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 16 

ABSTRACT 17 

Affective and cognitive information conveyed by persuasive stimuli is evaluated and integrated by 18 

individuals according to their behavioral predispositions. However, the neurocognitive structure that 19 

supports persuasion based on either affective or cognitive content is poorly understood. Here, we 20 

examine the neural and behavioral processes supporting choices based on affective and cognitive 21 

persuasion by integrating four information processing features: intrinsic brain connectivity, stimulus-22 

evoked brain activity, intrinsic affective-cognitive orientation, and explicit target evaluations. We 23 

found that the intrinsic cross-network connections of a multimodal fronto-parietal network are 24 

associated with individual affective-cognitive orientation. Moreover, using a cross-validated 25 

classifier, we find that individuals' intrinsic brain-behavioral dimensions, such as affective-cognitive 26 

orientation and intrinsic brain connectivity, can predict individual choices between affective or 27 

cognitive targets. Our findings show that affective- and cognitive-based choices rely on multiple 28 

sources, including behavioral orientation, stimulus evaluation, and intrinsic functional brain 29 

architecture. 30 

 31 

  32 
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INTRODUCTION 33 

In everyday choices, do you tend to follow emotion, reason, or both? This question recalls the 34 

classic dichotomy in psychology between affect and cognition. As applied to the psychological study 35 

of attitudes, literature has revealed that individuals differ in the extent to which they are differentially 36 

motivated to pursue and use affective and cognitive information in forming their attitudes (Maio, 37 

Haddock, & Verplanken, 2018). Many studies operationalize these predispositions via the assessment 38 

of individual differences in Need for Affect (NFA) and Need for Cognition (NFC). NFA refers to the 39 

degree to which people approach or avoid situations that are likely to induce emotion (Maio & Esses, 40 

2001). Individuals with high NFA exhibit preferences towards emotional rather than non-emotional 41 

targets and are more likely to become involved in emotion-inducing events (Haddock & Maio, 2019). 42 

In contrast, NFC refers to the tendency to seek out and enjoy effortful cognitive activity (Cacioppo 43 

& Petty, 1982). Thus, by exploring and elaborating on information before making evaluations, 44 

individuals with high NFC are more likely to possess attitudes based on their subjective assessment 45 

of objects attributes than individuals low in NFC (Haugtvedt et al., 1992). The relative reliance on 46 

affect or cognition in attitude formation can be defined as affective-cognitive orientation (Aquino et 47 

al., 2020; Connor et al., 2011; Haddock & Maio, 2019) and expresses an individual’s inclination 48 

toward affect or cognition. 49 

It is well known that the correspondence between affective (i.e., the emotional attributes) or 50 

cognitive (i.e., the functional attributes) content of persuasive messages and an individual’s affective-51 

cognitive orientation enhances the effectiveness of persuasion (Fabrigar & Petty, 1999; Haddock & 52 

Huskinson, 2004; Haddock et al., 2008; Mayer & Tormala, 2010; Haddock & Maio, 2019). For 53 

example, Haddock and colleagues (2008) found that individual differences in NFA predicted greater 54 

persuasion in response to an affect-based (but not cognition-based) persuasive message about 55 

consuming a novel drink. In contrast, individual differences in NFC predicted greater persuasion in 56 

response to a cognition-based (but not affect-based) persuasive message. They referred to this 57 

correspondence as the “structural matching effect”, an outcome replicated in multiple independent 58 

studies (for a review, see Haddock & Maio, 2019).  59 

Aquino and colleagues (2020) demonstrated the involvement of the ventromedial prefrontal 60 

cortex (vmPFC), a brain region involved in persuasion (Chua et al., 2009; Falk et al., 2011; Falk & 61 

Scholz, 2018), in weighing the affective versus cognitive content of persuasive messages. Using 62 

functional magnetic resonance imaging (fMRI), they observed more robust brain activity in the 63 

vmPFC for affective (cognitive) messages among individuals with an affective (cognitive) 64 

orientation. While the findings of Aquino et al. (2020) offer novel and essential insights into the 65 
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neural regions associated with the structural matching effect, we still do not know how individual 66 

differences in orientation are encoded by variability in intrinsic brain features, and whether such 67 

coding contributes to persuasion. Increasing evidence from graph theory (Bullmore & Sporns, 2009; 68 

Rubinov & Sporns, 2010) suggests that intrinsic brain network features measured through resting-69 

state functional connectivity (Toro et al., 2008; Smith et al., 2009) can predict cognitive scores and 70 

personality traits (Cox et al., 2010; Di Martino et al., 2009; Di Plinio et al., 2020; Hoptman et al., 71 

2010). Thus, investigating how brain and behavioral predispositions contribute to individual choices 72 

in response to affective-cognitive matching in persuasion would significantly improve our 73 

understanding of human behavior during persuasion. 74 

The present study aims at understanding the neural and psychological mechanisms that 75 

support persuasion by investigating its multi-level brain-behavior coding. We combine behavioral 76 

measurements, neuroimaging data, and machine learning to investigate persuasive matching beyond 77 

the unique lens of behavior. First, we ask whether intrinsic brain functional connectivity patterns may 78 

support individual intrinsic orientation. In other words, we assess if the functional brain architecture 79 

predisposes individuals’ tendencies to differentially approach affective and cognitive activities and 80 

information. Second, we investigate whether such intrinsic brain-behavior features predispose 81 

individuals to choose between items introduced by affective or cognitive persuasive messages.  82 

For these purposes, we adopt a multimodal persuasion experiment incorporating individual 83 

differences in intrinsic (resting state) brain connectivity, extrinsic (task evoked) brain activity, 84 

intrinsic behavioral orientation (NFA/NFC), extrinsic behavioral evaluations, and choices. We 85 

clarify that the term “choice” in this context refers to the individual’s preference for a product 86 

described by an affective persuasive message rather than by a cognitive one (or vice versa). We 87 

employ machine learning classification techniques to test the contributions of behavioral and brain 88 

data to individual choices. In particular, we analyze whether and how brain-behavioral features 89 

predict whether an individual is more likely to choose a target introduced by an affective or cognitive 90 

persuasive message. Moreover, we test whether intrinsic information (i.e., connectivity and 91 

orientation) strengthens the prediction of choices, compared to individuals’ extrinsic evaluations. 92 

Given the relative specialization of the right hemisphere in the elaboration of emotional 93 

stimuli (see Killgore & Yurgelun-Todd, 2007; Schwartz et al., 1975) and the involvement of the left 94 

hemisphere in sentence elaboration (Geschwind, 1972; Sakai et al., 2005), we hypothesize individual 95 

differences in orientation to be associated with cross-hemispheric asymmetries in intrinsic functional 96 

connectivity. Such asymmetries may reflect a differential elaboration of affective versus cognitive 97 

information, putatively representing an intrinsic neural background of the structural matching effect. 98 
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Moreover, intrinsic functional connectivity can predict behavioral variability and predispositions 99 

towards certain behaviors, such as sedentary behavior (Cooper et al., 2017). Such complex 100 

neurocognitive processes and behaviors may arise from mechanisms of integration and segregation 101 

of brain subsystems (Ito et al., 2019; Di Plinio et al., 2020). Therefore, we also expect that information 102 

about affective-cognitive orientation and intrinsic brain indices of network integration and 103 

segregation may significantly contribute to the prediction of individual choices between products 104 

introduced by affective or cognitive messages. 105 

MATERIALS AND METHODS 106 

Participants and Dataset 107 

Thirty-five healthy Italian adults (20 women and 15 men, aged 25.2 ± 3.4 years) without a 108 

history of psychiatric or neurological disease and contraindications for MRI scanning participated in 109 

the experiment. All participants were right-handed. The local ethics committee approved the study. 110 

All participants had a normal or corrected-to-normal vision and provided written informed consent 111 

before participating in the study following the Declaration of Helsinki (2013).  112 

The participants in this study were from Aquino et al. (2020). Notably, while Aquino et al. 113 

(2020) analyzed only task-related data to study the evoked-activity brain correlates of the structural 114 

matching effect, in the present study, we included a slightly higher number of participants, and treated 115 

both resting-state and task-evoked fMRI data. We investigated a combination of brain and behavioral 116 

measures to study the neural basis of affective-cognitive orientation and their contribution to 117 

individual choices in response to affective and cognitive persuasive messages. 118 

The workflow of the experiment is illustrated in Figure 1. 119 

Figure 1. Schematic illustration of the experimental paradigm. Participants’ NFA and NFC were 120 
assessed with the short version of the NFA scale (NFA, Appel et al., 2012) and the 18-item NFC 121 
scale (NFC, Cacioppo et al., 1984). NFA and NFC were also used to calculate orientation 122 
(intrinsic behavioral trait). In the scanner, participants underwent both resting-state and task runs. 123 
The two resting-state runs were analysed using graph theory principles to recover the brain’s 124 
functional architectures (intrinsic brain trait). During the persuasion task, both behavioral and 125 
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neurophysiological data were acquired. Participants’ behavioral attitude and intentions were used 126 
to calculate evaluations of the items introduced by affective messages (Affective Evaluation) and 127 
of the items introduced by cognitive messages (Cognitive Evaluation). These two variables were 128 
used to calculate the compound variable Evaluation (extrinsic behavioral trait). Task-evoked 129 
single-trials basis (Pessoa & Padmala, 2007; Chen et al., 2021). After the MRI scanning, we asked 130 
participants to re-read the persuasive messages presented during the task. Participants expressed 131 
their choice between the items introduced by affective or cognitive messages through a 7-point 132 
Likert scale. This final variable was labeled choice indicating the individual’s preference for a 133 
product introduced by an affective/cognitive message. 134 

Stimulus Development 135 

As in Aquino et al. (2020), affective and cognitive persuasive messages presented in the MRI 136 

scanner were chosen following a strict preliminary procedure. First, 20 affective and 20 cognitive 137 

messages describing consumer products (e.g., a book) were created based upon real advertisements. 138 

An affect-based and cognition-based advertising message was generated for each product. Each 139 

message contained five written sentences, similar to those used by Falk and colleagues (2011). The 140 

affective statements included terms regarding feelings and sensations induced by the product (e.g., 141 

“The soft wool of the pullover ‘Tender’ gives a fresh scent all day”). In contrast, the cognitive 142 

statements described the product’s features and qualities (e.g., “The new full-resistant pullover is 143 

made with 100% merino wool”). Messages were built to elicit positive reactions to avoid any possible 144 

confound with valence.  145 

The 40 persuasive messages were pre-tested by asking 64 participants (58 females, 6 males; 146 

mean age = 22.0 ± 3.1 years old) to evaluate each message on its affective-cognitive content (1 = very 147 

affective, 6 = very cognitive) and its credibility (1 = not at all credible, 6 = very credible). Messages 148 

with self-references were administered to half of our participants (e.g., “The pullover Tender cuddles 149 

you in a warm hug”), and messages without self-references the other half (e.g., “The pullover Tender 150 

cuddles who wears it in a warm hug”) to exclude biases related to self-relevance in the perception of 151 

the affective/cognitive content. A mixed-effects ANOVA including a between-subject factor (two 152 

levels: self-references, non-self-references) and a within-subject factor (two levels: affective, 153 

cognitive) showed a significant interaction effect (F(1, 62) = 5.0, p = .029). The analysis of simple main 154 

effects showed that the difference in the perceived affective and cognitive content was stronger for 155 

self-referred messages (MAFF − MCOG = 1.42; F(1, 62) = 86.3, p < .001, 95% confidence intervals (CIs) 156 

for the mean difference [1.11, 1.72], η2 = .58), than for non-self-referred messages (MAFF − MCOG = 157 

0.95; F(1, 62) = 44.0, p < .001, 95% CIs for the mean difference [0.66, 1.23], η2 = .41). Since these 158 

results highlight the importance of self-references in the accentuation of affective–cognitive 159 

perception differences, we selected the 10 affective and 10 cognitive self-referring messages that 160 

differentiated most strongly affective versus cognitive quality perception based on paired t-tests. 161 

Importantly, target messages differed on affective versus cognitive content (t(31) = 12.0, p < .001, 162 
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MAFF − MCOG = 1.49, 95% CIs for the mean difference [1.25, 1.73], Cohen’s d = 1.49), but they did 163 

not differ in credibility (t(31) = 1.44, p = .154, MAFF − MCOG = −.07, 95% CIs for the mean difference 164 

[−.17, .03], Cohen’s d = .18). The affective and cognitive messages did not differ in total length as 165 

indexed by the average number of words, (t(9) = 0.1, p = .918, MAFF − MCOG = 0.50, 95% CIs for the 166 

mean difference [−10.2, 11.2], Cohen’s d = .18).  167 

To further ensure the appropriateness of this subset of 20 messages, they were rated by 22 168 

new participants. The analyses of the ratings confirmed a strong differentiation in the perception of 169 

affective–cognitive content (t(21) = 6.09, p < .001, MAFF − MCOG = 1.64, 95% CIs for the mean 170 

difference [1.11, 2.17], Cohen’s d = 1.30). The results also indicated that the affective and cognitive 171 

messages were rated as equally credible (t(21) = 1.54, p = .137, MAFF − MCOG = −.19, 95% CIs for the 172 

mean difference [−.43, .05], Cohen’s d = .30). Finally, to control for the duration of the presentation 173 

of each persuasive message, each message was vocally registered at a normal pace. Subsequently, we 174 

presented ten new participants with all audio messages to ascertain that the timing was sufficient to 175 

read and understand the messages. The time employed to read the stimuli did not differ between the 176 

affective (36.2 ± 6.1 seconds) and cognitive (37.8 ± 4.8 seconds) messages (t(19) = −1.17, p = .271, 177 

95% CIs for the mean difference [−4.7, 1.5], Cohen’s d = .26). 178 

Pre-MRI Behavioral Measures  179 

As reported in Aquino et al. (2020), before fMRI scanning, we assessed participants’ levels of need 180 

for affect (NFA) and need for cognition (NFC). Participants’ NFA was assessed with the short version 181 

of the NFA scale (Appel et al., 2012). This scale comprises ten items: five items measure the 182 

motivation to approach emotions (e.g., “Emotions help people to get along in life” α = .83) and five 183 

items assess the motivation to avoid emotions (e.g., “I do not know how to handle my emotions, so I 184 

avoid them” α = .81). Participants responded to these statements on a 7-point scale (1 = totally 185 

disagree; 7 = totally agree). The individual NFA score was calculated by summing responses after 186 

reverse-scoring avoidance items (average score ± standard deviation, SD = 5.52 ± 0.68, range of 187 

observed scores [4.10, 6.50]). Participants’ NFC was assessed using the 18-item NFC scale (Cacioppo 188 

et al., 1984). Participants rated the extent to which they agreed with items such as “I really enjoy a 189 

task that involves coming up with new solutions to problems” and “Thinking is not my idea of fun” 190 

(reverse scored). Participants responded to these statements on a 7-point scale (1 = extremely 191 

uncharacteristic of me; 7 = extremely characteristic of me). The NFC score was calculated by 192 

summing responses after reverse scoring the negatively keyed items (average score = 4.95 ± 0.58, 193 

range of observed scores [3.50, 6.00]). 194 
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For both conceptual and methodological reasons, we operationalized the personal orientation 195 

of the participants as the difference between standardized NFA and NFC scores (orientation = NFA 196 

– NFC), such that a higher score reflects an affective orientation. From a conceptual perspective, we 197 

were interested in examining the relative reliance on affect versus cognition (see also Aquino et al., 198 

2016). From a methodological perspective, conceptualizing individual differences in the form of a 199 

difference score strengthens the interpretability of the analyses (Rogosa & Willett, 1983; Furr, 2011; 200 

Gollwitzer et al., 2014; Mattes & Roheger, 2020). It also leads to appropriate statistical-mathematical 201 

modeling, including more degrees of freedom in error terms. Thus, a higher orientation score 202 

indicated a higher reliance on affect, whereas a lower score indicated a higher reliance on cognition. 203 

Since the compound variable "orientation" may be considered an approximation of NFA and NFC 204 

"original" variables, we also performed additional supplemental analyses using NFA and NFC scales 205 

separately. To note, the two original scores of NFA and NFC exhibited a moderate positive 206 

correlation (r=0.43). The parallel investigation of these factors would help interpret the results to 207 

know how participants' responses were predicted by the scales individually or interactively. The 208 

metric orientation (together with NFA and NFC) represents the intrinsic feature of the behavior in 209 

our study (Figure 1). 210 

MRI Data Acquisition 211 

As reported in Aquino et al. (2020), imaging data were acquired using a 3 Tesla MR scanner (Philips 212 

Achieva X Series; Philips Medical System, Best, The Netherlands) at the Institute of Advanced 213 

Biomedical Technologies (ITAB) in Chieti, Italy. A sensitivity-encoding eight-channel brain coil was 214 

used. Head motion was minimized using foam padding and surgical tape. A response pad was fixed 215 

in place using surgical tape connected to the scanner bed allowing the keypress with the right index 216 

and right middle fingers to interact with the ongoing task. An initial T1-weighted anatomical (3-D 217 

TFE pulse sequence) was acquired with the following parameters: field of view = 240 mm; voxel size 218 

= 1mm3; TR = 8.1 ms; TE = 3.7 ms. Subsequently, two resting state run (234 volumes for each run) 219 

and two task fMRI runs (404 and 397 volumes, respectively) were acquired using a T2* weighted 220 

EPI sequence with TR = 1.8 s; TE = 30 ms; number of slices = 35; slice thickness = 3.5 mm; in-plane 221 

voxel size = 3 mm2; field of view = 228 × 122 × 240 mm; flip angle = 85°. 222 

MRI Experimental Procedure 223 

After the assessment of NFA and NFC, all participants underwent the fMRI scan session. Neural 224 

activity was monitored both during resting-state (task-free) periods and during the execution of a 225 

persuasion task. Two resting-state fMRI runs (6 min each) were recorded during which participants 226 

were instructed to watch a white fixation cross presented on a black screen while keeping their eyes 227 
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open (they were monitored through a video camera placed in the MRI room). During the task, 228 

participants were visually presented with the affective and cognitive persuasive messages for each 229 

object (example of an affective message for a backpack: “Choosing the Backpack ‘Poke’ makes you 230 

feel all the potentialities of life in a joyful party of colors and makes you feel the excitement of a new 231 

journey where every direction is possible. ‘Poke’ marks the rhythm of the most exciting experiences 232 

of your life and does it with overwhelming energy. ‘Poke’ also offers endless possibilities to express 233 

your personality and to be surprised by unique and innovative solutions. Over the years, it has 234 

become a symbol of discovery, euphoria, and freedom for all generations. ‘Poke’ is a real icon of 235 

contemporary style, with an exciting story to tell”; example of a cognitive message for a backpack: 236 

“The ‘Caps’ backpack is very handy and comfortable thanks to the many internal pockets that allow 237 

you to carry everything you need. Its dimensions allow you to carry it as hand luggage on all main 238 

airlines. The ‘Caps’ backpack is also equipped with a very useful inner lining that protects your 239 

notebook from hits and rain. Ergonomic shoulder bag and filled seatback make it one of the most 240 

comfortable backpacks on the market. ‘Caps’ shows an original front closure with leather strips, and 241 

it is also equipped with a hidden magnet closure”). Participants were informed that during the scan 242 

session they would be asked to read 20 messages and that subsequently they would be asked to 243 

evaluate each target presented in the messages. The affective and the cognitive messages were 244 

presented in a randomized order in two fMRI runs. During the reading phase, participants were asked 245 

to read each message attentively. The duration for the reading phase was set based on the pre-test to 246 

ascertain that the time for the reading was sufficient for participants. After MRI, participants reported 247 

being able to read all the messages. 248 

An explicit evaluation phase always followed the reading phase: after a randomly varying 249 

interval (1.8 to 5.4 seconds), participants expressed their attitude by rating how much they liked the 250 

object, on a scale ranging from 1 (not at all) to 7 (very much). In addition, after another randomly 251 

varying interval (1.8 to 5.4 seconds), we assessed intentions to buy the described object by asking 252 

participants how likely it was that they would buy the object in the following three weeks on a scale 253 

ranging from 1 (not at all) to 7 (very likely). Participants reported attitude and intention ratings after 254 

each message. Participants expressed their answers by pressing buttons that allowed them to increase 255 

(button press with the right middle finger) or decrease (button press with right index finger) the score 256 

starting from a value of 4 that appeared on the screen (minimum = 1, maximum = 7). All participants 257 

had a time limit of 5.4 seconds to express their attitudes and intentions. Given the high correlation 258 

between attitudes and intentions (r = .96, p < .001), these judgments were averaged to create unique 259 

indexes labelled Affective Evaluation and Cognitive Evaluation. As we did for the variable 260 

orientation, we performed analyses using both the difference score (Evaluation = Affective 261 
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Evaluation – Cognitive Evaluation) and the separate affect and cognition scores. The Evaluation 262 

metrics represent the extrinsic features of behavior in our study (Figure 1). 263 

MRI Data Preprocessing 264 

Preprocessing and the analysis of functional images were implemented through the software AFNI 265 

(Analysis of Functional Neuroimages, web link; Cox, 1996). Functional images were deobliqued, 266 

despiked, and corrected for time-shifted acquisition. A six-parameter motion-correction and body 267 

realignment was applied before realigning the functional images to the Montreal Neurological 268 

Institute standard brain (MNI) using nonlinear warping. Motion parameters were stored during the 269 

preprocessing to further correct for motion correction during the following analysis. The functional 270 

images were scaled to have voxels with an average value of 100, which allows to translate the 271 

(unitless) BOLD signal to “percent of signal change”, that has been frequently used as it is a more 272 

interpretable index (Chen et al., 2017). The functional images were spatially smoothed using a 273 

Gaussian filter of 5-mm FWHM.  274 

Task runs were additionally analyzed by implementing a generalized linear model (GLM) at 275 

the single-subject level to estimate brain evoked activity during the affective and cognitive conditions 276 

of the task. The GLM was implemented in AFNI and included two regressors of interest representing 277 

the affective and cognitive experimental conditions which were modeled with duration-modulated 278 

BLOCK functions. The duration of the BLOCK function for each trial corresponded to the duration 279 

calculated for each target during the pilot experiments. Keypresses for target evaluations were 280 

modelled through separate regressors using GAM functions. Each GLM also included the following 281 

regressors of no-interest: six-parameters motion regressors, cerebrospinal fluid signal, white matter 282 

signal, linear and non-linear drifts. Once the brain activity was estimated in each experimental 283 

condition, we calculated the difference ΔβA-C = βA - βC, where βA is the value for the regressor 284 

Affective and βC is the value for the regressor Cognitive. Thus, the term ΔβA-C represented the 285 

difference in evoked activity between affective and cognitive persuasive stimulation and was used in 286 

later analysis steps. We also adopted a single-trial modelling of brain activity (Pessoa & Padmala, 287 

2007; Chen et al., 2021) to allow the extraction of ΔβiA-C related to each target i to gather trial-level 288 

information to be implemented in machine learning models (see below). The metric of (differential) 289 

task-evoked activity represents the extrinsic feature of the brain in our study. 290 

With respect to the resting-state runs, and in line with current guidelines (Power et al., 2014), 291 

time series were additionally censored by removing volumes with 10% or more motion outliers across 292 

voxels and volumes with Euclidean norm of the motion derivative exceeding 0.2 mm. A band-pass 293 

filter (frequency interval: 0.01 – 0.10 Hz) was applied in the same regression step that implemented 294 
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censoring (Caballero-Gaudes & Reynolds, 2017). To maximize signal-to-noise ratio, motion 295 

parameters were included in the regression as noise covariates together with the signals extracted 296 

from white matter and cerebrospinal fluid. We did not regress out the global signal because it is a 297 

controversial approach (Saad et al., 2012), and because it has been shown that it introduces spurious 298 

negative correlations (Weissenbacher et al., 2009). 299 

Connectomics 300 

Resting-state runs allowed the extraction of modular structures (brain functional networks) and graph 301 

indices from functional connectivity matrices. Graph nodes were obtained by combining cortical and 302 

subcortical parcellations (386 nodes) from Joliot and colleagues (2015) with the cerebellar atlas (32 303 

nodes) from Diedrichsen and colleagues (2009). Functional connectivity among each couple of nodes 304 

was calculated using the z Fisher transform of the Pearson correlation among average time series 305 

extracted from the voxels within each node after preprocessing. A binary graph was built for each 306 

participant after thresholding (the top 10% stronger connections were maintained). Functions and 307 

algorithms from the Brain Connectivity Toolbox (BCT, Rubinov & Sporns, 2010) were adopted in 308 

MatLab (The Mathworks, version 2019b) to estimate modular structures. The resulting brain 309 

architectures were visualized using BrainNet Viewer (Xia, Wang, & He, 2013). The robust Louvain 310 

algorithm (Lancichinetti & Fortunato, 2009) was used to find optimal community (modular) 311 

structures through modularity maximization (Porter et al., 2009) and following an iterative fine-312 

tuning process (Sun, et al., 2009) created to handle the stochastic nature of the Louvain algorithm 313 

(Bassett et al., 2011). The agreement matrix, that is, the matrix whose elements represented the 314 

number of times two nodes were assigned to the same module across participants, was used to 315 

estimate group-level modular structures using a community detection algorithm developed for the 316 

analysis of complex networks (Lancichinetti & Fortunato, 2012), with the number of repetitions set 317 

to 1000. As already pointed out in methodological papers (Betzel et al., 2017), the structural 318 

resolution parameter γ (i.e., the weight of the null model in the estimation of the brain architecture) 319 

plays an important role in network analysis. To avoid biases, we investigated all the possible γ values 320 

in the interval [0.3 – 5.0]. The Newman–Girvan procedure was employed to detect significant 321 

modules in the consensus structure (Newman & Girvan, 2004). Once the modular structures were 322 

defined, graph metrics describing the nodal connectional profile in terms of network integration and 323 

segregation were extracted from each node. These metrics were the participation coefficient (i.e., the 324 

strength of inter-modular connections of a node) and the within-module degree (i.e., the strength of 325 

intra-modular connections of a node). To allow a comprehensive interpretation of brain-behavior 326 

associations, group analysis that investigated the relationships between graph indices and behavioral 327 

measures were performed at the network level for each module detected with each value of γ. Metrics 328 



Brain and behavioral contributions to individual choices 

in response to affective-cognitive persuasion 

Di Plinio et al., 2022 – Page 12 

of participation and within-module degree represent the intrinsic features of the brain in our study 329 

(Figure 1). 330 

Post-MRI measures  331 

We asked participants to re-read the persuasive messages presented during the previous fMRI task at 332 

the end of the fMRI scanning section and outside the scanner. For each pair of messages (i.e., for each 333 

item type) participants read the sentence “If you had to choose only one *item type*, which one 334 

between [name of the affective item] and [name of the cognitive item] will you choose?”. Participants 335 

expressed their choice between the items introduced by affective and cognitive messages through a 336 

7-point Likert scale (1 = “absolutely [name of the affective item]”, 7 = “absolutely [name of the 337 

cognitive item]”). The affective-cognitive anchors' position (left/right) was balanced across objects 338 

and participants. Participants operated such a choice for each of the ten targets used in our 339 

experimental fMRI study. The order of presentation of the stimuli was randomized across 340 

participants. As mentioned above, the label “choice” indicates the relative preference to select a 341 

product presented by the affective persuasive message rather than by the cognitive one, or vice 342 

versa. 343 

Analysis of Intrinsic Brain-Behavior Relationships 344 

Resting-state neural correlates of affective-cognitive orientation were assessed using mixed-effects 345 

regression models, and separate analyses were implemented for participation coefficients and within-346 

module degrees. The dependent variable was one of the graph measures of interest, and the subjective 347 

orientation was the continuous regressor of interest. Random effects were included as random 348 

intercepts at both the subject and nodal levels. Furthermore, a random slope for orientation was added 349 

at the nodal level to allow precise, node-specific modeling of brain-behavior relationships. The same 350 

analyses were implemented using original NFA and NFC scores separately to obtain more detailed 351 

insights into the brain coding of behavior. Regressions were performed independently to detect 352 

module-specific associations between network measures and orientation. Only modules significant 353 

after the Newman-Girvan procedure were analyzed. After model diagnostics and outlier removal, 354 

results were corrected for multiple comparisons using false discovery rate (FDR) across the total 355 

number of significant modules. Best linear unbiased predictors (BLUPs) were extracted to estimate 356 

effects at the nodal level and highlight nodes with the highest contributions (Liu et al., 2008). 357 

Individual conditional expectation (ICE) plots were generated to visualize significant effects across 358 

random groupings (Goldstein et al., 2015). For significant associations, to ease the representation of 359 

results, a cross-γ linear mixed-effects regression was modeled using γ as a different random grouping 360 
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factor. We report statistics of the cross-γ model in the text of the Results section and statistics related 361 

to single γ values in the figures. 362 

Predictions of individual choices using machine-learning.  363 

We assessed if intrinsic and extrinsic features can predict individual choices (i.e., the 364 

individual’s relative preference towards an item introduced by the affective or cognitive 365 

message). In other words, we studied if such features predicted if the individual would select the 366 

product introduced by an affective message or the (same) one presented by a cognitive message. In 367 

addition, we tested whether intrinsic information (i.e., connectivity and orientation) improved the 368 

prediction of individual choices compared to the prediction performance of extrinsic information 369 

alone (i.e., task-evoked activity and behavioral evaluations). We implemented a semi-automated 370 

machine learning modeling procedure using a binary classifier to accomplish this aim. To allow the 371 

application of a binary classifier, choices from 1 to 3 (1, 2, or 3) were labeled as «Cognitive» (the 372 

individual would like to choose the cognitive target, rather than the affective one) and choices from 373 

5 to 7 (5, 6, or 7) were labeled as «Affective», where with “choice” we refer to the individual’s 374 

decision to pick the product presented by the affective persuasive message rather than by the cognitive 375 

one, or vice versa. Trials with intermediate ratings, that is, in which the score was equal to 4, were 376 

not frequent and were excluded from the analysis (average: 1 trial per subject; range [0, 2]). After the 377 

binarization of the behavioral choice, a linear support vector machine (SVM) with k-fold cross 378 

validation was employed. The SVM works by selecting the hyperplane that best separates the two 379 

classes (i.e., Affective choices versus Cognitive choices) across all the features in the training sample. 380 

Then, the same hyperplane is applied as the criteria for predicting the outcome in the test sample. The 381 

accuracy of the classifier was calculated as the proportion of successfully predicted targets in the test 382 

sample, averaged across the k repetitions (and the number of repetitions of the algorithm). Predictor 383 

importance scores for each classification were extracted using the minimum redundancy maximum 384 

relevance algorithm (Ding & Peng 2005). The combination of feature selection, predictor importance, 385 

and different classification models allowed to comprehensively assess how different brain and 386 

behavioral features predicted choices.  387 

Since we started from multiple features, we implemented a semi-automated algorithm for 388 

selecting the best predictors of individual choices. Automated machine learning procedures enable to 389 

build accurate machine learning models faster by performing feature engineering, algorithm selection, 390 

and tuning as well as documenting the model performance (Serra et al., 2018; Hutter et al., 2019). In 391 

our dataset, we wanted to predict the binary relative choice of the Affective versus Cognitive 392 

target starting from a set of variables including orientation (intrinsic behavior term), 393 
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Evaluation (extrinsic behavior term), nodal participation coefficient (intrinsic brain term) and 394 

brain activity (extrinsic brain term). To perform automated variable selection, the SVM classifier 395 

was trained with every possible combination of the four starting sets of variables (15 total 396 

combinations). Then, the variables which did not significantly improve the classification efficiency 397 

were gradually excluded by comparing efficiency scores across 100 repetitions until the selection of 398 

an ultimate model. With respect to brain data, in order to avoid overfitting and information 399 

redundancy, a further step of feature selection was performed before the application of the SVM 400 

algorithm by adopting a conditional distribution approach (Cai et al., 2018): the difference between 401 

the brain parameter (participation coefficient) in the two pooled choice conditions (Affective choices 402 

versus Cognitive choices) was calculated across targets for each node, and then relevant brain features 403 

were selected as these brain nodes for which the effect size was large enough to allow significance in 404 

a two-sample t-test (p<.05, FDR corrected). Since the dichotomization may imply partial loss of 405 

information (Mariooryad & Busso, 2017), we ran a parallel analysis employing an ordinal classifier 406 

to predict individual choices and confirm results from the binary classifier. The application of an 407 

ordinal classifier on an ordinal scale is more appropriate than regression as a control analysis and 408 

avoids both dichotomization and eventual exclusion of partial data,  409 

The cross-validation of the classifiers used in our experiment was implemented by using a 410 

multi-stratified training-testing selection to avoid selection and prediction biases. The creation of 411 

training and testing dataset was stratified both across participants (Ns = 35), targets (Ni = 10), and 412 

total number of trials (Nt = 350). The entire algorithm was repeated 100 times to control for 413 

suboptimal sampling. Metrics of performance accuracy and F-scores (which incorporates measures 414 

of recall and precision) were extracted to assess the validity of classifiers. Different classifiers were 415 

statistically compared by conducting the mid-p-value McNemar test of accuracies (Fagerlan et al., 416 

2013). 417 

RESULTS 418 

Intrinsic brain-behavior Relationships 419 

Starting from the hypothesis that intrinsic connectional profiles can support intrinsic affective-420 

cognitive orientation, we investigated relationships between orientation scores and brain 421 

architectures. This was done by studying participation coefficients (i.e., cross-module 422 

communication) and within-module degree (i.e., intra-modular connections).  423 

We found that resting-state participation coefficients were positively associated with 424 

orientation in a network encompassing prefrontal, cingulate, inferior parietal, and posterior temporal 425 

nodes (Figure 2A; β = .014 ± .006, standardized β = .104, t = 2.54, p = .01). We label this as a 426 
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frontoparietal (FP) network, since the brain regions involved (Figure 2B) overlap to the frontoparietal 427 

network discussed in literature (Di Plinio & Ebisch, 2018). A relevant degree of variability was 428 

observed within the FP network: nodes in the dorsomedial prefrontal cortex, dorsal-anterior cingulate 429 

cortex, and generally in the right hemisphere exhibited significantly above-average effects, while 430 

many nodes in the left hemisphere exhibited lower effects (test on random slopes; p < .05, FDR 431 

corrected). Such results were significant with medium-high structural resolutions (γ > 2.5, Figure 2C). 432 

No significant results were observed with respect to the within-module degrees. 433 

The association between participation coefficients and orientation was investigated also using 434 

original scores: NFA and NFC. Resting-state participation coefficients of the FP network were not 435 

associated with NFA (Figure 2D; β = .003 ± .007, 95% CI [-.010 .016], standardized β = .020, t = 0. 436 

42, p = .67). By contrast, a significant negative association was found between FP’s participation and 437 

NFC (Figure 2E; β = -.013 ± .006, 95% CI [-.025 -.001], standardized β = -.091, t = -2.17, p = .029). 438 

This pattern of results indicates that the compound score orientation is negatively associated with 439 

cross-network communication in a FP network, and this result is mainly driven by the negative 440 

association between participation and NFC. By comparing the standardized effect sizes, it can by 441 

observed that the negative effect of NFC on participation (-0.091) is more than four times bigger than 442 

the positive effect of NFA (.020). 443 
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 444 

Figure 2. Resting-state results. The cross-network functional connectivity of the frontoparietal 445 

network (FP) was significantly associated with individual affective-to-cognitive orientation. (A) 446 

orientation versus participation coefficient in the FP module is plotted using model predictions 447 

(BLUPs). Each line represents predictions for a single node. The color-coding shows a more 448 
substantial effect in the left hemisphere (especially in mid-cingulate and orbitofrontal regions) 449 

and a weaker effect in the right hemisphere. (B) Structural configuration and nodal effect sizes 450 

for the FP module involved in the association. (C) Cross-gamma results indicate that the 451 

association between participation coefficient and orientation in the FP is true with medium and 452 
high structural resolutions (γ > 2.5). The subfigures (D) and (E) report the results of the same 453 

analyses for NFA and NFC, respectively. The association between NFA and participation in the 454 

FP module was not significant, although some distinct nodes in the orbitofrontal cortex and 455 

dorsal anterior cingulate showed positive effects. Instead, the association between NFC and 456 
participation in the same module was significant and especially strong in the right prefrontal 457 

cortex and bilateral anterior insula. 458 
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 459 

Prediction of individual choices through Machine-Learning 460 

We used a semi-automated machine learning approach to evaluate and cross-validate the prediction 461 

performance for every possible combination of features (including intrinsic orientation, intrinsic 462 

connectivity, extrinsic brain activity, extrinsic evaluation). The highest prediction of individual 463 

behavioral choices was found in the classification model that combined intrinsic brain (connectional 464 

participation coefficients), intrinsic behavioral (orientation), and extrinsic behavioral (Evaluation) 465 

data. However, intrinsic brain-behavioral features alone were sufficient to yield a significantly high 466 

score in the prediction of choices. 467 

In more detail, we found that combining intrinsic connectivity and behavioral orientation 468 

yielded a high classification performance (using separated NFA/NFC: accuracy = 0.70 ± 0.02; using 469 

the difference score orientation: accuracy = 0.69 ± 0.02). Moreover, the prediction using only 470 

extrinsic behavioral evaluations was high (accuracy = 0.76 ± 0.01). This result was not surprising, 471 

since the explicit behavioral ratings given by the participants during the fMRI scan are plausibly 472 

expected to correlate with the post-MRI behavioral choice of the product. Nevertheless, including 473 

both intrinsic and extrinsic elements significantly improved choice prediction (using separated 474 

affective and cognitive scores for orientation and evaluation: accuracy = 0.77 ± 0.02; using affective-475 

cognitive difference scores for orientation and evaluation: accuracy = 0.78 ± 0.01), showing that 476 

extrinsic and intrinsic variables are encoding only partially overlapping information (Figure 3). The 477 

performances and the F-scores of these classifiers are reported in Figure 3A and 3B, respectively. 478 

The direct comparison of classifiers is shown by asterisks in the Figures. The comparison confirmed 479 

that the classification achieved by combining intrinsic brain-behavioral features and extrinsic 480 

evaluation outperformed other variable combinations. Contrary to our expectations, the extrinsic 481 

brain features (i.e., single-trial task-evoked activity) were not useful in predicting individual 482 

behavioral choices between affectively- and cognitively-presented items.  483 
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Figure 3. Model accuracies from machine learning. The subfigures (A) and (B) report the models' 484 

accuracy and F-score, respectively. Each subplot also reports a null classification model, which 485 

includes scrambled data. The best classifiers resulting from the semi-automated selection using 486 

SVM included intrinsic brain connectivity (Brain), intrinsic orientation (O=NFA & NFC, 487 

ΔO=orientation difference score), and extrinsic Evaluation (E=Affective evaluation & Cognitive 488 

evaluation, ΔE=evaluation difference score). In other words, when the classifier included these 489 

three variables, it had the best classification accuracy and F-score. Importantly, intrinsic features 490 

(Brain, O, ΔO) significantly increased the accuracy of the classifier when compared to the model 491 

with extrinsic evaluation alone. Note that the models E and ΔE have identical results. McNemar’s 492 

mid p-value for model comparisons: *** = p < .001; * = p < .05. Results for the ordinal 493 

classification are reported in the supplementary materials. 494 

 495 

Further, we investigated in more detail the classifier performances with respect to all the 496 

dimensions included in the analysis, that is, intrinsic behavior, extrinsic behavior, brain nodes, 497 

structural resolutions, items, and individuals. Analyzing behavioral contributions to the classifier, we 498 

found that the best intrinsic behavioral predictors of choice was the need-for-cognition score 499 

(predictor score for NFA = .0001; predictor score for NFC = .0071). Conversely, participants’ self-500 

reported liking for the objects in the affective messages better predicted which object they 501 

ultimately chose (predictor score for Affective Evaluation = .069; predictor score for Cognitive 502 

Evaluation = .002). As reported in Figure 4A, a higher participation coefficient of regions of the 503 

default mode network (in black, including medial prefrontal cortex, posterior cingulate, middle 504 
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temporal gyrus) favors affective choices, whereas higher participation coefficients in secondary 505 

visual regions and task-positive regions (in white, including supramarginal gyrus and dorsolateral 506 

prefrontal cortex) favor cognitive choices. 507 

It is worth noting that the results were rather stable across items (Figure 4B) and were 508 

unaffected by structural resolutions (Figure 4C). A moderate variability was observed in the 509 

prediction accuracy across participants (Figure 4D). These results show that, even if intrinsic features 510 

(i.e., brain & behavior) can predict the individual choice, the inclusion of information on the 511 

subjective Evaluation of items introduced by persuasive message content elicits a significantly 512 

stronger prediction accuracy.  513 

Figure 4. (A) Brain features included by feature selection encompassed default mode network 514 

regions, secondary visual areas, and task-positive temporal and parietal areas. As shown by the 515 
color-coding in the subfigure, higher participation coefficients for regions in the default mode 516 

network favor affective choices (black nodes), while higher participation coefficients in task-517 

positive regions likely favor cognitive choices (white nodes). (B) Classification accuracy across 518 

items was relatively stable. (D) Classification accuracy did not change for increasing values of 519 
structural resolution used to define brain architectures. (D) Classification accuracy across 520 

participants showed a moderate variability. Results in B, C, and D refer to the models which 521 

included compound variables in Figure 3 (Brain + ΔO, Brain + ΔO + ΔE). 522 

 523 
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DISCUSSION 524 

The present work uncovers the brain’s functional architecture supporting individual’s 525 

relative choices in the context of affective-cognitive persuasion. Using data collected via a 526 

comprehensive fMRI paradigm including resting-state and task-controlled states, we illustrate a 527 

multidimensional basis of persuasion incorporating intrinsic brain features (connectional brain 528 

profiles), extrinsic brain features (task-evoked activity), intrinsic behavior (affective and cognitive 529 

orientation), and extrinsic behavior (evaluation of items introduced by affective and cognitive 530 

messages). Firstly, our findings show that resting-state functional connectivity of fronto-parietal 531 

regions with high cross-network communication is associated with individual orientation, primarily 532 

via the need for cognition. Secondly, we highlight how intrinsic brain connectivity and orientation 533 

can efficiently predict if individuals will choose an item presented by an affective or cognitive 534 

persuasive message. 535 

To our knowledge, our study is the first to show that cross-network connections of a large-536 

scale frontoparietal (FP) module during the resting-state, as indexed by participation coefficients (that 537 

is, the strength of connections of a node other networks), predicted individual affective versus 538 

cognitive orientation. These brain nodes overlap with the FP network found in the literature (Di Plinio 539 

& Ebisch, 2018). Affectively oriented individuals showed a prevalence of cross-network participation 540 

from FP nodes in the right hemisphere, especially in the mid-cingulate and orbitofrontal regions. By 541 

contrast, cognitively oriented individuals showed stronger cross-network connections from FP nodes 542 

in the left hemisphere. To note, the labels “affectively oriented” or “cognitively oriented” reflect 543 

a relative difference between NFA and NFC scores among sample participants. Nodes of the FP 544 

network participate in disparate processes including mirror mechanisms (Molenberghs et al., 2012), 545 

higher-order functions such as adaptive task-control (Dosenbach et al., 2008; Zanto & Gazzaley, 546 

2013), executive working memory (Nee et al., 2013; Wallis et al., 2015), and decision-making during 547 

goal-oriented behavior (Menon, 2011). Considering our findings, the connectional profile of the FP 548 

network likely contributes to establishing a personal “baseline” inclination towards decisional 549 

processes in affective or cognitive contexts. Our findings confirm that hemispheric asymmetries 550 

epitomize the diversification of subjective orientations within the population since stronger intrinsic 551 

extra-network connections from right FP nodes favor a predominantly affective orientation. 552 

Implementing cross-validated machine-learning techniques, we found that intrinsic brain 553 

connectional profiles and intrinsic orientations can efficiently predict individual choices between 554 

targets introduced by affective versus persuasive cognitive messages. As expected, the prediction 555 

using extrinsic behavioral evaluations was also high, confirming that attitude is an important predictor 556 
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for behavioral choices (Fishbein & Ajzen, 1975; Maio et al., 2018). However, including both intrinsic 557 

and extrinsic elements allowed a better choice prediction, showing that extrinsic and intrinsic 558 

variables are encoding only partially overlapping information. Contrary to our expectations, the 559 

extrinsic brain feature (i.e., single-trial task-evoked activity) did not predict choice. Analyzing 560 

behavioral contributions to the classifier, we found that the best behavioral predictors of choice were 561 

individual need for cognition scores and individual evaluation of the targets introduced by affective 562 

messages. Analyzing the brain contributions to the classifier, we found that the weight of cross-563 

network connections from different brain subnetworks (default-mode vs sensory and “task-positive” 564 

regions) incline the individual toward specific behavioral choices (choice of affective vs cognitive 565 

targets, respectively). From these findings, we can understand that the intrinsic individual brain-566 

behavior architecture plays a key role in task-driven choices following persuasive messages.  567 

Future studies may bring further insights into persuasive matching by analyzing and directly 568 

contrasting the persuasion power of affective matching (i.e., delivering affective messages to 569 

affectively oriented individuals) and cognitive matching (i.e., delivering cognitive messages to 570 

cognitively oriented individuals). Note that this would be possible with an ad-hoc experimental design 571 

to measure differential persuasion outcomes. Future studies may also consider bridging the cognitive 572 

neuroscience framework presented here with other social aspects like engagement and passion, which 573 

enhance behavioral and neural responses (Shane et al., 2020; Massaro et al., 2020) with possible 574 

repercussions on persuasion. 575 

Our study is exposed to some limitations. First, the behavioral variables measured in the 576 

persuasion task may depend on the subjective efficiency of information processing (e.g., different 577 

levels of message processing). This effect may, in turn, affect the observed variables. However, we 578 

implemented a controlled experiment in which the selection of physical and psychological features 579 

of affective and cognitive messages were strictly controlled (see Methods) and stimuli were tested on 580 

two pilot studies (96 total additional subjects) for their understandability. In other words, we 581 

accurately limited effects unrelated to the factors of interest following findings from previous 582 

research that showed how matched messaged are processed more deeply than unmatched 583 

messages (Petty & Wegener, 1998; Haddock et al., 2008). Thus, sources of unwanted variance 584 

have been minimized so that such bias is likely to be very weak in our study. Second, although we 585 

labelled an outcome variable as “choice”, we would like to clearly express that, at an operational 586 

level, this variable measures the relative preference of the subject toward an affective or a 587 

cognitive item, rather than a direct choice per se. Third, trial-based activity estimation may 588 

entail a large amount of noise, which can eventually impact the analysis. Perhaps future 589 
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paradigms may include parallel experimental conditions of persuasion/choice versus only 590 

perception of equivalent stimuli to characterize task-related phenomena. 591 

To conclude, we implemented a comprehensive procedure and a controlled, cross-validated 592 

model testing, which endorse high confidence about our findings on the neural basis of persuasion. 593 

Environmental factors (Mayer & Tormala, 2010; Falk & Scholtz, 2018), cultural and personal 594 

background (Liang et al., 2014; Haddock & Huskinson, 2004; Slater & Rouner, 2006), and the type 595 

of goal-directed behavior requested (Nee et al., 2013; Cooper et al., 2017; Cacioppo & Petty, 1982; 596 

Haddock & Maio, 2019) are just a few of the variables that may influence the weight of specific 597 

neural subsystems in decisional processes. Further studies could corroborate and complement the 598 

models proposed here. For example, while affect has shown a stronger matching effect, we found 599 

need for cognition (NFC) but not need for affect (NFA) to be related with cross-network 600 

communication. It is possible that the persuasion processes following a “highly affective profile” 601 

(high NFA) observes other neuro-functional principles which are at least partially independent 602 

from the inter-network communication studied here. 603 

 Nevertheless, our investigation unveils meaningful relations between intrinsic and extrinsic 604 

dimensions in the study of the neurocognitive signatures of persuasion. Since individual orientation 605 

is relatively stable over time (Haddock et al., 2008), our findings likely hold across diversified 606 

contexts. Our findings may also have implications for theories and designs of persuasive messaging 607 

interventions, suggesting that individual decisions depend on the interaction between individual 608 

orientation and how the brain circuitry is shaped from past experiences. This dependency may help 609 

explain and provide future insight into studying the interindividual variability in the effectiveness of 610 

strategies to promote positive lifestyles (Walter et al., 2019). Concerning the emotion/reason 611 

dichotomy noted at the start of the paper, we suggest that individuals effectively bear intrinsic neural 612 

and behavioral predispositions toward affective (emotional) or cognitive choices (reason). However, 613 

the personal neurocognitive background may drive decisional processes based on the subjective value 614 

given to specific targets. 615 

 616 

Data Availability Statement 617 

Data and code used for this study will be available upon request to the corresponding author after 618 

publication. 619 

 620 
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