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Summary
Genome-wide sequencing of human populations has revealed substantial variation among
genes in the intensity of purifying selection acting on damaging genetic variants1. While
genes under the strongest selective constraint are highly enriched for associations with
Mendelian disorders, most of these genes are not associated with disease and therefore the
nature of the selection acting on them is not known2. Here we show that genetic variants that
damage these genes are associated with markedly reduced reproductive success, primarily
due to increased childlessness, with a stronger effect in males than in females. We present
evidence that increased childlessness is likely mediated by genetically associated cognitive
and behavioural traits, which may mean male carriers are less likely to find reproductive
partners. This reduction in reproductive success may account for 20% of purifying selection
against heterozygous variants that ablate protein-coding genes. While this genetic
association could only account for a very minor fraction of the overall likelihood of being
childless (less than 1%), especially when compared to more influential sociodemographic
factors, it may influence how genes evolve over time.

Background
The most damaging genetic variants, gene deletions and protein-truncating variants (PTVs),
are removed from the population by selection with strength that varies substantially from
gene to gene1,3. The strength of selection against heterozygous PTVs has been estimated by
the selection coefficient, shet, which exhibits a continuous spectrum across human genes2,4,
although most attention has been focused on a subset of ~3,000 genes with the highest
probability of Loss-of-function Intolerance (pLI)1.



The selection pressures acting on these most selectively constrained genes have not been
fully characterised, but, a priori, could include natural selection against variants increasing
pre-reproductive mortality or decreasing fertility, and sexual selection acting on mate choice
or intra-sexual competition5. Gene deletions and PTVs in these genes have been shown to
be associated with lower educational attainment6,7 and general intelligence8, as well as
increased risk of intellectual disability, and some psychiatric disorders9. Moreover, these
constrained genes are strongly enriched for associations with dominant early-onset
Mendelian diseases (including neurodevelopmental disorders), many of which are
associated with increased pre-reproductive mortality, indicating that natural selection likely
makes a substantive contribution to this selective constraint. However, the majority (65%) of
highly constrained genes (pLI ≥ 0.9) have not yet been associated with a Mendelian disease.
This raises the fundamental question of whether natural selection represents the sole
mechanism imposing this form of selective constraint on human genes.

Genetic association testing
To explore the nature of selection acting on these genes we identified PTVs and genic
deletions in the UK Biobank10 comprising largely post-reproductive individuals (median age
at recruitment: 58 years, range: 39-73 years, birth years: 1934-1970; Supplementary Figure
1), and investigated the association with reproductive success. We called large copy number
variants (deletions and duplications) from SNP genotyping array data on 340,925 unrelated
participants of European genetic ancestry (Supplementary Figure 2), and identified PTVs
from exome sequencing among a subset of 139,477 participants (Supplementary Figure 3)11.
For each participant, we then calculated the cumulative burden of private (only observed in
one individual), heterozygous genic deletions and PTVs by combining shet selection
coefficients of each autosomal gene impacted by these variants (under the assumption that
fitness is multiplicative, see Methods), which we term their shet burden. The distribution of shet

burden was statistically indistinguishable between males and females: for participants with
only genic deletion data available, 0.56% and 0.55% respectively had an shet burden ≥ 0.15
(Kolmogorov-Smirnov p=1.00; Figure 1C), and for participants with both genic deletion and
PTV data available the analogous proportions were 4.60% and 4.59%, respectively
(Kolmogorov-Smirnov p=0.52; Figure 1D).

We assessed the relationship between shet burden and number of children, using a linear
regression correcting for age, genetic ancestry, and birth cohort (Methods; Figure 1A;
Supplementary Table 1). We observed that an shet burden of 1 (the highest possible burden)
is associated with a decrease in the overall total number of children for males (0.26 fewer
children [95% CI 0.18-0.34], p=6.5x10-10) but not females (0.05 fewer children [95% CI
-0.02-0.11], p=0.20) when combining results from deletion and PTV-based analyses.

To determine if the observed association of shet burden with reproductive success was
primarily linked to an increased likelihood of remaining childless, we performed two
analyses. Firstly, we evaluated childlessness using logistic regression and again observed a
striking sex difference in participants’ probability of having any children given their shet

burden, for both PTVs and genic deletions (Figure 1B). Combining the analyses of genic
deletions and PTVs, we found that an shet burden of 1 is associated with a lower probability



of males having any children (OR=0.32 [95% CI 0.24-0.41], p=4.9x10-17) much more than
females (OR=0.64 [95% CI 0.49-0.84], p=1.2x10-3). We also observed that private
duplications and likely damaging private missense variants exhibit similar but weaker
associations with childlessness (Extended Data Figure 1). Secondly, if we remove childless
individuals from the analysis, shet burden ceases to have a significant correlation with the
number of offspring (Extended Data Figure 2). This is supported by the observation that,
when we stratify individuals with children by the number of children, the shet distribution does
not vary and confirms that the observed association with reproductive success relates
primarily to increased childlessness (Supplementary Figure 4). This observation is consistent
with studies that have associated demographic factors with reproductive success, which
have also observed that associations are weakened or disappear when childless individuals
are removed from the analysis (e.g. Barthold et al.12).

We also considered whether ascertainment biases or differences in fertility between the UK
Biobank sample and the UK population as a whole could affect these results. As UK Biobank
participants included in these analyses are enriched for females (54%), the observed sex
difference is not due to having greater statistical power to detect an effect on reproductive
success in males. Likewise, fertility rates between the UK Biobank population and the UK
population as a whole are highly similar; the average total fertility rate in the UK from
1983-2000 (where data are available for both males and females), when UK Biobank
participants would have been reproductively active, was 1.78±0.07 s.e.m. for males13 and
1.76±0.05 s.e.m. for females14, which is very similar to that observed among UK Biobank
participants (average number of children for males = 1.77; females = 1.80).

We observed a consistent sex difference in the association of shet burden with childlessness
when performing this analysis in different ways, including: (i) limiting analyses to carriers of
private genic deletions or PTVs in the genes under most selective constraint (following
thresholds set by their authors: pLI ≥ 0.91 or shet ≥ 0.152; Supplementary Figure 5), (ii)
extending analysis to more frequent, but still rare genic deletions and PTVs (Supplementary
Figure 6), (iii) excluding genes known to be associated with a disease (male OR=0.33 [95%
CI 0.24-0.46], p=4.1x10-11; female OR=0.68 [95% CI 0.49-0.94], nominal p=0.02; Methods),
and (iv) restricting analysis to individuals in specific birth cohorts (Extended Data Figure 3).

Evaluating different hypotheses
We evaluated three hypotheses that could account for the association with increased
childlessness: (i) impaired fertility (e.g. inability to produce viable gametes), (ii) adverse
health conditions, and (iii) cognitive and behavioural factors (which may be associated with
decreased chances of finding a reproductive partner or increased voluntary childlessness).
We observed that shet burden is not significantly associated (after correcting for multiple
testing) with an increased risk of male (OR=6.37 [95% CI 1.07-37.87], nominal p=0.04) or
female infertility (OR=0.83 [95% CI 0.33-2.09], p=0.70) as defined based on combined
health outcomes data for all UK Biobank participants (combined hospital episode statistics,
primary care records, self-reported conditions, and death records). Three additional lines of
evidence suggest impaired fertility is not the predominant cause of the sex-differential
association between shet burden and childlessness. First, when introducing male infertility



status as a covariate in the association testing, we observed minimal reduction in the
strength of the association between shet burden and male childlessness (OR=0.32 [95% CI
0.24-0.42], p=6.2x10-17; Supplementary Table 2). Second, we observed minimal change in
the association between shet burden and male reproductive success after removing all 150
autosomal genes for which at least limited evidence exists of an association to male infertility
(OR=0.32 [95% CI 0.24-0.42], p=1.1x10-16)15 or all 742 genes associated with male infertility
in mice (OR=0.33 [95% CI 0.25-0.43], p=3.1x10-15)16. Finally, genes under the highest
selective constraint (shet ≥ 0.15) do not appear to be more highly expressed in testis, unlike
the genes currently known to be associated with male infertility (Supplementary Figure 7).
Together, these findings are consistent with a previous study that sought but did not find a
widespread role for highly-penetrant dominant deletions in spermatogenic failure17.

Previous studies have shown that physical birth defects are associated with reduced
reproductive success18,19. We assessed whether any adverse health conditions contributed
to the association between shet burden and childlessness. We independently tested 19,154
ICD-10 codes (from both hospital episode statistics and combined health outcomes data
across four levels of the ICD-10 hierarchy; Methods) as a covariate in the association test of
shet burden with childlessness (Extended Data Figures 4, 5; Supplementary Figures 8, 9;
Supplementary Table 2; Methods). We found that while many ICD-10 codes are associated
with having children, in particular positive associations with male-specific codes for elective
sterilisation and female-specific codes associated with pregnancy and childbirth (Extended
Data Figure 5), correcting for any ICD-10 code had minimal impact on the strength of
association between shet burden and childlessness (Extended Data Figure 4; Supplementary
Figures 8, 9). The ICD-10 code with the largest (but still modest) impact on the association
of shet burden and male childlessness was observed for ‘developmental disorders of
scholastic skills’, although this only reduced the Odds Ratio of 0.317 to 0.325 (Extended
Data Figure 4; Supplementary Table 2). In addition to diseases, clinically annotated ICD-10
codes are also available for a range of factors denoting health status and contact with health
services. We noted that one of these also had a modest impact on the association of shet

burden and male childlessness when included as covariates in association testing (Extended
Data Figure 4; Supplementary Table 2). This code relates to social environment problems
(code Z60), with the association driven primarily by the status of living alone (subcode
Z60.2). This code is also positively associated with shet burden.

There is existing evidence, primarily based on examinations of western populations, that
behavioural and cognitive traits are associated with reproductive success in a sex-differential
manner. First, the reduced reproductive success associated with a range of psychiatric
disorders is much more pronounced in males20. Second, personality traits associated with
increased reproductive success differ between males and females, with increased
extraversion in males but greater neuroticism in females being linked to increased
reproductive success21. Third, although the most highly ranked characteristics in a
reproductive partner are highly concordant between the sexes22, some mate preferences
differ between the sexes, with males placing greater value on physical attractiveness and
females valuing cues relating to earning potential21–24. Finally, low socioeconomic status and
low educational attainment have been more strongly linked to increased childlessness in



males than females across populations25–28. This has been hypothesized to be due to males
of lower socioeconomic status finding it harder to find a partner12,29.

Highly constrained genes exhibit higher expression levels and broader expression across
tissues than less constrained genes1. Ubiquitous expression potentially impedes insight into
the underlying biology of selection. We generated shet burden scores excluding genes
expressed in 53 tissues characterised by GTEx30 and then used these scores to test the
association with childlessness (Supplementary Figure 10). As expected due to the large
number of genes excluded for each tissue, we observed a substantial decrease in statistical
significance for all tissues in males and all but one tissue in females. However, overlapping
confidence intervals on effect size estimates make identification of tissues most relevant for
selection challenging. Nevertheless, we did observe that shet was more strongly positively
correlated with gene expression levels in all 13 brain regions than all 40 non-brain regions
(including testis)30. When shet values are weighted by the number of PTVs observed in UK
Biobank (thus incorporating consideration of each gene’s contribution to shet burden)
expression in brain tissues remains more strongly correlated than any other tissue
(Supplementary Figure 11). These analyses highlight the potential greater relevance of the
brain in the biological processes underlying selection against PTVs in highly constrained
genes.

Some of the observations about behavioural and cognitive associations with sex-differential
reproductive success have been related to sexual selection by mate choice, in which one
sex (typically female) tends to be more discriminating in their choice of reproductive
partners. One theory posits that this is due to differential parental investment31; the sex that
invests more in offspring (typically female) is more discriminating in its choice of reproductive
partners, especially with regard to those partners’ potential to invest in offspring. Alternative
theories have been proposed regarding the causes of sexual selection, including those that
focus on disparities in gamete size (Darwin-Bateman paradigm32,33).

One prediction of the hypothesis that differential mate choice underpins the observation of a
stronger male association of shet burden with increased childlessness is that males with a
high shet burden should find it harder to find reproductive partners than females. We
observed that UK Biobank participants with high shet burden were significantly less likely to
have reported currently living with a partner – consistent with the findings from ICD-10 codes
– and that, like reproductive success, this association was significantly stronger in males
than in females (Figure 2A). UK Biobank males currently living with a partner are also much
more likely to have children (OR=5.80 [95% CI 5.64-5.97], p < 1x10-100; Extended Data
Figure 6A). We note that the status of currently living with a partner is an imperfect proxy for
partner status during peak reproductive years, but the latter information is not currently
available in UK Biobank. We also found that shet burden was significantly associated with a
lower probability of ever having had sex for both male (OR=0.06 [95% CI 0.03-0.14],
p=2.5x10-11) and female (OR=0.11 [95% CI 0.05-0.27], p=1.2x10-6) UK Biobank participants,
without significant sex-difference (Figure 2B). Additionally, while same sex sexual behaviour
is strongly associated with increased childlessness in UK Biobank (male OR=0.14 [95% CI
0.13-0.15], p<1x10-100; female OR=0.27 [95% CI 0.25-0.29], p<1x10-100; Extended Data
Figure 6H), we observed no significant association after multiple-testing correction of shet



burden with the likelihood of having engaged in same sex sexual behaviour among males
(OR=1.98 [95% CI 1.10-3.55], nominal p=0.02; Supplementary Figure 12) nor did we
observe any change in the association between shet burden and childlessness when
excluding individuals who engaged in same-sex sexual behaviour from our primary model
(OR=0.33 [95% CI 0.25-0.43], p=4.5x10-15).

While these findings are consistent with a role for the ability to find a partner in the
association between shet burden and reproductive success, this relationship need not be
caused by sex differences in mate preferences. It could also result from sex differences in
the severity of cognitive and behavioural traits that are associated with shet burden, coupled
to mate choice preferences that are not sex-differential. These mechanisms are not mutually
exclusive; both could be contributing to an overall sex-differential reduction in reproductive
success, albeit on different traits. We explored in UK Biobank whether the association of shet

burden on reproductive success might plausibly be mediated through some of the specific
factors highlighted by the previous psychiatric, demographic and psychosocial research
summarised above. Firstly we investigated the association of shet burden with cognition as
measured by fluid intelligence in 106,299 (49,631 males, 56,668 females) UK Biobank
participants. We found that shet burden was associated with significantly reduced fluid
intelligence scores of males and females with similar effect sizes (Figure 2F). Increasing shet

burden is also associated with lower educational attainment (Figure 2C), lower household
income (Figure 2E), and greater socioeconomic deprivation (Extended Data Figure 7), again
with similar effect sizes in males and females.

To evaluate the potential link between lower cognitive performance and male reproductive
success in a more quantitative manner in a less biased population sample, we extended
previously published work relating the results of IQ tests taken by 95% of Swedish males
during military conscription to their completed family size34. We estimated that lower scores
in IQ tests could account for 11% [95% CI 8%-12%] of the reduced male reproductive
success associated with high shet burden (Supplementary Figure 13, Methods). We also note
that, in the Swedish data, the association between reduced reproductive success and lower
IQ scores was most pronounced in males with IQ<70 (Supplementary Figure 14)34; such
individuals are likely proportionately fewer in UK Biobank relative to the general population.

Analysis of psychiatric disorders in UK Biobank is complicated by both recruitment bias away
from more severe psychiatric disorders and incomplete data on participants10,35–37. The most
comprehensive data are available on a subset of UK Biobank individuals from a mental
health questionnaire for which participants were invited by email (n = 157,366)36. We
observed that a high shet burden was very strongly associated with not having an email
address (male OR=0.30 [95% CI 0.24-0.39], p=4.1x10-21; female OR=0.45 [95% CI
0.36-0.57], p=1.4x10-11; Supplementary Figure 15), which likely explains why individuals with
a high shet burden were much less likely to complete the questionnaire (male OR=0.43 [95%
CI 0.33-0.56], p=5.5x10-10; female OR=0.46 [95% CI 0.36-0.58], p=2.1x10-10; Supplementary
Figure 15). Therefore we focused analyses of mental health disorders on the complete
health outcomes data available for all participants. These data corroborate a previous
finding9 that high shet burden is associated with increased risk of psychiatric disorders
previously linked with reduced reproductive success (intellectual disability, schizophrenia,



autism, attention deficit hyperactivity disorder, and bipolar disorder; Figure 2D,
Supplementary Figure 16)20. In accordance with prior literature on the association of
psychiatric diagnoses with reproductive success20 and among UK Biobank participants,
psychiatric disorders are associated with decreased probability of having any children in both
males (OR=0.36 [95% CI 0.32-0.40], p=8.9x10-78) and females (OR=0.58 [95% CI
0.52-0.66], p=2.1x10-18), albeit with substantially stronger association in males (Extended
Data Figure 6D). This finding accords with a previous study showing that copy number
variants associated with increased risk of schizophrenia are also associated with
disproportionately reduced reproductive success in males38. Removal of carriers of
well-characterised neurodevelopmental disorder-associated copy number variants (n =
12,608 individuals; Methods), which includes schizophrenia-associated variants, does not
significantly alter the association of shet burden with reduced male reproductive success
(OR=0.31 [95% CI 0.23-0.40], p=6.3x10-17).

We subsequently tested the association of shet burden with childlessness excluding
individuals with any evidence of a mental health disorder linked with reduced reproductive
success (from hospital episode statistics, combined health outcomes data, or the mental
health questionnaire). We observed very similar effect sizes to when analysing all individuals
(male OR=0.33 [95% CI 0.25-0.43], p=1.6x10-15; female OR=0.63 [95% CI 0.48-0.83],
p=1.1x10-3), suggesting that the association with childlessness is not predominantly driven
by this subset of mental health disorders. We explored this further, using data external to UK
Biobank that are less affected by the limitations described above. Using previous estimates
of the increased risk of mental health disorders associated with PTVs in highly constrained
genes9, and the reduced reproductive success associated with those disorders20, we
estimated that these mental health disorders could account for 16% [8 - 35%] of the reduced
male reproductive success associated with high shet burden (Methods). Thus, in UK Biobank,
both lower performance in tests of fluid intelligence and increased risk of psychiatric
disorders likely account for only modest proportions of increased male childlessness
associated with shet burden.

We next used multiple regression to explore how much of the association between shet

burden and childlessness can be accounted for by the multiple correlated factors described
above (where available for the entire cohort), namely: living with a partner, having had sex,
having a mental health disorder associated with reduced reproductive success, having a
university degree and having an infertility code in health records. Collectively, these factors
can account for most of the association of shet burden with childlessness in males (68%) but
a smaller proportion in females (16%), as assessed by the difference in incremental
Nagelkerke’s r2 of PTV shet burden between models (Methods; Extended Data Figure 8A;
Supplementary Figure 17). By far the biggest contribution comes from living with a partner
and having had sex (Extended Data Figure 8A). Importantly, this analysis also showed that,
despite the statistical significance of the association between shet burden and childlessness,
shet burden accounts for less than 1% of the likelihood of being childless for both sexes.



Contribution to selective constraint
Overall, we estimate that reduced reproductive success due to shet burden potentially
accounts for 20% [13-28%] (Extended Data Figure 8B; Extended Data Figure 9) of the total
reduction in fitness expected due to purifying selection against PTVs as predicted by shet

(Methods)4, with this reduction in fitness being much stronger in males. We note that the
total reduction in fitness predicted by shet will include a substantive contribution from
pre-reproductive mortality, which is not quantified here. We also note that current estimates
of shet are based on data from aggregated research cohorts, and may thus be biased
upwards due to individuals with high shet burden likely being under-represented; participation
in research has previously been shown to be biased with respect to gender, socioeconomic
status and genetic variation39. Therefore, PTVs within highly constrained genes may be
present at higher frequencies in the general population than in research cohorts. This bias
could result in the true value of shet being lower than currently estimated, and, consequently,
the contribution of reduced reproductive success to the overall reduction in fitness due to
purifying selection being greater than estimated here.

These estimates of reproductive success and selection coefficients are reflective of a
population at a particular point in time. The proportionate contribution of reduced
reproductive success to the overall reduction in fitness associated with genic purifying
selection is likely to change over time. Medical advances have altered the landscape of
infertility and pre-reproductive mortality substantially. Moreover, childlessness is highly
dynamic over time. Demographic data demonstrate that population-wide childlessness can
double in just two decades, a trend that is readily apparent in UK Biobank (Supplementary
Figure 1). We cannot discount that sex-differential sociodemographic factors, in addition to
sex differences in trait severity and mate choices, could also be contributing to dampening
the apparent association between shet burden and childlessness in women. Higher
educational attainment has been shown to be one of the factors most strongly positively
associated with childlessness in females27. Indeed, when we correct the association between
shet burden and childlessness for having a university degree, we see an increased
association of shet burden with childlessness in females (OR=0.56 [95% CI 0.42-0.73],
p=2.8x10-5; Extended Data Figure 8A; Supplementary Figure 17); but the association with
male childlessness remains considerably stronger than in females.

Discussion
In summary, we find that, in individuals of European ancestry within the UK Biobank,
reduced reproductive success, especially in males, is associated with purifying selection
acting on human genes, and that this may be mediated primarily by mate choice based on
preferences relating to cognitive and behavioural traits. The mechanisms underlying this
association have not been fully resolved here. Mate preferences are multi-dimensional and
vary across cultures and time24, and studies of mate preferences are often biased to western
contexts. It is likely that reduced reproductive success associated with increased shet burden
involves multiple cognitive and behavioural traits, not all of which will have been studied
here. The negative association of shet burden with measures of fluid intelligence, household



income and educational attainment, together with the previously documented stronger
female preference for reproductive partners with good financial prospects22 suggest that sex
differences in mate preferences might contribute in part to the sex-difference in reproductive
success with increased shet burden. However, as we are not able to assess the association of
shet burden with all characteristics that are valued in a reproductive partner, especially those
that are ranked most highly by both sexes (e.g. emotional stability and maturity)22, we cannot
exclude the possibility that sex differences in the association of shet burden with these traits
also contribute to the sex difference in reproductive success. Nonetheless, this study is
consistent with the relevance of Darwin’s theory of sexual selection5 to contemporary human
populations. For further discussion of the limitations and implications of these findings,
please see Supplementary Note 1 - Frequently Asked Questions.

We note that while this study demonstrates that rare heterozygous genetic variation has a
much stronger association with reproductive success in males than females, Genome-wide
association studies (predominantly in individuals with European ancestry) have suggested a
greater contribution of common genetic variation to variance in reproductive success in
females than males40, although the genetic correlation in total fertility between men and
women is highly correlated41. As narrow-sense heritability of childlessness does not differ
between sexes42, these two observations are potentially complementary: the larger
contribution of heterozygous rare genetic variation to male reproductive success could be
lowering the proportionate contribution of common genetic variation. Previous work
demonstrated that the proportion of the genome that is homozygous is also associated with
decreased reproductive success as measured through both increased childlessness and
number of children ever born, although without an apparent sex-difference in the latter, and
proposed that these associations are largely driven by rare homozygous variation, which we
did not assess here43. Our study is focused on understanding why some genes might be
under much stronger selective constraint than others, and not on a comprehensive analysis
of the genetic basis of reproductive success.

These findings may help to explain why only a minority of highly constrained genes have
been associated with genetic disorders that increase pre-reproductive mortality or cause
infertility. While there are likely more genetic disorders to be discovered among these
genes44,45, we anticipate that these highly constrained genes will not neatly divide into those
that cause genetic disorders and those that reduce reproductive success. Rather, we predict
that damaging variants in many of these genes will perturb neurodevelopment resulting in a
spectrum of cognitive and behavioural outcomes, which may increase an individual’s risk of
childlessness, but only result in a clinically-ascertainable condition in some individuals.

Sex-differential reproductive success potentially contributes to some other sex-differential
patterns of genetic associations for cognitive and behavioural traits. For example,
preferential transmission from mothers of alleles increasing risk of neurodevelopmental
disorders has been related to the greater ‘resilience’ of females to such alleles46. However,
our findings that the association of cognitive and behavioural traits with the damaging
genetic variation studied here is similar between the sexes suggests that sex-differential
reproductive success may be a more plausible explanation for some of these observations,



as seen for the 22q11.2 deletion47; although, it is unlikely to explain sex-differential genetic
associations in autism spectrum disorder48.

Childlessness can be voluntary or involuntary. A survey of childless individuals (at age 42) in
the 1970 British Birth Cohort found that 28% of men and 31% of women reported not
wanting to have children49. Involuntary childlessness can have serious consequences for
mental health, and further studies of the factors influencing involuntary childlessness are
warranted (see further discussion as part of Supplementary Note 1).

These analyses have several limitations. First, longitudinal relationship data for UK Biobank
participants that might clarify the potential association of shet burden with the ability to initiate
and/or sustain a reproductive partnership during peak reproductive years is not available.
Second, we have not investigated the association of shet burden with the full range of
cognitive and behavioural traits relating to mate preferences and reproductive success. We
anticipate that teasing out the relative contributions of correlated cognitive and behavioural
traits will be challenging. Third, UK Biobank participants are biased towards higher health,
educational attainment and socioeconomic status39, and estimates of the negative
association of shet burden with reproductive fitness in UK Biobank possibly underestimate the
true effects in the general population. Finally, we cannot account for as-yet-undiscovered
male infertility genes in these analyses; nonetheless, our results based on clinically- and
self-reported infertility (Extended Data Figures 4, 5) suggest a minor contribution of male
infertility to the sex-differential relationship between shet burden and childlessness.

Our study focused on individuals of European ancestry and analogous studies across
different populations and cultures are needed. Males have considerably greater variance in
reproductive success than females across cultures50, including higher levels of childlessness
than females27, highlighting the potential for sexual selection acting on male reproductive
success to act across populations. We also note that some trends relating to mate
preferences and male childlessness have some evidence of being cross-cultural in
nature22,26,50. We anticipate future studies that integrate genome-wide sequencing data on
large population samples from a range of ancestries to more fully characterise the nature of
selection pressures acting on damaging genetic variation in our species.

Figure Legends

Figure 1. Differences in male and female reproductive success as a function of
cumulative rare deleterious genetic variation.
(A, B) Effect size/odds ratio estimates for the association of cumulative deleterious variation
for deletions (dels), SNV and InDel Protein Truncating Variants (PTVs), and a combined
meta-analysis with number of children (Meta) (A) and childlessness (B) separated for males
(jade) and females (violet). Number of individuals included in each analysis is indicated by
the size of the point. Asterisks indicate significant associations after Bonferroni correction for
20 tests (p < 2.5x10-3; Methods). The arrow in panel (B) indicates the confidence interval
stretches beyond the limits of the y-axis. (C; D) Proportion of individuals in 0.15 shet bins for



deletions (C) and PTVs (D). (E; F) Percentage of individuals with children in bins based on
shet burden for deletions (E) and PTVs (F). Error bars for panels C-F are 95% confidence
intervals calculated on the population proportion.

Figure 2. Association of shet burden with traits known to be associated with
reproductive success.
Shown are similar plots to Figure 1A,B for six additional phenotypes: (A) having a partner at
home, (B) ever having engaged in sexual intercourse, (C) educational attainment as
measured by having a university degree, (D) household income (as measured by income
bracket and corrected for having a partner at home; see methods), (E) fluid intelligence (in
standard deviations), and (F) having a mental health disorder. For each trait, we tested using
a logistic (A,B,C,D) or linear (E,F) model for the association of shet burden with each
phenotype shown above (methods). Note that the x-axis for plot (D) is in log rather than
linear scale. Asterisks indicate significant associations after Bonferroni correction for 20 tests
(p < 2.5x10-3; Methods).

Methods

Sample Selection and Phenotype Collation
To collate phenotypes for all individuals in UK Biobank, we downloaded bulk phenotype files
from the UK Biobank data showcase (https://www.ukbiobank.ac.uk/data-showcase/; data
acquired 22 Jan 2020). Due to ascertainment biases with post-recruitment data
(Supplementary Figure 15), we only retained data which were ascertained at time of
recruitment as opposed to those ascertained via followup (i.e. instance 0 in the UK Biobank
data showcase). Please see Supplementary Table 1 for detailed descriptions of all
phenotypes assessed in this manuscript, which includes how each was processed, if
applicable. Individuals with missing data for a relevant phenotype were excluded from
analysis when testing that phenotype.

Following phenotype collation, we next selected for final analysis individuals of broadly
European ancestry as determined by Bycroft et al.51, which left a total of 409,617 individuals.
To identify and remove related individuals, we first downloaded the relatedness file from the
UK Biobank data showcase using the ukbgene tool, which contains 107,124 relatedness
pairs among UK Biobank participants51. Next, we sorted individuals by the total number of
related pairs within this file, and removed the individual with the most related pairs and
recalculated the total number of relationships for all other individuals. We repeated this
process until no related pairs remained, leaving a total of 342,717 individuals for
downstream analysis.

https://www.ukbiobank.ac.uk/data-showcase/


Calling, Quality Control, and Annotation of Copy Number
Variants from SNP Microarrays
To ascertain copy number variants from 488,377 UK Biobank participants with available
genetic data51, we utilised the PennCNV CNV-ascertainment pipeline52. Raw CEL files were
downloaded in 107 independent batches, of which 95 batches were genotyped with the
standard UK Biobank array platform and 12 batches were genotyped with the UKBiLEVE
array platform. Each batch was then processed independently through the following calling
pipeline: first, raw CEL files were genotyped with Affymetrix power tools
(http://media.affymetrix.com/support/developer/powertools/changelog/index.html) 'genotype'
with default settings. Next, using the 'generate_affy-geno_cluster.pl' and
'normalize_affy_geno_cluster.pl' scripts provided as part of PennCNV, genotyped samples
within each batch were clustered and normalised, respectively. Normalised clustering output
was then split into one file per individual and provided as input to 'detect_cnv.pl' to generate
an initial call set of CNVs. Finally, initial CNVs were then passed to the 'clean_cnv.pl' script
with "-fraction" set to 0.25 in order to merge nearby CNV calls in each individual. Following
CNV calling, we excluded all individuals with ≥ 20 CNVs and absolute waviness factor > 0.3,
and all variants on either the X or Y chromosome, which left 485,593 individuals and
3,101,974 raw, redundant CNVs.

To perform quality control of ascertained CNVs, we developed a novel approach which uses
individuals for which CNVs have been ascertained with both array and exome-based
approaches. In short, we started with the basic logistic regression concept outlined in Mace
et al.53 but instead used the intersect of array- and whole exome sequencing
(WES)-ascertained CNVs as the dependent variable in a random forest model54, with various
per-individual and per-CNV metrics as predictors. To train this model, we utilised an
additional set of 46,856 individuals collected as part of the INTERVAL study55 genotyped on
the same array as participants in UK Biobank, of which 4,465 also had matched WES data.
For INTERVAL individuals, we performed array-based CNV calling identically to the method
as described above and ascertained exome-based CNVs using three different algorithms
with default settings: XHMM56, CANOES57, and CLAMMS58. For each INTERVAL participant
for which we had both array and exome-based CNVs, we then determined a "WES overlap
score" as a product of the overlap of each array-based CNV with the three WES-based
callers, corrected for whether or not any overlap was possible due to probe/exon bias.
Scoring results in a roughly continuous metric for each array-ascertained CNV of between
zero and three, where zero represents a lack of overlap with any WES CNV call and three
represents a perfect overlap with all three algorithms. For predictor covariates, we used
several metrics already shown to be of high quality for CNV quality control53,59, per-CNV
metrics based on these (e.g. mean log R ratio for each probe within a CNV rather than for all
probes across an entire individual), and a novel metric which uses specific probes on the
array known to be biased for CNV calls on bad arrays (Supplementary Table 3; see code
availability). To determine estimated sensitivity/specificity of our model we performed 10-fold
cross-validation, where all array CNVs which overlapped at least two exons were split into
equal test and training sets and provided, separately for deletions and duplications, as input
into the randomForest implementation in R as a linear predictor with nTrees set to 500. To



generate a call set of final quality controlled CNVs for downstream analyses, we then trained
a final random forest using all INTERVAL individuals with matched array and WES data and
generated predicted WES overlap scores for all 3,101,974 raw UK Biobank CNVs identified
with PennCNV as described above. CNVs were then filtered based on a predicted sensitivity
of 95% based on cross-validation, leaving a remaining 1,612,831 CNVs (1,043,717
deletions, 569,114 duplications).

CNVs passing quality control were then provided as input to a custom java pipeline which
merged all CNVs, regardless of whether they were deletions or duplications, based on 75%
reciprocal overlap to generate a set of 173,871 nonredundant loci. Following filtering to
328,899 unrelated individuals of broadly European ancestry for which CNV data was
available, each locus was quantified for allele frequency. Loci were then assessed for
overlap with a set of known pathogenic CNVs identically to Crawford, et al.59 and annotated
using Variant Effect Predictor (VEP) v9760. Only loci with an annotation of
'transcript_ablation' or 'feature_trunctation' and ‘coding_sequence_variant’ for deletions, and
'transcript_amplification' or 'feature_elongation' and ‘coding_sequence_variant’ for
duplications were considered to be affecting a target gene. A total of 1,118,859 redundant
CNVs remained for downstream analysis following all filtering and annotation (721,536
deletions, 397,323 duplications; Supplementary Figure 2).

Processing SNV/InDel Data from WES
To collate protein truncating, missense, and synonymous variants for all 200,629 individuals
whole exome sequenced by UK Biobank11, we downloaded the GRCh38-aligned
population-level variant call format files from the UK Biobank (UK Biobank field 23156). All
autosomal variants were then annotated with VEP v10260, CADDv1.661, allele frequency from
gnomAD62, and, where relevant, MPC63 and LOFTEE62. MPC scores were converted from
build37 to build38 using the CrossMap tool64. Variants were assigned to a gene based on the
primary ENSEMBL transcript with the most severe consequence. Variants were considered
to be PTVs if they were annotated by VEP as having a splice acceptor/donor, stop gained, or
frameshift consequence. We then retained only variants with a gnomAD-specific allele
frequency < 1x10-3. Missense variants were only retained if they had MPC > 2 and CADD >
25. PTVs were only retained if they were annotated by LOFTEE as high confidence, had
CADD > 25, and were not located in the last exon or intron of the canonical transcript as
annotated by ENSEMBL65. We next applied genotype-level filtering where a given genotype
was set to null (i.e. ./.) if the genotype had a depth < 7, genotype quality < 20, or a binomial
test p.value for alternate versus reference reads for only heterozygous genotypes ≤ 0.001. If
more than 50% of genotypes were missing for a given variant, that variant was filtered.
These filtering approaches left a total of 11,455,900 redundant autosomal SNVs and InDels
across all 139,480 unrelated individuals of broadly European ancestry included in this study
(Supplementary Figure 3).

Calculating shet Burden for UK Biobank Participants
To calculate an individual’s shet burden, assuming that fitness is multiplicative and that there
is no epistasis between genes which are lost, we utilised the following formula:



𝑠ℎ𝑒𝑡[𝑖,𝑣] = 1 − 𝑔∏(1 − 𝑠ℎ𝑒𝑡[𝑖,𝑣,𝑔])
where indicates individual ’s shet burden for variant class and indicates the𝑠ℎ𝑒𝑡[𝑖,𝑣] 𝑖 𝑣 𝑠ℎ𝑒𝑡[𝑖,𝑣,𝑔]
shet score for gene with a qualifying annotation for variant class in individual . As indicated𝑔 𝑣 𝑖
by the formula above, shet values were calculated independently for each variant type, with
possible values for of PTV, missense, synonymous, deletion, or duplication. Per-gene shet𝑣
values were obtained from Weghorn et al.4, under their demographic model which includes
drift and scores for 16,189 protein coding genes which we were able to definitively map to an
ENSEMBL gene ID. To ensure that our primary result of the association of shet burden with
childlessness is unaffected by the version of shet we use to calculate our burden scores, we
also utilised an earlier derivation of shet from Cassa et al.2 which does not take into account a
demographic model. Utilisation of shet scores from Cassa et al.2 did not significantly change
our primary result (Supplementary Figure 18).

To explore if genes known to be associated with male infertility were responsible for our
observed association with male reproductive success, we also generated individual shet

scores for each variant class excluding a set of 150 autosomal genes known to be
associated with male infertility (Supplementary Table 5 from Oud et al.15). Genes with an
annotation of limited, moderate, strong, or definitive evidence were excluded from calculated
shet scores16. Similarly, and to test if a greater number of 742 genes associated with male
infertility in mice were responsible for our observed association with male reproductive
success, we queried all genes from Mouse Genome Informatics16 with a phenotype code of
MP:0001925. Gene IDs were then translated to their human homologues and shet burden
scores excluding these genes were then generated and provided as input to logistic
regression as described above.

To test if our observed relationship was robust when excluding genes with a known disease
annotation, we also generated individual shet scores where we removed 4,414
disease-associated genes. We considered a gene to be disease-associated based on being
a confirmed or probable developmental disorder gene in the Developmental Disorders
Genotype-Phenotype Database (DDG2P; https://decipher.sanger.ac.uk/info/ddg2p), in the
Online Mendelian Inheritance in Man (OMIM; https://omim.org/) Morbid Map after excluding
'non disease' and 'susceptibility to multifactorial disorder' entries, or in ClinVar66 with a
pathogenic/likely pathogenic variant linked to a phenotype.

Logistic and Linear Modelling of Phenotypes
To test the association of each shet burden (i.e. shet[I,v]) per variant class with a given
phenotype (e.g. those in Supplementary Table 1), we used a general linear model via the
‘glm’ function in R of the form:

phenotype ~ shet[I,v] + age + age2 + birth.cohort + wes.cohort + PC1..PC40 + rare.PC1.PC100

As age and year of birth are not perfectly correlated in the UK Biobank due to primary
recruitment taking place over approximately 3 years, we also incorporated a categorical

https://decipher.sanger.ac.uk/info/ddg2p
https://omim.org/


dummy term (birth.cohort) in our model for all possible 5 year birth cohort windows (e.g. born
between 1940-1945, 1946-1950, etc.). wes.cohort UK Biobank sequencing batch, and is set
to either 0, 1, or 2 for individuals without sequencing data (i.e. individuals with only CNV shet

scores), sequenced in the first batch of UK Biobank WES67, or as part of the newest batch of
WES data11, respectively. Pre-computed ancestry principal components (PC1..PC40) for
each UK Biobank participant were generated by Bycroft et al.51 and acquired via the UK
Biobank data showcase. To alleviate concerns about a potentially arbitrary selection of the
number of ancestry principal components used in our models, we repeated our primary
analysis of the association between having children and shet burden in males with between
10 and 40 ancestry principal components and did not observe any change in our result
(Supplementary Figure 19). To ensure that more recent ancestry was not biasing our results,
we acquired a sparse identity-by-descent (IBD)-sharing matrix for 329,004 UK Biobank
participants (thus excluding 13,713 participants) of unrelated European ancestry computed
for the last 10 generations from Nait Saada et al.68 (data retrieved from UK Biobank return
3623). This matrix was provided as input to a custom Python script which computed the first
100 principal components for each participant using the ‘eigsh’ function from SciPy69. These
principal components were then provided as a covariate in all models (rare.PC1..PC100). As
with PCs derived from common SNPs, we tested if the arbitrary inclusion of various
IBD-derived PCs made a significant difference to our primary result and did not observe any
significant deviation (Supplementary Figure 19).

All models were run separately for males and females, for all five possible variant classes, ,𝑣
and at two allele frequency thresholds (Singletons and MAF < 1x10-3) for a total of 20 tests
per phenotype; all tests were evaluated for significance based on a Bonferonni threshold of p
< 2.5x10-3. For Supplementary Figure 6, we also tested two additional MAF cutoffs, < 1x10-5

and < 1x10-4. For binary phenotypes, ‘family’ was set to ‘binomial’ and for continuous
phenotypes other than total number of children, ‘family’ was set to ‘gaussian’. When
considering the overall number of children per participant (e.g. Figure 1A and Extended Data
Figure 2) ‘family’ was set to ‘quasipoisson’ to account for overdispersion of the response
variable. To combine the effect sizes or log odds ratios for CNVs and PTVs (e.g. for Figure
1A, B), we used the ‘metagen’ function from the ‘meta’ package70 in R to perform a
fixed-effects meta analysis. For logistic regression, we set parameters ‘method.tau’ to ‘SJ’
and ‘sm’ to ‘OR’. For linear or quasi-Poisson regression, we set the parameter ‘sm’ to
“SMD”. To avoid including an individual twice in our meta analysis, for samples with both
CNV and PTV data available, we prioritised PTV-derived shet scores.

When using raw variant counts as in Supplementary Figure 5, the shet term in the above
formula was changed to the total number of qualifying genes affected per individual, where
qualifying genes were either those with pLI ≥ 0.962 or those with shet ≥ 0.154. Individuals with
> 3 genes lost for deletions (pLI ≥ 0.9 n = 28; shet ≥ 0.15 n = 12) and PTVs (pLI ≥ 0.9 n = 1;
shet ≥ 0.15 n = 0) were removed prior to regression analyses. To provide a negative control
for our association tests, we also performed associations for several neutral phenotypes we
hypothesised to not be under negative selection: fresh fruit intake, handedness, and blonde
hair colour (Supplementary Table 1). None of these associations were significant after
correcting for multiple testing (Supplementary Figure 20).



To test the association of individual phenotypes with the likelihood of having children
(Extended Data Figure 6), we used a logistic model with the ‘family’ parameter of the ‘glm’
function set to ‘binomial’ in R of the form:

has.children ~ phenotype + age + age2 + birth.cohort + wes.cohort + PC1..PC40 +
rare.PC1..PC100

As with estimating the contribution of shet burden to phenotypes, all analyses were run
separately for both males and females and with a WES batch covariate as necessary. For all
models involving household income, we additionally included partner at home status as a
covariate, as household income was recorded per household, not per recruited individual.

All odds ratios, effect sizes, standard errors, p values, and total individuals per association
test reported in this manuscript can be found in Supplementary Table 4.

Collation and Testing of Participant Medical Data
To assess if a broad range of medical conditions play a role in mediating the association of
high shet burden with childlessness, we queried two relevant datasets provided by the UK
Biobank10: hospital episode statistics (HES) and combined health outcomes data (CHOD;
Supplementary Table 1). Briefly, for each UK Biobank participant, HES data incorporates
electronic inpatient data provided directly from NHS hospitals and CHOD aggregates HES,
general practitioner records, self-reported conditions, and death records. All data sources
are coded according to the International Classification of Disorders v10 (ICD-10). For the
purposes of this work, we ignored all cancer codings from HES and CHOD data (ICD
chapter II and codes O00-O08 of chapter XV), and instead used independent cancer registry
data; the UK Biobank acquires information on cancer diagnoses from the UK cancer registry
which aggregates a wide range of data sources including general practitioners, nursing
homes, and hospitals and is considered the more accurate data source for UK Biobank
participant cancer diagnoses. For ease of display, tests involving cancer codes are shown
with HES data (Extended Data Figure 4, 5, Supplementary Figures 8, 9).

We utilised both HES and CHOD sources to examine a broad set of medical conditions in
UK Biobank participants. Complete HES are available for all UK Biobank participants but are
probably depleted of conditions that are unlikely to be seen in a hospital setting (e.g. male
infertility). CHOD are also likely to be more sensitive to a wide variety of conditions as they
incorporate aforementioned HES data with both general practitioner records and
self-reported outcomes. Importantly, while general practitioner records are only available for
46% (n = 230,090) of UK Biobank participants, when we tested for an association between
shet burden and whether a participant had general practitioner records or not, we did not
observe a significant association for either males (OR=1.03 [95% CI 0.80-1.31], p=0.84) or
females (OR=1.14 [95% CI 0.91-1.43], p=0.25; Supplementary Figure 15)37. This indicated
that we were unlikely to see biases due to including CHOD from individuals who were
missing general practitioner records. As such, we prioritised the use of CHOD in most
analyses presented in the text, figures, and supplementary information of this manuscript –
complete results for all codes in both HES and CHOD data are available as Supplementary



Table 2. Exceptions include when testing codings from chapters XVII to XXII which are
beyond the diagnostic scope of CHOD, and cancer codes better ascertained from the UK
Biobank cancer registry as noted above (Extended Data Figure 4, 5; Supplementary Figures
8, 9).

To determine the role of 19,154 and 2,361 diseases, disorders, and special codes collated
from HES and CHOD, respectively, in the relationship between shet burden and childlessness
(Extended Data Figure 4, 5), we used a modified version of our primary logistic model of the
form:

has.children ~ shet[I,v] + icd.codec + age + age2 + birth.cohort + wes.cohort + PC1..PC40 +
rare.PC1..PC100

Where icd.code represents a binarised presence/absence of one of 19,154 different ICD-10
diseases, disease groups, and chapters, c. Tests were only performed when a given code
was represented by at least 2 individuals in both genetic (i.e. CNVs) and WES (i.e. PTVs)
data. When considering individuals who have a particular code, c, we utilised the hierarchical
information present within the ICD-10 coding system. For example, when we tested if
inclusion of a term for individuals with non-insulin-dependent diabetes mellitus (ICD-10 code
E11) has an association with childlessness, we also considered individuals with any
sub-code (i.e. E11.0-E11.9). This same principle was also used for disease groupings –
when testing the more general diabetes mellitus group (ICD-10 block E10-E14) we included
all individuals with any code between E10 and E14, including disease subtypes (e.g. E11.0).
For each model, we retained both an odds ratio for the association of individual shet burden
and presence of a given code with childlessness (Supplementary Table 2).

Evaluation of Gene Expression
To determine the expression in various tissues of all genes assessed in this study, we
downloaded processed median transcripts per million (TPM) values for all genes provided by
v7 of the GTEx study30

(https://storage.googleapis.com/gtex_analysis_v8/rna_seq_data/GTEx_Analysis_2017-06-0
5_v8_RNASeQCv1.1.9_gene_median_tpm.gct.gz). Only genes for which an shet score was
available were retained from this file.

To evaluate genes known to be involved in male infertility, we assessed if each gene was
affected by either a private deletion or PTV in a UK Biobank individual. We then plotted

in two ways: (i) as a factor of being a male infertility gene or not or (ii)𝑙𝑛 (𝑡𝑒𝑠𝑡𝑖𝑠 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)
having or not having a qualifying variant (Supplementary Figure 7).

To assess if genes expressed in a particular tissue modulated the relationship between shet

burden and childlessness, we also generated tissue-specific shet scores for all individuals
where we excluded all genes with a tissue-specific TPM value greater than 0.5. shet scores
for all 53 tissues were calculated as described above and used to test the association
between shet burden and childlessness (Supplementary Figure 10).



To examine the correlation between expression and shet, we performed two linear
regressions in all 53 tissues queried by the GTEx study: 1) the association between shet and

corrected for gene coding sequence length and 2) the association𝑙𝑛 (𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑡𝑖𝑠𝑠𝑢𝑒)
between shet times the number of singleton LoF variants and corrected for𝑙𝑛 (𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑡𝑖𝑠𝑠𝑢𝑒)
gene coding sequence length. For each tissue and model, we extracted the overall variance
explained for each model (r2) and plotted it as part of Supplementary Figure 11.

Modelling the Contribution of Phenotypes to Observed
Reduction in Fitness
Variant shet Burden
To estimate the contribution of shet to overall fitness (Extended Data Figure 8B), we extracted
log odds ratio estimates for the association of shet with having children from our logistic
model and estimated the proportion of childless individuals at various shet scores (0 to 1 at
0.1 intervals; Extended Data Figure 9). To calculate the error in our estimates (i.e. the
shaded areas in Extended Data Figure 8B), we used the 95% confidence intervals for the shet

burden log odds ratio from our original logistic regression. We note that we assume that
input parameters calculated with UK Biobank data are generalisable to the UK population as
a whole, but may slightly underestimate the error in our final result. Please see
Supplementary Note 2 for a more detailed description of how the contribution of shet to overall
fitness was calculated.

General Cognition
When possible, we used independent estimates from population level or external data to
alleviate biases in UK Biobank phenotype ascertainment (Supplementary Figure 15). As
such, data on cognitive ability and fertility are collected from Swedish population-level
government administrative registers that have been linked to Swedish conscription
registers71. To assess assignment into different branches of a universal conscription for
Swedish men, the Swedish government included an extensive cognitive ability test which all
men in Sweden had to take part in. Information on childbearing is based on birth records,
and linkage to both men and women is nearly universal, partly due to universal government
identity numbers, combined with serious paternity investigations in case of missing
information of the biological father. This information was used to calculate reproductive
fertility histories in 2012 for all men included in this study. We include data on all Swedish
born men who participated in the military conscription test at age 18-20 who were born
1965-1967. The conscription registers are described in more detail elsewhere34,72.

For the current study, we did not rely on the official cognitive ability scores assigned for each
man following their cognitive ability test as in Kolk and Barclay34, but instead made manual
calculations to create a more finely grained measure from raw test scores based on a battery
of cognitive ability tests that are available for 3 years in our conscription registers. The
Swedish military created an official IQ-measure based on a 9-score stanine scale that has
been used in a large number of scientific studies34,73. In the current study we developed a
more detailed score using information on the actual test scores of men participating in the
test. The conscription test consisted of four large subtests measuring different dimensions of



IQ with logical, spatial, verbal, and technical subtest72,74,75. To get a more finely tuned IQ
measure than the official stanine measure we used the raw test scores of each of these four
tests and summed the total number of correct questions for these four sub-tests. Within each
stanine IQ score, we then examined the distribution of test scores and after standardising
the test scores using only variation within each stanine score, calculated a new detailed IQ
score. This procedure is done to anchor our new IQ measure in the official stanine IQ score.
As our test scores have some missing values for men with very high and very low stanine
scores, this procedure results in a slightly underdispersed distribution and our new calibrated
IQ score has μ = 100 & σ = 12, as compared to the official stanine measure with μ = 100 & σ
= 15.

This score allows us to calculate cognitive ability by single digit IQ scores (Supplementary
Table 5); however, as we had to rely on only observations with complete test scores for all
test batteries, our data has a higher share of excluded men than the official cognitive ability
scores (used by Kolk and Barclay34 and others). In addition to the ~5% of men that did not
take the test (e.g. they were ineligible for military service due to handicap such as visual
impairments, that they were abroad, or were conscripted at an atypical age), we additionally
excluded a number of men for which scores of all test batteries were not available. Our
manually computed fine-grained measure was later standardised against the official
cognitive ability test score to maintain comparability and to assure our slightly smaller
population is still representative of the complete cohort. Compared to most other measures
of cognitive ability in the scientific literature, we argue that our population is unusually
representative as little (indirect) pre-selection due to cognitive ability took place.

We first estimated the association of overall shet burden with fluid intelligence (Figure 2F)
and, because fluid intelligence is normalised and IQ is normally distributed, converted this
effect size to a predicted change of IQ. To then estimate childlessness and fertility for low IQ
values not actually observed in the general population, we fit actual observations to a
sigmoidal model using the function ‘nls’ in R (Supplementary Figure 14; Supplementary
Table 5). As our empirical distribution did not conform to a standard test distribution, we then
simulated 100,000 individuals, with IQ values for each individual randomly selected from our
original Swedish IQ distribution with the mean shifted by the expected reduction in IQ as
explained by our shet model. We then assigned each simulated individual an expected
number of children and predicted probability of childlessness based on their simulated IQ
value as given in Supplementary Table 5. Number of children across all 100,000 individuals
was then averaged to generate an expected mean fertility for a given shet score
(Supplementary Figure 13). This value was then compared to the mean number of children
for the unburdened population via the following formula:𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑡𝑦. 𝑟𝑎𝑡𝑖𝑜 =  𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑡𝑦𝑠ℎ𝑒𝑡(1)𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑡𝑦𝑠ℎ𝑒𝑡(0)
To then calculate the proportion of reduced reproductive success explained by IQ (and by
extrapolation, other traits) we then divide this fertility ratio by the overall reduction in fitness

given by shet as described above. Please see Supplementary Note 3 for a more detailed
example of how we performed this calculation.



Mental Health Disorders
As with general cognition, we used estimates from external studies to alleviate biases in UK
Biobank phenotype ascertainment (Supplementary Figure 15)37. In this case, as we were
unable to accurately estimate the increased risk of developing individual mental health
disorders as a factor of individual shet burden, we instead utilised odds ratios from Ganna et
al.9. Only odds ratios for schizophrenia, autism spectrum disorder, and bipolar disorder were
retained. As Ganna et al.9 estimated the risk based on total count of high pLI (≥0.9)62 genes
with PTVs per individual instead of with shet, we assumed that an individual carrying one
such variant had an shet burden of 0.162, or the mean shet value of all high pLI (≥0.9) genes.
We then converted this into a proportion of individuals with a given mental health disorder, t,
at shet burden, x, by scaling the odds ratio with the following formula:𝑙𝑜𝑔(𝑂𝑅𝑠ℎ𝑒𝑡[𝑥,𝑡]) = 𝑙𝑜𝑔(𝑂𝑅𝑔𝑎𝑛𝑛𝑎)*𝑠ℎ𝑒𝑡[𝑥]0.162
To establish a baseline expectation for the prevalence of each mental health disorder at shet 0
we utilised population-level data from Power et al.20 and extrapolated for each trait at
increasing shet values (Supplementary Figure 21). To generate an expected mean number of
children for simulated individuals with mental health disorders, we used fertility statistics
generated by Power et al.20. As Power et al.20 did not provide childlessness data, we were
unable to generate expected childlessness as we did for other traits. Overall predicted
reduced fitness attributable to mental health and all values used for performing the above
analyses are provided in Supplementary Table 6.

Having a Partner at Home, Having had Sex, Educational Attainment, and Infertility
To determine the contribution of having a partner at home, ever having had sex, educational
attainment, and a medical diagnosis of infertility to the relationship between shet burden and
childlessness, we utilised a multiple regression model incorporating various combinations of
these traits (Extended Data Figure 8A; Supplementary Figure 17). First, we calculated the
variance in childlessness explained by a null model consisting of age, age2, birth cohort,
WES batch, the first 40 ancestry PCs, and the first 100 IBD-derived ancestry PCs using
Nagelkerke’s pseudo-r2 as calculated using the “nagelkerke” function from the R package
“rcompanion” (https://rcompanion.org/handbook/). Next, to determine the proportion of
variance explained in childlessness by shet alone, we calculated incremental pseudo-r2

between this null model and a model additionally incorporating a term for PTV shet burden.
We then repeated this analysis, except now including an additional covariate (e.g. having a
partner at home) to determine the reduction in variance explained by PTV shet when
correcting for the additional covariate. This reduction in variance was then converted to a
percent change via the following formula:% 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑏𝑦 𝑃𝑇𝑉 𝑠ℎ𝑒𝑡 = 𝑠ℎ𝑒𝑡 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙 𝑟2𝑤𝑖𝑡ℎ 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠ℎ𝑒𝑡 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙 𝑟2 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒
This basic analysis was then repeated for all possible combinations of having a partner at
home, ever having had sex, having a university degree, and having a medical diagnosis of
infertility (Extended Data Figure 8A; Supplementary Figure 17). Percent reduction in
variance explained values plotted in Extended Data Figure 8A and Supplementary Figure 17
are displayed for shet calculated using PTVs only.

https://rcompanion.org/handbook/


Relatively complete mental health disorder data are available for all individuals via the
complete health outcomes data; therefore, we also included a covariate for having a mental
health disorder as a covariate in our multiple regression model (Extended Data Figure 8A).
As income is provided by UK Biobank on a per-household basis (Figure 2E) and the number
of individuals with fluid intelligence data recorded at recruitment is significantly smaller than
for other covariates (Figure 2F), we did not include these as part of our multiple regression
model.
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Extended Data Legends
Extended Data Figure 1. Odds ratio estimates for the association of shet burden with
having children for all variant classes.
Identical plot to main text Figure 1A, but with additional data for synonymous, missense, and
duplication shet scores, separated into females (violet) and males (jade). Asterisks indicate
significance after Bonferroni correction for 20 tests (p < 2.5x10-3; Methods).

Extended Data Figure 2. Effect size estimate for the association of shet burden with
number of children for individuals with children.
Shown are the effect size estimates for the association of shet burden with number of
children, separated into females (purple) and males (jade), but with all childless individuals in
the UK Biobank removed. Like Main Text Figure 1A, the regression used to generate the
displayed result used the raw number of children, live births for females and children
fathered for males, rather than a binary value for having children. Asterisks indicate
significance after Bonferroni correction for 20 tests (p < 2.5x10-3; Methods).

Extended Data Figure 3. Odds ratio estimate for shet burden stratified by age group.
Shown are odds ratio estimates for the association of shet burden with having children,
stratified by participant age (y-axis) and separated into females (violet) and males (jade).
Age range intervals are left-open. Dash of the line indicates whether the estimate comes
from shet burden calculated from deletions (long dash), PTVs (short dash), or from a fixed
effects meta-analysis (no dash). Also shown for reference are the results for all individuals
regardless of age (All Ages), which is identical to the result shown in main text Figure 1B.
Asterisks indicate significance after Bonferroni correction for 20 tests (p < 2.5x10-3;
Methods).

Extended Data Figure 4. Mediation of the relationship between shet burden and
childlessness by various disorders.
Plotted is the deletion and PTV meta-analysis -log10 p value for the association between shet

burden and having children, corrected by one of 1,294 ICD-10 codes from a combination of
general practitioner, hospital episode records, and self-reported conditions (left) or hospital
episode records alone (right) separately for males (top) and females (bottom). Remaining
ICD-10 codes at different levels on the ICD-10 hierarchy not displayed here are plotted in
Supplementary Figures 8 and 9. Results are ordered first by ICD-10 chapter (x-axis) and
then by increasing -log10 p value (y-axis). The arrow for code Z37 indicates the point is below
the scale of the y-axis with -log10 p value indicated in parentheses. Visual outliers are
labelled and do not imply a significant change in the effect size of shet on childlessness.

Extended Data Figure 5. Mediation of the association between shet burden and
childlessness by various disorders.
Depicted are the results of our primary association between childlessness and individual shet

burden corrected for presence/absence of approximately 2,000 different disorders, diseases,
and health factors queried from (A,B) hospital episode statistics and (C,D) complete health
outcomes data as represented by the ICD-10 medical coding system separately for (A,C)



males and (B,D) females (see main text methods). Shown on the x-axis is the -log10 p value
for the association of shet with having children, corrected for a given diagnostic code. On the
y-axis is the -log10 p value for having a given medical code on likelihood of having children; p
values are placed above or below y = 0 based on the direction of effect, with disorders which
are associated with having children above and those associated with not having children
below. Codes were chosen for labeling to highlight outliers and not based on any statistical
criteria. Codes with points at the top or bottom of plots have -log10 p values ≥ 100. Color of
points and text is based on the ICD-10 chapter. Please note that text labels do not
necessarily represent the full official name of a given ICD-10 code.

Extended Data Figure 6. Association of eight relevant phenotypes/demographic
measures with the likelihood of having children among UK Biobank participants.
Shown are the results of a logistic regression estimating the odds ratio for the relationship of
(A) having a partner at home, (B) ever having had sex (C) completing university, (D) having
a severe mental health disorder, (E) household income, (F) fluid intelligence, (G) Townsend
deprivation index, and (H) engaging in same sex sexual behaviour with likelihood of having
children, separated into females (violet) and males (jade). 95% confidence intervals for all
plots are included, but may be invisible at the resolution of the figure. Please note that the
scales of the x-axis for plots (A) and (B) are different from plots (C-H) due to the relatively
stronger association of these traits with having children.

Extended Data Figure 7. Effect size estimates for the association between shet burden
and Townsend Deprivation Index.
Shown are the effect size estimates for the association between shet burden and Townsend
Deprivation Index, separated into females (purple) and males (jade). Units are unnormalized
Townsend Deprivation Indices for each individual in the UK Biobank. Asterisks indicate
significance after Bonferroni correction for 20 tests (p < 2.5x10-3; Methods).

Extended Data Figure 8. The role of individual phenotypes in the relationship between
shet burden, childlessness, and fitness.
(A) Odds ratio estimates for the association of cumulative deleterious variation for a
combined meta-analysis (deletions + PTVs) with childlessness (middle), corrected for a
combination of whether or not a study participant has a mental health (MH) disorder, a
partner at home, a university degree, infertility (as ascertained from Complete Health
Outcomes Data; Methods), or ever had sex; traits included in each model are indicated as
coloured boxes (males – jade, females – violet) on the y-axis. Stars within boxes indicate
either nominal (*) or Bonferroni-corrected (**) significance level with childlessness for each
covariate independently when correcting for PTV shet burden. For all possible combinations of
these traits, see Supplementary Figure 17. As indicated by coloured boxes, all models
include shet burden and were run separately for males and females. The marginal bar plot to
the right gives the proportion of the variance in childlessness explained by shet burden as
calculated for PTVs only, scaled to the model which only includes shet burden (i.e. the model
on the bottom of the plot). (B) Predicted reduction in overall fitness as a factor of individual
shet burden. Displayed is the expected reduction in fitness as a factor of increasing shet

burden, independently for each sex. Error is shown as the lighter shaded area surrounding
the trend line, and is based on the confidence intervals on the odds ratio as determined by



our logistic regression model (Figure 1B; Methods). The dashed line represents the
theoretical reduction in fitness as predicted by shet

4.

Extended Data Figure 9. The association of shet burden with childlessness.
Identical to Extended Data Figure 8B, except in this instance, the y-axis represents predicted
childlessness as a factor of individual shet burden, rather than predicted reduction in fitness.
Values at x = 0 represent actual mean childlessness among UK Biobank males (jade) and
females (violet) with an shet burden of 0.


