization – ADC. Recruitment for the ADC cohort has 
been described previously.12-15 In brief, AD centers throughout the United States, each of which had received 
approval by their institutional review board, participated and provided data on subjects diagnosed with primary 
diagnoses of possible or probable AD.7 Any subjects with a primary diagnosis of Dementia with Lewy bodies8 
were excluded.  When available, subjects’ autopsy data was also reviewed. Subjects were excluded if they did 
not have AD pathology, if AD pathology was rated as having a low likelihood of serving as the cause of 
dementia per NIA-Regan Institute Criteria,16 or if the AD pathology was rated as having an intermediate 
likelihood of serving as the cause of dementia and other pathologies that could be the cause of dementia, such 
as Lewy Body or cerebrovascular disease, were present.  
 
Phenotype data on ADC subjects were provided by the National Alzheimer's Coordinating Center (NACC) in 
three separate phenotype data freezes (March 2018, March 2019, and September 2019). These freezes 
included data for subjects’ whose UDS visits were conducted between June 2005 and August 2019. Subjects 
were rated for psychotic symptoms on the NPI-Q17 at initial and follow up visits. The presence of psychosis at a 
visit was defined by either delusions or hallucinations of moderate or greater severity, or by both delusions and 
hallucinations of mild severity. Subjects were classified as AD+P if they were rated as having psychosis at any 
visit. For subjects without psychosis to be classified as AD-P, they had to have scores of 0 on the NPI-Q 
psychosis items at all visits and either a last observed Mini Mental State Exam score < 20 or a CDR® 
Dementia Staging Instrument score > 1. See Supplementary Table S9 for a summary of clinical and 
demographic data for these subjects. 
 
2.3. Subject Recruitment and Psychosis Characterization – LILLY: Subjects participated in one of eight 
independent drug trials conducted by Eli Lilly and Company. Registration details of each of these trials is 
available via ClinicalTrials.gov:  
LFAN: https://clinicaltrials.gov/ct2/show/NCT00594568 
LFBC: https://clinicaltrials.gov/ct2/show/NCT00762411 
LZAM: https://clinicaltrials.gov/ct2/show/NCT00905372 
LZAN: https://clinicaltrials.gov/ct2/show/NCT00904683 
LEAM: https://clinicaltrials.gov/ct2/show/NCT00051909 
LEAQ: https://clinicaltrials.gov/ct2/show/NCT00843518 
LYCG: https://clinicaltrials.gov/ct2/show/NCT00191009 
Expedition 3 (LZAX): https://clinicaltrials.gov/ct2/show/NCT01900665.  
 
Briefly, subjects were enrolled if they were diagnosed with probable AD.18 Subjects were assessed for 
psychotic symptoms with the Neuropsychiatric Inventory (NPI19) The NPI was administered at timepoints and 
frequencies as specified for each of the included studies. The frequency and severity of each symptom were 
rated from 0-4 and 0-3, respectively. Frequency and severity scores at each visit were multiplied to give an 
overall domain score for each symptom ranging from 0-12. Individuals with a delusion or hallucination domain 
score >2 or with both delusion and hallucination domain scores equal to 1 at any visit were classified as AD+P. 
To be classified as AD-P, subjects had to have delusion and hallucination domain scores of 0 at all visits, and 
a last observed Mini Mental State Exam score < 20 or a CDR® Dementia Staging Instrument score > 1. See 
Supplementary Table S10 for a summary of clinical and demographic data for these subjects. 
 
2.4. Subject Recruitment and Psychosis Characterization –NEXGENS. NEXGENS is a collaboration 
between the following 5 institutions: University of Exeter, King’s College London, Innlandet Hospital Trust, 
University of Oslo, and Stavanger University Hospital which undertakes secondary analysis of data from 
Alzheimer’s disease patients from cohort studies and patient registries. Data for this study came from the 
following five program sources: AddNeuroMed study; Health and Memory Study in Nord-Trøndelag (HMS)20; 
Resource Use and Disease Couse in Dementia (REDIC)21; Norwegian registry of persons assessed for 
cognitive symptoms and the Progression of Alzheimer’s Disease and Resource Use (NorCog/PADR)22,23; and 
from the following outpatient clinics in Italy and Greece (Italian and Greek Hospital Outpatients): Centre for 
Neurodegenerative Disorders, University of Brescia; IRCCS Casa Sollievo della Sofferenza, Neuropsychiatry 
Clinic of the Eginition Hospital, Athens. Detail of each program source are in Sections 2.4.1 to 2.4.5.  
 

https://clinicaltrials.gov/ct2/show/NCT00594568L
https://clinicaltrials.gov/ct2/show/NCT00762411
https://clinicaltrials.gov/ct2/show/NCT00905372L
https://clinicaltrials.gov/ct2/show/NCT00904683
https://clinicaltrials.gov/ct2/show/NCT00051909
https://clinicaltrials.gov/ct2/show/NCT00843518
https://clinicaltrials.gov/ct2/show/NCT00191009
https://clinicaltrials.gov/ct2/show/NCT01900665
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Diagnosis of AD was performed according to ICD-10 etiological diagnosis, National Institute of Neurological 
and Communicative Disorders and Stroke-Alzheimer’s Disease and Related Disorders Association (NINCDS-
ADRDA18) criteria, or clinical diagnosis by psychiatrist or geriatrician (See details of each institution described 
below). Individuals with a primary diagnosis of Dementia with Lewy Bodies were excluded. Any cases with a 
history of bipolar disorder or schizophrenia (except for the HMS study in which no information about psychiatric 
history was available) were excluded. Dementia severity was assessed in all cohorts by Mini Mental State 
Examination and the CDR® Dementia Staging Instrument. Psychotic symptoms were assessed by the NPI or 
the NPI-Q. For the NPI the presence of psychosis at a visit was defined by a calculated (frequency x severity) 
score for delusions or hallucinations > 1 for either delusions or hallucinations. For the NPI-Q, the presence of 
psychosis at a visit was defined by either delusions or hallucinations of moderate or greater severity, or by both 
delusions and hallucinations of mild severity. For both NPI and NPI-Q, subjects were classified as AD+P if they 
were rated as having psychosis at any visit. Subjects were classified as AD-P if they had scores of 0 for 
delusions and hallucinations at all visits, and a last Mini Mental State Exam score <20 or a CDR® Dementia 
Staging Instrument score > 1. 
 
2.4.1 The Norwegian registry of persons assessed for cognitive symptoms (NorCog)/The Progression 
of Alzheimer’s Disease and Resource use (PADR). NorCog is a national quality- and research registry 
collecting extensive clinical data and biobank material at outpatient clinics across Norway. Patients from 
NorCog included in the current study were recruited from memory clinics, geriatric-, and old-age psychiatric 
outpatient clinics in three of the four regional health authorities responsible for specialist healthcare in Norway. 
Participants underwent a comprehensive clinical assessment according to a standardized protocol including 
verbal interviews of the patient and proxy informant, neurocognitive testing, as well as a psychiatric, physical, 
and neurological examination. Diagnosis of AD was performed according to the ICD-10 criteria. The PADR 
study is affiliated to NorCog. PADR follows the same protocol as NorCog but it is a longitudinal observational 
study with assessments at the time of diagnostic workup (baseline) and follow-up after a mean of 24 months 
(range 16–37, 80% between 20 and 28 months). Inclusion criteria were MCI or dementia at baseline, living at 
home, able to give informed consent, and have a proxy informant available. For PADR, the NINCDS-ADRDA 
were used to diagnose AD. Diagnoses were assigned by the study researchers reviewing all available data 
from the baseline examination. Cerebrospinal fluid markers were used to support AD diagnosis. Psychosis in 
NorCog and PADR was assessed by NPI-Q. See Supplementary Table S11.1 for clinical and demographic 
data. 
 
2.4.2 Resource Use and Disease Couse in dementia - Nursing Home (REDIC-NH). REDIC-NH participants 
were recruited at admission to one of 47 nursing homes in 4 counties in Norway. The inclusion was from March 
2012 to November 2014. Patients eligible for inclusion in the study were 65 years or older, or younger than 65 
years with established dementia, with an expected stay in the NH of more than four weeks. The only exclusion 
criterion was a life expectancy of less than six weeks. The participants were assessed with the NPI-NH, in 
addition to several other assessment tools for depression, cognition, ADL function and physical disease. 
Assessments were carried out at baseline and every 6 months for maximum 2.5 years Based on all available 
information, AD according to ICD-10 was independently diagnosed by two old age psychiatrists with the 
possibility of consulting a third specialist, to reach a consensus. Patients were followed up with biannual 
assessments until death. See Supplementary Table S11.2 for clinical and demographic data. 
 
2.4.3 Health and Memory Study in Nord-Trøndelag (HMS). HMS participants were recruited from nursing 
homes in 24 municipalities in one county in middle Norway. Inclusion was between 2010 and 2011. Patients 
were eligible for inclusion if they had stayed in a nursing home for at least 14 days. Patients were diagnosed by 
the same method as in REDIC.  Psychosis was assessed by NPI. No follow-up assessments were performed. 
See Supplementary Table S11.3 for clinical and demographic data. 
 
2.4.4 AddNeuroMed. The AddNeuroMed study involves six cross-European collection study sites; London 
(United Kingdom), Toulouse (France), Perugia (Italy), Kuopio (Finland), Lodz (Poland), and Thessaloniki 
(Greece) and has been described previously.24 Participants were assessed once every three months for 1 year 
(5 assessments in total) on a battery of neuropsychological and psychiatric measures. Psychosis was 
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assessed with the NPI. Diagnosis of AD was made according to the NINCDS-ADRDA. See Supplementary 
Table S11.4 for clinical and demographic data. 
 
2.4.5 Italian & Greek Hospital Outpatients. For this sample, patient data and samples were collected through 
outpatient clinics at the Centre for Neurodegenerative Disorders, University of Brescia; IRCCS Casa Sollievo 
della Sofferenza, and the Neuropsychiatry Clinic of the Eginition Hospital, Athens.  Diagnoses of AD mere 
made according to NINCDS-ADRDA criteria (IRCCS), ICD-1025 criteria including MRI and CSF biomarkers 
(Brescia), or DSM-IV26 criteria (Greece). Psychosis was assessed by NPI. See Supplementary Table S11.5 
for clinical and demographic data. 
 
2.5. Subject Recruitment and Psychosis Characterization – NIA-LOAD. Recruitment for the family-based 
NIA-LOAD (National Institute of Aging Late Onset Alzheimer Disease ) cohort has been described 
previously.27,28 In brief, AD centers throughout the US participated, each of which had received approval by 
their institutional review board. The recruitment criteria included a family with multiple members affected with 
late onset AD that could provide clinical information and a biological sample for DNA extraction. The proband 
was required to have a diagnosis of probable18 or definite29 AD with onset after 60 years of age. At least one 
full sibling with definite, probable or possible AD and with onset after 60 years of age was also required. 
Finally, a third biologically related family member was required who was ≥50 years old if diagnosed as having 
AD or mild cognitive impairment or was ≥60 years old if unaffected. Family members were required to have 
had cognitive testing and clinical examination results documenting the classification as unaffected. To be 
included in the current study, individuals had to have a primary diagnosis of AD. Any subjects with a primary 
diagnosis of Dementia with Lewy bodies8 were excluded.  

 
NIA-LOAD subjects were rated for psychotic symptoms on the CERAD behavioral rating scale (CBRS30) and 
the NPI-Q as previously described.31 Ratings of psychotic symptoms were performed at initial and follow up 
visits. The presence of psychosis as rated on the CBRS at any visit was defined as described below (see 2.7 
Subject Recruitment and Psychosis Characterization – PITT ADRC). The presence of psychosis as rated 
on the NPI-Q at any visit was defined by either delusions or hallucinations of moderate or greater severity, or 
by both delusions and hallucinations of mild severity. Subjects were classified as AD+P if they were rated as 
having psychosis on either of the above scales at any visit. For subjects without psychosis to be classified as 
AD-P, they had to have scores of 0 on all psychosis items on both scales at all visits and a last observed 
CDR® Dementia Staging Instrument score > 1. See Supplementary Table S12 for a summary of clinical and 
demographic data for these subjects. 
 
2.6. Subject Recruitment and Psychosis Characterization – NIMH. The ascertainment and characterization 
of the family-based NIMH Genetics Initiative AD Cohort has been previously described.32 All AD subjects met 
criteria for possible, probable,18 or definite29 AD. Psychotic symptoms were characterized at the time of initial 
evaluation, and again during follow-up evaluations, by responses to semi-structured interview questions. In a 
subset of subjects, this assessment was augmented by ratings on the Brief Psychiatric Rating Scale.33 
Subjects were classified as AD+P if they demonstrated either multiple delusions and/or hallucinations at any 
single evaluation or recurrent delusions and/or hallucinations over time, a phenotype associated with strong 
heritability.34 Subjects without delusions or hallucinations at any time point, and with a last observed CDR® 
Dementia Staging Instrument score > 1, were classified as AD-P. See Supplementary Table S13 for a 
summary of clinical and demographic data for these subjects. 
 
2.7. Subject Recruitment and Psychosis Characterization – PITT ADRC. Subjects were evaluated at the 
University of Pittsburgh Alzheimer Disease Research Center (PITT ADRC), Pittsburgh, PA. All subjects were 
assessed at baseline with standardized neurological, neuropsychological, and psychiatric evaluations, 
cognitive testing, laboratory studies and brain imaging as previously described.14,35-39 Repeat assessments 
were conducted annually. Subjects included in this analysis had a final clinical diagnosis of possible or 
probable AD.18 Any subjects with a primary diagnosis of Dementia with Lewy bodies8 were excluded. When 
available, subjects’ autopsy data was also reviewed. Subjects were excluded if they did not have AD 
pathology, if AD pathology was rated as having a low likelihood of serving as the cause of dementia per NIA-
Regan Institute Criteria,16 or if the AD pathology was rated as having an intermediate likelihood of serving as 
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the cause of dementia and other pathologies that could be the cause of dementia, such as Lewy Body or 
cerebrovascular disease, were present.  
 
 
Psychosis was evaluated with the CERAD behavioral rating scale (CBRS).30 The CBRS was administered at 
initial and annual visits and in some subjects between annual visits by telephone as previously described.27,36 
Subjects were classified as AD+P if they had any hallucination or delusion symptom (CBRS item # 33-45) for 3 
or more days in the previous month at any visit, as previously described.14,35-39 To be classified as AD-P, AD 
subjects had to have scores of 0 for all CBRS items #33-45 and have a last observed Mini Mental State Exam 
score <20 or a CDR® Dementia Staging Instrument score > 1.14 See Supplementary Table S14 for a 
summary of clinical and demographic data for these subjects. 

 
2.8. Subject Recruitment and Psychosis Characterization – UK-Cardiff. The UK-Cardiff subjects were 
recruited at sites that participated in the the Medical Research Council (MRC) Genetic Resource for AD 
(Cardiff University; Kings College London; Cambridge University; Trinity College Dublin). Subject recruitment 
and clinical characterization was as previously described.40,41 All AD cases met criteria for either probable18 or 
definite29 AD. Any subjects with a primary diagnosis of Dementia with Lewy bodies8 were excluded.  

 
The NPI was used to assess psychotic symptoms in all cases.14,40 The frequency and severity of each 
symptom were rated from 0-4 and 0-3, respectively, and were scored to reflect the worst episode of each 
symptom over the lifetime of the illness. Frequency and severity scores were multiplied to give an overall 
domain score for each symptom ranging from 0-12. The NPI was administered at baseline and during follow up 
visits. Individuals with a delusion or hallucination domain score >2 or with both delusion and hallucination 
domain scores equal to 1 at any visit were classified as AD+P. To be classified as AD-P, subjects had to have 
delusion and hallucination domain scores of 0 at all visits, and a last observed Mini Mental State Exam score < 
20 or a CDR® Dementia Staging Instrument score > 1. See Supplementary Table S15 for a summary of 
clinical and demographic data for these subjects. 
 
  



8 
 

3. METHODS- INDIVIDUAL PROGRAM SOURCE SUBJECTS’ DEMOGRAPHIC AND CLINICAL 
CHARACTERISTICS 

Supplementary Table S8. ACE/GR@ACE Subject Characteristics 

 
AD-P 

N (%) or Mean (SD) 
AD+P 

N (%) or Mean (SD) 
Total 

N (%) or Mean (SD) 

Sex 1,841 (67.8) 875 (32.2) 2,716 (100.0) 

Male 584 (31.7) 186 (21.3) 770 (28.4) 

Female 1,257 (68.3) 689 (78.7) 1,946 (71.6) 

Age of Onset1 76.9 (7.7) 77.3 (7.3) 77.0 (7.6) 

Age at last visit 82.6 (7.4) 83.7 (6.9) 82.9 (7.3) 

Last MMSE2 14.4 (6.9) 10.9 (6.1) 13.3 (6.9) 

Last CDR3  

1.0 180 (9.8) 20 (2.3) 200 (7.4) 

2.0 183 (10.0) 69 (7.9) 252 (9.3) 

3.0 353 (19.3) 103 (11.8) 456 (16.8) 

4.0 729 (39.8) 363 (41.5) 1,092 (40.3) 

5.0 388 (21.2) 319 (36.5) 707 (26.1) 

ACE: Fundacio Alzheimer Centre Educacional/GR@ACE: Genome Research at Fundacio ACE; AD-P: 
Alzheimer disease without psychosis; AD+P: Alzheimer disease with psychosis; Age of Onset data not 
available for 37 subjects, 96 subjects were <60 (range 48-59); 2MMSE: Mini mental status exam, data not 
available for 8 subjects; 3CDR: CDR® Dementia Staging Instrument, data not available for 9 subjects.  
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Supplementary Table S9. ADC Subject Characteristics 

 
AD-P 

N (%) or Mean (SD) 
AD+P 

N (%) or Mean (SD) 
Total 

N (%) or Mean (SD) 

Sex 2,017 (67.8) 957 (32.2) 2,974 (100.0) 

Male 1,032 (51.2) 427 (44.6) 1,459 (49.1) 

Female 985 (48.8) 530 (55.4) 1,515 (50.9) 

Age of Onset1 72.4 (8.9) 70.9 (9.4) 71.9 (9.1) 

Age at last visit 79.8 (8.9) 79.5 (9.0) 79.7 (9.0) 

Last MMSE2 17.6 (6.9) 15.1 (7.5) 16.8 (7.2) 

Last CDR  

0.5 62 (3.1) 43 (4.5) 105 (3.5) 

1.0 980 (48.6) 189 (19.7) 1,169 (39.3) 

2.0 618 (30.6) 318 (33.2) 936 (31.5) 

3.0 357 (17.7) 407 (42.5) 764 (25.7) 

ADC: Alzheimer Disease Centers; AD-P: Alzheimer disease without psychosis; AD+P: Alzheimer disease with 
psychosis; MMSE: Mini mental status exam; CDR: CDR® Dementia Staging Instrument. 1Age of Onset not 
available for 10 subjects; 208 subjects were <60 (range 35-59); 2Last MMSE not available for 176 subjects. 
 
Supplementary Table S10. LILLY Subject Characteristics 

 
AD-P 

N (%) or Mean (SD) 
AD+P 

N (%) or Mean (SD) 
Total 

N (%) or Mean (SD) 

Sex 1,360 (62.5) 815 (37.5) 2,175 (100.0) 

Male 618 (45.4) 325 (39.9) 943 (43.4) 

Female 742 (54.6) 490 (60.1) 1,232 (56.6) 

Age of Onset1 71.1 (6.6) 70.8 (6.4) 71.0 (6.6) 

Age at Last Visit2 76.9 (6.6) 76.8 (6.4) 76.9 (6.6) 

Age at Consent 71.9 (6.7) 72.2 (6.5) 72.0 (6.6) 

Last MMSE3 17.7 (4.8)  16.0 (6.1) 17.0 (5.4) 

Last CDR4  

0.5 114 (9.8) 73 (10.6) 187 (10.1) 

1.0 732 (63.2) 268 (38.8) 1,000 (54.1) 

2.0 280 (24.2) 274 (39.7) 554 (30.0) 

3.0 32 (2.8) 76 (11.0) 108 (5.8) 

AD-P: Alzheimer disease without psychosis; AD+P: Alzheimer disease with psychosis; 1The LILLY program 
source was comprised of 8 independent drug trials. Seven of the eight drug trials did not collect data for Age of 
Onset (N=1,281); for these trials Age at Consent, was used for screening purposes; 2Age at Last Visit not 
available for 1,281 subjects; 3MMSE: Mini mental state exam, data not available for 340 subjects; CDR: CDR® 
Dementia Staging Instrument; 4CDR data not available for 326 subjects. 
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Supplementary Table S11.1. NEXGENS NorCog/PADR Subject Characteristics 

 
AD-P 

N (%) or Mean (SD) 
AD+P 

N (%) or Mean (SD) 
Total 

N (%) or Mean (SD) 

Sex 165 (45.0) 202 (55.0)  367 (100.0) 

Male 64 (38.8) 76 (37.6) 140 (38.1) 

Female 101 (61.2) 126 (62.4) 227 (61.9) 

Age at Consent1 76.4 (8.7) 77.3 (8.0) 76.9 (8.3) 

Age at last visit 76.5 (8.7) 77.5 (8.0) 77.1 (8.3) 

Last MMSE2 16.9 (3.2) 20.2 (4.7) 18.7 (4.4) 

Last CDR3  

0.5 17 (12.1) 20 (11.8) 37 (11.9) 

1.0 59 (41.8) 82 (48.2) 141 (45.3) 

2.0 55 (39.0) 57 (33.5) 112 (36.0) 

3.0 10 (7.1) 11 (6.5) 21 (6.8) 

NEXGENS: Norwegian, Exeter and King’s College Consortium for Genetics of Neuropsychiatric Symptoms in 
Dementia; NorCog: The Norwegian Registry of Persons Assessed for Cognitive Symptoms; PADR: The 
Progression of Alzheimer’s Disease and Resource Use; AD-P: Alzheimer disease without psychosis; AD+P: 
Alzheimer disease with psychosis; 1Unlike the other program sources, Age of Consent was collected for this 
study; MMSE: Mini mental state exam; 2MMSE not available for 14 subjects CDR: CDR® Dementia Staging 
Instrument; 3CDR not available for 56 subjects 
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Supplementary Table S11.2. NEXGENS REDIC-NH Subject Characteristics 

 
AD-P 

N (%) or Mean (SD) 
AD+P 

N (%) or Mean (SD) 
Total 

N (%) or Mean (SD) 

Sex  111 (40.2) 165 (59.8)  276 (100) 

Male 40 (36.0) 47 (28.5) 87 (31.5) 

Female 71 (64.0) 118 (71.5) 189 (68.5) 

Age at Consent1 86.4 (6.4) 84.4 (7.5) 85.2 (7.1) 

Age at last visit 87.9 (6.7) 86.0 (7.6) 86.6 (7.4) 

Last MMSE2 12.4 (5.3) 12.6 (7.0) 12.5 (6.3) 

Last CDR3  

0.5 2 (1.8)  3 (1.8) 5 (1.8) 

1.0 19 (17.3) 25 (15.2) 44 (16.1) 

2.0 42 (38.2) 56 (34.1) 98 (35.8) 

3.0 47 (42.7) 80 (48.8) 127 (46.3) 

NEXGENS: Norwegian, Exeter and King’s College Consortium for Genetics of Neuropsychiatric Symptoms in 
Dementia; REDIC-NH: Resource Use and Disease Couse in Dementia- Nursing Home; AD-P: Alzheimer 
disease without psychosis; AD+P: Alzheimer disease with psychosis; 1Unlike the other program sources, Age 
of Consent was collected for this study; MMSE: Mini mental state exam; 2MMSE not available for 55 subjects; 
CDR: CDR® Dementia Staging Instrument;3CDR not available for 2 subjects 
 
Supplementary Table S11.3. NEXGENS HMS Subject Characteristics 

 
AD-P 

N (%) or Mean (SD) 
AD+P 

N (%) or Mean (SD) 
Total 

N (%) or Mean (SD) 

Sex 91 (56.2) 71 (43.8) 162 (100.0) 

Male 20 (22.0) 19 (26.8) 39 (24.1) 

Female 71 (78.0) 52 (73.2) 123 (75.9) 

Age at Consent1 86.4 (6.0) 86.7 (6.4) 86.5 (6.2) 

Age at last visit 86.4 (6.0) 86.7 (6.4) 86.5 (6.2) 

Last MMSE 12.4 (6.2) 12.4 (6.0) 12.4 (6.1) 

Last CDR2  

0.5 5 (5.5) 1 (1.4) 6 (3.7) 

1.0 16 (17.8) 12 (16.9) 28 (17.4) 

2.0 37 (41.1) 22 (31.0) 59 (36.6) 

3.0 32 (35.5) 36 (50.7) 68 (42.2) 

NEXGENS: Norwegian, Exeter and King’s College Consortium for Genetics of Neuropsychiatric Symptoms in 
Dementia; AD-P: Alzheimer disease without psychosis; AD+P: Alzheimer disease with psychosis; 1Unlike the 
other program sources, Age of Consent was collected for this study; MMSE: Mini mental state exam; CDR: 
CDR® Dementia Staging Instrument; 2CDR not available for 1 subject. 
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Supplementary Table S11.4. NEXGENS AddNeuroMed Subject Characteristics 

 
AD-P 

N (%) or Mean (SD) 
AD+P 

N (%) or Mean (SD) 
Total 

N (%) or Mean (SD) 

Sex 65 (41.7)  91 (58.3)  156 (100) 

Male 24 (36.9) 21 (23.1) 45 (28.8) 

Female 41 (63.1) 70 (76.9) 111 (71.2) 

Age at Consent1 77.0 (7.6) 77.9 (5.8) 77.5 (6.6) 

Age at last visit 77.9 (7.5) 78.7 (5.8) 78.3 (6.6) 

Last MMSE 15.4 (4.1) 17.6 (6.0) 16.7 (5.4) 

Last CDR2  

0.5 0 (0) 5 (5.5) 5 (3.3) 

1.0 30 (47.6) 34 (37.8) 64 (41.8) 

2.0 32 (50.8) 41 (45.6) 73 (47.7) 

3.0 1 (1.6) 10 (11.1) 11 (7.2) 

NEXGENS: Norwegian, Exeter and King’s College Consortium for Genetics of Neuropsychiatric Symptoms in 
Dementia; AD-P: Alzheimer disease without psychosis; AD+P: Alzheimer disease with psychosis; 1Unlike the 
other program sources, Age of Consent was collected for this study; MMSE: Mini mental state exam; CDR: 
CDR® Dementia Staging Instrument; 2CDR not available for 3 subjects. 
 
Supplementary Table S11.5. NEXGENS Italian and Greece Hospital Outpatient Subject Characteristics 

 
AD-P 

N (%) or Mean (SD) 
AD+P 

N (%) or Mean (SD) 
Total 

N (%) or Mean (SD) 

Sex 220 (62.1) 134 (37.9) 354 (100.0) 

Male 87 (39.5) 54 (40.3) 141 (39.8) 

Female 133 (60.5) 80 (59.7) 213 (60.2) 

Age at Consent1 77.8 (7.7) 79.0 (6.7) 78.3 (7.4) 

Age at last visit 77.8 (7.7) 79.0 (6.7) 78.3 (7.4) 

Last MMSE2 12.6 (5.3) 11.0 (6.2) 12.0 (5.9) 

Last CDR3  

0.0 2 (1.0) 2 (1.7) 4 (1.3) 

0.5 9 (4.6) 1 (0.9) 10 (3.2) 

1.0 72 (36.9) 20 (17.4) 92 (29.7) 

2.0 84 (43.1) 52 (45.2) 136 (43.9) 

3.0 28 (14.4) 40 (34.8) 68 (21.9) 

NEXGENS: Norwegian, Exeter and King’s College Consortium for Genetics of Neuropsychiatric Symptoms in 
Dementia; AD-P: Alzheimer disease without psychosis; AD+P: Alzheimer disease with psychosis; 1Unlike the 
other program sources, Age of Consent was collected for this study; MMSE: Mini mental state exam; 2MMSE 
not available for 2 subjects; CDR: CDR® Dementia Staging Instrument; ;3CDR not available for 44 subjects. 
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Supplementary Table S12. NIA-LOAD Subject Characteristics 

 
AD-P 

N (%) or Mean (SD) 
AD+P 

N (%) or Mean (SD) 
Total 

N (%) or Mean (SD) 

Sex 168 (25.0) 505 (75.0) 673 (100.0) 

Male 78 (46.4) 171 (33.9) 249 (37.0) 

Female 90 (53.6) 334 (66.1) 424 (63.0) 

Age of Onset1 74.3 (8.0) 73.6 (7.4) 73.8 (7.6) 

Age at last visit2 82.6 (7.6) 84.9 (8.3) 84.4 (8.2) 

Last CDR3  

0.0 0 (0.0) 3 (0.8) 3 (0.5) 

0.5 0 (0.0) 17 (4.4) 17 (3.1) 

1.0 66 (39.3) 61 (15.8) 127 (22.9) 

2.0 39 (23.2) 88 (22.8) 127 (22.9) 

3.0 63 (37.5) 216 (56.0) 279 (50.4) 

4.0 0 (0.0) 1 (0.3) 1 (0.2) 

NIA-LOAD: National Institute of Aging Late-onset Alzheimer disease; AD-P: Alzheimer disease without 
psychosis; AD+P: Alzheimer disease with psychosis; CDR: CDR® Dementia Staging Instrument. 1AOO not 
available for 10 subjects, <60 for 16 subjects (range=48-58). 2Age at last visit not available for 4 subjects. 
3CDR not available for 119 subjects.  
 
Supplementary Table S13. NIMH Subject Characteristics 

 
AD-P 

N (%) or Mean (SD) 
AD+P 

N (%) or Mean (SD) 
Total 

N (%) or Mean (SD) 

Sex 157 (26.5) 435 (73.5) 592 (100.0) 

Male 54 (34.4) 105 (24.1) 159 (26.9) 

Female 103 (65.6) 330 (75.9) 433 (73.1) 

Age of Onset1 71.3 (8.8) 72.0 (7.7) 71.8 (8.0) 

Age at Last Visit 79.7 (9.2) 81.0 (7.1) 80.6 (7.7) 

Last CDR  

1.0 37 (23.6) 41 (9.4) 78 (13.2) 

2.0 38 (24.2) 97 (22.3) 135 (22.8) 

3.0 32 (20.4) 156 (35.9) 188 (31.8) 

4.0 28 (17.8) 97 (22.3) 125 (21.1) 

5.0 22 (14.0) 44 (10.1) 66 (11.1) 

NIMH: National Institute of Mental Health; AD-P: Alzheimer disease without psychosis; AD+P: Alzheimer 
disease with psychosis; CDR: CDR® Dementia Staging Instrument. 1Age of Onset<60 for 37 subjects 
(range=41-59) 
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Supplementary Table S14. PITT ADRC Subject Characteristics 

 
AD-P 

N (%) or Mean (SD) 
AD+P 

N (%) or Mean (SD) 
Total 

N (%) or Mean (SD) 

Sex 405 (31.7) 874 (68.3) 1,279 (100.0) 

Male 166 (41.0) 288 (33.0) 454 (35.5) 

Female 239 (59.0) 586 (67.0) 825 (64.5) 

Age of Onset 72.7 (6.5) 73.1 (6.4) 72.9 (6.4) 

Age at last visit 78.4 (6.5) 80.4 (6.3) 79.8 (6.4) 

Last MMSE1 17.0 (5.6) 13.2 (6.1) 14.4 (6.2) 

Last CDR2  

0.5 34 (8.4) 21 (2.4) 55 (4.3) 

1.0 225 (55.6) 198 (22.8) 423 (33.2) 

2.0 123 (30.4) 459 (52.8) 582 (45.6) 

3.0 21 (5.2) 171 (19.7) 192 (15.1) 

4.0 2 (0.5) 21 (2.4) 23 (1.8) 

PITT ADRC: University of Pittsburgh Alzheimer Disease Research Center; AD-P: Alzheimer disease without 
psychosis; AD+P: Alzheimer disease with psychosis; 1MMSE: Mini mental state exam, data not available for 21 
subjects; 2CDR: CDR® Dementia Staging Instrument, data not available for 4 subjects.  
 
Supplementary Table S15. UK-Cardiff Subject Characteristics 

 
AD-P 

N (%) or Mean (SD) 
AD+P 

N (%) or Mean (SD) 
Total 

N (%) or Mean (SD) 

Sex 272 (45.9) 321 (54.1) 593 (100.0) 

Male 97 (35.7) 77 (24.0) 174 (29.3) 

Female 175 (64.3) 244 (76.0) 419 (70.7) 

Age of Onset1 76.1 (6.5) 76.0 (7.2) 76.0 (6.9) 

Age at last visit2 81.7 (6.7) 83.1 (6.6) 82.4 (6.7) 

Last MMSE3 11.9 (7.4) 9.5 (8.0) 10.7 (7.8) 

Last CDR4  

0.5 1 (1.1) 2 (1.9) 3 (1.5) 

1.0 53 (57.0) 17 (16.0) 70 (35.2) 

2.0 29 (31.2) 53 (50.0) 82 (41.2) 

3.0 10 (10.8) 34 (32.1) 44 (22.1) 

UK-Cardiff: MRC Genetic Resource for Late-onset Alzheimer’s disease as part of the Genetic and 
Environmental Risk in AD Consortium  AD-P: Alzheimer disease without psychosis; AD+P: Alzheimer disease 
with psychosis; MMSE: Mini mental state exam; CDR: CDR® Dementia Staging Instrument; 1Age of Onset not 
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available for 1 subject; 2Age at last visit not available for 8 subjects; 3MMSE not available for 38 subjects; 4CDR 
not available for 394 subjects because it was instituted later in the data collecting process. 
 
4. METHODS- GENOTYPING  

Overview. For subjects selected for this study based on the above described phenotypic criteria, program 
sources provided us with blood samples (ACE/GR@ACE), DNA samples (PITT ADRC, UK-Cardiff, NIA-LOAD, 
ADC, NIMH), and/or single nucleotide polymorphism array data (ACE/GR@ACE, ADC, LILLY, NIA-LOAD). 
Additionally, NEXGENS provided summary GWA statistics for the comparison of AD-P and AD+P. Blood and 
DNA samples that were supplied to us were genotyped at the Center for Applied Genomics at The Children’s 
Hospital of Philadelphia (CHoP, Philadelphia, PA). These samples were initially processed by the Genomics 
Core Lab at the University of Pittsburgh. Genomic DNA was extracted from whole blood samples using the 
Qiamp Blood Mini kit (Qiagen, Valencia, CA). All DNA was quantitated by Pico Green (Thermo Fisher, 
Pittsburgh, PA) and diluted the DNA to 23ng/ul. Samples without the required amount of DNA were plated for 
whole genome amplification (WGA) and re-quantified. Prior to genotyping, CHoP confirmed DNA 
concentrations by Pico Green assay and performed additional WGA on samples when necessary.  
Supplementary Table S11 contains information of each program sources, the source of their genotypes, and 
the genotype arrays used by each source. 
 
Supplementary Table S16. Program Sources, Genotype Sources, and Chip Information 

Program Sources (N) Genotype Source Genotype Array 

ACE/GR@ACE (2,716)  

• ACE CHoP Illumina Infinium Global Screening Array-24 v1.0 

• GR@ACE ACE Axiom 815K Spanish Biobank Array 

ADC (2,974) ADGC wave 1-2 Illumina Human660W-Quad v1_A 

ADGC wave 3 IlluminaHumanOmniExpress-12v1_A 

ADGC wave 4-6 IlluminaHumanOmniExpress-12v1_H 

ADGC wave 7 Illumina Human OmniExpressExome-8v1.2_a 

ADGC wave 8 Illumina Human OmniExpressExome-8v1.2_a 

ADGC wave 9 Illumina Infinium Global Screening Array-24 v1.0 

ADGC wave 10 Illumina Infinium Global Screening Array-24 v1.0 

LILLY (2,175) 

• LFAN, LFBC, LZAM, and LZAN trials Lilly Illumina 5M Genotyping Array v1.2  

• LEAM, LEAQ, and LYCG trials Lilly Illumina 5M Genotyping Array v1.2 

• Expedition 3 LZAX trial Lilly Illumina Infinium Global Screening Array v2.0 

NEXGENS (1,315) 

• NorCog/PADR, REDIC-NH, and HMS NEXGENS Illumina Human OmniExpress 24 v1.0 

• AddNeuroMed NEXGENS Illumina 610K 

• Italian/Greek NEXGENS Illumina Global Screening Array 24 v1.0 

NIA-LOAD (673) CHoP Illumina Infinium Global Screening Array-24 v1.0 

NIA-LOAD 
 

Illumina OmniExpress 
Illumina Human610-quad v1_B  
Illumina 660K 
700 Illumina OmniExpress 
Illumina 1M 
Illumina OmniExpress-24 v.1 
Illumina Global Screening Array 

NIMH (592) CHoP Infinium Global Screening Array-24 v1.0  

PITT ADRC (1,279) 
 

CHoP Illumina Infinium Global Screening Array-24 v1.0  

ADGC Illumina Human1M-Duo v3.0 

PITT ADRC 
Neurogenetics Core 

Illumina HumanOmni1-Quad v1.1 

UK-Cardiff (593) CHoP Infinium Global Screening Array-24 v1.0  

ACE: Fundacio Alzheimer Centre Educacional/GR@ACE: Genome Research at Fundacio ACE; ADC: 
Alzheimer Disease Centers; NEXGENS: Norwegian, Exeter and King’s College Consortium for Genetics of 
Neuropsychiatric Symptoms in Dementia; NIA-LOAD: National Institute of Aging Late-onset Alzheimer disease; 
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NIMH: National Institute of Mental Health; PITT ADRC: University of Pittsburgh Alzheimer Disease Research 
Center; UK-Cardiff: MRC Genetic Resource for Late-onset Alzheimer’s disease as part of the Genetic and 
Environmental Risk in AD Consortium; CHoP: Center for Applied Genomics at The Children’s Hospital of 
Philadelphia; ADGC: Alzheimer’s Disease Genetics Consortium. 
 
4.1. Genotyping – ACE/GR@ACE. ACE supplied us with whole blood. DNA was prepared by the Genomics 
Core Lab at the University of Pittsburgh and genotypes were generated by CHoP as described in the 
Overview, above. Other subjects were genotyped as part of the GR@ACE genomic data collection for 
Alzheimer’s disease.6 GR@ACE genotypes were generated using the Axiom 815K Spanish Biobank Array 
(Thermo Fisher). Further information on the quality control for genome-wide data has been previously 
described.6  
 
4.2. Genotyping – ADC. ADCs submitted blood samples to the National Centralized Repository for 
Alzheimer’s Disease and Related Dementias (NCRAD).  As part of their participation in the Alzheimer’s 
Disease Genetics Consortium (ADGC), DNA was prepared by NCRAD for genotyping and sent to the 
genotyping site at CHoP as previously described.15 ADGC then provided us with genotypic data on selected 
subjects15 In addition, NCRAD supplied us with DNA for subjects for whom ADGC did not have genotypic data. 
The DNA was then prepared by the Genomics Core Lab at the University of Pittsburgh and submitted to CHoP 
for genotyping as described in the Overview, above.  
 
4.3. Genotyping – LILLY. DNA was first extracted from whole blood samples and DNA concentrations were 
normalized to 50ng/μl using Pico green assay to measure concentrations, followed by suspension in 10mM 
Tris-Cl at pH 8.5. Samples from LZAX were genotyped on the Illumina Global Screening array version 2.0 with 
an addition of multi-disease associated SNP panel (n~700k SNP probes in total). The rest of the trial samples 
were genotyped using Illumina 5M Infinium® Omni5-4 v1.2 genotyping platform as per the manufacturers 
recommended guidelines (n~4.5M SNP probes). Three control DNA samples from HAPMAP consortium were 
used on each 96 well plate to quantify genotyping assay quality across plates and batches. In addition, 5% of 
the total samples were used as replicates to quantify replicability across all the batches. The genotyping data 
went through a stringent QC pipeline, as described in42 using SNPRelate43 and GWASTools44available on 
Bioconductor. Genotyping QC pipeline included a 19-step process of eliminating samples and probes with 
spurious quality. At probe level, in cases of duplicate probes (for e.g. APOE-e4 rs7412), only the probe with the 
best quality was retained. SNP probes were filtered based on probe level missing rates (<95%) and in addition 
SNPs with heterozygosity rate outliers were excluded from the dataset (using sample call rate vs 
heterozygosity plot). In addition, discordant SNPs in >=3 duplicated samples were also eliminated. At the 
samples level, only the higher quality data from duplicated samples were retained, samples with low call rates 
(< 95%) and those showing conflicts between reported gender and chromosomal sex were also eliminated. In 
addition, sample pairs with high identity-by-state (IBS) scores were eliminated since the trial participants are 
unrelated.  
 
4.4. Genotyping – NIA-LOAD. DNA was prepared by NCRAD for genotyping and sent to the genotyping site 
at ChoP as part of participation in the ADGC, as previously described.15 For these subjects we utilized existing 
genotype data provided by NIA-LOAD. NCRAD also supplied us with DNA for subjects for whom genotypic 
data was unavailable from NIA-LOAD. The DNA was prepared by the Genomics Core Lab at the University of 
Pittsburgh and submitted to CHoP for genotyping as described in the Overview, above. 
 
4.5. Genotyping – NIMH. NIMH provided us with DNA which was prepared by the Genomics Core Lab at the 
University of Pittsburgh and submitted to CHoP for genotyping as described in the Overview, above. 
 
4.6. Genotyping – PITT ADRC. DNA for subjects for whom genotypic data was unavailable was provided by 
the Neurogenetics Core of the PITT ADRC or by NCRAD. The DNA was submitted to CHoP for genotyping as 
described in the Overview, above. For other subjects, available genotypic data was generated as previously 
described and provided by the Neurogenetics Core of the PITT ADRC and the ADGC.45,46  
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4.7. Genotyping –UK-Cardiff. The UK-Cardiff supplied us with DNA which was then prepared and submitted 
to CHoP for genotyping as described in the Overview, above. 

4.8 Genotyping – NEXGENS. NEXGENS provided summary statistics for tests of AD+P versus AD-P. 
NEXGENS samples were genotyped on Illumina platforms, using either the OmniExpress array 
(NorCog/PADR, REDIC-NH, and HMS), the Illumina 610K (AddNeuroMED), or the Illumina Global Screening 
Array 24 v1.0 array (Italian and Greece Hospital Outpatient).  
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5. METHODS- QC AND ANCESTRY 

5.1 QUALITY CONTROL: For QC by genotype, SNPs were removed if they had an unknown location, were 
monomorphic, were duplicated, did not map to an autosome or X-linked chromosome, had a non-call rate > 
0.025, had a minor allele frequency MAF < 0.01, or had an exact Hardy-Weinberg p-value< 0.005 in the major 
European ancestry group, as defined below. For QC by sample, samples were removed if their overall SNP 
non-call rates > 0.025, if they showed extreme homo- or heterozygosity (<-.15 or > 0.4, respectively), if their 
nominal versus inferred genetic sex did not match, or if they were determined to be duplicates of other samples 
within or between cohorts. Raw genotype data for individual NEXGEN cohorts underwent appropriate QC 
steps (implemented in PLINK).47  
 
5.2 ANCESTRY: Here we document batch-specific sources (Phase 1, Phase 2, GR@ACE, and NEXGENS) of 
samples and attributes of genetic ancestry of those samples. 
  
5.2.1. PHASE 1 
Subjects analyzed in Phase 1 were from ACE, ADC, Lilly, NIA-LOAD, NIMH, PITT ADRC and UK-Cardiff, and 
their genotypes were from ADGC waves 1-7, CHoP, Lilly, Pitt ADRC, and NIA-LOAD (Supplementary Table 
S16).  

 

 

Supplementary Figure S3. Ancestry plot for the PHASE 1 samples. Analysis of genetic ancestry using 
GemTools identified three significant ancestry dimensions and divided the data up into 5 ancestry clusters (see 
also Supplementary Table S17), of which 5,396 samples in clusters A and B were of narrow European 
ancestry on the basis of self-identified ancestry of subjects. 
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Supplementary Table S17. Distribution of PHASE 1 samples over the ancestry clusters. 

 Cluster1 

 A B C D E All EUR 

Psychosis Status 2,382 3,014 354 809 495 7,054 5,396 

AD-P 1,152 1512 139 458 268 3,529 2,664 

AD+P 1,230 1,502 215 351 227 3,525 2,732 

Program Source (Genotype 
Source) 

 

ACE/GR@ACE (CHoP) 2 66 2 20 218 308  68 

ADC (ADGC waves 1-7 and CHoP) 792 1,047 132 320 37 2,328 1,839 

PITT ADRC (ADGC, PITT ADRC 
Neurogenetics Core, and CHoP) 

472 436 103 191 77 1,279 908 

LILLY LEAM, LEAQ, LFAN, LFBC, 
LYCG, LZAM, and LZAN drug trials 
(LILLY) 

439 526 41 153 122 1,281 965 

NIA-LOAD (CHoP and NIA-LOAD) 271 305 50 33 14 673 576 

NIMH (CHoP) 190 264 24 90 24 592  454 

UK-Cardiff (CHoP) 216 370 2 2 3 593 586 

AD-P: Alzheimer disease without psychosis; AD+P: Alzheimer disease with psychosis; AA: African American;  
1 Of the subjects who self-reported ancestry: Cluster A (0.2% AA, 99.8% EUR [white]); Cluster B (0.2% AA, 
99.8% EUR); Cluster C (92.2% AA, 7.8% EUR); Cluster D (0.5% AA, 99.5% EUR); Cluster E (0% AA, 100% 
EUR). Other self-reported ancestries represented less than 0.1% of subjects and hence were not reported 
here. 
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5.2.2. PHASE 2 
Subjects analyzed in Phase 2 were from ADC and LILLY, and their corresponding genotypes were from ADCG 
waves 8-10 and LILLY (Table S16).  

 

Supplementary Figure S4. Ancestry plot for the PHASE 2 samples. Analysis of genetic ancestry using 
GemTools identified three significant ancestry dimensions and divided the data up into 6 ancestry clusters (see 
also Supplementary Table S18), of which 1,227 samples in clusters A and B are of narrow European 
ancestry, as determined by genetically-based clustering with PHASE 1 samples (99% of PHASE 2 clusters A 
and B group together with clusters A and B of PHASE 1).  

 

Supplementary Table S18. Distribution of PHASE 2 samples over the ancestry clusters 

 Cluster    

 A B C D E F All EUR 

Psychosis Status 461 766 65 161 26 61 1,540 1,227 

AD-P 310 523 42 113 15 42 1,045 833 

AD+P 151 243 23 48 11 19 495 394 

Program Source 

(Genotype Source) 

 

ADC (ADGC waves 8-10) 206 337 1 92 0 10 646 543 

LILLY (Expedition 3 LZAX) 255 429 64 69 26 51 894 684 

AD-P: Alzheimer disease without psychosis; AD+P: Alzheimer disease with psychosis 
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5.2.3. GR@ACE 
 

 

Supplementary Figure S5. Ancestry plot for the GR@ACE samples. Analysis of GR@ACE samples’ 
genetic ancestry using GemTools identified one significant ancestry dimension and divided the data up into 2 
ancestry clusters (see also Supplementary Table S19). All samples are of European ancestry, as determined 
by genetically-based clustering with PHASE 1 and PHASE 2 samples (99.4% of GR@ACE cluster with others 
of European ancestry, specifically clusters A and B of PHASE 1 and PHASE 2).  

Supplementary Table S19. Distribution of GR@ACE samples over the ancestry clusters. 

 Cluster 

 A B All EUR 

Total 1623 785 2408 2408 

AD-P 1098 548 1646 1646 

AD+P 525 237 762 762 

GR@ACE 1623 785 2408 2408 

AD-P: Alzheimer disease without psychosis; AD+P: Alzheimer disease with psychosis 

 

5.2.4. NEXGENS  
For our meta-analysis, we received summary statistics from the NEXGENS consortium. What follows is a 
synopsis of the methods used by the NEXGENS consortium to produce these association summary statistics. 
 
Raw genotype data for individual NEXGENS cohorts underwent appropriate QC steps (implemented in 
PLINK), as described previously.47 SNPs with a minor allele frequency ≤5% and a Hardy Weinberg equilibrium 
p < 10−5 were excluded. The SNP and individual genotype failure threshold were set at 5%, and individuals 
with mean heterozygosity ±3 standard deviations were excluded. The analysis was restricted to individuals of 
European ancestry using genetic principal components computed by EIGENSTRAT. Related (pi-hat > 0.2) or 
duplicate individuals both within and between cohorts were excluded, ensuring there was no sample overlap 
across datasets. Phasing (EAGLE2) and imputation (PBWT) was done via the Sanger Imputation Service 
using the Haplotype Reference Consortium (r1.1) reference panel on all cohorts. After imputation only SNPs 
with an imputation quality (INFO) score > 0.4 and MAF > 0.05 were retained. Logistic regression, implemented 
in PLINK on each dataset individually, was used for SNP association testing with psychosis status, covarying 
for the first 10 ancestry principal components. The METAL software was used to conduct inverse-variance 
weighted fixed effects meta-analysis across the 5 datasets within the NEXGENS Consortium (Tables S11.1-
S11.5), applying genomic control.48  
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6. METHODS- ANALYSIS 
6.1. PATHWAY ANALYSIS: Gene set enrichment analyses were performed in MAGMA,49 correcting for the 

number of SNPs in each gene, linkage disequilibrium (LD) between SNPs and LD between genes. The 

measure of pathway enrichment is the MAGMA “competitive” test (where the association statistic for genes in 

the pathway is compared to those of all other protein-coding genes).50 As in the gene-based analyses, we used 

the “mean” test statistic, and again the primary analysis assigned variants to genes if they lie within the gene 

boundaries, but a secondary analysis used a window of 35kb upstream and 10kb downstream to assign SNPs 

to genes, as in Kunkle et al.15  We used the R package qvalue to account for multiple testing. 

Pathways were defined as follows. The assignment of Gene Ontology (GO) terms to human genes was 

obtained from the “gene2go” file, downloaded from NCBI on March 11th 2020.  “Parent” GO terms were 

assigned to genes using the ontology file downloaded from the Gene Ontology website on the same date. GO 

terms were assigned to genes based on experimental or curated evidence of a specific type, so evidence 

codes IEA (electronic annotation), NAS (non-traceable author statement), RCA (inferred from reviewed 

computational analysis) were excluded. Pathways were downloaded from the Reactome website on April 26th 

2020. Biocarta, KEGG and Pathway Interaction Database (PID) pathways were downloaded from v7.1 (March 

2020) of the Molecular Signatures Database. Analysis was restricted to GO terms containing between 10 and 

2000 genes. No size restrictions were placed on the other gene sets, since there were many fewer of them. 

This resulted in a total of 10,053 gene sets for analysis. 

6.2. TRANSCRIPTOME-WIDE ASSOCIATION (TWAS): Using the GRCh37 hg19 genome assembly, common 

variants from the AD+P summary statistics were filtered using the munge_sumstats.py (v2.7.13) script from the 

LD Score Regression (LDSC ) software and the hapmap 3.0 reference panel resulting in 1,184,883 SNPs. The 

FUSION package51 was used to perform a TWAS using dorsolateral prefrontal cortex expression data from the 

CommonMind Consortium  and expression data from 13 Brain tissues from the GTEx (Genotype-Tissue 

expression) consortium ( v7).52 GTEx7 and CMC expression weights and the reference panel from the 1000 

Genomes European population were downloaded from the FUSION web site. Expression weights were used in 

TWAS for autosomal chromosomes and excluding the MHC region, with the processed AD+P summary 

statistics using the R script FUSION.assoc_test.R from the FUSION software.51 Results were corrected for 

multiple testing of multiple genes within each tissue using the Bonferroni method. 

6.3 POLYGENIC RISK SCORE: We evaluated how well three different polygenic risk scores could differentiate 

9,031 AD+P and AD-P subjects of European ancestry. We used the pruning and thresholding approach53 to 

compute a PRS for our subjects, developed from GWAS results for AD (PRSAD), 54 schizophrenia (PRSSZ),55 

and bipolar disorder (PRSBP),3 separately. We used a set of GWAS p-value thresholds for SNP inclusion in 

each score (5x10-8, 0.0001, 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5). 

As a first step in pruning SNPs for the score, we required SNPs to meet these criteria: must be included in both 

GWAS of interest (AD+P and other phenotype); genotypes called in all three data sets (Phase 1, Phase 2, and 

GR@ACE); MAF > 0.01; not an indel; difference between MAF for AD+/-P versus the MAF for the other 

phenotype < 0.05; if palindromic, MAF < 0.40. Also, for PRSAD, we selected only the most influential SNP 

(smallest GWAS p-value) within the APOE locus (chr19:45,000,000-46,000,000); and, for all three scores, we 

selected only the most influential SNP within the MHC region (chr6:25,000,000-34,000,000). As a next step, 

SNPs were clumped using Plink command --clump with a clump window of 500Kb and a maximum r2 between 

pairs of 0.50. The PRS were subsequently determined for each of the phenotypes using --score command with 

the options “center” and “sum” for p-value and for the thresholds given above. Logistic regression of AD+P 

status on PRS was performed using two ancestry vectors as additional covariates. Function nagelkerke in R 

library rcompanion was used to obtain the partial pseudo-R2 attributable to the PRS. 
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6.4. ANALYSES OF OVERLAP WITH SCHIZOPHRENIA, BIPOLAR, AND AD RISK SNPs: To evaluate 

whether there are consistent signals across studies and traits, we took three approaches. First, using a 

threshold of 510-8, we selected GWAS-significant SNPs for schizophrenia (SCZ),55 bipolar disorder (BPD),3 or 

AD54 and matched them to SNPs analyzed in our AD+P GWAS. Among the 18,276 significant SZ SNP, we 

matched 18,256 to SNPs in our AD+P GWAS. None crossed the p-value threshold of 10-4 for our AD+P 

GWAS. The same was true for the 264 significant BPD SNPs, which could be mapped to 238 SNPs from our 

AD+P GWAS. Among the 2394 GWAS significant AD SNPs, we matched 2284 to SNPs in our AD+P GWAS, 

and 11 crossed the threshold, all in the APOE region.  

Next, we addressed this a different way. If there were consistent signals across studies, at least for some 

fraction of the SNPs (π), then  we would expect the distribution of p-values from the AD+P GWAS, drawn 

because they had p-value < 510-8 for the complementary GWAS (SCZ, BPD, or AD), to be a mixture of two 

densities: fraction π, bearing true signal, would tend to have small p-values and they are often assumed to 

follow a Beta distribution; for the remainder, 1 − π, the p-values are expected to be drawn from the null 

distribution, a uniform on the interval (0,1). Because some SNPs are not independent, we first clumped SNPs 

by LD (pairwise LD r2 < .20, using clump in PLINK with a 500Kb region) and selected the SNP, within clump, 

with the largest association p-value for the disease (SCZ, BPD, or AD). After clumping, if there were many 

SNPs falling in the same locus, such as around APOE for AD, we choose one SNP for the locus.  When we fit 

this model to the p-values for 205, 16, and 37 selected SNPs for SCZ, BPD, and AD (Supplementary Figure 

S6 for SCZ and AD, as well as the full distribution of AD+P GWAS p-values for contrast), respectively, and 

estimate π, we obtain πscz = 0.13,  πBPD = 0.39, and πAD = 0.41. The estimate for bipolar disorder, based on a 

small number of SNPs, is not reliable.  
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Supplementary Figure S6. Distribution of AD+P p-values for GWAS significant SNPs for SCZ and AD 

(top) and the entire AD+P p-value distribution (bottom). Dashed horizontal reference line is the median 

value of the AD+P p-values. Not shown:  AD+P p-values for GWAS significant SNPs for BPD because the 

relatively few p-values made the mixture model analysis unreliable.  

 

Finally, we asked if any particular GWAS-significant SNP for SCZ, BPD, and AD, or set of SNPs, also showed 

sufficient evidence for significance in AD+P. We approached this by using results from the clumped/thinned 

SNPs described above. Next, we sought evidence for a mixture of distributions of z-scores for the identified 

sets of SNPs. If there is evidence of a mixture, did any observations show compelling evidence for 

membership in one of the component distributions (PPr > 0.95)? As expected, we found evidence for a mixture 

for SCZ and AD, but not BPD. Both SCZ and AD z-scores were consistent with a mixture of two normal 

distributions (Supplementary Figures S7-S8). After estimating the posterior probability (PPr) of membership 

in these distributions, based on the parameters of the mixture model, 55 significant SNPs from the AD GWAS 

showed notable association for AD+P Z-scores, 21 with PPr.1 > 0.95 (left distribution) and 2 with PPr.2 > 0.95 

(right distribution). For the significant SCZ SNP 71 SNP with PPr.1 > 0.95 (left distribution) and 8 with PPr.2 > 

0.95 (right distribution) showed notable association with AD+P.  
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Supplementary Figure S7. Distribution of AD+P z-scores for GWAS significant SNPs for AD fit for 0, 1, 

2 and 3 components of a normal. BIC is the Bayesian Information Criterion. Here, if the BIC decreases 

substantially with the addition of parameters, then they are needed to describe the distribution of the z-scores. 

In this case, the BIC decreases substantially by adding a second component to the mixture distribution, but it 

decreases thereafter. Hence we chose a two-component mixture as the best representation.  
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Supplementary Figure S8. Distribution of AD+P z-scores for GWAS significant SNPs for SCZ fit for 0, 1, 

2 and 3 components of a normal. BIC is the Bayesian Information Criterion. Here, if the BIC decreases 

substantially with the addition of parameters, then they are needed to describe the distribution of the z-scores. 

In this case, the BIC decreases substantially by adding a second component to the mixture distribution, but it 

decreases thereafter. Hence we chose a two-component mixture as the best representation. 

.  
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For context, we also evaluated the relationship between the estimated effects for AD and SCZ versus AD+P. 

 

 

Supplementary Figure S9. Distribution of AD+P p-values for GWAS significant SNPs for SCZ and AD 

(top) and the entire AD+ P p-value distribution (bottom). Dashed horizontal reference line is the median 

value of the AD+P p-values. Not shown:  AD+P p-values for GWAS significant SNPs for BPD because the 

relatively few p-values made the mixture model analysis unreliable.  
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7. SUPPLEMENTARY DISCUSSION OF RESULTS 

Association Test Results 

Of interest, we found some evidence for association of AD+P with rs11701 (Supplementary Table 1, 4.0 x 10-

6). rs11701 is located on chromosome 14, within two genes, ANG and RNASE4, which share promoters and 
some 5’ exons, although each gene is spliced to a unique downstream exon containing its complete coding 
region. rs11701 is a synonymous coding variant in ANG, is intronic in RNASE4, and its protein products are 
members of the RNAse A Superfamily. Loss-of-function mutations in both ANG and RNASE4 have been 
associated with amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD) syndromes.56-61 ANG 
preferentially hydrolyzes transfer RNA (tRNA) in vivo.62 Understanding of how tRNA-derived fragments 
generated by ANG may contribute to neuroprotection is  rapidly expanding.63  
 
It would thus be parsimonious to hypothesize that less potent alterations in expression of ANG and RNASE4, 
or in functions of their protein products, modify neuronal function or survival, which in turn, increases the risk 
for psychosis in individuals with AD. Several observations are consistent with this hypothesis. For example, 
rs11701 has been linked to expression levels for both genes in some tissues.64 While it is not known if 
mutations in ANG or RNASE4 are present in AD+P, some of these mutations result in tar DNA binding protein 
43 (TDP43) inclusion pathology on postmortem exam in ALS/FTD patients.65 We have previously reported that 
the presence of comorbid TDP43 pathology in AD is independently associated with psychosis risk.66  
 

TWAS Results 

VN1R108P in GTEx7 hippocampus was TWAS significant in this analysis. VN1R108P is a member of the 
Vomeronasal receptors and it is classified as a pseudogene. Pseudogenes, which are homologous to protein-
coding genes but have lost their coding ability, were thought to be functionless.67 However, more recently, it 
has been shown that pseudogenes can be expressed and that they can have roles in gene regulation.68,69 
Such relationships have been shown previously in schizophrenia.70 VN1R108P is not well annotated, however, 
it is expressed in a wide variety of tissues and could have a role in gene regulation. However, we note that the 
best eQTL snp in this analysis, rs4815438 is located in the ZNF337-AS1 gene which is a long non-coding 
RNA. 

FAM182B is a long non-coding RNA (lncRNA) which is highly expressed in the cerebellum 
(https://www.proteinatlas.org/ENSG00000175170-FAM182B/tissue) and may be involved in the development 
of the foetal neocortex.71 In addition, it has been suggested that FAM182B could be an important regulator in 
hepatocellular carcinoma.72  

Long non-coding RNAs (lncRNAs) have many roles in the regulation of gene expression for example, they are 
involved in the regulation of the epigenome by association with chromatin modifying complexes73 and they can 
affect gene expression through association with chromatin- modifying complexes.74 FAM182B shows TWAS 
associations in a consistent direction in numerous brain tissues (Supplementary Table S5), suggesting that it 
could be an important regulator in the brain.  

Definition of AD+P Phenotype 
 
We note that we examined the association of genetic variation with a psychosis phenotype defined by the 
presence of one or more of multiple individual psychotic symptoms. It is possible that relevant subgroups could 
exist within the AD+P phenotype.75 However, several lines of evidence support the phenotype definition used 
in the current study. First, our approach mirrors that used to define other psychotic disorders, e.g. 
schizophrenia. Second, AD+P as defined in the current study demonstrates familial aggregation and 
heritability.27,31,34  Moreover, the heritability of AD+P is highest when requiring the presence of multiple or 
recurrent psychotic symptoms.31,34 Nevertheless, it remains possible that any of the loci we report as 
significantly or suggestively associated with AD+P reflect a selective association with only a subset of 
psychosis symptoms.  
 

https://www.proteinatlas.org/ENSG00000175170-FAM182B/tissue
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Another potential limitation of our phenotypes, imprecision of our diagnosis of AD, seems unlikely. We did not 
observe any genetic correlation between AD+P risk and risk for ALS or Parkinson’s disease. The lack of 
genetic overlap with ALS suggests that cases for whom a comorbid pathogenic process associated with 
ALS/FTD contributes to the manifestation of psychosis in AD account for only a small proportion of AD+P. This 
conclusion is consistent with our prior pathologic observations, in which the presence of TDP-43 pathology 
predicted only 5% of the variance in risk for AD+P.66 Similarly, the lack of genetic correlation with Parkinson’s 
disease indicates that our AD+P phenotype did not derive from a phenocopy due to inclusion of subjects with 
primary alpha-synuclein pathology, which itself is associated with psychosis.76 
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