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Abstract

This Doctoral thesis is centered on connections between persistent homology and

spectral sequences. We explain some of the approaches in the literature exploring this

connection. Our main focus is on Mayer-Vietoris spectral sequences associated to fil-

tered covers on filtered complexes. A particular case of this spectral sequence is used

for measuring exact changes on barcode decompositions under small perturbations

of the underlying data. On the other hand, these objects allow for a setup to paral-

lelize persistent homology computations, while retaining useful information related

to the chosen covers. We explore some generalizations of the traditional setup to dia-

grams of regular complexes consisting of regular morphisms; these become useful for

working with non-sparse complexes. In addition, we explore stability results related

to these new invariants, both with respect to local changes and with respect to changes

on the chosen covering sets. Finally, we present some computational experiments by

the use of PERMAVISS which illustrate some of these ideas.
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Chapter 1

Introduction

In recent years Topological Data Analysis (TDA) methods have proven to be of use for problems

where linear solutions are not good enough [58, 64]. One of the main and most studied tools

in TDA is persistent homology, which is an application to data analysis of homology, which is

widely used in Algebraic Topology. Persistent homology, however, has the disadvantage that

sometimes it is computationally expensive and it might also miss important features of a given

dataset. In this thesis, we will explore how an important tool from homological algebra called

a spectral sequence relates to persistent homology. Indeed, it has been known for a while that

the connections between both objects is an interesting topic to explore [58]. In this study we

will review some of the approaches that one might find in the literature. Our emphasis will be

mainly on the Mayer-Vietoris spectral sequence related to covering a filtered complex by filtered

subcomplexes. We will also present methods and algorithms, as well as some computational

implementations done in the python package PERMAVISS [116]. Through this thesis, we present

as many examples as possible, so that all theory is directly linked to some application in mind.

1.1 Overview

Persistent Homology

Persistent homology has existed for about two decades [59]. This tool of applied topology has

played a central role in applications, such as the study of geometric structure of sets of points

lying in Rn, see [49, 59]. This introduced the field of TDA which, very soon, was applied to a

multitude of problems, see [21, 64] for a survey article and an introduction. Among many others,

persistent homology has been applied to study coverage in sensor networks [46], pattern detection

[99], classification and recovery of signals [100] and it has also had an impact on shape recog-

nition using machine learning techniques, see [1, 55]. Other applications in machine learning

1



2 CHAPTER 1. INTRODUCTION

came about recently [25]. Another important application of persistence has been in medicine; in

studying Chronic Obstructive Pulmonary Diseases [9], tumor vasculate networks [20] and neuro-

science [97]. All these applications motivate the need for fast algorithms for computing persistent

homology. The usual algorithm used for these computations was introduced in [59], with some

later additions to speed up such as those of [32, 33, 47]. In [84] persistent homology is proven

to be computable in matrix multiplication time. However, since these matrices become large very

quickly, the computations are generally very expensive, both in terms of computational time and

in memory required. In practice computing the persistent homology of a given filtered complex

is equivalent to computing its matrices of differentials and perform successive Gaussian elimina-

tions; see [58, 59]. In sections 3.2 and 3.3 we will briefly review some of the main properties and

definitions related to persistent homology.

Updating Barcodes after small changes

Persistent homology enjoys very good stability properties [36], which is the main reason why it

has been used in a multitude of applications. It is known that given a pair of filtered complexes

X and Y , the distances between PH∗(X) and PH∗(Y ) differ no more than X and Y differ to each

other, see section 3.3 for details. An interesting question is to ask whether we can know exactly

how much PH∗(X) changes whenever we perform some small local change on X . An example is

the case when a pair of filtration values on some cells of X are interchanged, as explored in [39]

where these changes are modelled in terms of Vineyards. In the case of simplicial complexes,

one might use the link condition [51, 52, 29] to test whether removing some simplex will modify

simplicial homology or not. An interesting direction is presented by B. Stolz [110], where the

input point-cloud data is modified in a way that incurs small changes on persistent homology. We

explain briefly this approach in section 3.4. As we will see in this thesis, one might also look at

this problem from the point of view of covers and the Mayer-Vietoris spectral sequence.

Persistence Filtration Spectral Sequences

Right from the origins of persistent homology, it has been known that there are important connec-

tions between spectral sequences and persistent homology [124, 58]. When computing persistent

homology, one starts with a finite filtered complex X . Breaking down this filtration into a finite

sequence of filtration values i1 < i2 < i3 < · · ·< iN , we obtain a finite filtered complex

Fi1X ⊆ Fi2X ⊆ Fi3X ⊆ ·· · ⊆ FiN X ⊆ X .
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If FiN X = X , one might consider the persistence filtration spectral sequence

E1
p,q(X ,F) = PHq(FipX

/
Fip−1X)⇒ PHp+q(X) .

This spectral sequence was originally presented in [57, 58] and has been studied in [104, 2].

An application of this theory is the spectral sequence method from [58]. We will review this in

section 3.5. In particular, Theorem 3.5.1 leads to an explicit connection between PH∗(X) and

E1
p,q(X ,F). This connection will determine that the rank of a given spectral sequence differential

is equal to the number of persistence pairs associated to a particular pair of filtration values.

Distributed Computation

In recent years, some methods have been developed for the parallelization of persistent homology.

The spectral sequence algorithm from [58] played an important role after it was successfully im-

plemented in [6]. This consists in dividing the original matrix M into groups of rows, and sending

these to different processors. These processors will, in turn, perform a local Gaussian Elimi-

nation and share the necessary information between them, see [6]. We review this approach in

section 3.5, together with some minor modifications that keep the algorithm closer to the standard

computation of a spectral sequence.

Perhaps more important for this thesis, one might also attempt to compute persistent homology

of a filtered complex X by considering a cover U by filtered subcomplexes. In this case, one

might consider the Mayer-Vietoris blowup complex ∆U X introduced in [123], where it is shown

that there is an isomorphism PH∗(∆U X) ' PH∗(X). This object was used in [75] for presenting

the first algorithm that computed persistent homology by considering local information related to

U . This proceeds by computing the sparsified persistent homology for each cover, and then use

this information to reduce the differential of XU efficiently. Both of the presented parallelization

methods have provided substantial speedups compared to the standard method presented in [59].

Locality of Persistent Homology

Following the ideas on [123], having an understanding of how persistence barcodes relate to a

cover can help us obtain better representatives. In addition, one might also obtain an indication

of locality of a given class in PH∗(X) with respect to the cover U as introduced in [123]. On

this basis, it would be desirable to have a method that leads to the speedups from [6, 75], while

still keeping cover information from [123]. Further, it would also be useful to consider several

covers, such as usually done with functional covers as in the mapper algorithm, see [108]. This

last point limits substantially the use of the blowup-complex, since the number of simplices grows
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very quickly whenever we allow the intersections to grow. In fact, in the extreme case where a

complex X is covered by n copies of X , the blowup complex XU has the enormous complexity

size of 2n|X |.

Persistence Mayer-Vietoris spectral sequence

Going back to the parallelization question, one might consider applying the Mayer-Vietoris spec-

tral sequence to a filtered complex X together with a filtered cover U . In this case, one is looking

at the persistence Mayer-Vietoris spectral sequence

E1
p,q(X ,U ) =

⊕
σ p∈NU

PHq(U
p

σ )⇒ PHp+q(X) .

This approach was first presented in [76]. It is no surprise that these objects work in this context,

since they have been employed for similar problems for a long time, see [15] or [83]. However, it

was noticed that the extension problem was a stumbling block preventing an algorithm implemen-

tation; see example 6.1.1 for an intuitive explanation of this problem which we explain further in

section 6.2.

The difficulties posed by the extension problem might be the reason why a number of ap-

proaches followed, where some hypotheses was taken about the cover U . For example, the case

of a cover by two filtered subcomplexes was studied in [54, 93]. It is worth noticing that this

particular case corresponds to the Mayer-Vietoris Theorem adapted to the persistent case. Another

approach was to consider a cover U such that the nerve NU is one-dimensional. The reason be-

hind this assumption is that the spectral sequence collapses on the second page. This idea was

used for distributing computations of cohomology groups in a field in [43] by means of discrete

Morse theory on cellular sheaves. Recently, in [119] and [120] spectral sequences are used for

distributing persistent homology computations on these particular covers. In [119, Sec. 4.2] the

extension problem was shown to be nontrivial in general and it was solved successfully for the

case dim(NU )≤ 1.

A last approach consists in allowing arbitrary cover nerves, while assuming that each set Uσ is

ε-trivial; that is, PHn(Uσ )∼ε 0 for all n > 0 while PH0(Uσ )∼ε I(aσ ,∞) for some values aσ ≥ 0.

In this case one obtains the approximate nerve theorem [65] or the generalized nerve theorem [28]

which puts an upper bound on the interleaving distance between PH∗(X) and PH∗(NU ). Notice

that in the bounds obtained in [65] the extension problem plays an important role.
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1.2 Contribution and Thesis Structure

In this thesis we study several of the topics introduced in section 1.1. The thesis starts with a

pair of chapters 2 and 3, which contain the necessary background in Algebraic Topology and

Topological Data Analysis respectively. We would like to point out that this background material

contains some non-standard materias, some of which is our own work. In particular, the definition

of regular morphism in section 2.6 as well as some of the material from sections 2.12, 2.10, 3.5

and also 3.6. Afterwards, we review a series of topics all of which are related to persistent Mayer-

Vietoris spectral sequences as well as generalizations of these.

Persistence Algebra

The spectral sequences considered in this thesis are composed of persistence modules and persis-

tence morphisms. As we would like to compute these spectral sequences, we need an efficient

method to compute Images, Kernels and Cokernels of persistence morphisms. This problem was

already studied in [38], although with some limitations which we detail at the end of section 3.7.

We tackle this problem in an analogous way to the standard linear algebra methods. For this,

we start defining barcode basis which store compatible persistent bases in a compact way; this is

presented in Chapter 4. There, we define barcode bases and also we introduce an operation � that

allows to determine whether a group of persistence vectors are linearly independent or not. This

machinery, although it might seem artificial, is the key to understanding what it really means to

subtract columns from left to right in the Gaussian elimination outlined in Algorithm 4.1. This

leads to an image kernel procedure which computes bases for images and kernels, see Algo-

rithm 4.2. Also, it helps us to encapsulate all the information related to a persistence morphism in

a matrix that depends on the choice of two barcode bases. This is analogous to the case of linear

algebra, where a linear morphisms is given in terms of a matrix relative to a domain and codomain

basis. This approach has the advantage over [38] that image kernel works for morphisms be-

tween any pair of tame persistence modules. In this chapter we also explain how to obtain barcode

bases for the quotient of two persistence modules in section 4.4.

Barcode Shifts

In chapter 5, we study the impact of small local changes to persistent homology, with the aim

of updating barcodes whenever it is possible. That is, given some filtered complex K and some

subcomplex V ⊆K that we want to add or remove, we would like to know whether it is possible to

obtain one of PH∗(K) and PH∗(K \V ) from the other. For this, we consider a subcomplex M ⊆ K

such that V ⊆ M which determines the area where we are willing to compute the local changes
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between PH∗(M) and PH∗(M \V ). As we will see in the barcode shift lemma 5.1.2, it is possible

to solve this problem under some hypothesis that can be checked locally within M. This lemma

follows from a particular case of the persistence Mayer-Vietoris spectral sequence. Eventually,

one obtains an exact sequence of the form

0 A PH∗(K \V ) PH∗(K) B 0 ,

where barcode decompositions for A and B have been obtained through examining M. We make

heavy use of barcode bases to tackle the problem of deducing either of PH∗(K) or PH∗(K \V )

from the other; for this we introduce the concepts of embedding, projection and entanglement of

barcodes in sections 5.3 and 5.4.

Persistent Mayer-Vietoris spectral sequences

In section 2.11, we give a detailed review of the Mayer-Vietoris spectral sequence in the homology

case. Then, in chapter 6 we adapt the aforementioned exposition to the case of the persistence

Mayer-Vietoris spectral sequence. The core of the chapter lies in section 6.2, where we give a

solution to the extension problem. The solution is given by a careful consideration of the total

complex homology, together with the use of barcode basis machinery developed in chapter 4. In

section 6.3 we introduce PERMAVISS, an algorithm for computing the persistence Mayer-Vietoris

spectral sequence and solving the extension problem. The advantage of this procedure is that all

the simplicial information is enclosed within local matrices. This has one powerful consequence;

this method consists in computing local Gaussian eliminations plus computing image kernel on

matrices whose order is that of homology classes. In particular, given enough processors and a

‘good’ cover of our data, one has that the complexity is about

O(X3)+O(H3),

where X is the order of the maximal local complex and H is the overall number of nontrivial

persistence bars on the whole dataset. For more details on this, we refer the reader to section 6.3.

We review briefly some example applications in section 6.5.

Regularly Filtered Diagrams Spectral Sequences

In chapter 7 we review a generalization of the Persistent Mayer-Vietoris spectral sequence. In

this case, we consider regularly filtered CW-complexes X∗, which are functors X : R→ CW-cpx

such that each Xr is a regular complex for all r ∈ R and each morphism X(r ≤ s) : Xr → Xs is a
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regular morphism of CW-complexes for all pairs r≤ s from R; here R denotes the category of real

numbers as a poset. These regularly filtered CW complexes are a generalization for the standard

filtered CW-complexes, where it is assumed that the morphisms X(r ≤ s) are inclusions.

One might consider the classical cover of a complex as a diagram of spaces over the nerve,

where the connecting morphisms are inclusions. We also generalize this point of view by consid-

ering diagrams of spaces over simplicial complexes whose morphisms are regular; we call these

Regularly Filtered Diagrams. This setup is very natural for breaking down non-sparse complexes

into pieces. For example, if one wants to parallelize computations over the Vietoris-Rips complex

on a point cloud, it is much better to consider the join diagram than the traditional cover, as the

information on the overlaps is reduced substantially. Given a regularly filtered diagram F over

a simplicial complex K, we introduce the geometric realization ∆F , together with the associated

spectral sequence

E1
p,q(K,F ) =

⊕
σ p∈K

PHq(F (σ p))⇒ PHp+q(∆F ) .

Interleavings Mayer-Vietoris spectral sequences

In chapter 8 we look at the Mayer-Vietoris spectral sequence as an invariant in its own right. We

obtain two stability results: one with respect to local changes and another with respect to changes

on the chosen covers. For this we introduce the notion of ε-acyclic equivalences, which give a

general framework for defining ε-interleavings between persistence modules. Let D and L be

a pair of regularly filtered diagrams over a simplicial complex K. If D(σ) and L (σ) are ε-

equivalent for all σ ∈ K, and assuming also that there are compatibility conditions between these

equivalences, then there are ε-acyclic equivalences between the geometric realizations ∆D and

∆L . Furthermore, the spectral sequences E∗∗,∗(K,D) and E∗∗,∗(K,L ) are interleaved from the

first page onwards.

In section 8.4 we consider a filtered complex X together with a refinement of covers V �U .

In this case there exists a morphism E∗∗,∗(X ,V )→ E∗∗,∗(X ,U ) which is unique from the second

page onwards. We study conditions as to when there exists an inverse to this refinement induced

map. For this, we apply some results from coherent algebraic sheaves [105] to this particular

situation. We adapt this result in section 8.5 in order to obtain local comparison conditions for

interleavings between E∗∗,∗(X ,V ) and E∗∗,∗(X ,U ) for a pair of covers U and V of X that do not

need to refine the other.

Code implementation: PERMAVISS

By using the ideas in this text we developed PERMAVISS, a Python3 library that computes the

Persistence Mayer-Vietoris spectral sequence. In chapter 9 we outline the main ideas behind this
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implementation. In addition, we include some code snippets illustrating how to use this library.

In the examples section 9.6, one can see that nontrivial higher differentials come up and also the

extension problem cannot be solved in a trivial way in general. This section is a first approach to

implement many of the ideas included in this thesis.



Chapter 2

Background in Algebraic Topology

2.1 Simplicial Complexes

Simplicial complexes are the basic building blocks that will come up in various examples. Let

x0, . . . ,xn be n+ 1 points in Rm such that they are in general position. Then the convex hull of

these points is called a n-simplex and it is usually denoted by an ordered n+ 1-tuple [x0, . . . ,xn].

Essentially 0-simplices are vertices, 1-simplices are edges, 2-simplices are faces, and so on, as

illustrated on figure 2.1. We define combinations of simplices to form a simplicial complex, more

formally:

Definition 2.1.1. Given a set X , a simplicial complex K is a subset of the power set K ⊆P(X)

such that if σ ∈ K, then for all subsets τ ⊆ σ we have that τ ∈ K. Given a pair of simplicial

complexes K and L, if L⊆ K, then we say that L is a subcomplex of K.

For a simplicial complex K ⊆P(X), we denote by V (K) the subset from X containing an

element x ∈ X if and only if {x} ∈K; this V (K) will be called the vertex set of K. In particular, we

must have that K ⊆P(V (K)). An element σ ∈ K will be called a n-simplex whenever its number

of vertices |σ | is equal to n+ 1. If σ is an n-simplex, then we define its dimension to be n, and

we indicate it by dim(σ) = n. Given two simplices τ and σ from K, if all the vertices from τ are

also vertices of σ , then we will say that τ is a face of σ , this will be denoted as τ � σ . Thus, if a

simplex is contained in K all its faces must also be contained in K. Given a simplicial complex K,

we will use the notation σn ∈ K to mean that σ is a n-simplex from K. The union of simplices of

dimension ≤ n from K is a subcomplex called the n-skeleton and denoted by Kn.

Definition 2.1.2 (Standard m-simplex). Given m > 0, we define ∆m = P({0,1, . . . ,m}), which

will be called the standard m-simplex. Figure 2.1 illustrates these complexes. This space admits a

geometric realization

|∆m|=
{
(xi)

m
i=0 ∈ Rm+1

∣∣∣∣ m

∑
i=0

xi = 1
}
,

9
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v0

0-simplex

[v0]

1-simplex

v0 v1

[v0,v1]

2-simplex

v0

v2

v1

[v0,v1,v2]

3-simplex

v2

v1
v0

v3

[v0,v1,v2,v3]

Figure 2.1: Standard simplexes of dimensions 0, 1, 2 and 3.

Figure 2.2: In red, the nerve of a cover whose covering regions are represented in gray.

where we have used the notation (xi)
m
i=0 instead of the longer format (x0,x1, . . . ,xm).

Definition 2.1.3 (Nerve of a Cover). Let X be a topological space together with a finite covering

set U = {Ui}N
i=0 where each element is a topological subspace Ui ⊆ X such that X =

⋃N
i=0Ui. For

each simplex σ ∈ ∆N , we will use the notation Uσ :=
⋂

i∈σ Ui. Altogether, we define the nerve of

U as the simplicial complex

NU =
{

σ : Uσ 6= /0
}
⊆ ∆

N .

See figure 2.2 for an example and illustration.

Definition 2.1.4. Given two simplicial complexes K ⊆P(X) and L⊆P(Y ), we call a function

f : K → L a simplicial morphism whenever f respects the face structure, that is, if τ � σ are

two simplices from K, then f (τ) � f (σ) in L. Notice that a simplicial morphism f : K → L is

determined by a morphism on its vertex set f : X → Y . That is, a simplex σ = {x0,x1, . . . ,xn}

in K is sent to a simplex f σ = { f (x0), f (x1), . . . , f (xn)} in L. This property makes working with

simplicial complexes and simplicial morphisms very convenient.

Example 2.1.5. Let K ⊆P(X) and L ⊆P(Y ) be two simplicial complexes. Consider their

cartesian product K × L, noticing that it is a subset of P(X ×Y ). In fact, this is a simplicial

complex by the following property: a simplex τ1× τ2 is a face of another σ1×σ2 if and only if

τ1 � σ1 and also τ2 � σ2. We can take the iterative product of complexes K1×K2×·· ·Km, which

we will also denote sometimes as ∏
m
i=1 Ki.

Given a simplex σ ∈ K, we will use the notation ∆σ := ∆dim(σ) for convenience. Given a pair

τ � σ in K, we have a corresponding inclusion ι(τ � σ) : |∆τ | ↪→ |∆σ | which is determined by

the inclusion of vertices V (∆τ) ↪→ V (∆σ ). On the other hand, consider each set of n-simplices
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Kn \Kn−1 with the discrete topology. This allows to define the geometric realization |K| of K as

the topological space

|K|=
⊔
n≥0

|∆n|× (Kn \Kn−1)
/
∼

where (ι(τ � σ)(x),σ) ∼ (x,τ) whenever τ � σ and x ∈ |∆τ |. We will later in definition 2.8.4

generalize the definition of geometric realization. We will abuse notation and often write ∆m

instead of |∆m|. Notice that there is an inclusion ∆σ ↪→ |K| for any simplex σ ∈ K.

Example 2.1.6 (Triangulations). Let M be a manifold embedded in Rm. We define the triangula-

tion T of M to be a simplicial complex such that there is a homeomorphism |T | 'M. Having a

triangulation of a manifold is very convenient computationally, since we have turned an ‘infinite’

object into a finite combinatorial object.

2.2 Simplicial Homology

Consider a set of vertices X = {vi}N
i=1 together with a simplicial complex K ⊆P(X). Follow-

ing section 5 in [85], we pay attention to orientations on simplices. Given an n-simplex σ =

{v0,v1, . . . ,vn}, we might order its vertices to obtain a n+1-tuple (v0,v1, . . . ,vn). Suppose that we

have ordered the vertices from σ by the tuples (vρ(0),vρ(1), . . . ,vρ(n)) and (vθ(0),vθ(1), . . . ,vθ(n))

for ρ,θ ∈ Σn+1; where Σn+1 denotes the symmetric group on n+ 1 elements. If ρ and θ differ

by an even permutation of their vertices, then we set these to be equivalent and say that they

have the same orientation. On the contrary, whenever two orderings differ by an odd permutation

we say that their orientation is opposite. We will often write a simplex σ as the corresponding

equivalence class of tuples up to even permutations, which we will denote by square brackets

[v0,v1, . . . ,vn]. Let F be a field. Then for each dimension n ≥ 0 we define the free vector space

over the n-simplices of K

S∆
n (K) :=

⊕
σn∈K

F .

A set of generators for S∆
n (K) is given by ordered n-tuples [v0,v1, . . . ,vn] of vertices vi 6= v j ∈ X ,

and recall that by definition

[v0,v1, . . . ,vn] = [vρ(0),vρ(1), . . . ,vρ(n)]

for any even permutation ρ ∈ Σn+1. On the other hand, we set

[v0,v1, . . . ,vn] =−[vρ(0),vρ(1), . . . ,vρ(n)]
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for any odd permutation ρ ∈ Σn+1. Elements s ∈ S∆
n (K) are usually called simplicial n-chains or

just chains for short. We also consider linear maps dn : S∆
n (K)→ S∆

n−1(K) called differentials,

defined by

dn([v0, . . . ,vn]) =
n

∑
i=0

(−1)i[v0, . . . , v̂i, . . . ,vn]; (2.1)

where the hat notation, v̂i, is used to indicate omission of a vertex. As equation (2.1) is a bit

long, we will usually write, for a n-simplex σn = [v0, . . . ,vn], the ith face as σ
n−1
i instead of

[v0, . . . , v̂i, . . . ,vn]. Setting S∆
n (K) = 0 for all n < 0 we put all of these in a sequence

0 S∆
0 (K)

0oo S∆
1 (K)

d1oo S∆
2 (K)

d2oo · · ·d3oo (2.2)

It follows from formula (2.1) that the composition of two consecutive differentials vanishes: dn ◦

dn−1 = 0 for all n ≥ 0. In this case we say that (2.2) is a chain complex. As a consequence, we

have that Im(dn+1) ⊆ Ker(dn), and we can define the simplicial homology with coefficients in F

to be the quotient of F-vector spaces

H∆
n (K;F) =

Ker(dn)

Im(dn+1)
,

for all n ≥ 0. In general, F will be understood from the context and the notation H∆
n (K) might

be used instead. The dimensions of the homology groups encode topological information about

the simplex K. Thus the dimension of the 0-homology is the number of connected components of

K, the 1-homology group has as many copies of F as the dimension of the vector space generated

by one dimensional cycles in K up to boundaries, and the same for their higher dimensional

analogues.

Given two simplicial complexes K and T , is there a way to compare their respective homology

groups H∆
n (K) and H∆

n (T )? We can do this whenever we have a simplicial morphism f : K→ T .

This induces a chain morphism

f# : S∆
n (K)−→ S∆

n (T ) ,

where each n-simplex σn ∈ K is sent to either an n-simplex f (σn) ∈ S∆
n (T ) if dim( f (σn)) = n or,

if dim( f (σn))< n, it is sent to 0. This f# is a chain morphism in the sense that it commutes with

the differentials dn ◦ f# = f# ◦dn for all n≥ 0. Thus, f# induces a morphism of homology groups

f∗ : H∆
n (K)−→ H∆

n (T )

and this is well defined since by commutativity f#(Im(dn)) ⊆ Ker(dn−1). This property is sum-

marized by saying that Hn are functors from the category of simplicial complexes SpCpx to the



2.3. CATEGORIES AND COLIMITS 13

category of vector spaces vect; in section 2.3 we will explain these concepts.

Next, we consider the augmentation map ε : S0(K)→ F generated by sending each point

s ∈ K0 to the unit 1F ∈ F. Then, we define the reduced homology by the quotients

H̃∆
0 (K;F) =

Ker(ε)
Im(d1)

,

and H̃∆
n (K;F) = H∆

n (K;F) for all n > 0. Consider the chain complex S̃∗(K), obtained by augment-

ing (2.2) by ε and a copy of F in degree −1:

0 F0oo S0(K)
εoo S1(K)

d1oo S2(K)
d2oo · · ·d3oo

Then one can see that computing reduced homology is the same as computing homology on S̃∗(K).

Example 2.2.1. Consider the standard m-simplex ∆m. This leads to a chain complex S̃∗(∆m)

0 F0oo S0(∆
m)

εoo S1(∆
m)

d1oo S2(∆
m)

d2oo · · ·d3oo Sn(∆
m)

dnoo 0oo

By a standard result S̃∗(∆m) is exact, that is, H̃∆
n (∆

m) = 0 for all n≥ 0. For a proof, see Theorem

8.3 in [85].

Remark. For K being a finite simplicial complex, the computation of the homology of K becomes

a standard calculation. As the differentials are linear morphisms between finite dimensional vec-

tor spaces, these can be represented by matrices. One can then compute homology by performing

successive Gaussian eliminations. Of course, the difficulty lies both in performing such computa-

tions efficiently and in following an optimal information storage method.

2.3 Categories and Colimits

Throughout this text we will be working with basic notions from category theory, such as cate-

gories, functors and natural transformations. The reader can see [79, Chap. I] for an introduction

to these concepts. Given a category C , we will use the notation a ∈ C to indicate that a is an

object in C . Given a pair of objects a,b ∈ C , we will write homC (a,b) to indicate the hom set of

arrows from a to b. A small category is such that the objects of C form a set. A finite category is

such that it set of objects is a finite set. A thin category is a category whose hom sets contain at

most one element. Given a category C , we denote by C op its opposite category which is given by

formally inverting all arrows from C .

A poset is a small and thin category. Finite posets will play a key role in this thesis. An

important poset is R, the poset of real numbers with arrows corresponding to the order relation≤.
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Following, there is a list of relevant categories for this work:

• vectF the category of finite-dimensional vector spaces and linear morphisms over F.

• Top the category of topological spaces and continuous maps.

• SpCpx the category of simplicial complexes and simplicial morphisms.

• ChCpx the category of chain complexes and chain morphisms.

• CW-cpx the category of finite regular CW-complexes and regular morphisms, see sec-

tion 2.6.

• RCW-cpx the category of regularly filtered CW-complexes, that is functors F : R→CW-cpx,

this is developed in section 7.1.

• FCW-cpx the category of filtered CW-complexes, see section 7.1.

• SpSq the category of spectral sequences and spectral sequence morphisms, see section 2.12.

• SpSq[0,∞) the category of persistent spectral sequences and persistent spectral sequence

morphisms, see section 2.12.

Let J be a small category; this will be the indexing category. Let a category C and let a

functor F : J → C . We define the colimit (if it exists) of F as an object colim(F) ∈ C together

with morphisms f j : F( j)→ colim(F) for all j ∈ J in such a way that for any pair j, i ∈J with

an arrow i→ j in J , the commutativity condition f j ◦F(i→ j) = fi is satisfied. In addition,

the definition of colim(F) requires that it has a universal property in the sense that whenever

there exists an object A ∈ C together with morphisms g j : F( j) → A for all j ∈ J satisfying

commutativity conditions g j ◦F(i→ j) = gi for all arrows i→ j from J , there exists a unique

morphism fA : colim(F)→ A such that the following diagram commutes

F(i)

colim(F) A

F( j)

F(i→ j)

fi

gi

∃! fA

f j

g j

for all arrows i→ j from J . Such object A is called a cocone of F . The aforementioned universal

property ensures that colim(F) is unique up to isomorphism. In this work we will define colimits
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only whenever we are working with categories where they exist. There is a dual definition for the

limit lim(F), however, it is not very relevant for this work.

Example 2.3.1. Let K be a simplicial complex. One can think of K as a category with objects

its simplices, together with a unique arrow τ → σ for any pair τ � σ from K. Then, define the

constant functor ∗K : Kop→Top given by sending each simplex σ ∈K to the one-point topological

space ∗. Each arrow σ→ τ from Kop is sent to the constant morphism ∗→∗; where τ �σ . Notice

that colim(∗K) = π0(|K|), where π0(|K|) denotes the set of connected components from |K| with

the discrete topology.

Example 2.3.2. Consider a topological space X together with an open cover U = {Ui}i∈I , that is,

for all i ∈ I there are open sets Ui ⊆ X such that
⋃

i∈I Ui = X . In this case, one can consider this

cover as a functor XU : Nop
U → Top given by sending σ ∈ NU to the corresponding intersection

XU (σ) =Uσ =
⋂

i∈σ Ui. An arrow σ → τ from Nop
U is sent to the inclusion XU (τ � σ) =Uσ ↪→

Uτ . In this case the colimit is the covered space colim(XU ) = X . On the other hand, we consider

a simplicial complex K and consider a cover by subcomplexes A = {Ai}i∈I . In this case, we can

define the functor KU : Nop
U →Top in an analogous way to XU . That is, for each σ ∈NU we define

KU (σ) = |
⋂

i∈σ Ai| and the face maps KU (τ � σ) are given by inclusions |
⋂

i∈σ Ai| ↪→ |
⋂

i∈τ Ai|.

Now we have that colim(KU ) = |K|, where the geometric realization |K| has the weak topology

with respect to its simplices. That is, a set X is open (resp. closed) whenever X ∩ ισ (|∆σ |) is open

(resp. closed) for all simplices σ ∈ K; where we have used the inclusion ισ : |∆σ | ↪→ |K|.

Example 2.3.3. Let (X i)i∈N be a filtration of a topological space X , that is, a sequence of sub-

spaces X j ⊆ X together with inclusions X i ↪→ X j for all integers 0≤ i≤ j. This can be thought as

a functor XN : N→ Top where N denotes the subcategory of R of natural numbers. In this case

colim(XN) =
⋃

n∈N Xn ⊆ X .

2.4 Singular Homology

In this section we review briefly singular homology, which unlike simplicial homology, can be

applied to any topological space. Let X ∈ Top, we define the singular chain complex S∗(X) on

the n term as

Sn(X) = F
[{

f : |∆n| → X | f is continuous.
}]

for all n≥ 0, and 0 otherwise; where we use the notation F[·] to indicate the vector space generated

by a set. The elements from Sn(X) are called singular chains; for ease, we will omit the vertical

bars on the domain |∆n| and write ∆n instead. The singular chain complex has differentials dn :
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Sn(X)→ Sn−1(X) generated by the assignment

(
f : ∆

n→ X
)
7→

n

∑
i=0

(−1)i( f ◦ ι
n
i : ∆

n−1 ↪→ ∆
n→ X)

where ιn
i : ∆n−1 ↪→ ∆n denotes the inclusion of the n− 1 standard simplex into the n standard

simplex by skiping the i-th vertex from ∆n. One can check that dn−1 ◦ dn = 0 for all n ∈ N and

S∗(X) is indeed a chain complex. Computing homology with respect to the chain complex S∗(X)

leads to the singular homology groups H∗(X ;F). Given a continuous map f : X → Y , there is an

induced singular chain morphism f# : S∗(X)→ S∗(Y ) generated by sending each singular chain

σ : ∆n→ X to the singular chain on Y given by composition f ◦σ : ∆n→ Y . One can check that

these homology groups define a functor H∗(−;F) : Top→ vectF. Another important property of

homology groups is that these are homotopy invariants; that is, for homotopy equivalences X 'Y

there are isomorphisms Hn(X ;F)' Hn(Y ;F) for all n≥ 0, see [68, Sec. 2.1.].

Example 2.4.1. Recall that in Section 2.2 we presented simplicial homology H∆
∗ (K) for a sim-

plicial complex K. One can show [85, §34] that there is an isomorphism of homology groups

H∆
∗ (K) ' H∗(|K|) which is induced by a chain complex morphism C∆

∗ (K)→C∗(|K|) sending an

ordered tuple [v0,v1, . . . ,vn] ∈C∆
n (K) to the linear map l : ∆n→ |K| given by l((xi)

n
i=0) = ∑

n
i=0 xivi

for all points (xi)
n
i=0 ∈ ∆n. This is why we will usually talk about the “homology” of K without

distinguishing between the two. Of course, when it comes to actual computations, one works

with simplicial homology. Singular homology on the other hand has useful theoretical properties

which we will be using from time to time.

As with simplicial homology, we can also consider an augmentation map ε : S0(X)→ F send-

ing each singular chain p : ∆0→ X to the unit ε(p) = 1F ∈ F. This leads to the reduced singular

chain complex S̃n(X) whose homology groups are the reduced singular homology groups H̃n(X).

A chain complex C∗ with differentials dn : Cn→Cn−1 is said to be exact whenever all its homology

groups H∗(C∗) vanish. An exact sequence of the form

0 A B C 0

is called a short exact sequence.

Suppose that one has a pair of topological spaces A ⊆ X . Then, one can consider the singu-

lar chain complexes S∗(A) and S∗(X) and take their respective quotients, obtaining short exact

sequences

0 Sn(A) Sn(X)
Sn(X)

Sn(A)
0 ,
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for all n≥ 0. Taking homology with respect with the relative chain complexes Sn(X)/Sn(A) leads

to relative homology groups, which are denoted by H∗(X ,A). In this context, there is a long exact

sequence

· · · Hn(A) Hn(X) Hn(X ,A) Hn−1(A) · · ·ι q ∂n (2.3)

which is obtained by the use of the snake lemma [118, §1.3]. In particular, notice that there is an

isomorphism Hn(X ,∗)' H̃n(X) for all n∈N. An important property of relative homology is given

by excision. Suppose that there are three topological spaces Z ⊆ A⊆ X and such that the closure

of Z is contained in the interior of A; in such a case we say that (A,Z) is an excisive pair. Then

the inclusion (X \ Z,A \ Z) ↪→ (X ,A) induces an isomorphism in homology H∗(X \ Z,A \ Z) '

H∗(X ,A). As a consequence, if (X ,A) is a ‘good pair‘ in the sense that A is a deformation retract

of some neighbourhood of A in X , one can deduce the isomorphisms

Hn(X ,A)' Hn(X
/

A,∗)' H̃n(X
/

A) ,

see for example [68, Prop. 2.22] (here X
/

A denotes the quotient topological space). Thus, the

sequence (2.3) can be used for computing the quotient homology H̃n(X
/

A) from the factors Hn(X)

and Hn(A).

One of the main advantages of homology is its computability compared to other homotopy

invariants such as the homotopy groups. For simplicial complexes this becomes even more clear

as one can use the formulas from section 2.2. Another advantage of homology comes from results

such as the Mayer-Vietoris sequence (see section 2.11) or the Künneth formula. Such results

assume that a space X is composed of simpler pieces, such as being the union of subspaces
⋃

i∈I Ui

or the product of spaces ∏i∈I Yi. This is something we will discuss later in Section 2.8.

2.5 CW-complexes and Cellular Homology

There are some situations in which it is not practical to work with simplicial complexes. For in-

stance, it is not always easy to find a triangulation of a space X . From the more computational

perspective, a triangulation for X might contain too much unnecessary information leading to a

waste of computational time and memory. To address both problems, we consider complexes

where the building blocks are more general than simplices. Here we will closely follow the expo-

sition in chapter IX from [80]. To start, let us define the closed disk

Dn = {x ∈ Rn | |x| ≤ 1}
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the open disk

Un = {x ∈ Rn | |x|< 1}

and the n-dimensional sphere

Sn =
{

x ∈ Rn+1 | |x|= 1
}
.

Definition 2.5.1. A CW-complex X is a Hausdorff space together with a filtration

X0 ⊆ X1 ⊆ ·· · ⊆ X i ⊆ ·· ·

such that

1. X0 a disjoint union of points.

2. Each Xn ⊆ X is a closed subset called the n-skeleton of X . Each complement set Xn \Xn−1

is a disjoint union of open subsets en
λ

in Xn, for all λ ∈ Λ. These en
λ

are called open n-cells

or just n-cells and are such that en
λ

is homeomorphic to the open disk Un for all λ ∈Λ. These

cells are such that there are characteristic maps fλ : Dn→ en
λ

sending Un homeomorphically

into en
λ

for all λ ∈ Λ.

3. X = colimn∈NXn

For a CW-complex X , if c is a cell in X we will follow the notation from [41] and denote

this by c ∈ X . Also, we will follow notation from [80] and use ċ = c \ c for the boundary of any

cell c ∈ X . We will call each Xn the n-skeleton from X . Given two CW-complexes X and Y , a

continuous map f : X→Y is said to be a cellular morphism whenever it respects filtrations; that is,

f restricts to morphisms f n : Xn→Y n for all n≥ 0. The acronym “CW” comes from the topology

of X :

• C closure finiteness: a compact subset K ⊆ X intersects only finitely many open cells from

X . In particular, the closure en
λ

of each n-cell intersects finitely many cells.

• W weak topology: the topology of X is induced by the topological colimit construction; a

set A is open (resp. closed) if and only if A∩ e is open (resp. closed) for all cells e ∈ X .

Let X be a CW-complex. The cellular chain complex Ccell
∗ (X) is defined as the relative groups

Ccell
n (X) = Hn

(
Xn,Xn−1)

for all n ≥ 0, with Ccell
m (X) = 0 for all m < 0. For each cell en

λ
∈ X , notice that the characteristic
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map fλ induces an isomorphism Hn(en
λ
, ėn

λ
)' Hn(Dn,Sn−1). Thus, there are isomorphisms

Hn
(
Xn,Xn−1)'⊕

λ∈Λ

Hn
(
en

λ
, ėn

λ

)
' F

({
en

λ
| λ ∈ Λ

})
,

and so the dimension of Ccell
n (X) is equal to the number of n-cells from X . On the other hand, the

cellular differentials dcell
∗ are defined by commutativity on the diagram:

Hn(Xn)

· · · Ccell
n+1(X) Ccell

n (X) Ccell
n−1(X) · · ·

Hn−1(Xn−1) .

j

dcell
n+1

∂n+1

dcell
n

∂n j

The diagonal morphisms come from the relative homology long exact sequence (2.3), in particular,

notice that dcell
n−1 ◦dcell

n = 0. Computing homology on the cellular chain complex leads to cellular

homology Hcell
∗ (X), which is shown to be isomorphic to singular homology H∗(X) by carefully

inspecting the involved relative long exact sequences, see [68, Thm. 2.35].

As with simplicial homology, we would like to use cellular chain complexes to obtain ho-

mology groups. In order to do this, we will need to define orientations for cells in an analogous

way to the case of ordered tuples of vertices on a simplicial complex that we saw in Section 2.2.

One chooses such orientations fixing a basis for each term Ccell
n (X), by choosing a generator

an
λ
∈ Hn(en

λ
, ėn

λ
) ' F which is usually called an orientation of the cell en

λ
. However, for com-

putational convenience we pay attention to homology coefficients when choosing such orienta-

tions. Usually homology is presented with Z coefficients instead of field coefficients, as we have

done here. However, the universal coefficient formula relates the homology groups Hn(X ;F) and

Hn(X ;Z) by means of short exact sequences

0 Hn(X ;Z)⊗Z F Hn(X ;F) Tor(Hn−1(X ;Z),F) 0

see [80, §6]. Thus, for our particular case there is an isomorphism

Hn(en
λ
, ėn

λ
;F)' F' Hn(en

λ
, ėn

λ
;Z)⊗Z F .

We pick a basis for each term Ccell
n (X ;Z) by choosing a generator an

λ
∈ Hn(en

λ
, ėn

λ
;Z) ' Z which

in turn determines a generator bn
λ

for Hn(Xn,Xn−1;Z). By the universal coefficient formula, this

determines a generator bn
λ
⊗Z 1F for Hn(Xn,Xn−1;F), which we will also denote by bn

λ
for con-

venience. Once we have these local choices of orientations for the cells, we can define incidence
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numbers [bn−1
β

: bn
α ] ∈ Z which are such that

dcell
n (bn

λ
) = ∑

µ∈Λ

[bn
λ

: bn−1
µ ]bn−1

µ .

Of course, these incidence numbers depend on the particular choices of orientations that we have

made over all cells of X . The incidence numbers have the following properties which are proved

in [80, Lem. 5.1]:

(I. 1) For any cell en
λ

, [bn
λ

: bn−1
µ ] = 0 if en−1

µ is not contained in en
λ

.

(I. 2) For any n-cell en
λ

and any (n−2)-cell en−2
λ

∑
µ

[bn
λ

: bn−1
µ ][bn−1

µ : bn−2
ν ] = 0

(I. 3) For any 1-cell e1
λ

∑
µ

[b1
λ

: b0
µ ] = 0

(I. 4) −[bn
λ

: bn−1
µ ] = [−bn

λ
: bn−1

µ ] = [bn
λ

:−bn−1
µ ] .

For a finite CW-complex, the differential dcell
n can be seen as a |Xn|× |Xn−1|-matrix with Z-

entries. A possible strategy to compute the incidence numbers [bn
λ

: bn−1
µ ] is by computing the

degree dµλ ∈ Z determining the bottom arrow on the diagram:

Hn(Xn) Hn−1(Xn−1)

F F

Hn(en
λ
, ėn

λ
) Hn−1(en−1

µ , ėn−1
µ )

H̃n−1(ėn
λ
) Hn−1(Xn−1,Xn−2) Hn−1(Xn−1,Xn−1 \ en−1

µ )

H̃n−1(Sn−1) H̃n−1(Sn−1) .

[bn
λ

:bn−1
µ ]

' '

' '

''

dµλ

For details of such an approach, as well as degree computations, check [68, §2.2.].

Example 2.5.2. Let K be a simplicial complex. In particular, notice that |K| has the structure

of a CW-complex, with filtration |K0| ⊆ |K1| ⊆ · · · ⊆ |Ki| ⊆ · · · . Recall that in example 2.4.1

we saw a morphism l : S∆
n (K)→ Sn(|K|) sending a simplex σ to the linear map l(σ) : ∆σ → K

determined by the vertices from σ and which induces an isomorphism in homology. In particular,
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l(σ) is a generator of Hn(σ , σ̇) and consequently determines an orientation. The singular bound-

ary formula on l(σ) and the simplicial boundary formula on σ coincide in the following sense:

dn(l(σ)) = ∑
n
i=0(−1)il(σ)|σi = ∑

n
i=0(−1)il(σi) = l(dn(σ)), in particular [l(σ) : l(σi)] = (−1)i for

all 0≤ i≤ n.

Example 2.5.3. Consider a pair of finite CW-complexes X and Y . There is a very convenient

description of the cellular chain complex of X ×Y by means of an isomorphism (see [68, Thm

3.16])

Ccell
k (X×Y )'

⊕
i+ j=k

Ccell
i (X)⊗Ccell

j (Y )

sending a cell a×b ∈ X×Y to the tensor product a⊗b. The differential d⊗n is generated by

d⊗(a⊗b) = d(a)⊗b+(−1)dim(a)a⊗d(b) .

In particular, if we have two finite simplicial complexes K and L and a product of simplices

σ × τ ∈ K×L we can then describe the differential as

dcell(σ × τ) =
dim(σ)

∑
i=0

(−1)i
σi× τ +(−1)dim(σ)

dim(τ)

∑
j=0

(−1) j
σ × τ j .

Example 2.5.4. Let us consider complexes whose set of vertices V form a subset of a lattice

V ⊆Zm for some m∈N. Given a family Ii of copies of unit-length intervals [ni,ni+1] or singleton

sets {ni} with ni ∈ Z for all 1 ≤ i ≤ m, we define a cube as the product q = I1× ·· ·× Im. The

dimension of a cube q is equal to the sum of dimensions of its factors dim(q) = ∑
m
i=1 dim(Ii). For

each 1≤ i≤ m, if Ii is an interval, then there are two faces of q given by

Ai(q) = I1×·· ·× Ii−1×{ni +1}× Ii+1×·· ·× In

and

Bi(q) = I1×·· ·× Ii−1×{ni}× Ii+1×·· ·× In.

whose respective incidences are (by example 2.5.3)

[q : Ai(q)] = (−1)∑
i−1
i=1 dim(Ii) and [q : Bi(q)] = (−1)1+∑

i−1
i=1 dim(Ii) .

We say that a set of cubes C is a cubical complex if and only if for each cube contained in C , all its

faces are also contained in C . Given such a C , one can define a chain complex by setting Cn(C ) to

be the free F-vector space on the n-cubes of C . We define the differential δn : Cn(C )→Cn−1(C )
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as

δn(q) = ∑
0≤i≤n

dim(Ii)=1

(−1)∑
i−1
i=1 dim(Ii)(Ai(q)−Bi(q)).

for each q ∈Cn(C ). Without difficulties, one can check that δn−1δn(q) = 0. Thus one can define

the cubical homology of C in an analogous way to simplicial homology, see [70, Chp. 2] for

an introduction to cubical homology. Cubical complexes are a particular case of regular CW-

complexes, which we will review through the following section.

2.6 Regular CW-complexes

We would like to consider now CW-complexes with properties analogous to those of simplicial

complexes. A CW-complex X is said to be regular whenever all attaching maps fλ : Dn→ en
λ

are

homeomorphisms onto their images. This avoids gluing a boundary multiple times to the same

cell in the image. Regular complexes and their properties are presented thoroughly in [41] and

in [80]. Here we will state three properties of regular CW-complexes, all of which are proved

in [41, VIII, § 4].

(R. 1) For a pair of cells a,b ∈ X if dim(b)< dim(a) and if we have a∩b 6= /0, then b⊆ a.

(R. 2) For any n-cell en, for n≥ 0, en and ėn are the underlying spaces of subcomplexes from X . In

addition, ėn is the union of closures of (n−1)-cells forming a (n−1)-sphere. This follows

from adapting the language from Theorem 4.1. in [41, VIII, § 4].

(R. 3) If en
λ

and en−2
ρ are two cells from X such that en−2

ρ � en
λ

, then there are precisely two (n−1)-

cells en−1
µ and en−1

ν such that en−2
ρ � en−1

µ � en
λ

and en−2
ρ � en−1

ν � en
λ

.

Thanks to property (R. 1) it makes sense to speak about a cell b being a face of another cell

a from X , which we will denote as b � a. In particular, one can consider the poset of incidences

where each object is a cell from X and there is an arrow a→ b whenever a� b. In fact this category

can be seen as a simplicial complex Bd(X) called the Barycentric subdivision of X which has the

same homotopy type than X . Using this fact one could have used the definition of simplicial

homology to define alternatively the cellular chains for regular complexes; this approach is taken

in [60, §2.1.]. Another consequence of (R. 1) together with property (I. 1) is that if [bn
λ

: bn−1
µ ] 6= 0

then en−1
µ � en

λ
.

Property (R. 2) implies that for any face en−1
µ � en

λ
one has [bn

λ
: bn−1

µ ] =±1. This follows from

noticing that both en and ėn
λ
\ en−1

µ are contractible, and by examining the long exact sequences
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for the pairs (en
λ
, ėn

λ
) and (ėn

λ
, ėn

λ
\ ėn−1

µ ) there are isomorphisms in homology with Z coefficients:

Z Z

Hn(en
λ
, ėn

λ
;Z) H̃n−1(ėn

λ
;Z) Hn−1(ėn

λ
, ėn

λ
\ en−1

µ ;Z) Hn−1(en−1
µ , ėn−1

µ ;Z) ,

'

[bn
λ

:bn−1
µ ]

' ' '

'

where the last isomorphism on the bottom row follows from regarding en−1
µ as a cell of the complex

ėn
λ

and using the excision property of homology.

Using property (I. 2) together with (R. 3), we deduce that

[bn
λ

: bn−1
µ ][bn−1

µ : bn−2
ρ ]+ [bn

λ
: bn−1

ν ][bn−1
ν : bn−2

ρ ] = 0 .

By the same argument, if e is an edge with vertices A and B, then

[e : A]+ [e : B] = 0 .

These results justify restricting our attention to such complexes, as these regular complexes

have good computational properties. There is a converse for the properties of the incidence values

which is in [80, Thm. 7.2]; that is, one can start with values satisfying the properties of incidences

and determine an orientation of X from these. There is a GAP (Groups, Algorithms, and Program-

ming) package called HAP (Homological Algebra Programming) which contains a command for

computing incidences on regular complexes, see [112] and [61] as well as [60, §2.1].

We will say that a cellular morphism f : X → Y is a regular morphism if for all cells en ∈ X ,

the closure of their image f (en) is a subcomplex of Y such that either

• f (en) has dimension < n,

• f maps en homeomorphically into f (en).

We will write CW-cpx to denote the category of finite regular CW-complexes and regular mor-

phisms. Given a regular morphism f : X → Y , there is an induced chain map f# : Ccell
∗ (X)→

Ccell
∗ (Y ) such that for any cell en

λ
∈ X one has that

f (bn
λ
) = ∑

µ∈Λ

[ f (bn
λ
) : bn

µ ]b
n
µ

These incidences [ f (bn
λ
) : bn

µ ] are defined by following the morphisms

Hn(en
λ
, ėn

λ
) Hn(Xn,Xn−1) Hn(Y n,Y n−1) Hn(Y n,Y n \ en

µ) Hn(en
µ , ė

n
µ) .

f '
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a b

c

a b

c

Figure 2.3: Vertical projection of a simplex e2 onto two of its faces. This is in fact a homotopy
equivalence as indicated by the red arrows projection onto a middle arc on the left figure.

In particular, notice that if f (en
λ
)∩ en

µ = /0 then [ f (bn
λ
) : bn

µ ] = 0 as in this case f (en
λ
) ⊆ Y n \ en

λ
.

Also, if dim( f (en
λ
)) < n, by the fact that f (en

λ
) is a subcomplex of Y n−1 we have that [ f (bn

λ
) :

bn
µ ] = 0 for all µ ∈ Λ. On the other hand, if dim( f (en

λ
)) = n and if f (en

λ
)∩ en

µ 6= /0, then we can

follow the isomorphisms on Z coefficients

Hn(en
λ
, ėn

λ
;Z) Hn( f (en

λ
),∂ f (en

λ
);Z) Hn(en

µ , ė
n
µ ;Z)' '

which determine [ f (bn
λ
) : bn

µ ] =±1; here we have denoted by ∂ f (en
λ
) the boundary of f (en

λ
) which

is homeomorphic to the n−1-sphere by regularity hypotheses on f .

Example 2.6.1. Consider a product X×Y between two regular CW-complexes. And consider the

projections πX : X ×Y → X and πY : X ×Y → Y which of course are regular morphisms. For a

cell en
x× em

y ∈ X ×Y with orientation bn
x×bm

y one can check by using the differential formula for

the product that

[πX(bn
x×bm

y ) : bn
x ] =


1 if m = 0,

0 otherwise.

and

[πY (bn
x×bm

y ) : bn
y ] =


1 if n = 0,

0 otherwise.

The case when X and Y are simplicial complexes will be relevant for this work.

Example 2.6.2. Consider a standard 2-simplex ∆2 with vertices a, b and c as indicated on fig-

ure 2.3. One can consider the projection of ∆2 onto two of its faces L = [a,c]∪ [b,c], which is a

regular morphism π : ∆2→ [a,c]∪ [b,c]. In fact, one can build a homotopy equivalence between

K and L by following a projection of the region enclosed between the face [a,b] and the middle

dashed arc on the left of figure 2.3. In this case, one can easily compute the coefficients defining

a morphism π∗ : Ccell
∗ (∆n)→Ccell

∗ (L); notice in particular that

π∗([a,b]) = [a,c]− [b,c] .
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This example, although naive, is related to Discrete Morse Theory [86], which is a machinery

used for reducing simplicial complex computations. This also motivates the use of regular mor-

phisms and regular complexes. Another important point from this example is to show that regular

morphisms on simplicial complexes are more flexible than simplicial morphisms.

2.7 Chain Homotopies and Acyclic Carriers

In section 2.4 we mentioned that singular homology is invariant up to homotopy equivalences.

This is because given a homotopy h : X × I → Y between two continuous maps f ,g : X → Y ,

one might construct a chain homotopy between the corresponding singular chain maps f∗,g∗ :

S∗(X)→ S∗(Y ). We define now this.

Definition 2.7.1. Let (C∗,dC) and (D∗,dD) be a pair of chain complexes and consider a pair

of chain morphisms f∗,g∗ : C∗ → D∗. A chain homotopy between f∗ and g∗ is a sequence of

morphisms Hn : Cn→ Dn+1 such that

fn−gn = Hn−1 ◦dC
n +dD

n+1 ◦Hn

for all degrees n ∈ Z.

In particular, given a pair of chain homotopic morphisms f∗,g∗ : S∗(X)→ S∗(Y ) their induced

morphsims in homology are equal H∗( f ) = H∗(g).

Changing the topic, recall that on previous sections we have seen how a continuous map

f : X → Y induces a morphism on chain complexes, e.g. on singular chains f∗ : S∗(X)→ S∗(Y ),

and how this induces in turn a morphism at the level of homology f∗ : H∗(X)→ H∗(Y ). This

allows us to compare the homology groups of X and Y respectively. However, what would we do

if we wanted to compare H∗(X) and H∗(Y ) but had no map f : X → Y ? Fortunately, homology

theory contains a notion that allows to look at homology morphisms induced by “blurred” maps.

Let X and Y be two regular CW-complexes with their respective cellular chain complexes(
Ccell
∗ (X),dcell

X
)

and
(
Ccell
∗ (Y ),dcell

Y
)
. Let 〈·, ·〉X and 〈·, ·〉Y denote the inner products on Ccell

∗ (X)

and Ccell
∗ (Y ) which are fixed by the fact that the oriented cells form an orthonormal basis. Thus,

there is an equality 〈bm
µ ,d

cell
X (bn

λ
)〉X = [bn

λ
: bm

µ ].

Definition 2.7.2. A carrier F : X ⇒ Y is a map from the set of cells of X to subcomplexes of Y

that is semicontinuous in the sense that for any pair τ ≺ σ in X , F(τ)⊆ F(σ). A carrier F : X ⇒Y

is called acyclic, if for every σ ∈ X , F(σ) is a nonempty acyclic subcomplex of Y .

Given either a chain map (resp. a chain homotopy) wp : Ccell
n (X)→Ccell

n+r(Y ) with r = 0 (resp.
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r=1) and for all n≥ 0, we say that wp is carried by F if for all cells en
λ
∈ Xn

{en+r
µ ∈ Y n+r | 〈wp(bn

λ
),bn+r

µ 〉Y 6= 0} ⊆ F(σ) .

The next statement is an application of [85, Thm. 13.4]. In Proposition 8.1.2 we will prove a

version of this statement that will apply to filtered CW-complexes.

Theorem 2.7.3. Let F : X ⇒ Y be an acyclic carrier between CW-complexes X and Y . Then we

have that

• existence: there is a chain map carried by F,

• equivalence: if F carries two chain maps f and g, then F carries a chain homotopy between

f and g.

Given two acyclic carriers F,G : X ⇒ Y , we write F ⊆ G whenever F(σ) ⊆ G(σ) for all

σ ∈ X . Given a pair of acyclic carriers F : X ⇒ Y and H : Y ⇒ Z, we also define the composition

carrier H ◦F : X ⇒ Z, where each cell σ ∈ X is sent to

H ◦F(σ) :=
⋃

τ∈F(σ)

H(τ) .

In particular, notice that if f is carried by F and g is carried by G, then g◦ f is ‘carried’ by G◦F .

Note, however, that this composition does not need to be acyclic!

Example 2.7.4. Consider a regular morphism f : X → Y . We can then define the (not necessarily

acyclic) carrier Ff : X ⇒ Y induced by f as the assignment sending σ ∈ X to f (σ). Notice that

by continuity of f and property (R. 1.) we have that for any pair τ ≺ σ in X , there is an inclusion

f (τ) ⊆ f (σ). Also, f (σ) 6= /0 since it must contain at least a point. Given an acyclic carrier

G : Y ⇒ Y , we will denote by G( f (σ)) the composition of carriers G◦Ff (σ) for all σ ∈ X . This

situation will come up very often in this text and whenever we are looking at the composition

G◦Ff we will assume that it is acyclic. Note that Fι is acyclic for inclusion maps ι : X ↪→ Y .

2.8 Homotopy Colimits and Geometric Realizations

Consider a poset P and let F : Pop → Top be a functor from the oposite category; we call F a

diagram of spaces and denote the corresponding category by Diag(P); where the morphisms are

given by natural transformations. Assume that a space X is given as the union of subspaces
⋃

i∈I Ui.

Following example 2.3.2 we can consider the diagram of spaces XU over the oposite nerve Nop
U

and recall that X = colim(XU ). One might want to use this diagram structure to “deform” each
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DW DW ∩DE DE

• •

'
'

'

colim

•

6'

hocolim

'

Figure 2.4: On the left, the natural transformation F : XU → X̃U is illustrated. In the center we
see that colim(XU ) 6' colim(X̃U ) while on the right hocolim(XU )' hocolim(X̃U ).

piece Uσ for all σ ∈ Nop
U in a compatible way so that the object X becomes simpler. Do the local

homotopy equivalences carry over to the space X? In general the answer is negative as shown in

the following example.

Example 2.8.1. Consider a sphere S2 covered by an open disk containing the western hemisphere

DW and another containing eastern hemisphere DE , together with a common intersection band

DW ∩DE ' S1, see figure 2.4. In this case U = {DW ,DE} forms a cover for X = S2, which can

be seen as a functor XU : (∆1)op→ Top. Suppose that we collapse DW and DE to a point, while

collapsing the band DW ∩DE to the circle S1. This gives another functor X̃U : (∆1)op→ Top in

a way that there is a natural transformation F : XU → X̃U where F(σ) : XU (σ)→ X̃U (σ) is

a homotopy equivalence for all σ ∈ ∆1. One can see that unfortunately colim(XU ) = S2 is not

homotopy equivalent to colim(X̃U )' ∗.

This lack of homotopy stability of the colimit motivates the definition of a homotopy colimit.

As we are mainly interested in diagrams of spaces, we will only define homotopy colimits over

posets. Consider diagram F ∈ Diag(P), we define the homotopy colimit as

hocolim(F) =
⊔
n≥0

i(n)0 →i(n)1 →···→i(n)n

∆
n×F(i0)

/
∼

where the disjoint union is taken over n-sequences of non-identity arrows from Pop. The different

pieces are identified by the relation

(
(∆k ↪→ ∆

n)(p),q
)
∼
(

p,F(i(n)0 → i(k)0 )(q)
)

for any pair of points p ∈ ∆k and q ∈ F(i0) and for any pair of integers k ≤ n such that for all
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b

a c

d •

• •

•

• •

•

•

•

•

Figure 2.5: On the left, the geometric realization of a simplicial complex K. In the middle the
constant diagram ∗K and on the right, the homotopy colimit hocolim(∗K).

0≤ r ≤ k there is an equality i(k)r = i(n)l for some 0≤ l ≤ n.

Homotopy colimits enjoy quite general stability properties with respect to compatible ho-

motopy equivalences. This will be the case for diagrams D : Kop → CW-cpx over a simplicial

complex K, as will follow from Theorem 2.8.6 and the remark at the end of this section; for further

properties about homotopy colimits, see [73].

Example 2.8.2. Consider again example 2.8.1. In this case, the homotopy colimit is indeed stable

under natural homotopy equivalences and hocolim(XU ) ' hocolim(X̃U ) ' S2 as depicted on

figure 2.4.

Example 2.8.3. Consider a simplicial complex K together with the constant diagram ∗K : Kop→

Top as depicted on figure 2.5. Notice that the homotopy colimit hocolim(∗K) is homotopy equiv-

alent to the geometric realization |K|. In fact, hocolim(∗K) has an underlying simplicial complex

structure which is often called the barycentric subdivision of K and is denoted as Bd(K).

Example 2.8.3 shows that any simplicial complex can be seen as a homotopy colimit, at least

up to homotopy equivalence. An inconvenience of using the homotopy colimit construction is

that it contains too much redundant information. As one can see on figure 2.5, the homotopy

colimit hocolim(∗K) is given by the barycentric subdivision Bd(K) which contains many more

cells than |K|. This is why we turn our attention to objects that maintain the good properties

of homotopy colimits, while being simpler from a combinatorial point of view. For this, we will

restrict to diagrams D : Kop→CW-cpx of regular CW-complexes over a given simplicial complex

K, together with regular maps D(τ � σ) over Kop. Such an D will be called a regular diagram of

CW-complexes, and we will denote the corresponding category by RDiag(K).

Definition 2.8.4. Let D ∈ RDiag(K). The geometric realization ∆KD of D is the regular CW-

complex defined as

∆KD =
⊔

σ∈K

∆
σ ×D(σ)

/
∼ ,
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where, for any pair τ � σ in K the relation identifies a pair of points

(∆τ ↪→ ∆
σ )(x)× y∼ x×D(τ � σ)(y)

for each pair of points x ∈ ∆τ and y ∈D(σ). This ∆KD has a natural filtration

F0
∆KD ⊆ F1

∆KD ⊆ ·· · ⊆ Fn
∆KD ⊆ ·· ·

given by F p∆KD =
⋃

σ∈K p ∆σ ×D(σ) for all p≥ 0. A cell τ× c is a face of another cell σ ×a if

and only if τ � σ and also c ∈D(τ � σ)(a). If the underlying simplicial complex K is clear from

the context, we will write ∆D instead of ∆KD .

Given a regular morphism F : D →L of diagrams in RDiag(K), there is an induced mor-

phism on the geometric realization which we denote ∆F . Denote by ∗D the constant diagram

given by

∗D(σ) =


∗ if D(σ) 6= /0

/0 else

and note that there is a homotopy equivalence ∆(∗D) ' |KD |, where KD is a subcomplex of K

such that σ ∈ KD if and only if D(σ) 6= /0. The projection onto the simplex coordinates gives a

base projection pb : ∆D → ∆(∗D)' |KD |.

Example 2.8.5. Let D ∈ RDiag(K) and define by π0(D) ∈ RDiag(K) the diagram that sends

each simplex σ ∈ K to the set of connected components π0(D(σ)) with the discrete topology;

also for any pair τ � σ the morphism D(τ � σ) induces a morphism π0(D(σ))→ π0(D(τ)). We

define the multinerve of D as

MNerv(D) = ∆(π0(D)) .

This object was first introduced in [40] in the case of π0(XU ) for a space X covered by U , where

it was defined as a simplicial poset. There are epimorphisms ∆D →MNerv(D)→ ∆(∗D)' |K|.

Theorem 2.8.6. Let F : D →L be a morphism of diagrams in RDiag(K). If F (σ) is a homo-

topy equivalence for all σ ∈ K, then ∆F : ∆D → ∆L is a homotopy equivalence.

A proof of this result for more general diagrams of spaces (not just over a poset P) can be

found in [68, Prop. 4G.1]. A proof in the context of semisimplicial sets can be found on [56,

Thm. 2.2.].

Example 2.8.7. Let X ∈CW-cpx covered by U and recall the diagram XU from Example 2.3.2.

In this case ∆(XU ) is the Mayer-Vietoris blowup complex associated to the pair (X ,U ) and it
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can be described as a subspace of the product X × |NU |. This leads to the fiber projection p f :

∆(XU )→ X and to the base projection pb : ∆(XU )→ |NU |. As shown in [68, Prop. 4G.2], p f

is a homotopy equivalence ∆(XU ) ' X . If each XU (σ) is contractible for all σ ∈ NU , then pb

is also a homotopy equivalence by Theorem 2.8.6. This last result is usually known as the nerve

theorem.

Remark. Let D be a regular diagram of CW-complexes over the simplicial complex K. We can

extend D to a diagram D ′ on the barycentric subdivision Bd(K) by defining

D ′(τ0 ≺ ·· · ≺ τn) = D(τn)

on an n-simplex τ0 ≺ τ1 ≺ ·· · ≺ τn in Bd(K). A non-identity morphism in Bd(K) that has τ0 ≺

τ1 ≺ ·· · ≺ τn as its codomain must have the same flag with one of the τk’s left out as its domain.

The diagram D ′ maps such a morphism to the identity in case k 6= n or the morphism D(τn−1≺ τn)

in case k = n. It is clear from the definition of the homotopy colimit that the geometric realization

∆(D ′) is homotopy equivalent to hocolimD . A modified version of the homotopy equivalence

|K| ' |Bd(K)| shows that ∆(D)' ∆(D ′). Hence, we could have worked with homotopy colimits

all throughout, but we chose to work with the geometric realization since it is technically easier to

handle and because in some instances it is the Mayer-Vietoris blowup complex, which has already

appeared before in Topological Data Analysis [123].

2.9 The Mayer-Vietoris Long Exact Sequence

In this section we will review a classical result in homology theory. This will motivate the study

of simplicial cosheaves, Čech homology and, ultimately, the study of the Mayer-Vietoris spectral

sequence. Let X be a topological space, and let U = {Ui}m
i=0 be an open cover of X . Suppose that

we want to compute the homology of X from the local information on each cover element. A naive

approach to solving the problem would be to compute first the homology groups {Hn(Ui)}m
i=0, and

proceed by adding all of them back together:

Hn(X) =
⊕

0≤i≤m

Hn(Ui). (2.4)

This is hardly ever true and we will need to find other ways of dealing with this merging of

information. Alternatively, one can notice that, as the space X is the colimit colim(XU ), the same

would be true for Hn(X) being the colimit colimσ∈Kop(Hn(XU (σ))). This approach is better than

the former, but it is still not good enough as this does not happen in general.

Consider the torus T2 covered by two cylinders U and V , as illustrated in Figure 2.6. Then
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one sees that equality (2.4) does not hold in dimensions 0 and 2:

H0(T2) = F � F⊕F= H0(U)⊕H0(V ), H2(T2) = F � 0 = H2(U)⊕H2(V ).

In order to amend this, one has to look at the information given by the intersection U ∩V . This

information comes as identifications and new loops. For example, U and V are connected through

the intersection. Also, the loop going around each cylinder U and V is identified in the intersection.

These identifications are performed by taking the quotient

In := coker
(

Hn(U ∩V )→ Hn(U)⊕Hn(V )
)

for all n ≥ 0. Where the previous morphism is the Čech differential δ n
1 : Sn(U ∩V )→ Sn(U)⊕

Sn(V ) given by the assignment on singular chains s 7→ (s,−s). Additionally, the 1-loops in the

intersection merge to the same loop when included in each cylinder U or V . This situation creates

a 2-loop or ‘void’, see Figure 2.6. Thus we have the n-loops detected by the kernel

Ln := Ker
(

Hn−1(U ∩V )→ Hn−1(U)⊕Hn−1(V )
)

for all n ≥ 0. Notice that n-loops are found by n− 1 information on the intersection. Putting all

together, we have that

H0(T2)∼= I0 ∼= F, H1(T2)∼= I1⊕L1 ∼= F⊕F, H2(T2)∼= L2 ∼= F.

This leads to the expected result

Hk(T2)∼=


F for k = 0,2,

F⊕F for k = 1,

0 otherwise.

On a more theoretical level, what we have presented here is commonly known as the Mayer-

Vietoris theorem. This starts with short exact sequences

0 Sn(X) Sn(U)⊕Sn(V ) Sn(U ∩V ) 0 ,Σ δ̌ n
1

for all n≥ 0, where the morphism Σ is given by the assignment on singular chains (a,b) 7→ a+b.

One can check that the above short sequence is indeed exact. Using the snake lemma [118, §1.3]
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U U ∩V V U U ∩V V

Loops:

H0

∼= S1

H1

⇒ ‘Inside’

Identifications: ∼ ∼

Figure 2.6: Torus covered by a pair of cylinders U and V .

one can show that there is a long exact sequence

· · · Hn−1(U ∩V ) Hn(X) Hn(U)⊕Hn(V ) Hn(U ∩V ) · · ·
δ̌

n−1
1 ∂n Σ δ̌ n

1 ∂n+1

which will be called the Mayer-Vietoris sequence. We can think of each homology group Hn(X)

as a filtered F-vector space,

{0}= F−1Hn(X)⊂ F0Hn(X)⊂ F1Hn(X) = Hn(X).

Then, the Mayer-Vietoris sequence gives us the expressions for the different ratios between con-

secutive filtrations,

F0Hn(X) = In,
F1Hn(X)

F0Hn(X)
= Ln.

In particular, since we are working with vector spaces we obtain Hn(X)∼= In⊕Ln for all n≥ 0.

The above discussion gives rise to the total chain complex,

S Tot
n (X ,U ) = Sn(V )⊕Sn(U)⊕Sn−1(U ∩V ),

with morphism dTot
n = (d,d,d− δ1) for all n ≥ 0. Notice that the first two morphisms do not

change components, whereas the third encodes the ‘merging’ of information. This last morphism
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is represented by the red diagonal arrows on the diagram:

S Tot
n+1(X ,U )

dTot
n+1��

∼= Sn+1(U)⊕Sn+1(V )

dn+1
��

⊕ Sn(U ∩V )

dn
��δ1ss

S Tot
n (X ,U )

dTot
n��

∼= Sn(U)⊕Sn(V )

dn
��

⊕ Sn−1(U ∩V )

dn−1
��δ1ss

S Tot
n−1(X ,U ) ∼= Sn−1(U)⊕Sn−1(V ) ⊕ Sn−2(U ∩V )

where the rectangle of red arrows is commutative. In particular, this implies that dTot
n ◦dTot

n+1 = 0 for

all n ≥ 0. Computing the homology with respect to the total differentials and using the previous

characterization of In and Ln, one obtains

Hn(S
Tot
∗ (X ,U ))∼= In⊕Ln ∼= Hn(X). (2.5)

This result will be further generalized in proposition 2.11.1. Equation (2.5) is a consequence of a

result of a chain complex isomorphism S Tot
n (X ,U ) ' Sn(∆XU ) together with the fact shown in

example 2.8.7 that ∆XU ' X .

2.10 Čech Homology

Notice that, although this section is included in the background chapter, the definitions of sim-

plicial precosheaves and simplicial cosheaves differ slightly from the usual definition. Also, the

proof of exactness of the sequence (2.7) by using transpositions is our own. We include this section

here because it introduces relevant concepts and results for the introduction of the Mayer-Vietoris

spectral sequence to be presented in section 2.11.

In section 2.9 we computed homology of a space X from the homology of a cover by two open

sets U = {U,V}. In this case notice that composing XU with the n-homology functor leads to

assignments

U 7→ Hn(U), V 7→ Hn(V ), and [U,V ] 7→ Hn(U ∩V ) .

together with the homology maps induced by the inclusion of U ∩V into U and V . These assign-

ments can be considered as “systems of coefficients” over the oposite nerve Nop
U , a concept that

we formalize now.

Recall that a simplicial complex K can be seen as a category, as explained in example 2.3.1;

and from it we can consider the oposite category Kop. We define the colimit cone CKop to be the

category Kop with an extra object ∗ with unique arrows σ →∗ for all σ ∈ Kop. Let F ∈Diag(K),
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one can extend it to a functor F : CKop→Top sending ∗ to colimKF and any arrow σ →∗ to the

unique morphism F (σ)→ colimKop(F ) for all σ ∈ K; here notice that colimKopF exists since

Kop is small, see [90].

Definition 2.10.1. Let F ∈ Diag(K) be a diagram of spaces over a simplicial complex K and

consider a functor G : Top→ vectF. The composition G (F ) : CKop → vectF will be called a

simplicial precosheaf . The maps G (F )(τ � σ) for τ,σ ∈ K are the restriction maps.

In fact, this is just a particular case of the more general concept of precosheaf, but for the

present purposes this definition is good enough. For a good introduction to the matter see [16]

or [44]. We will denote by PreCosh the category of simplicial precosheaves and by PreCosh(K)

the subcategory of simplicial precosheaves over K. We will often omit mentioning the underlying

diagram and functors of a simplicial precosheaf structure, and so we will say “let L be a simplicial

precosheaf” or write “let L ∈ PreCosh(K)”.

Example 2.10.2. Given F ∈ Diag(K) for K being a simplicial complex and consider the n-

homology functor Hn : Top→ vectF. We obtain the simplicial precosheaf Hn(F ) : CKop →

vectF, so that Hn(F )(σ) = Hn(F (σ)) for all σ ∈ K. The restriction maps are given by the

induced maps in homology

Hn(F )(τ � σ) = F (τ � σ)∗ : Hn(F (σ))−→ Hn(F (τ)) ,

for all pairs τ � σ from K. Of course, the colimit is sorted by setting Hn(F )(∗) =Hn(colimKF ).

Now, let us go back to the simplicial cosheaves Hn(XU ) from the start of the section. Recall

that computing homology with respect to the sequence

0 Hn(U)⊕Hn(V ) Hn(U ∩V ) 0 ,
δ̌ n

1

lead to the groups In and Ln which, as shown in section 2.9, determine the groups Hn(X) for all

n ≥ 0. We can generalize this idea and consider a simplicial precosheaf L ∈ PreCosh(K) to

define the Čech chain complex Č∗(K;L ):

0
⊕

σ0∈K
L (σ0)oo ⊕

σ1∈K
L (σ1)

δ̌L
1oo ⊕

σ2∈K
L (σ2)

δ̌L
2oo · · ·oo (2.6)

where δ̌L
n denotes the n-Čech differential. We will be using the notation (s)σn to denote the vector

in
⊕

σn∈K
L (σn) that is zero except on the component σn ∈ K where it is equal to s ∈L (σn). The
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Čech differential is defined on each generator (s)σn by the assignment

δ̌
L
n
(
(s)σn

)
=

n

∑
i=0

(−1)iL (σn−1
i � σ

n)∗(s) ,

this definition extends to all
⊕

σn∈K
L (σn) by linearity. It can be checked that δ̌L

i ◦ δ̌L
i+1 = 0 for all

integers i≥ 0. Thus, we can define the Čech Homology groups as

Ȟn(K;L ) =
Ker(δ̌L

n )

Im(δ̌L
n+1)

,

for all n≥ 0.

Example 2.10.3. Notice that Čech homology is a generalization of simplicial homology. To

see this, consider the constant diagram ∗K ∈ RDiag(K), and consider the simplicial precosheaf

H0(∗K) : CKop → vectF. This precosheaf H0(∗K) sends all simplices of K to a field F and all

face relations in Kop to the identity map in F. The colimit is sent to H0(K;F). Then there is an

isomorphism of homology groups Ȟn(K;H0(∗K))' Hn(K;F) for all n≥ 0.

Consider again the scenario of the precosheaves Hn(XU ) from the start of this section. Ob-

serve that the fact that some homology classes are detected in Ln makes one wonder whether U

was a “good cover” for X ; notice that Ln detects n+1 homology classes that are “broken down”

by U . Whenever Ln+1 = 0, then from the Mayer-Vietoris long exact sequence we obtain short

exact sequences

0 Hn(X) Hn(U)⊕Hn(V ) Hn(U ∩V ) 0Σ δ̌ n
1

for all n ≥ 0. In this case, the underlying precosheaf Hn(XU ) preserves the homology of the

colimit, as we have isomorphisms:

Hn(XU )(∗) = Hn(colimKopXU )' Hn(X)' Hn(U)⊕Hn(V )

Im(δ̌ n
1 )

' colimKop
(
Hn(XU )

)
.

Definition 2.10.4. Let F ∈Diag(K), and let some functor G : Top→ vectF. Then we consider the

simplicial precosheaf given by the composition of functors G (F )∈ PreCosh(K). If the sequence

0 G (colimK(F ))
⊕

σ0∈K
G (F )(σ0)

⊕
σ1∈K

G (F )(σ1)

is exact, then G (F ) is said to be a simplicial cosheaf . Notice that this is equivalent to the condi-

tion

G (colimKop(F ))' colimKop(G (F )) .
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We denote by Cosh(K) the category of simplicial cosheaves over K. Notice that in the liter-

ature usually a simplicial cosheaf is defined as a functor L : Kop→ vectF, see for example [45,

§5]. We take this alternative definition as it defines a distinction between simplicial precosheaves

and simplicial sheaves.

Consider again the simplicial precosheaves Hn(XU ) ∈ PreCosh(NU ), for our particular case

of X and U . As pointed out earlier, in general these are not cosheaves. The exception comes in

degree n = 0, where the Mayer-Vietoris sequence leads to the exact sequence

0 H0(X) H0(U)⊕H0(U) H0(U ∩V )Σ δ̌ 0
1

Thus H0(XU ) is a simplicial cosheaf. We will show later that this is also the case for any space

X and any cover U .

Example 2.10.5. Continuing with example 2.10.3. In this case the sequence

0 H0(K)
⊕

σ0∈K
H0(∗U (σ0))

⊕
σ1∈K

H0(∗U (σ1))

is exact, and H0(∗U ) is a simplicial cosheaf. Notice that if K is connected then H0(K)' F. Here

we would recover the notion of an augmented chain complex from section 2.2.

The previous example motivates the following definition.

Definition 2.10.6. Let F ∈ Diag(K), and let some functor G : Top→ vectF. We define the

augmented Čech chain complex on the precosheaf G (F ) as

0 G (colimKopF )
⊕

σ0∈K
G F (σ0)

⊕
σ1∈K

G F (σ1) · · ·ΣF δ̌G F
1 δ̌G F

2

where the augmentation map ΣF is generated by the morphisms F (σ0)→ colimKopF for all

σ0 ∈ K. For convenience, we will often denote the augmentation map and Čech differentials by Σ

and δ̌ respectively, omitting any references to F and G .

Example 2.10.7. Consider now the case of a simplicial complex K together with a cover by

subcomplexes U . We consider the regular diagram KU ∈ RDiag(NU ) given by KU (σ) = Uσ

for all σ ∈ NU . Then we consider the simplicial precosheaf given by taking simplicial chains

S∆
n (K

U ). Since U is a cover of K by subcomplexes, the sequence

0 S∆
n (K)

⊕
σ0∈NU

S∆
n (Uσ0)

⊕
σ1∈NU

S∆
n (Uσ1)

Σ δ̌

is exact. Thus, S∆
n (K

U ) is in fact a simplicial cosheaf.
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Example 2.10.8. One could rewrite example 2.10.7 considering a space X with a cover U , to-

gether with the singular precosheaf Sn(XU ). However, in this case the colimit on the precosheaf

leads to local singular chains

SU
n (X) = colimNop

U
Sn(XU ) ,

which in general are not isomorphic to Sn(X). Notice that there is an inclusion ι : SU
n (X) ↪→ Sn(X),

and in fact one can show that this inclusion is a chain homotopy equivalence, see [68, §2.1.]. Thus,

even though Sn(XU ) is not a cosheaf, it can be considered to be a “cosheaf up to chain homotopy”.

We finish this section by focusing on the case of a simplicial complex K together with a finite

cover U by subcomplexes. We consider the simplicial cosheaf S∆
n (K

U ) from example 2.10.7.

The aim will be to show that the augmented Čech chain complex Č∗(NU ;S∆
n (K

U )) expanded as

0 S∆
n (K)

⊕
σ0∈NU

S∆
n (Uσ0)

⊕
σ1∈NU

S∆
n (Uσ1) · · ·Σ δ̌ δ̌ (2.7)

is exact. In order to show this, consider a diagram of spaces NU ∈ RDiag(K) given by sending a

simplex s∈K to NU (s)=∆dim(σ(s)), where σ(s)∈NU denotes the simplex of maximal dimension

in NU such that s ∈ Uσ(s). The restriction maps NU (t � s) are given by the corresponding

inclusions ∆dim(σ(s)) ↪→ ∆dim(σ(t)) for all simplices t,s ∈ K. Notice that colimKopNU = NU with

the maps NU (σ)→ colimKopNU given by inclusions ∆dim(σ(s)) ↪→ NU . One can consider the

simplicial precosheaf S∆
n (NU ) ∈ PreCosh(K), with augmented Čech complex

0 S∆
m(NU )

⊕
s0∈K

S∆
m(NU (s0))

⊕
s1∈K

S∆
m(NU (s1)) · · ·Σ δ̌ δ̌ (2.8)

There is an isomorphism

ψ :
⊕

sn∈K S∆
m(NU (sn))

⊕
σm∈NU

S∆
n (Uσm)

(σm)sn (sn)σm .

'

We will now use this “transposition” as a way to understand better the Čech chain complexes

involved. First, we rewrite the chain (2.7) using this transposition:

0 S∆
n (K)

⊕
sn∈K

S∆
0 (NU (sn))

⊕
sn∈K

S∆
1 (NU (sn)) · · ·εψ dψ dψ

(2.9)

Where the morphisms εψ and dψ are induced by imposing commutativity of (2.7) with the trans-

position ψ . We claim that (2.9) corresponds to the direct sum of augmented simplicial chain com-

plexes S̃∆
∗ (∆

σ(sn)) for all sn ∈K; as this direct sum is exact by example 2.2.1, so the sequence (2.9)
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would also be exact. To check this, we consider a chain (σm)sn ∈
⊕

sn∈K
S∆

m(NU (sn)), then we have

dψ((σm)sn) = ψ
−1 ◦ δ̌ ◦ψ

(
(σm)sn

)
= ψ

−1 ◦ δ̌
(
(sn)σm

)
= ψ

−1
( m

∑
i=0

(−1)i(sn)σm
i

)
=

( m

∑
i=0

(−1)i
σ

m
i

)
sn

=
(
dNU

(σm)
)

sn .

Similarly, for the augmentation we have that

ε
ψ((σ0)sn) = Σ◦ψ((σ0)sn) = sn ,

and the result follows. Similarly, one could rewrite the sequence (2.8) by using the transposition ψ .

In this case one obtains the direct sum of augmented chain complexes S̃∆
∗ (Uσ ) over all m-simplices

σm ∈ NU . Consequently, (2.8) is exact if and only if each Uσm is acyclic for all σm ∈ NU .

Remark. Alternatively, one might consider the simplicial cosheaf S∆
n (K

U ) ∈ Cosh(NU ) from

example 2.10.7. This cosheaf is in fact a flabby cosheaf ; that is, for each pair V ⊆U , the morphism

Sn(V ⊆U) : Sn(V )→Sn(U) is injective. Then, using 2.5, 4.3, and 4.4 from section VI. in [16],

one has exactness of the Čech chain complex.

Remark. Recall that a regular CW complex X has incidence relations between its composing cells.

For this reason, one could rewrite this section by considering cellular (pre)cosheaves over regular

CW complexes. In particular, if we consider a covered regular CW-complex (X ,U ), we might

consider the corresponding cellular precosheaf given by Ccell
∗ (XU ). The transposition construction

should work to show that the augmented Čech sequence

0 Ccell
n (K)

⊕
σ0∈NU

Ccell
n (Uσ0)

⊕
σ1∈NU

Ccell
n (Uσ1) · · ·Σ δ̌ δ̌

is exact for all n≥ 0. A motivation of working with Cosheaves is that there are fast algorithm tech-

niques to compute their homology groups. For example, one could use Discrete Morse Theory,

see [43] for a reference on this.

2.11 The Mayer-Vietoris spectral sequence

In this section, we give an introduction to the Mayer-Vietoris spectral sequence. These ideas come

mainly from [15, 83, 62]. The reason for including this is because we think it beneficial to outline
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a minimal, self-contained explanation of the procedure. Also, we will be using this as a necessary

background for Chapter 6. For simplicity we will focus on ordinary homology over a field F.

Later on we will extend these ideas to the case of persistent homology over a field.

Consider a simplicial complex K with a covering U = {Ui}m
i=0 by subcomplexes. In this case,

we need to take into account all the intersections between different subcomplexes. We can extend

the intuition from section 2.9, by recalling the Čech chain complex (2.7) associated to the cosheaf

S∆
m(K

U ) for all m ≥ 0. Stacking all these sequences on top of each other, and also multiplying

differentials in odd rows by −1, we obtain a diagram:

�� �� �� ��
0 S∆

2 (K)oo

d

��

⊕
σ0∈NU

S∆
2 (Uσ0)

Σoo

d

��

⊕
σ1∈NU

S∆
2 (Uσ1)

δ̌1oo

d

��

⊕
σ2∈NU

S∆
2 (Uσ2)

δ̌2oo

d

��

· · ·oo

0 S∆
1 (K)oo

d

��

⊕
σ0∈NU

S∆
1 (Uσ0)

−Σoo

d

��

⊕
σ1∈NU

S∆
1 (Uσ1)

−δ̌1oo

d

��

⊕
σ2∈NU

S∆
1 (Uσ2)

−δ̌2oo

d

��

· · ·oo

0 S∆
0 (K)oo

��

⊕
σ0∈NU

S∆
0 (Uσ0)

Σoo

��

⊕
σ1∈NU

S∆
0 (Uσ1)

δ̌1oo

��

⊕
σ2∈NU

S∆
0 (Uσ2)

δ̌2oo

��

· · ·oo

0 0 0 0

This leads to a double complex (S∗,∗, δ̄ ,d) defined as

Sp,q :=
⊕

σ p∈NU

S∆
q (Uσ p)

for all p,q ≥ 0, and also Sp,q := 0 otherwise. We denote δ̄ = (−1)qδ̌ , the Čech differential

multiplied by a−1 on odd rows. The reason for this change of sign is because we want S∗,∗ to be

a double complex, in the sense that the following equalities hold:

δ̄ ◦ δ̄ = 0, d ◦d = 0, δ̄ ◦d +d ◦ δ̄ = 0. (2.10)

Since S∗,∗ is a double complex, we can study the associated chain complex S Tot
∗ , commonly

known as the total complex. This is formed by taking the sums of anti-diagonals

S Tot
n :=

⊕
p+q=n

Sp,q

for each n≥ 0. The differentials on the total complex are defined by dTot = d + δ̄ , which satisfy
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δ̄
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δ̄

δ̄

d

d

d

d
β4

β3

β2

β1

β0

α3

α2

α1

α0

S Tot
3

S Tot
4

S∗,∗

δ̄

δ̄

δ̄

δ̄

d

d

d

d
β4

β3

β2

β1

β0

0

0

0

0
Ker(dTot)4

S∗,∗

Figure 2.7: S∗,∗ represented as a lattice for convenience. On the left, the total complex S Tot asso-
ciated to S∗,∗. Here (β0, . . . ,β4)∈S Tot

4 maps to (α0, . . . ,α3)∈S Tot
3 , where d(βi)+ δ̄ (βi+1) = αi

for all 0≤ i≤ 3. On the right, the kernel Ker(dTot)4, where d(βi)+ δ̄ (βi+1) = 0 for all 0≤ i≤ 3.

dTot ◦ dTot = 0 from equations (2.10), see Figure 2.7 for a depiction of this. Later, in propo-

sition 2.11.1, we will prove that Hn(K) ∼= Hn(S Tot
∗ ) for all n ≥ 0. The problem still remains

difficult, since computing Hn(S Tot
∗ ) directly might be even harder than computing Hn(K). The

key is that there is a divide and conquer method which allows us to break apart the calculation of

Hn(S Tot
∗ ) into small, computable steps.

Let us start by computing the kernel Ker(dTot
n ), which is depicted in Figure 2.7. Recall that we

will be working with vector spaces and linear maps all throughout. Let s = (sk,n−k)0≤k≤n ∈S Tot
n

be in Ker(dTot
n ). Then s will satisfy the equations d(sk,n−k) = −δ̄ (sk+1,n−k−1) for all 0 ≤ k < n.

Thus, one can obtain kernel elements by considering subspaces GKp,q ⊆ Sp,q. The subspace

GKp,q is composed of elements sp,q ∈ Sp,q such that d(sp,q) = 0, and there exists a sequence

sp−r,q+r ∈Sp−r,q+r satisfying equations d(sp−r,q+r) =−δ̄ (sp−r−1,q+r+1) for all 0 < r≤ p. Notice

that GKp,q is a subspace of Sp,q since both d and δ̄ are linear. We will see that one has (non-

canonical) isomorphisms,

Ker(dTot
n )∼=

⊕
p+q=n

GKp,q. (2.11)

This is depicted in Figure 2.8. It turns out that this is true only when we are working with vector

spaces. Later, we will work with a more general case where such isomorphisms do not hold. This

will be known as the extension problem.

Hence, recovering the sets GKp,q leads to the kernel of dTot
n . The problem with this approach

is that each subspace GKp,q still requires a large set of equations to be checked. A step-by-step

way of computing these is by adding one equation at a time. For this we define the subspaces

GZr
p,q ⊆Sp,q where we add the first r equations progressively. That is, we start setting GZ0

p,q =

Sp,q. Then we define GZ1
p,q to be elements sp,q ∈ Sp,q such that d(sp,q) = 0, or equivalently

GZ1
p,q =Ker(d)p,q. In an inductive way, for r≥ 2 we define GZr

p,q to be formed by elements sp,q ∈
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δ̄
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GZ0
2,1

= S2,1

0

α1 β2
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2,1

= Ker(d)2,1

0
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β1α0 GZ2
2,1

0

0 β2

β10

β0

GZ3
2,1

= GK2,1

Figure 2.8: On the left, in cyan the four direct summands of Ker(dTot)4. The corresponding
GKr,3−r are framed to emphasize that they are respective subspaces of Sr,3−r for all 0 ≤ r ≤ 3.
On the right, in orange the subspaces GZr

2,1, eventually shrinking to GK2,1. For convenience, we
have labelled α2 = d(β2), α1 = δ̄ (β2) and α0 = δ̄ (β1).

GZr−1
p,q such that there exists a sequence sp−k,q+k ∈Sp−k,q+k satisfying equations d(sp−k,q+k) =

−δ̄ (sp−k+1,q+k−1) for all 1≤ k < r. Then, for all p,q≥ 0, we have a decreasing sequence

GKp,q = GZp+1
p,q ⊆ GZp

p,q ⊆ ·· · ⊆ GZ0
p,q = Sp,q.

For intuition see Figure 2.8, and also Figure 2.10 for a depiction of GZ2
3,1 on a lattice. A very

compact way of expressing that, is by the definition GZr
p,q =Ker(d)∩(δ̄−1◦d)r−1(Sp−r+1,q+r−1)

for all r≥ 1, where by (δ̄−1 ◦d)r we mean composing r-times the preimage δ̄−1 ◦d. In particular,

since GZr
p,q =GZp+1

p,q for all r≥ p+1, we sometimes use the convention GZ∞
p,q :=GZp+1

p,q =GKp,q.

Now we explain the notation GKp,q and the isomorphism (2.11). We start defining a vertical

filtration F∗V on S∗,∗ by the following subcomplexes for all r ≥ 0:

Fr
V (S∗,∗)p,q :=


Sp,q, whenever p≤ r,

0, otherwise.

Notice that this filtration increases with the index, so that we have inclusions Fr
V (S∗,∗)⊆Fr+1

V (S∗,∗)

for all r ≥ 0. Additionally, we obtain isomorphisms F p
V (S∗,∗)/F p−1

V (S∗,∗) ∼= Sp,∗ for all p ≥ 0.

The filtration F∗V respects the morphisms in S∗,∗ in the sense that d(F t
V (S∗,∗)) ⊂ F t

V (S∗,∗), and
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F3
V (S∗,∗)

F2
V (S∗,∗) Sp,∗

S∗,∗

d

δ̄

Figure 2.9: Note that F3
V (S∗,∗)/F2

V (S∗,∗)
∼=S3,∗. Also notice that the differentials δ̄ and d respect

the vertical filtration F∗V .

also δ̄ (F t
V (S∗,∗))⊂ F t

V (S∗,∗). See Figure 2.9 for a depiction of F∗V . Another point to notice is that

F∗V will filter the total complex S Tot
∗ , respecting its differential dTot. That is, S Tot

n will be filtered

by subcomplexes,

Fr
V S Tot

n :=
⊕

p+q=n
p≤r

Sp,q,

for all r ≥ 0. In particular, notice that Ker(dTot) also inherits the filtration F∗V , where we will

have filtration sets F p
V Ker(dTot)n = F p

V S Tot
n ∩Ker(dTot)n. We define the associated modules

of Ker(dTot)n to be the quotients Gp
V Ker(dTot)n = F p

V Ker(dTot)n/F p−1
V Ker(dTot)n, which can be

checked to be isomorphic to GKp,q for all p+q = n. This follows by considering morphisms

Gp
V Ker(dTot)n // GKp,q,

[(s0,n,s1,n−1, . . . ,sp,q,0, . . . ,0)] // sp,q,

(2.12)

which are well-defined since sp,q does not change for representatives of the same class. In fact,

this morphism is injective since two classes with the same image will be equal by definition of

Gp
V Ker(dTot)n. On the other hand, the definition of GKp,q ensures surjectivity. In particular, since

we are working with vector spaces, we have that:

Ker(dTot
n )∼=

⊕
p+q=n

Gp
V Ker(dTot)n ∼=

⊕
p+q=n

GKp,q.

which justifies isomorphism (2.11).

Next, we explain the notation GZr
p,q. We introduce the objects

Zr
p,q :=

{
z ∈ F p

V S Tot
p+q : dTot(z) ∈ F p−r

V S Tot
p+q−1

}
for all r ≥ 0. We can think of these as kernels of dTot up to some previous filtration. Then,
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3,1
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2,2 S∗,∗

GZ2
3,1
∼= Z2

3,1/Z1
2,2

S∗,∗

Figure 2.10: On the left the sets Z2
3,1 and Z1

2,2. On the right their respective quotient GZ2
3,1.

by definition, we have that Z0
p,q = F p

V S Tot
p+q and Zp+1

p,q = Z∞
p,q = F p

V Ker(dTot
p+q). Using a morphism

analogous to (2.12), one can check that the quotients Zr+1
p,q /Zr

p−1,q+1 are isomorphic to GZr+1
p,q for

all p+ q = n. This is depicted in Figure 2.10. Thus, computing these quotients increasing r ≥ 0

leads to the desired kernel Ker(dTot). With a little more work, we can do the same for computing

the homology.

There is a procedure commonly known as a spectral sequence which leads to Hn(S Tot
∗ ) after

a series of small, computable steps. This is done in an analogous way as we did before for

computing Ker(dTot). In this case we will need to take the extra steps of taking quotients by the

images of dTot. First notice that the vertical filtration F∗V transfers to homology Hn(S Tot
∗ ) by the

inclusions F p
V S Tot

∗ ⊆S Tot
∗ for all p≥ 0. That is, we have filtered sets:

F p
V Hn(S

Tot
∗ ) := Im

(
Hn(F

p
V S Tot

∗ )−→ Hn(S
Tot
∗ )

)
which induce a filtration on Hn(S Tot

∗ ). For this filtration the associated modules will be defined by

the quotients Gr
V Hn(S Tot

∗ ) = Fr
V Hn(S Tot

∗ )/Fr−1
V Hn(S Tot

∗ ) for all r ≥ 0. Notice that in this case,

since we are assuming that we are working over a field, we will recover the homology by taking

direct sums:

Hn(S
Tot
∗ )∼=

n⊕
r=0

Gr
V Hn(S

Tot
∗ ). (2.13)

We will say that the direct sum in (2.13) is the associated graded module to the homology of

the total complex Hn(S Tot
∗ ). In Chapter 6, we will deal with filtered modules F∗A together with

quotients GnA = FnA
/

Fn−1A defining the associated graded module GA =
⊕n

r=0 GrA; obtaining

A from GA is known as the extension problem.

Previously, we defined the sets Zr
p,q which are kernels up to filtration. In an analogous way we
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define boundaries up to filtration by setting

Br
p,q :=

{
dTot(c) ∈ F p

V S Tot
p+q : c ∈ F p+r

V S Tot
p+q+1

}
for all r ≥ 0, and p,q ≥ 0. These are images of dTot coming from a previous filtration. Notice

that we will have relations dTot(Zr
p,q) = Br

p−r,q+r−1 and also dTot(Br
p,q) = 0. Additionally there is

a sequence of inclusions,

B0
p,q ⊂ B1

p,q ⊂ ·· · ⊂ Bq+1
p,q = B∞

p,q ⊂ Z∞
p,q = Zp

p,q ⊂ ·· ·Z1
p,q ⊂ Z0

p,q,

for all p,q≥ 0.

From the previous discussion, we start defining the first page of the spectral sequence as the

quotient

E1
p,q :=

Z1
p,q

Z0
p−1,q+1 +B0

p,q

∼=
GZ1

p,q

Im
(
B0

p,q→ GZ1
p,q
) ,

for all p,q ≥ 0. Recall that Ker(d)p,q = GZ1
p,q = Z1

p,q/Z0
p−1,q+1 and also Im

(
B0

p,q→ GZ1
p,q
)

is

isomorphic to Im(d)p,q. Therefore we deduce that E1
p,q
∼= Hq(Sp,∗,d). On this page dTot in-

duces differentials d1 : E1
p,q→ E1

p−1,q. That is, noticing that dTot(Z1
p,q) = B1

p−1,q ⊂ Z1
p−1,q and also

dTot(Z0
p−1,q+1 +B0

p,q) = dTot(Z0
p−1,q+1)+0 = B0

p−1,q we will have that d1 : E1
p,q→ E1

p−1,q is well-

defined. Notice that since dTot ◦ dTot = 0 we will also have d1 ◦ d1 = 0 and in particular one can

define the homology on the first page Hp,q(E1
∗,∗,d

1). Since

Ker(d1) =
Z2

p,q

Z2
p,q∩ (Z0

p−1,q+1 +B0
p,q)

=
Z2

p,q

Z1
p−1,q+1 +B0

p,q
, and Im(d1) =

B1
p,q

B0
p,q

then the second page will be

E2
p,q := Hp,q(E1

∗,∗,d
1) =

Ker(d1)

Im(d1)
=

Z2
p,q

Z1
p−1,q+1 +B1

p,q
.

The second page has differential d2 induced by the total complex differential dTot. Figure 2.11

illustrates this principle.

Doing the same for all pages we obtain the definition of the r-page:

Er
p,q := Hp,q(Er−1

∗,∗ ,d
r−1) =

Zr
p,q

Zr−1
p−1,q+1 +Br−1

p,q

for all r ≥ 2. Of course, we can express alternatively the r-page terms as:

Er
p,q :=

GZr
p,q

Im
(
Br−1

p,q → GZr
p,q
) .
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IB2
2,1

IB1
2,1

IB0
2,1

GZ1
2,1

GZ2
2,1

GZ3
2,1

IB0
2,1 ⊂ IB1

2,1 ⊂ IB2
2,1 ⊂ GZ3

2,1 ⊂ GZ2
2,1 ⊂ GZ1

2,1

E2
1,2

E2
3,1

Figure 2.11: On the left, the different subspaces on S2,1. Here IBr
2,1 = Im

(
Br

2,1→ GZr+1
2,1

)
, for

all 0 ≤ r ≤ 2. The framed region represents S2,1. Brighter colours represent bigger regions
than darker colours. Note that blue and orange colours have been assigned to GZ∗2,1 and IB∗2,1
respectively. On the right, the morphism d2 : E2

3,1 → E2
1,2 on the second page. The two framed

regions represent the codomain and domain of d2, these have been assigned brighter and darker
colours, respectively.

Thus, the ∞-page is:

E∞
p,q =

Z∞
p,q

Z∞
p−1,q+1 +B∞

p,q

∼=
GKp,q

Im
(
B∞

p,q→ GKp,q
) .

Then, for n = p+q one has the equality

Gp
V Hn(S

Tot
∗ )=

F p
V Hn(S Tot

∗ )

F p−1
V Hn(S Tot

∗ )
=

Im
(
Hn(F

p
V S Tot

∗ )−→ Hn(S Tot
∗ )
)

Im
(

Hn(F
p−1

V S Tot
∗ )−→ Hn(S Tot

∗ )
) ∼= Z∞

p,q/B∞
p,q

Z∞
p−1,q+1/B∞

p−1,q+1

∼=E∞
p,q

since B∞
p−1,q+1 ⊆ B∞

p,q. Therefore, computing the spectral sequence is a way of approximating the

associated module Gp
V Hn(S Tot

∗ ). Thus adding up all of these leads to the result Hn(S Tot
∗ ). By

convention, since E∞
p,q
∼= Gp

V Hn(S Tot
∗ ) we say that E∗p,q converges to Hn(S Tot) and we denote this

as

E∗p,q⇒ Hn(S
Tot).

Remark. Here we have adopted the definition of Zr
p,q and Br

p,q that one can find in [83]. Other

sources such as [15] and [76] use the same notation for other terms.

So far, we have studied spectral sequences for vertical filtrations. Similarly, there is a horizon-

tal filtration,

Fr
HS Tot

n :=
⊕ p+q=n

q≤r Sp,q,

for all r ≥ 0. We can apply the same argument to this filtration, to obtain a spectral sequence

HE∗∗,∗⇒ Hn(S
Tot).
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An intuitive way of thinking of this is by applying a symmetry about the diagonal x = y on the

previous discussion. Thus the first page is computed with the homology with respect to horizontal

differentials, the second with respect to vertical differentials, and so on. This leads easily to the

following widely known result:

Proposition 2.11.1. Hn(S Tot
∗ )∼= Hn(K).

Proof. We will prove this by showing that HE∗∗,∗ collapses on the second page, which means that

all differentials in the spectral sequence are trivial from the second page onwards. In order to turn

to the first page, we need to compute homology with respect to the horizontal differentials δ . As

shown in section 2.10, the Čech chain complexes associated to S∆
∗ (K

U ) are exact, so that:

HE1
∗,∗ := H0,q(HE0

∗,∗, δ̄ ) =


S∆

q (K) if p = 0 and q≥ 0

0 otherwise.

After this one can compute the second page by the homology with respect to vertical differentials

d induced on the first page,

HE2
∗,∗ := H0,q(HE1

∗,∗,d) =


Hq(K) if p = 0 and q≥ 0

0 otherwise.

To proceed to the next page, we would need to consider homology with respect to diagonal differ-

entials,

d2 : HE2
p,q −→ HE2

p+1,q−2.

Since the second page E2
p,q has only one non-zero column p = 0, computing homology with

respect to d2 leaves this page intact. The same happens when we consider for any r > 2 homology

with respect to differentials

dr : HEr
p,q −→ HEr

p+r−1,q−r.

Thus, we say that HE∗p,q has collapsed on the second page, which is usually denoted as HE2
p,q =

HE∞
p,q. Each diagonal has a unique nonzero entry HE∞

0,q
∼= Hq(K). In particular, we have isomor-

phisms

HE∞
0,n
∼= Hn(S

Tot
∗ )∼= Hn(K),

for all n≥ 0. Notice that there is no extension problem here, since only the 0-column is nontrivial.

Proposition 2.11.1 is a particular instance of the more general double complex spectral se-

quence theorem [83, Thm. 2.15].
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Therefore, using proposition 2.11.1, we have that the spectral sequence converges to the

wanted result

E∗p,q⇒ Hn(K).

In particular, since we are in the category of vector spaces, there are no extension problems. Thus,

we have an isomorphism

Hn(K)∼=
⊕

p+q=n
E∞

p,q .

Using the spectral sequence machinery, one can deduce a homology analogue of the Nerve theo-

rem.

Corollary 2.11.2. Suppose that K is a simplicial complex together with a cover by subcomplexes

U = {Ui}N
i=0. Assume that Hn(Uσ ) = 0 for all n ≥ 0 and all simplices σ ∈ NU . Then there are

isomorphisms Hn(X)' Hn(NU ) for all n≥ 0.

Proof. Notice that the first page terms E∗p,q(X ,U ) are all zero for higher rows q > 0. Thus, the

sequence E∗p,q(X ,U ) collapses at the first page and the only nonzero terms are E1
p,0(X ,U ) '

S∆
p(NU ) for all p≥ 0 (recall the sequence (2.8)). Thus the result follows.

Now, instead of making assumptions about our covering elements, we assume that our nerve

NU is one dimensional. In such a case, the terms E∗p,q(X ;U ) are all zero whenever p > 1. The

spectral sequence collapses on the second page, where the nonzero terms E∗p,q(X ;U ) are equal to

the Čech homology groups Ȟp(NU ;S∆
q (K

U )) for p = 0,1 and all q≥ 0.

Corollary 2.11.3. Suppose that K is a simplicial complex together with a cover by subcomplexes

U = {Ui}N
i=0. Assume that dim(NU )< 2. Then there are isomorphisms

H0(K)' Ȟ0(NU ;S∆
0 (K

U )), Hn(K)' Ȟ0(NU ;S∆
n (K

U ))⊕ Ȟ1(NU ;S∆
n−1(K

U )) ,

for all n≥ 0.

Remark. Following on the final remark from section 2.10, we could consider the Mayer-Vietoris

spectral sequence associated to a covered regular CW-complex (X ,U )

E1
p,q(X ,U ) =

⊕
σ p∈NU

Hq(Uσ p)⇒ Hp+q(X) .

This whole section can be rewritten in this context.
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2.12 Spectral Sequences and Twisted Double Complexes

In section 2.11 we saw an example of a very concrete spectral sequence. However, spectral se-

quences come up very naturally in many situations [34]. A more general setup [83] considers a

graded R-module A∗ for some ring R, together with differentials dn : An→ An−1 for all n≥ 0 and

a bounded filtration

F0A∗ ⊆ F1A∗ ⊆ ·· · ⊆ FmA∗ = A∗ .

Additionally, we assume that the differentials are well behaved with respect to the filtration, in the

sense that there are inclusions d∗(F pA)⊆ F pA for all p≥ 0. We say that A∗ is a filtered differential

graded module and denote this by the triple (A,d,F). In this case, we obtain the objects

Zr
p,q := F pAp+q∩d−1(F p−rAp+q)

and also

Br
p,q := F pAp+q∩d(F p+rAp+q)

which are generalizations of the previously defined objects from section 2.11. In this case, the

spectral sequence terms are given by the quotients

Er
p,q =

Zr
p,q

Zr−1
p,q +Br−1

p,q
,

for all r≥ 0 and all p,q ∈ Z. One might check [83, Thm. 2.6.] that the following properties hold:

• d induces differentials dr : Er
p,q→ Er

p−r,q+r−1,

• Er+1
∗,∗ ' H∗(Er

∗,∗,d
r
∗,∗)

• E1
p,q ' Hp+q(F pA∗

/
F p−1A∗)

• E∞
p,q ' F pHp+q(A∗)/F p−1Hp+q(A∗),

for all r ≥ 0 and all p,q ∈ Z. Then, Er
p,q converges to H∗(A), which is denoted as

E1
p,q = Hp+q(F pA∗

/
F p−1A∗)⇒ F pHp+q(A∗)/F p−1Hp+q(A∗) .

This means that we can use E∗p,q as a means to obtain the homology groups Hn(A) for all n ≥ 0;

notice that this is not exactly true, as we only recover the consecutive quotients induced by the

filtration F∗. In this case, the H∗(A) has an associated graded module given by the direct sums

GHn(A) =
n⊕

p=0

F pHn(A)
/

F p−1Hn(A)'
n⊕

p=0

E∞
p,n−p ,
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for all n ≥ 0. The extension problem consists in obtaining Hn(A) from the various degrees from

GHn(A). In particular, we have an isomorphism F0Hn(A)' E∞
0,n as well as short exact sequences

0 Fr−1Hn(A) FrHn(A) E∞
r,n−r 0 ,

for all 1≤ r ≤ n. Solving this problem is nontrivial in general.

A morphism of spectral sequences is a sequence of bigraded morphisms f r : Er
p,q→ Er

p,q that

commute with the spectral sequence differentials, ie. dr ◦ f r = dr ◦ f r for all r ≥ 0. Apart from

that, these morphisms satisfy f r+1 =H( f r) for all r≥ 0. Suppose that (A∗,d,F) is another filtered

differential graded module together with its corresponding spectral sequence Er
p,q. Consider a

morphism f : A∗ → A∗ that intertwines with the differentials f ◦ d = d ◦ f and also preserves

filtrations f (F pA∗)⊆ F p
(A∗) for all p≥ 0. This induces a morphism of spectral sequences

f r
p,q : Er

p,q→ Er
p,q

by [83, Thm. 3.5]. We will denote by SpSq the category of spectral sequences, while we will

denote by SpSq[0,∞) the category of functors F : R→ SpSq.

We apply this general theory of spectral sequences to a relevant spectral sequence for this

thesis. Consider the situation of a finite filtered regular CW-complex

F0X ⊆ F1X ⊆ ·· · ⊆ FnX = X , (2.14)

whose differential respects filtration in the sense that d(F pX)⊆ F pX for all p≥ 0. For instance,

this is the case with the filtration of the Mayer-Vietoris blowup complex associated to a space X

with a cover U

F0
∆XU ⊆ F1

∆U XU ⊆ ·· · ⊆ Fn
∆U XU .

As we have seen in section 2.11, we might define a double complex Sp,q(X ,U ) whose asso-

ciated spectral sequence converges to the target H∗(∆XU ) ' H∗(X). The key in the setup from

section 2.11 is that the differential behaves very well with respect to the filtration F∗; for each

cell a ∈ F pX \F p−1X we have that d(a) ∈ F pX \F p−2X . This is what allows us to proceed as we

did in section 2.11, by defining first a double complex and then studying the associated spectral

sequence. In our current filtered complex (2.14), we have just the property d(F pX) ⊆ F pX . In

this case, one might also define an associated spectral sequence [83, Thm. 2.6.], which is related

to what is known as a multicomplex or a twisted double complex [35, 77] defined as

Tp,q(X ,F) =Ccell
p+q(F

pX)
/

Ccell
p+q(F

p−1X)
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for all indices p,q∈Z. Arguably, “twisted” is one of the most used words in mathematics admiting

various different meanings. In this context, by “twisted” we will mean that there are differentials

tr
p,q : Tp,q(X ,F)→Tp−r,q+r−1(X ,F)

for all r ≥ 0; the behaviour of the twisted complex is illustrated on figure 2.12. These twisted

differentials tr
p,q are given by the restrictions of the cellular differential dcell

p+q to the morphisms

Ccell
p+q(F

pX)
/

Ccell
p+q(F

p−1X)→Ccell
p+q−1(F

p−rX)
/

Ccell
p+q−1(F

p−r−1X)

for all values r ≥ 0. The twisted differentials satisfy the equalities

∑
i+ j=n

t i
p− j,q+ j−1 ◦ t j

p,q = 0

for all values n≥ 0 and all p,q≥ 0. Notice that this condition is satisfied by the fact that dcell is a

differential on X . Notice that if t i = 0 for all i > 1, then we have that Tp,q(X ,F) is just a double

complex.

We define the twisted total complex as the direct sum

T Tot
n (X ,F) =

⊕
p+q=n

Tp,q(X ,F)

where given an element a ∈Tp,q(X ,F), its differential is computed by taking the sum

∑
i≥0

t i
p,q(a) .

Of course, one might see that there are filtration preserving isomorphisms

F p
V T Tot

n (X ,F)'Ccell
n (F pX) ,

where the differentials coincide and where FV denotes the vertical filtration, which is defined

as that of the total complex on section 2.11. Also, one might obtain explicit formulations for

the corresponding generalizations of the submodules GKp,q ⊆Tp,q(X ,F) and GBp,q ⊆Tp,q(X ,F)

that we have seen in section 2.11, see [77] for details. Notice that in this case the spectral sequence

Er
p,q is not necessarily restricted to the first quadrant. However, as we assumed that F∗X is a finite

regular CW-complex, the spectral sequence will collapse eventually along each diagonal, see [12].

Thus, we have that

E1
p,q(X ,F) = Hq

(
Tp,∗(X ,F)

)
⇒ Hp+q(X) .
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T0,3 T1,3 T2,3 T3,3 T4,1

T0,2 T1,2 T2,2 T3,2 T4,1

T0,1 T1,1 T2,1 T3,1 T4,1

T0,0 T1,0 T2,0 T3,0 T4,0

Figure 2.12: Twisted double complex

1 e0
0 , e0

1 2 e0
2 , e1

0 3 e1
1 , e1

2 4 e1
3 , e2

0 5 e2
1 , e2

2 6 e3
0

Figure 2.13: Filtered cone. New cells are indicated in yellow.

We proceed to illustrate the twisted double complex spectral sequence. Consider a filtered regular

CW-complex structure on a cone as depicted on figure 2.13, F∗C. Notice that F0X = /0, the

complement F5X \F4X contains the two “faces” from the cone, while F6X \F5X contains the 3-

cell e3
0 filling the empty cone. The twisted double complex T∗,∗(C,F) is depicted on figure 2.14.

We define the k-truncated filtration Fk at level k ≥ 0, by

Fn
k X =


FkX , for all n > k

FnX , for n≤ k

so that we have the convergence

E1
p,q(X ,Fk) = Hq

(
Tp,∗(X ,Fk)

)
⇒ Hp+q(FkX) ,

where it is worth noticing that Tp,∗(X ,Fk) = 0 for p > k. As we are working over a field, we have

isomorphisms
k⊕

r=0

E∞
r,n−r(X ,Fk)' Hn(FkX) ,
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Figure 2.14: Twisted double complex for F∗C. Drawn are all nontrivial terms and nontrivial
arrows. Generators on each term are drawn. The top left term corresponds to T1,−1(C,F) while
the bottom right term represents T6,−3(C,F).

for all k ≥ 0, where the infinity page terms are computed using the formula

E∞
r,n−r(X ,Fk) =

Z∞
r,n−r

Z∞
r−1,n−r+1 +Bk−r

r,n−r

for all 0 ≤ k and all 0≤ r ≤ k. For all pairs of indices i ≤ k, there is a morphism of twisted dou-

ble complexes T∗,∗(X ,Fi)→ T∗,∗(X ,Fk), meaning that there are morphisms fp,q : T∗,∗(X ,Fi)→

T∗,∗(X ,Fk) for all p,q ∈ Z such that these commute with the twisted morphisms tr
p,q ◦ fp,q =

f r
p−r,q+r−1 ◦ tr

p,q for all r ≥ 0. This morphism induces a morphism of filtered twisted total com-

plexes f : T Tot
∗ (X ,Fi)→T Tot

∗ (X ,Fk) which respects vertical filtrations, in the sense that f (Fr
V T Tot
∗ (X ,Fi))⊆

Fr
V T Tot
∗ (X ,Fk) for all r ≥ 0. As mentioned earlier, by [83, Thm. 3.5] this induces a morphism

of spectral sequences f r
p,q : Er

p,q(X ,Fi)→ Er
p,q(X ,Fk). Because of this, notice that the morphism

Hn(F iX)→ Hn(FkX) can be seen as a direct sum of morphisms:

E∞
0,n(X ,F i) E∞

1,n−1(X ,F i) · · · E∞
i,n−i(X ,F i) 0 · · · 0

E∞
0,n(X ,Fk) E∞

1,n−1(X ,Fk) · · · E∞
i,n−i(X ,Fk) E∞

i+1,n−i−1(X ,Fk) · · · E∞
k,n−k(X ,Fk)

f ∞
0,n f ∞

1,n−1 f ∞
i,n−i

where the f ∞
r,n−r are surjective for all 0≤ r ≤ i. Consequently we can write the cokernel as

Coker
(
H(F iX)→ H(FkX)

)
'

k⊕
r=i+1

E∞
r,n−r+1(X ,Fk)
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while the kernel is

ker
(
H(F iX)→ H(FkX)

)
'

i⊕
r=0

ker
(

Z∞
r,n−r

Z∞
r−1,n−r+1 +Bi−r

r,n−r
→

Z∞
r,n−r

Z∞
r−1,n−r+1 +Bk−r

r,n−r

)

'
i⊕

r=0

Bk−r
r,n−r

Z∞
r−1,n−r+1 +Bi−r

r,n−r
.
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Chapter 3

Background in Topological Data

Analysis

3.1 From Data to Complexes

In this section, we will start with a finite set X ⊂ Rm and will try to understand the underlying

shape of X. The usual procedure consists in taking a positive real number r and define closed balls

Br(x) of radius r around each point x ∈ X. This leads to a family of covers Br(X) = {Br(x)}x∈X

for all real numbers r ≥ 0. The union of the open balls
⋃

x∈XBr(x) is often denoted by Xε and

called the ε offset of X. By looking at the nerves, we obtain a increasing family of simplicial

complexes NBr(X) such that NBr(X) ⊂ NBs(X) for all r ≤ s. Each nerve NBr(X) is usually called

the Čech Complex of radius r on X, and is denoted as Čr(X). The main reason why we are

choosing balls around each point is because of the following result commonly known as the Nerve

Theorem [58, §III.2].

Theorem 3.1.1. Let X be a compact space together with a finite cover U = {Ui}i∈I . If each

element of the cover Ui is closed and convex, then |NU | and ∪i∈IUi have the same homotopy type.

Proof. First, notice that a closed and convex set is contractible and any intersection Uσ for σ ∈

NU will also be closed and convex, thus contractible. Then the result follows by Theorem 2.8.6

r0 = 0.5 r1 = 1.1 r2 = 1.5 r3 = 1.85 r4 = 2.2

Figure 3.1: Čech complex at different radii.

55
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using the fact that each intersection Uσ is contractible for all σ ∈ NU . More concisely, one has

the chain of homotopy equivalences

X ' ∆NU

(
XU
)
' ∆NU

(
∗NU

)
' |NU | .

Thus, from this result we can ensure that the Čech complexes Čr(X) are homotopic to the

union of balls
⋃

x∈XBr(x). Additionally, one might see Čr(X) as a filtered complex with filtration

values r ∈ R, so that Čr(X)⊆ Čs(X) for all pairs r ≤ s from R. See figure 3.1 for a depiction of a

point cloud X together with the covers Br(X) depicted in blue and the Čech complex depicted in

red. An inconvenience about the Čech complex is that it might be expensive computationally to

check whether a high intersection of balls in Br(X) is empty or not. To facilitate computations,

we consider the following definition.

Definition 3.1.2. Let r > 0, we define the Vietoris-Rips complex of radius r, denoted by VRr(X),

to be the maximal complex in SpCpx such that the 1-simplex [x,y] is contained in VRr(X) if and

only if d2(x,y)< r/2, where d2 is the Euclidean distance in Rn.

Unwrapping definition 3.1.2, the Vietoris-Rips complex contains the same one-skeleton as

the Čech complex. The differences start at higher simplices. Since we are taking the maximal

simplicial complex, we include a simplex σ to VRr(X) if and only if all the edges τ � σ are

contained in VRr(X). This is much easier to compute than the Čech Complex, but at the expense

of theoretical guarantees. Unfortunately, the nerve theorem does not hold in this case; in general

the complex VRr(X) is not isomorphic to the union
⋃

x∈XBr(x). There is still a good property for

VRr(X): for all radii r > 0 we have a chain of inclusions

Čr(X)⊆ VRr(X)⊆ Č√2r(X) ,

where the first inclusion is direct and the second inclusion can be checked, see [58, §III.2]. Thus,

we might say that VRr(X) approximates the shape of the point cloudX. In fact, the Smale-Niyogi-

Weinberger theorem [89] ensures that both the Čech and Vietoris Rips complexes on sampled

points from a manifold preserve the homotopy type almost surely for some radii r > 0.

A difficulty with both the Čech complex and the Vietoris-Rips complex is that both become

highly non-sparse as one increases the radius. To see this, notice that whenever r is big enough,

then Čr(X) is isomorphic to the standard simplex ∆|X| whose size becomes impractical to work

with for relatively small cardinalities |X|. In order to avoid this problem, one might limit the

dimension of the complexes that we are working with to obtain sparse simplicial complexes. One
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Voronoi diagram Cover Rr(X)

Alpha complex Čech or Vietoris-Rips complex

Figure 3.2: Depiction of the Voronoi cells, the Alpha complex and the Čech complex for four
fixed points in the plane. We have fixed some radius r > 0 which is big enough for Čr(X) to be
isomorphic to ∆4.

strategy is to use a regular CW-structure on Rn known as the Voronoi diagram. To define this

complex, we define the voronoi closed n-cells Vu about each point u ∈X by setting these to be the

closed regions

Vu :=
{

x ∈ Rn | d2(x,u)≤ d2(x,v) for all v ∈ X
}
.

Consider the cover given by the Voronoi cells V (X) = {Vu | u ∈ X}. We define the Delaunay com-

plex D(X) as the nerve NV (X) of the cover V (X). Next, we introduce a filtration into the Delaunay

complex by considering the balls Br(X), and intersect these with the Voronoi cells, defining the

closed convex sets Vu∩Br(u) for all r≥ 0. These sets form a cover Rr(X) = {Vu∩Br(u) | u ∈ X}.

The nerve NRr(X) is known as the alpha complex Ar(X). This has good properties since Theo-

rem 3.1.1 applies, so that

Xr =
⋃
x∈X

Br(x) =
⋃
x∈X

Vx∩Br(x)' Ar(X)⊆D(X) ,

for all r ≥ 0. Thanks to using the Delaunay complex, the alpha complex Ar(X) is much smaller

than either VRr(X) or Čr(X) both in cardinality and dimension.

We have briefly reviewed three simplicial complexes Čr(X), VRr(X) and Ar(X) which all

have X as the common vertex set. However, sometimes the problem is that the set X is far too

big, and building a simplicial complex whose vertices are all points in X is not computationally
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feasible. A construction to address this problem is the strong Witness Complex W∞(X), which was

introduced by G. Carlsson and Vin De Silva in [107]. Essentially we start by picking a subset

L ⊆ X of points, often called landmark points which will form the vertices of W∞(X). These

landmark points are usually selected at random or using the min-max selection method. Next for

any pair of landmark points u,v ∈ L , we include the edge [u,v] between them if there exists a

vertex x ∈ X such that v and u are the closest points from L to x. In this case we say that this x

is a witness to the edge [u,v]. For higher dimensions, given an n-simplex σ with set of vertices

U = {u0, . . . ,un} ⊂L , we include this σ in W∞(X) if all the faces from σ are included in W∞(X)

and if there exists a point (a witness) x ∈ X such that:

max
u∈U
‖ x−u ‖≤ min

p∈L−U
‖ x− p ‖ .

Checking whether a high dimensional simplex lies in the strong Witness complex might become

computationally expensive. This is why one might look instead at the Weak Witness complex

W1(X), whose one-skeleton coincides with the strong witness complex. The complex W1(X) is

maximal in the sense that a simplex σ lies in W1(X) if and only if all its edges lie in W1(X).

A problem of these Witness complexes is that they do not have much theoretical guarantees, in

the sense that its homotopy type might differ much from the union
⋃

x∈XBr(x). When studying

curves and surfaces, the Witness complexes can be used for approximating the homotopy type

from sampled points on these objects [66]. Assuming some extra structure on Witness complexes,

this approximation is also possible in high dimensions [13].

One could also encounter the problem that a dataset X is high dimensional. In this case one

has to face the so called curse of dimensionality problem, which determines that it makes not much

sense to use the distances between the different points in X. In such a case, one might use other

strategies to build simplicial complexes from the given dataset. One option introduced in [108]

consists in using clustering algorithms for this purpose. The procedure works as follows; one starts

with the point cloud X⊆ RN together with a filtration function f : RN → R. Then a cover of R is

taken which pulls back to a cover U forRN . Next, one chooses a clustering algorithm (DBSCAN,

single-linkage, etc) and computes the clusters of each local pointcloud X∩U for all covers U ∈

U . These clusters determine the vertices of the topological mapper Mapper(X,U ). Given two

clusters, we connect them by an edge if they share at least a common point. See figure 3.3 for

an illustration of this procedure. It is also possible to look at filtering functions f : RN → RM for

values M > 1, in which case the object Mapper(X,U ) is a simplicial complex [108]. Mapper

has had an important role in exploring complex datasets, see for example [88]. The topological

Mapper is not very stable with respect to small changes on the input data set X, the filtration
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R

Figure 3.3: Illustration of the standard procedure for the construction of the Topological Mapper.
On the left, the point cloud X which is projected into the real line. A cover of R is taken, and it is
pulled back to a cover for X. Then a clustering algorithm is used (in this case we used DBSCAN).
Finally, by finding common points between clusters the Mapper complex is obtained.

function or the cover taken on R. Fortunately, there are some positive results when comparing it

to the Reeb graph which allows to measure stability of topological features, see [27] or also [17].

If the input data is a gray-scale image, one might consider cubical complexes [117]. Here,

recall example 2.5.4 introducing these complexes. By a gray-scale image, we understand a real

function on a lattice f : ZN → R; we can take corresponding cubical complexes Cr(ZN) for all

real numbers r ∈ R. This is done by including a vertex v ∈ Cr(ZN) whenever f (v) ≤ r, while a

cell a is contained in Cr(ZN) if all the vertices of a are contained in Cr(ZN). Alternatively, one

could instead use the lower star filtration which leads to a simplicial complex [10].

Another possible scenario is when the input data comes as a graph G. In this case, one might

take the clique complex [69] which is a simplicial complex QG containing a simplex σ if and only

if all edges from σ are contained in G. Suppose that the edges in G have some weight function

w : E(G)→ R. In this case, the graph G has a natural filtration Gr for r ∈ R, were an edge e ∈ G

is included in Gr if and only if w(e) ≤ r. This filtration carries over to a filtration on the clique

complex QGr with r ∈R. If the edges in G are directed, then one might build the flag complex FGr

for all r ∈ R; this object is very relevant in neuroscience, see [97] and [78].

At the end of the day there is usually no ‘best’ complex to work with, instead their effective-

ness depends on the particular problem that one is trying to solve.

3.2 The Persistence Viewpoint

In section 3.1 we briefly reviewed different methods for obtaining complexes from datasets. No-

tice that usually these complexes depend on at least one parameter, as for example the Čech com-

plexes Čr(X) depend on the radius r > 0. In particular, the topology of the spaces Čr(X) changes

dramatically as the parameter r is changed, see figure 3.1. On the other hand, there are inclusions

Čr(X) ⊆ Čs(X) for any pair of values r < s; in this case we say that Č∗(X) is a filtered complex.
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Within this context, instead of focusing on the topological features at a single filtration radius, we

study how these persist along R.

Definition 3.2.1. A filtered complex X , is a functor X : R→ CW-cpx such that the morphisms

X(r ≤ s) : X(r)→ X(s) are inclusions for all pairs r ≤ s from R. We will usually write Xr instead

of X(r) for all r ∈ R. We denote by FCW-cpx the category of filtered complexes with filtration

preserving morphisms between them.

Given a filtered complex X and a value ε > 0, we denote by X [ε] the ε-shifted complex, which

is given by X [ε](r) = Xr+ε for all r ∈ R. We will denote by Σε : FCW-cpx→ Hom(FCW-cpx)

the ε-shift functor, which sends a filtered complex X to the persistence morphism ΣεX : X→ X [ε].

Definition 3.2.2. Let X be a filtered complex. We consider the composite functors Hcell
n (X) : R→

Vect which we call the persistent homology of X , and which we denote by PHn(X).

Definition 3.2.3. A persistence module V is a functor V : R→ Vect. That is, to any r ∈ R, V

assigns a vector space in Vect which will be denoted either by V(r) or Vr. That is, to any pair

of real numbers s ≤ t, there is a linear morphism V(s ≤ t) : Vs → Vt . These morphisms satisfy

V(s ≤ s) = IdVs for any s ∈ R, and the relation V(r ≤ t) = V(s ≤ t) ◦V(r ≤ s) for all r ≤ s ≤ t

in R. Given two persistence modules V and W, a morphism of persistence modules is a natural

transformation f : V→W. Thus, for any pair of real numbers s≤ t, there is a commuting square

Vs V(s≤t) //

f s

��

Vt

f t

��
Ws W(s≤t) //Wt .

We denote by PMod the category of persistence modules and persistence morphisms.

We say that a persistence morphism f : V→W is an isomorphism whenever ft is an isomor-

phism for all t ∈ R. We write V 'W to denote that V is isomorphic to W. A point-wise finite

dimensional (p.f.d.) persistence module is a functor V : R→ vect, where vect is the category of

finite-dimensional vector spaces.

Example 3.2.4. A special class of persistence modules will be the interval modules. For any pair

of real numbers s≤ t, we denote by I(s, t) the interval module

I(s, t)(r) =


F for r ∈ [s, t),

0 otherwise.
(3.1)

The morphisms I(s, t)(a≤ b) will be the identity for any two a,b ∈ [s, t) and will be 0 otherwise.



3.2. THE PERSISTENCE VIEWPOINT 61

Notice that in an analogous way we could have defined modules I(s, t) over intervals of the

form [s, t], (s, t] or (s, t), with s ≤ t. For a given interval module I(s, t), the values s and t will

be called respectively the birth and death values. Whenever V is a p.f.d persistence module, then

it can be uniquely decomposed as a direct sum of barcodes
⊕

i∈J I(si, ti), as shown in [42]. This

means that there is an isomorphism V'
⊕

i∈J I(si, ti) of persistence modules. This will be called

the barcode decomposition of V. Throughout this text, we will mainly be studying persistence

modules that decompose into barcodes of the form (3.1). This leads to the following result, which

by finiteness, follows also from the original decomposition stated in [122].

Theorem 3.2.5. Suppose that X∗ is a filtered CW-complex with a finite number of cells. Then

PHm(X∗)'
Nm⊕
i=0

I(si, ti)

for some si < ti ≤ ∞ for all indices 0≤ i≤ Nm and for all dimensions m≥ 0.

Notice that a p.f.d. persistence module is uniquely determined by its interval decomposition,

which is a multiset. This multiset is usually referred to as the barcode of the persistence module.

Such a barcode can also be represented as a persistence diagram, where each bar I(a,b) is plotted

as a point (a,b) in R2. The construction of persistent homology pipeline is as follows

 input data

X


 barcode

persistence diagram


 filtered complex

C (X)∗ : R→ CW-cpx


 persistent homology

PH(C (X))∗ : R→ vect


In practice, computing persistent homology corresponds to computing a consecutive series of

Gaussian eliminations, see [122] and also [124, §7] for a thorough explanation for the persistent

homology algorithm. Let us review an example by considering a ‘flower-shaped’ filtered CW-

complex X∗ as depicted in figure 3.4. As the filtration value or persistence value increases, new

cells are added into X∗, creating ‘new’ homology classes or deleting ‘old’ homology classes. This

is usually expressed as classes being ‘born’ or ‘dying’. If an added cell gives birth to a new class,

such a cell is called positive, while if a cell kills a homology class it is called negative, see [122].

As X∗ is a regular CW-complex, we can compute the incidences of adjacent cells as indicated
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1 e0
0 + 2 e0

1 + 3 e1
0 − 4 e1

1 + 5 e1
2 +

6 e2
0 − 7 e2

1 − 8 e2
2 + 9 e1

3 + 10 e2
3 −

11 e2
4 + 12 e2

5 + 13 e3
0 − 14 e3

1 − 15 e3
2 −

Figure 3.4: Depiction of a filtered CW-complex. New cells are colored in red or blue depending
on whether these are negative or positive cells. Here we have used the notation e j

i for cells, where
the superindex j indicates the cell dimension, while the subindex i is used to identify the cell.
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in section 2.6. In particular, we can obtain the following differentials (for some field F)

D1 =


e1

0 e1
1 e1

2 e1
3

e0
0 1 1 1 1

e0
1 −1 −1 −1 −1


where we have labeled rows and columns by the corresponding cells. In addition, these rows and

columns are ordered from lower filtration values to higher values from R. For example, in D1

notice that the columns are labeled by e1
0, e1

1, e1
2 and e1

3 whose respective filtration values are 3,

4, 5 and 9. Using the same notation, we write the differentials on the cellular chain complex in

dimensions 2 and 3

D2 =



e2
0 e2

1 e2
2 e2

3 e2
4 e2

5

e1
0 0 1 1 −1 0 0

e1
1 1 0 −1 0 0 −1

e1
2 −1 −1 0 0 −1 0

e1
3 0 0 0 1 1 1


D3 =



e3
0 e3

1 e3
2

e2
0 0 1 0

e2
1 1 0 0

e2
2 0 0 −1

e2
3 1 0 −1

e2
4 −1 −1 0

e2
5 0 1 1


.

One can check that the entries on these differentials satisfy the incidence properties from sec-

tion 2.6; an easy way to check this is to multiply the matrices associated to the compositions

dcell
1 ◦ dcell

2 and dcell
2 ◦ dcell

3 and check that the resulting matrices vanish, as well as the fact that

[en
i : em

j ] 6= 0 if and only if m = n−1 and em
j � en

i .

Next, we proceed to reduce the differential matrices by adding columns from left to right. This

is done starting from D3, keeping track of these additions in the upper labels

R3 =



e3
0 e3

1 e3
2− e3

1 + e3
0

e2
0 0 1 −1

e2
1 1 0 1

e2
2 0 0 −1

e2
3 1 0 0

e2
4 −1 −1 0

e2
5 0 1 0


,

here we mark the pivot positions in yellow; as will be explained soon, these positions are very

important when computing persistent homology. To facilitate computations, we use the twist
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optimization from [32]. This is also called the clear optimization in [6], which consists in using

pivots from R3 to know combinations of columns in the matrix D2 that vanish; in this case the

third, fifth and sixth columns will vanish. The reason for this lies in the equation dcell
2 ◦ dcell

3 = 0

which implies D2D3 = 0, and consequently D2R3 = 0. Each nontrivial column from R3 gives “for

free” a combination of column additions that will become zero.

R2 =



e2
0 e2

1− e2
0 −e2

0 + e2
1− e2

0 e2
3 e2

1 + e2
3− e2

4 e2
0− e2

4 + e2
5

e1
0 0 1 0 −1 0 0

e1
1 1 −1 0 0 0 0

e1
2 −1 0 0 0 0 0

e1
3 0 0 0 1 0 0


.

We can label the cleared rows by using the corresponding combinations from R2. Using the same

clear trick we get the following reduced matrix

R1 =


e1

0 e1
0− e1

1 e1
1− e1

2 e1
3− e1

0

e0
0 1 0 0 0

e0
1 −1 0 0 0

 .

Now, notice that the matrices of the differentials dcell
∗ which we named D1, D2 and D3 have

associated filtration values for each column and row which depend on the respective “labelling”

cells from X∗. The same values carry over to the matrices R∗; however, notice that now we have

rows and columns which are “labelled” by a combination of cells which are born at different

filtration values. To fix this, we always consider the higher filtration value. Thus, for the column

labelled with e2
1− e2

0 from R2 we will associate the filtration value corresponding to e2
1, which is

7; notice that the filtration value of e2
0 is 6. We will formalize this idea later in section 4.1 through

the use of barcode bases and the � operation.

We can now read off the barcode decomposition of PH∗(X) directly from the pivot positions in

the matrices R∗, that is, the birth of a bar is equal to the filtration value of the row, while the death

of the bar is equal to the filtration value of the column, see figure 3.5. One can check that pivot

positions are independent of the particular order in which column additions are performed [58,

§VII.1]. Notice that the barcode is a multiset of intervals, which we will denote by BPH∗(X). We

can plot these bars as points in the persistence diagram as well 3.6. This diagram is defined as the

following subset of the extended plane of real numbers R2
:

Diag(PH∗(X)) =
{
(ai,bi) | [ai,bi) ∈BPH∗(X)

}
∪{(x,x) | x ∈ R} ,
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R1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 3.5: Persistence barcode decomposition of PH∗(X). Black, blue and yellow bars indicate
the 0th, 1st and 2nd homology dimensions respectively.

∞

Figure 3.6: Persistence diagram. Notice that usually the y-axis is extended by the inclusion of an
infinity line on top of the diagram.

where we have included the diagonal for technical reasons that will be clear after the definition of

bottleneck distance on section 3.3. Usually, it is said that long bars correspond to relevant features

of the dataset while short bars are regarded as noise; in the persistence diagram important features

would correspond to points which are “far away” from the diagonal while the noise would lie close

to the diagonal. However, this intuitive point of view is false in some situations; for example, the

count of bars might be a relevant feature as in [96, §5.7].

We end this section by introducing a couple of notational conventions that we will adopt.

Given a persistence module V ∈ PMod and ε ≥ 0, we define the ε-shifted persistence mod-

ule V[ε] ∈ PMod to be given by V[ε]r = Vr+ε for all r ∈ R. Also, we will consider a functor

Σε : PMod→ Hom(PMod) which sends V ∈ PMod to ΣεV : V→ V[ε]. Using this notation, a
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persistence morphism f : V→W is such that one has the equality f [ε]◦ΣεV = ΣεW◦ f , where

we use the corresponding notation for shifted persistence morphisms f [ε] : V[ε]→W[ε].

3.3 Persistence Stability

The main reason why persistence is widely used is its stability with respect to perturbations or

noise in the input data. In this section, we will review some of these results. To start, notice

that we need to define a way of measuring both differences in the input as well as the output.

Suppose that one starts with a pair of filtered regular CW-complexes X∗ and Y∗ with the same

underlying CW-complex structure colim X∗ = colim Y∗. An example could come from a couple of

cubical complexes generated on two images with the same grid of pixels but with slightly different

grayscale values. Further, given ε > 0, assume that X∗ and Y∗ are ε-close in the following way:

there are inclusions Xr ⊆ Yr+ε and also Yr ⊆ Xr+ε for all values r ∈ R. In this case, notice that

there is a commutative diagram induced by inclusion maps

Hk(Xr) Hk(Xr[ε]) Hk(Xr[2ε])

Hk(Yr) Hk(Yr[ε]) Hk(Yr[2ε]) .

In this case, both PHk(X∗) and PHk(Y∗) are “ε-close to being isomorphic” persistence modules.

This leads to the following definition.

Definition 3.3.1. Let V and W be two persistence modules. We say that V and W are ε-

interleaved whenever there are persistence morphisms φ : V→W[ε] and ψ : W→ V[ε] such

that the following diagram commutes

V V[ε] V[2ε]

W W[ε] W[2ε] .

φ

ΣεV
φ [ε]

ΣεV

ψ

ΣεW

ψ[ε]

ΣεW

Equivalently, the following equalities hold

Σ
2εV= ψ[ε]◦φ and Σ

2εW= φ [ε]◦ψ ,

for all r ∈ R.

This notion of interleaving leads to a natural way of comparing persistence modules. Given

a couple of persistence modules V and W, we define their interleaving distance as the following
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infimum

dI(V,W) = inf{ε > 0 | V andW are ε-interleaved} .

On the other hand, let us consider again the two regular CW-complexes X∗ and Y∗ with the same

colimit Z = colim X∗ = colim Y∗ and the same cell decomposition. Given a cell en ∈ X , we define

its filtration degree to be

fdeg(en,X) = inf{r ∈ R | en ∈ Xr} .

Then, we define the filtration cellular distance as the supremum

dcell(X∗,Y∗) = sup{|fdeg(en,X)− fdeg(en,Y )| | ∀en ∈ Z} .

Of course, if δ = dcell(X∗,Y∗), then we have inclusions

φr : Xr ↪→ Yr[δ ] and ψr : Yr ↪→ Xr[δ ]

for all values r ∈ R. Thus, there are equalities Σ2δ X∗ = ψr+δ ◦ φr and Σ2δY∗ = φr+δ ◦ψr for all

values r ∈ R, which induce an interleaving in persistent homology

dI(PH∗(X∗),PH∗(Y∗))≤ dcell(X∗,Y∗) .

This result ensures stability of persistent homology on filtered regular CW-complexes as we

change the filtration values but keep the underlying CW-structure.

A very strong property of persistent homology is that the stability mentioned above can be

adapted to a situation when small perturbations lead to different CW-structures. This is the case

for filtered simplicial complexes on point cloudsX⊆RN . Given a pair of finite subsetsX,Y⊆RN ,

we define the Hausdorff distance as the infimum

dH(X,Y) = inf{r > 0 | X⊆ Yr and Y⊆ Xr}

where Xr denotes the r offset of X, as explained in section 3.1. If ε = dH(X,Y), the triangle

inequality implies the alternating inclusions Xr ⊆ Yr+ε and Yr ⊆ Xr+ε for all values r ∈ R. As

we have homotopy equivalences Čr(X)' Xr for all values r ∈ R, we obtain the inequality

dI(PH∗(Č∗(X)),PH∗(Č∗(Y)))≤ dH(X,Y) .
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One might get the analogous result for Vietoris-Rips complexes

dI(PH∗(VR∗(X)),PH∗(VR∗(Y)))≤ 2dH(X,Y) ,

see [92, Prop. 7.8, Sec. 7.3]. We will show later in section 8.1 an alternative way to prove this

stability by using ε-acyclic equivalences. Using these equivalences one might find stability results

for filtered regular CW-complex, whenever there is some rule relating ‘close’ input data sets.

So far we have seen persistence stability. However, often the aim of persistence is to be

used as a measure for comparing pairs of different inputs. Notice that given two persistence

modules, it might be hard to find out how close these are by means of interleavings. Here we

use the combinatorial nature of barcodes and persistence diagrams to define a metric on these.

In particular, assume that we have a pair of p.f.d. persistence modules V and W. These admit

barcode decompositions, and in particular persistence diagrams. Thus, we can look at bijections

between the points on the persistence diagrams γ : Diag(V)→Diag(W). We define the bottleneck

distance between the diagrams as the following infimum over bijections of persistence diagrams

dB(Diag(W),Diag(V)) = inf
Γ:Diag(V)→Diag(W)

{
sup

b∈BV

‖Γ(b)−b‖∞

}

This definition justifies the inclusion of the diagonals into the persistence diagrams, as we can pair

off-diagonal points from Diag(V) to points in the diagonal if there are no “close” off-diagonal

points from Diag(W). The isometry theorem [8] implies that for a pair of p.f.d. persistence

modules V andW, the interleaving and bottleneck distances are equal

dB(Diag(V),Diag(W)) = dI(V,W) ,

and thus we can use the bottleneck distance to deduce interleavings for two different persistence

modules. The space of persistence diagrams is a metric space and it is in fact convex, where

a line between two different persistence diagrams might be traced by constructing interpolating

diagrams [30, §3.4.].

Very often stability of persistence modules is stated in terms of sub-level sets of continuous

functions [37]. It is worth noticing that the bottleneck distance is very sensible to outliers; so

that other distances are computed instead, such as the p-Wasserstein distance [109]. Persistent

homology has had a number of applications such as in detecting chronic obstructive pulmonary

disease [9], analysis of signals [100] through the use of the sliding window embedding [95],

it has also been used in pattern recognition [22, 99], shape comparison [55] and many other

applications. Also, it is worth mentioning that the interpretation of persistence diagrams is a big
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subject. One might interpret them as persistence landscapes [18, 19], persistence images [1],

kernels for machine learning [98], and many more.

There are variations for standard persistent homology, such as Zig-Zag persistence [24, 23,

111], where the focus is on persistence of homology classes over sequences of vector spaces and

linear morphisms that are distributed in a zig-zag fashion, such as the following:

A0 A1 A2 · · · An · · · .

There are also generalizations of persistence diagrams [102, 94], together with stability measures

formulated in terms of interleavings. In recent years, stronger invariants than persistent homology

have been explored. One of these is multipersistent homology [26, 1], where the persistence of

homology classes is studied over general posets, rather than the concrete poset R. One might use

interleavings as a way to measure stabilities in this context [74], although computing interleaving

distances directly is an NP-hard problem [11]. In fact, interleavings apply in a general context of

categories with a flow [48], an example of which is the category of persistent spectral sequences

that we will see later 8.

3.4 Computing Persistent Homology

We will proceed to briefly review some computational techniques for computing persistent ho-

mology. There are a number of books and surveys on this topic such as [122, 92, 71, 91]. In [91]

one might find references to several software packages, together with a comparison of their capa-

bilities and benchmark estimates.

The original setup [59, 122] starts by constructing a filtered simplicial complex, compute its

boundary matrices and perform a series of Gaussian eliminations to obtain the barcodes. For ex-

ample, one might start from a point cloud X ⊆ RN , compute its filtered Vietoris-Rips complex

VRr(X), obtain the matrices of the simplicial complex differentials and look for persistence pairs

to obtain the barcode decomposition of PHn(VRr(X)). There are a number of steps towards mak-

ing such computations efficient. For example, when computing VRr(X) there are computational

strategies [121] as well as efficient data structures for storing the simplicial information [14]. For

the particular case of persistent homology of Vietoris-Rips complexes, there is a highly efficient

C++ implementation called Ripser [4]; part of the success of this implementation relies on using

the clear optimization [6] together with computing persistent cohomology [47] instead of per-

sistent homology, as well as avoiding the explicit construction of the coboundary matrix. There

are efficient libraries implementing differential and matrix manipulations, such as PHAT [7] or

GUDHI [113]. These libraries implement persistence functions from various complexes, such as
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Alpha, Witness, etc. A user-friendly python package called scikit-tda can be found in [87].

The traditional setup for computing persistent homology has a fundamental computational

difficulty. This comes from the fact that, given a filtered complex

F0X ⊆ F1X ⊆ F2X ⊆ ·· · ⊆ FNX ⊆ ·· · ,

the higher filtration levels FNX for N being “large enough”, the combinatorial data in FNX is far

too large, while the underlying topological structure might not necessarily increase at the same

rate. This is the case with the Vietoris Rips complex VR∗(X), which eventually becomes a high-

dimensional standard simplex on the set X. A solution for this problem was studied in [106, 29],

where the authors introduced a sparse rips filtration S (VR(X))∗ which is a filtered simplicial

complex satisfying the inclusions

S (VR(X))r ⊆ VRr(X)⊆S (VR(X))r(1+ε)

for all r ≥ 0. In this case, one says that there is a multiplicative (1+ ε)-interleaving between

the persistent homologies of S (VR(X))∗ and VR∗(X), see [106]. This approach has lead to

sequences of simplicial complexes and simplicial morphisms

X0→ X1→ X2→ ··· → XN → ··· ,

whose persistent homology is equivalent or approximately close to a filtered complex that might

contain too much information, see [52, 72, 53]. In [52] a barcode decomposition for PH∗(X∗) is

obtained by means of tracking a persistent cohomology basis through annotations. Notice that the

barcode decomposition of persistent cohomology and persistent homology coincide [47], thanks

to the Universal Coefficient Theorem. Currently, the only software package implementing per-

sistent homology on sequences of simplicial maps is SimPers [50]. Combining this approach to-

gether with elementary simplicial collapses, an efficient implementation for computing persistent

homology of Vietoris-Rips filtrations was obtained in [53]. In section 4.1 we will introduce bar-

code bases, which allow to compute persistent homology of sequences of regular CW-complexes

with regular morphisms, which we will call regularly filtered CW-complexes.

Another possible way to go consists in using Discrete Morse Theory [63]. This approach has

the added advantage that it works on the more general framework of filtered CW-complexes [3,

86, 43]. Discrete Morse Theory lies at the heart of several highly efficient algorithms in topo-

logical data analysis, such as in Ripser [4]. This allows to perform substantial reductions on the

underlying filtered complex, so that the subsequent computations are less burdensome. In the
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similar direction, one could opt to reduce a filtered cellular complex. This is the approach taken

in effective homology, which has the advantage that it might handle computations on complexes

that are not necessarily finitely generated [104].

Yet another promising direction is to make small changes in the input dataset so that the

following computations are less heavy. An example of this approach is taken by finding choices

of landmark points which take into account local computations of persistent homology [110].

In this particular case, the focus is on classifying the impact of removing vertices on a filtered

simplicial complex, which is measured by means of the Mayer-Vietoris exact sequence. In order

to explain this, we introduce stars and links.

Definition 3.4.1. Let K be a simplicial complex and let σ ∈ K be a simplex of K. We define

St(σ), the open star of σ , to be the set given by the union of simplices τ ∈ K such that σ ⊆ τ .

One can see that St(σ) is open in K since its complement K \St(σ) is a subcomplex of K. On the

other hand we define St(σ), the closed star of σ , to be the closure of St(σ). Finally, we define

the link of σ as Lk(σ) = St(σ)\St(σ).

Now, consider a simplicial complex K and let v be a vertex from K. Then, we might consider

the cover of K given by two subcomplexes U =
{

K \St(v),St(v)
}

noticing that the intersection

corresponds to the link: Lk(v) =
(
K \St(v)

)
∩St(v). Applying the Mayer-Vietoris Theorem, we

obtain the exact sequence

· · · Hn(Lk(v)) Hn(K \St(v))⊕Hn(St(v)) Hn(K) Hn−1(Lk(v)) · · ·

The closed star St(v) is contractible, and if we assume that Hn(Lk(v)) = Hn−1(Lk(v)) = 0, then,

there is an exact sequence

0→ Hn(K \St(v))→ Hn(K)→ 0 ,

so that Hn(K \ St(v)) ' Hn(K) for all n ≥ 0. We want to apply this to persistence: if K is a

filtered complex, then the idea is that if both PHn(Lk(v)) and PHn−1(Lk(v)) are small enough,

then PHn(K \St(v)) ≈ PHn(K). This idea is applied to classify points on a given point cloud X

as having large or small outlier values [110]. Notice that for a point cloud X, one considers a

radius r > 0 and pays attention to the bounded link Lkr(p) which is the link of p in the bounded

Vietoris-Rips complex VRr
s(X) = VRs(X) for all s ≤ r. In section 5.1 we will present a related

result which we call the Barcode Shift Lemma.

The last computational approach that we would like to mention is related to localized ho-

mology [123]. This approach relies on a covered space (X ,U ), together with the fact that the

Mayer-Vietoris blowup complex ∆U X is homotopy equivalent to X . The filtration on ∆U X is
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used to determine the locality of a homology class in H∗(X) with respect to the cover U [123].

On the computational side, in [75] the blowup complex ∆U X was used for parallelizing persis-

tent homology computations, in the case when X is a filtered complex. The idea consists in first

computing local persistent homologies on each cover element from U . Then, using this local

information, the authors proceeded to reduce the matrix of the differential of ∆U X by paying at-

tention to the important rows and columns, discarding non-relevant information. We will present

in chapter 6 a method that also computes the persistent homology of ∆U X , although through the

use of spectral sequences.

3.5 Persistence Filtration Spectral Sequences

Persistent homology associates to a filtration of topological spaces a filtration of vector spaces..

However, spectral sequences have been used for a long time on filtered topological spaces. This

is why a number of authors have studied the intricate connections between both situations. The

setup starts with a finite filtered regular CW-complex

F0X ⊆ F1X ⊆ ·· · ⊆ FnX , (3.2)

whose differential respects filtration in the sense that d(F pX)⊆F pX for all p≥ 0. As explained in

section 2.12, one obtains a twisted double complex together with a spectral sequence associated to

it. In the applied topology literature, such spectral sequences have been handled by the use of exact

couples [2] and [104]. Although, we prefer the point of view from [83, Thm. 2.6.] which is in line

with the Mayer-Vietoris spectral sequence exposition from section 2.11. Connections between

spectral sequences and persistent homology have been thoroughly studied in the literature [58, 2,

102, 60]. We now state an important connection [102, Thm. 4.4.]

Theorem 3.5.1. Denote by BDi,k
n the following quotient

ker
(
Hn(F iX)→ Hn(FkX)

)
∩Coker

(
Hn(F i−1X)→ Hn(F iX)

)
ker
(
Hn(F iX)→ Hn(Fk−1X)

)
∩Coker

(
Hn(F i−1X)→ Hn(F iX)

)
which corresponds to classes in PHn(F∗X) being born at value i and dying at value k. There is an

isomorphism:

BDi,k
n ' Im

(
dk−i

k,n−k+1

)
Proof. This follows by using the kernel and cokernel formulas from the end of section 2.12, as



3.5. PERSISTENCE FILTRATION SPECTRAL SEQUENCES 73

we obtain that

Coker
(
Hn(F i−1X)→ Hn(F iX)

)
' E∞

i,n−i(X ,F i)'
Z∞

i,n−i

Z∞
i−1,n−i+1 +B0

i,n−i

so that

ker
(
Hn(F iX)→ Hn(FkX)

)
∩Coker

(
Hn(F i−1X)→ Hn(F iX)

)
is isomorphic to

ker
(

Z∞
i,n−i

Z∞
i−1,n−i+1 +B0

i,n−i
−→

Z∞
i,n−i

Z∞
i−1,n−i+1 +Bk−i

i,n−i

)
'

Bk−i
i,n−i

Z∞
i−1,n−i+1 +B0

i,n−i
.

Putting everything together we have the isomorphisms

BDi,k
n '

Bk−i
i,n−i+1

Z∞
i−1,n−i+1 +B0

i,n−i

/ Bk−1−i
i,n−i+1

Z∞
i−1,n−i+1 +B0

i,n−i
'

Bk−i
i,n−i+1

Z∞
i−1,n−i+1 +Bk−1−i

i,n−i
' Im(dk−i

k,n−k+1) .

As explained in [102], the notation BDi, j
n stands for birth and death. The proof of Theo-

rem 3.5.1 by using the k-truncated filtration as done here is our contribution and differs from the

original exposition of this fact [102].

Example 3.5.2. Let us illustrate theorem 3.5.1 by computing the spectral sequence from the ex-

ample filtered cone from section 2.12 with coefficients in some field F. See figure 3.7 to view

the consecutive pages of the spectral sequence E∗p,q(C,F), where it might be useful to see again

figure 2.14 to understand how the 0-th page is generated. In particular, using theorem 3.5.1 we

pay attention to nontrivial differentials to read off barcodes from there; notice that the differentials

on the 0-th column correspond to non-persistent cycles, and thus we ignore them. We obtain the

following isomorphisms:

BD5,6
2 ' Im(d1

6,−3)' F , BD3,5
1 ' Im(d2

5,−3)' F , BD1,3
0 ' Im(d2

3,−2)' F ,

which lead to the barcode decomposition of PH∗(FC), the infinite bar in dimension 0 is recovered

from reading the copy of F from the page E3
p,q(C,F).

In [2], the authors found some other formulas connecting both persistent homology and spec-

tral sequences, such as

dim(Er
p,q(X ,F)) = (bp,p+r−1

n −bp−1,p+r−1
n )+(bp−r,p−1

n −bp−r,p
n )
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F⊕F F

F F
⊕
F F

F F
⊕
F FE0

p,q(C,F)

F⊕F 0

0 F
⊕
F 0

0 F
⊕
F FE1

p,q(C,F)

F⊕F 0

0 F
⊕
F 0

0 F 0E2
p,q(C,F)

F 0

0 0 0

0 0 0E3
p,q(C,F)

Figure 3.7: Pages of the spectral sequence associated to the filtered cone F∗C.
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where we define the persistence betti numbers

bi, j
n = dim

(
Im
(
Hn(F iX)−→ Hn(F jX)

))
,

for all n, i, j ∈ Z. The multiple connections between spectral sequences and persistent homology

have been explored computationally as well. In particular, there is a Kenzo package [103] for

computing spectral sequences associated to a filtered CW-complex. Notice that in [103] the au-

thors were able to handle computations in Z coefficients where the extension problem associated

to the corresponding spectral sequence is nontrivial. A recent promising direction [77] consists

in studying the same idea for multidimensional persistent homology [26]. This approach explores

recent advances in spectral systems, which are spectral sequences associated to chain complexes

filtered over a poset [81]. Notice that this approach has also an associated module implemented

in Kenzo [67].

3.6 The Spectral Sequence Method

One of most widely known applications of spectral sequences in applied topology is the spectral

sequece method introduced by Edelsbrunner and Harer [57, 58]. This approach was successfully

applied to parallel computation of persistent homology in [5]. This point of view consists in com-

puting the successive pages from E∗∗,∗(X ,F) as a block reduction of a block matrix containing the

boundaries of all cells. We will briefly review this approach, drawing connections between both

the block matrix reductions and the twisted double complex spectral sequence from section 2.12

and section 3.5. In doing so, we would like to point out that both in [58] and [5], it is assumed

that the underlying boundary matrix has been constructed. Each column in the boundary matrix

leads directly to a cycle in the twisted total complex. This, however, differs from the spectral

sequence “spirit”, where cycles are found sequentially. Our exposition of this algorithm will be

closer to the usual computation of spectral sequences. First, consider a filtered complex X∗, and

take a sequence of real numbers

r0 < r1 < · · ·< r j < · · ·< rn

so that a filtration F∗ for X is obtained by setting FiX = Xri for all 0≤ i≤ n, and where we assume

that FnX = X . Thus, we obtain the spectral sequence associated to this “block” filtration

E0
p,q(X ,F) =Ccell

p+q
(
FpX ,Fp−1X

)
⇒ Hcell

p+q(X) .
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We proceed to compute the first page of the spectral sequence by obtaining the block matrices

corresponding to the zero page differentials

d0
p,q : Ccell

p+q
(
FpX ,Fp−1X

)
−→Ccell

p+q−1
(
FpX ,Fp−1X

)
,

which we denote by Mp+q
p,p , where the superscript denotes the differential dimension, while the

subscripts lead to a position on a Z×Z-grid. Next, we reduce the matrices Mp+q
p,p from higher to

lower values of q, denoting the resulting matrices by R(Mp+q
p,p ) and using the clear optimization.

Here we pay attention to the zero columns from the reduced matrix R(Mp+q
p,p ) and such that

these are not cleared by a pivot from R(Mp+q+1
p,p ). The corresponding preimage chains from

Ccell
p+q(FpX ,Fp−1X) represent generators of a basis for E1

p,q(X ,F).

Next, we describe the procedure inductively on r ≥ 1. Assume that some generating chains

are given in Ccell
p+q(FpX ,Fp−rX) which represent classes on the page Er

p,q(X ,F). For ease, we will

write Er
p,q instead of Er

p,q(X ,F). First we compute a matrix M̃p+q
p,p+r with dim

(
E0

p−r,q+r−1

)
rows

and dim
(
Er

p,q
)

columns; whose columns contain representative coordinates in E0
p−r,q+r−1 for the

image of the r-differential dr
p,q : Er

p,q −→ Er
p−r,q+r−1. Then we ignore all the rows from M̃p+q

p,p−r

which correspond to nonzero columns from the matrices Mp+q−1
p−r,p−r+s for all 0≤ s≤ r−1. We end

up with a block matrix Mp+q
p,p−r which has dim

(
Zr

p−r,q+r−1
)

rows and dim
(
Er

p,q
)

columns.

Then, we reduce Mp+q
p,p−r by using all reduced matrix blocks R(Mp+q

p−r+ j,p−r) from s = 0 up to

r−1; notice that before adding a column from some reduced block we need to first ignore some

rows. These reductions correspond to lifting our zero page representatives to the r-page, see fig-

ure 3.8. The resulting reduced matrix R(Mp+q
p,q−r) has nonzero columns which correspond to gen-

erators of Im(dr
p,q), which further clarifies the connection of Theorem 3.5.1 with the usual inter-

pretation of persistence barcodes coming from pivots that we saw on section 3.2. Furthermore, we

can use the nonzero columns from R(Mp+q
p,p−r) to clear columns from Mp+q−1

p−r,p−2r. The zero columns

from R(Mp+q
p,p−r) that have not been cleared lead to representatives in Ccell

p+q(FpX ,Fp−r−1X) for a

basis of Er+1
p,q ; i.e. we track the preimages corresponding to the column additions.

In both [58] and [5] all blocks along the same column have the same number of columns and

rows, unlike the blocks M∗∗,∗ presented on the previous paragraphs. However, one might object a

couple of points about this proposed approach:

1. representative cycles are “lost” as successive pages are computed,

2. the clear optimization is not totally used, as new boundaries are added as successive pages

are computed.

The answer for both objections lies in the hope that the blocks Mp+q
p,p−r should get dramatically

smaller as r increases. In such a case, one might start following all the columns from a reduced
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R(Mp+q
p−r,p−r) R(Mp+q

p−r+1,p−r) · · ·

...

R(Mp+q
p,p−1)

R(Mp+q
p,p )

Mp+q
p,p−r

Br
p−r,q+r−1

Zr
p−r−1,q+r−2

Figure 3.8: The block matrix Mp+q
p,p−r together with the blocks that have been reduced on the left

and down. Notice that the blocks along the column p decrease in the number of columns.

stage R(Mp+q
p,p−r) independently of whether these vanish or not (and the same for the rows). That

is, one follows exactly the algorithm from [58] and [5] from some page r > 0 onwards. This

allows to obtain only those cycle representatives whose corresponding bars are “long enough”. A

future direction of interest would be to adapt the approach of [5] to compute spectral sequences

of filtrations with the slight modification presented here.

3.7 Persistent Mayer-Vietoris Spectral Sequences

Perhaps more interesting for this thesis, we now proceed to review an idea proposed for the first

time in [76]. This consists in using the Mayer-Vietoris spectral sequence as a tool to parallelize

persistent homology computations. That is, consider a filtered complex X together with a cover

U by filtered subcomplexes. As we have seen in section 2.11, for each r ∈R we can compute the

Mayer-Vietoris spectral sequence

E1
p,q(X ,U )(r) =

⊕
σ p∈NU

Hq
(
Uσ p(r)

)
⇒ Hp+q

(
S Tot
∗ (X ,U )(r)

)
.

For each pair r ≤ s in R, there are morphisms Σs−r : S Tot
∗ (X ,U )(r)→S Tot

∗ (X ,U )(s) which re-

spect the vertical filtration F∗V . These induce spectral sequence morphisms Σs−r : E∗p,q(X ,U )(r)→

E∗p,q(X ,U )(s), which in turn induce morphisms between the targets of convergence. Then, we

may define the persistent Mayer-Vietoris spectral sequence

E1
p,q(X ,U ) =

⊕
σ p∈NU

PHq(Uσ p)⇒ PHp+q(S
Tot
∗ (X ,U )) . (3.3)
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By repeating the argument in proposition 2.11.1, we obtain an isomorphism of persistence mod-

ules

PHn(S
Tot
∗ (X ,U ))' PHn(X)

for all dimensions n≥ 0.

An inconvenience with the persistent Mayer-Vietoris spectral sequence is that it has an asso-

ciated extension problem which is nontrivial to solve in general, see section 6.2 for an explanation

of this problem. The first instance in the literature that tackled this problem in the context of

persistence appeared with the study of an approximate nerve theorem [65]. Essentially, one as-

sumes that U is a ε-acyclic cover for some value ε > 0, in the sense that dI(PHn(Uσ ),0)< ε for

all dimensions n > 0 and also dI(PH0(Uσ ), I(aσ ,∞)) < ε for some value aσ ∈ R. On the other

hand, one considers the filtered nerve NU : R→ SpCpx, where a simplex σ is in NU (r) whenever

r ∈ [aσ ,∞). Now we proceed to state the important result from [65].

Theorem 3.7.1. Let X be a filtered complex, together with a cover by subcomplexes U , and let

Q = min(dim(X),dim(NU )). If U is a ε-acyclic cover, then

dI(PHm(X),PHm(NU ))< 2(Q+1)ε

for all m≥ 0.

If the parameter Q from theorem 3.7.1 is bounded: Q<∞, then the spectral sequence Er
p,q(X ,U )

collapses at the Q+1 page. The factor 2 in the upper bound amounts to the successive page com-

putations as well as tracking possible nontrivial extension problems. In chapter 8 we will obtain

similar bounds for comparing persistence Mayer-Vietoris spectral sequences associated to two

different covers.

Another instance of the Mayer-Vietoris spectral sequence in applied topology appeared in the

context of cellular cosheaves [44, 43]. In [43] an example is presented for parallelizing homol-

ogy computations on a space X , together with a one dimensional cover U . These computations

are further improved by using discrete Morse theory on cellular cosheaf homology. As we have

seen in the corollary at the end of section 2.11, this bound on the nerve leads to a description

of the homology of the covered space from the Čech homology of the corresponding cosheaves.

Following this direction, Yoon and Ghrist [119, 120] studied the persistence Mayer-Vietoris spec-

tral sequence for the particular case of one-dimensional nerves. The second page terms in the

persistence spectral sequence can be described as

E2
p,q(K,U ) = Ȟp

(
NU ,PHq(U )

)
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for p = 0,1 and zero otherwise. Here we write PHq(U ) for the persistence precosheaf over NU

given by PHq(U )(σ) = PHq(Uσ ) for all σ ∈ NU . Instead of recovering PH∗(X) directly from

direct sums, as one does in the homology case, here there is a nontrivial extension problem to

be solved. A solution to this problem was presented in [120], which we will later reproduce and

extend to the case of unbounded dimension of the nerve in section 6.2. In [120] it was pointed out

that computing the persistent Mayer-Vietoris spectral sequence leads to extra information about

multiscale features of the dataset. In a similar direction, we will study stability properties of this

spectral sequence on chapter 8.

Bringing back attention to the spectral sequence (3.3), notice that for effectively computing

the successive pages, we need to be able to compute images, kernels and quotients of persistence

modules and morphisms. Needless to say, these should be computed in an optimal way. This ques-

tion has already been studied in [38], where the authors give a very efficient algorithm. However,

there are couple of problems that come up when using [38] in spectral sequences:

1. In [38] the authors consider the case of a morphism is induced by the inclusion X ⊆Y ; for a

simplicial morphism X → Y the authors consider the mapping cylinder. One problem with

working with the mapping cylinder is that it introduces many unnecesary cells. However,

the main issue comes from the fact that when working with the Mayer-Vietoris spectral

sequence we consider maps in the second, third and higher pages which are not induced by

a simplicial morphism at all. Furthermore, even when computing the first page we cannot

adapt the work of [38] to compute the differentials. Indeed, the Čech differentials are not

induced by simplicial morphisms; as a simplex from an intersection is sent to several copies

along lower degree intersections.

2. A key assumption in [38] is that the filtrations in X and Y are both general in the sense that

a simplex in either X or Y is born at a time. However, as we are considering persistence

morphisms f : V→W which might not be induced by simplicial maps some problems

happen as the interval decomposition fromV andWmight admit various bars with common

startpoints and endpoints. In spectral sequences generality hardly ever holds. Indeed, this

follows from the fact that a simplex might be contained in various overlapping covers.

Thus, if we want to compute images, kernels and cokernels, we will need to be able to over-

come these two difficulties first. Also, notice that a good solution should lead to the representa-

tives, as these are needed for computing spectral sequences.
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Chapter 4

Persistence Algebra

4.1 Barcode Bases

In this section we will use the result from [30] to introduce barcode bases. Notice that all persis-

tence modules that we will consider here are assumed to be tame. Our aim will be to come up

with an efficient way of computing homology in the category of persistence modules. Notice that,

while there is a uniquely determined barcode decomposition of V, the particular choice of a basis

will not be unique. This is analogous to the case of vector spaces, where a vector space can ad-

mit multiple bases but has always the same dimension. The main reason why we are introducing

barcode bases is because we would like to work with morphisms between persistence modules

f :V→W. At the end we will introduce an algorithm for computing images and kernels, and we

will evaluate its computational complexity. In addition, we will show in section 4.4 how to obtain

barcode bases for quotients of persistence modules.

Definition 4.1.1 (Barcode Basis). A barcode basis B of a tame persistence moduleV is a choice of

an isomorphism, β :
⊕N

i=1 I(ai,bi)→V. Each direct summand of β defines a restricted morphism

from an interval module βi : I(ai,bi)→V, and will be called a barcode generator. We will usually

denote a barcode basis B by the set of barcode generators B = {β}N
i=1.

Within the context of definition 4.1.1, we would like to make some notational remarks.

• Given a barcode generator βi ∈B, we write βi ∼ [ai,bi) to denote that βi is a natural trans-

formation βi : I(ai,bi)→ V. In this case we say that βi is associated to the interval [ai,bi).

• Notice that if we choose βi ∈B with βi ∼ [ai,bi) and r ∈R, we have a linear transformation

βi(r) : I(ai,bi)(r)→V(r). In particular, since I(ai,bi)(r) is either 0 or F, the morphism βi(r)

is uniquely determined by the image βi(r)(1F) ∈ V(r) for r ∈ [ai,bi). In addition, notice

that βi(r) 6= 0 for all r ∈ [ai,bi) since otherwise β would not be injective.

81
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• For any given r ∈ R, we define the subset of B

Br =
{

βi : 0≤ i≤ N, βi(r) 6= 0
}
.

In this case, if βi ∈Br and βi ∼ [ai,bi), then ai ≤ r < bi by naturality of βi. Also, evaluating

all the elements from Br on 1F leads to a vector base Br(1F) for V(r), where

Br(1F) =
{

βi(r)(1F) : with βi ∈Br
}
.

Remark. We can think of a persistence module V as a sheaf over R, where R is endowed with

the topology where the open sets are either the intervals [a,∞) or (a,∞), for any a ∈ R. Thus the

restriction morphism ρb,a : [a,∞)→ [b,∞) with values a≤ b in R, correspond to V(a≤ b) :Va→

Vb. A barcode base is determined by a set of global sections of the sheaf V, such that they restrict

to bases of the vector spaces Vr, for all r ∈R. That is, B ⊂ PVect(V) forms a barcode base for V

if and only if Br(1F) forms a base of Vr for all r ∈ R.

Let us formalize this remark on the following proposition.

Proposition 4.1.2. Given a persistence morphism β :
⊕N

i=1 I(ai,bi)→V consider the set of direct

summands B = {βi}N
i=1. Then B is a barcode basis for V if and only if Br(1F) is a basis for V(r)

for all r ∈ R.

Proof. Since vectF is an abelian category and R is a small category we have that β is an isomor-

phism if and only if β (r) is an isomorphism for all r ∈ R. That is, we consider the submodule

Ker(β ) ↪→
⊕N

i=1 I(ai,bi) and notice that Ker(β ) = 0 iff Ker(β )(r) = 0 for all r ∈ R; a similar

argument is done for surjectivity. Then, β (r) is an isomorphism iff Br(1F) is a base for V(r) and

the result follows.

Suppose that B is a barcode base for a persistence module V; there is a natural order for B.

For any pair of barcode generators α ∼ [a,b) and β ∼ [c,d), we will write α < β whenever a < c

or when we have that a = c and d < b. Assuming that V is tame and making some additional

choices we might extend this order to a total order for B.

Our next aim will consist in using barcode bases to understand persistence morphisms f :V→

W. In particular, given a pair of barcode bases A and B forV andW respectively, we will be able

to obtain a single matrix F , not depending on the filtration parameter, which will be associated

to f . Again, this is analogous to the case of linear algebra where a choice of bases leads to a

single matrix associated to a linear map. As in linear algebra, we would like to develop a gaussian

elimination method which consists in adding columns from the left to the right of an associated
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matrix; here we will assume that both A and B are totally ordered. As we add columns from

the left to right on F , we need to consider the addition of the corresponding barcode generators.

However, when trying to add barcode generators we run into some problems which we illustrate

on the following example.

Example 4.1.3. ConsiderV' I(0,2)⊕I(1,3) together with the canonical basis B given by gener-

ators β1 ∼ [0,2) and β2 ∼ [1,3). Then we cannot add β1 and β2 since at some points the domains

differ; for example at filtration value 0 we have that β1(0) has F as domain but β2(0) has 0 as

domain.

Thus, we cannot add barcode generators to obtain further barcode generators. To fix this, we

consider the following set of pairs

PVect(V) = {(β ,(a,b)) | −∞≤ a≤ b≤ ∞ with β : I(a,b)→ V where β (r) 6= 0 iff r ∈ [a,b)} .

Given some pair (β ,(a,b)) ∈ PVect(V), we will call the first component β a persistence vector

and we will say that β is associated to the pair (a,b), which we will denote as β ∼ [a,b). Notice

that in our definition of PVect(V) we include the pairs (Za,(a,a)) where Za : 0→ V is the zero

morphism; here we distinguish the zero persistence vectors Za and Zb by the fact that these are

associated to different pairs for a 6= b. We will define Z ⊆ PVect(V) to be the subset of zero

element pairs (Za,(a,a)) for all a ∈ R.

We will proceed to show that the space PVect(V) has many properties analogous to those of

vector spaces. To start, we define an operation to add persistence vectors.

Definition 4.1.4 (Barcode Sum). We define the barcode sum as the assignment

� : PVect(V)×PVect(V)−→ PVect(V)

which sends
((

α,(a,b)
)
,
(
β ,(c,d)

))
to the pair (α �β ,(max(a,c),B(b,d,α,β ))) where

B(b,d,α,β ) =


max(b,d) if b 6= d

S(b,d,α,β ) if b = d ,

with

S(b,d,α,β ) =


min(b,d) if b 6= d

sup{r ∈ [max(a,c),b) | α(r)+β (r) 6= 0} if b = d ,
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and where for each r ∈ [max(a,c),B(b,d,α,β )) we define

α �β (r) =


α(r)+β (r) for r ∈ [max(a,c),S(b,d,α,β ))

α(r) for r ∈ [d,b) if d < b

β (r) for r ∈ [b,d) if b < d .

From checking the different cases one can see that α � β : I(max(a,c),B(b,d,α,β ))→ V is a

well defined persistence morphism.

Notice that α �β (r) 6= 0 if and only if r ∈ [max(a,c),B(b,d,α,β )), and that � is commuta-

tive. For brevity, we will omit the pair notation (α,(a,b)) of elements form PVect(V) and refer

only to the first component α , the persistence vectors. Thus, we will abuse notation and say, “given

a persistence vector α ∈ PVect(V)” or “given a subset of persistence vectors B ⊆ PVect(V)”. In

fact, the reason why we keep track of persistence vectors as pairs is to make sure we can dis-

tinguish zero elements within Z ⊆ PVect(V). Also, notice that the elements Za ∈ Z behave

nontrivially with respect to �; for example, given a persistence vector α ∼ [aα ,bα) and consider-

ing c > bα we have that α �Zc = Zc. We will now prove associativity.

Proposition 4.1.5. � is associative in PVect(V).

Proof. Consider three persistence vectors α ∼ [aα ,bα), β ∼ [aβ ,bβ ) and γ ∼ [aγ ,bγ) from PVect(V).

We would like to show L = R for L := (α �β )�γ and R := α � (β �γ). Notice that both L and R

will share the same startpoint A=max(aα ,aβ ,aγ); thus L and R are associated to a pair of intervals

[A,BL) and [A,BR) respectively. Additionally, we have that L(A) = α(A)+β (A)+ γ(A) = R(A).

Thus, by naturality of persistence morphisms, we might deduce that for all r ∈ R with A≤ r

L(r) = V(A≤ r)(L(A)) = V(A≤ r)(R(A)) = R(r) .

Since L(r) 6= 0 iff r ∈ [A,BL) and R(r) 6= 0 iff r ∈ [A,BR) we must have BL = BR and the equality

L = R holds.

Another ingredient that we will need for developing algebraic manipulations on PVect(V) is

scalar multiplication. We will define λ : F×PVect(V)→ PVect(V) to send a pair (c,β ) to

λ (c,β ) =


cβ if c 6= 0 ,

Za if c = 0 ,

where cβ (r) = c ·β (r) for all r ∈ R. With the definition of � we can introduce the concept of

linear independence of a subset B⊆ PVect(V). This will be key for characterizing barcode bases.
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Definition 4.1.6. Given a subset B ⊂ PVect(V) \Z , we say that B is linearly independent or

that the vectors within B are linearly independent iff for any nonempty subset S ⊆ B and

any coefficients kβ ∈ F \ {0} with β ∈ S , the sum �β∈S kβ β is associated to the interval

[maxβ∈S (aβ ),maxβ∈S (bβ )), where β ∼ [aβ ,bβ ) for all β ∈S .

Let us illustrate linear independence with an example.

Example 4.1.7. Suppose that {α ∼ [0,2),β ∼ [0,1)} is a basis of V' I(0,2)⊕ I(0,1). Then, one

can see that {α,β} forms a set of linearly independent persistence vectors, this will follow from

proposition 4.1.10. On the other hand, α and α �β are not linearly independent since the sum

(−α)� (α �β ) = β is associated to [0,1) but −α ∼ [0,2) and α �β ∼ [0,2) and the maximum

of the endpoints is 2.

In proposition 4.1.10 we will show that a barcode base is linearly independent. However, we

would like that a barcode base also generates the set PVect(V). For this, we need to introduce a

further ingredient.

Definition 4.1.8. We define the barcode cut operation 1s : PVect(V)→ PVect(V) for all s ∈ R as

1s(α) = α �Zs ,

for all s ∈ R and all α ∈ PVect(V).

Notice that λ and {1s}s∈R are compatible, in the sense that 1r(kβ ) = k1r(β ) for all β ∈

PVect(V), all r ∈ R and all k ∈ F. Also, given β ,γ ∈ PVect(V) and parameters s,r ∈ R it can be

checked that

1s(β )�1r(γ) = 1max(s,r)(β � γ) .

Thus, one might think of persistence vectors on V as a tuple
(
PVect(V),�,λ ,{1s}s∈R

)
.We can

now define the concept of generation.

Definition 4.1.9. Given a nonempty subset B ⊆ PVect(V), we say that B generates PVect(V)

if and only if for any element α ∈ PVect(V) \Z there exist a subset S ⊆ B together with

coefficients kβ ∈ F\{0} and some s ∈ R such that

α = 1s

�
β∈S

kβ β

 .

We can now characterize barcode bases with the following result.

Proposition 4.1.10. A subset B ⊆ PVect(V) is a barcode basis for V if and only if B generates

PVect(V) and it is linearly independent.
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Proof. Assume first that B is a barcode basis. By proposition 4.1.2 we know that Br(1F) is a

basis for the vector space V(r) for all persistence values r ∈ F. Then, for any persistence vector

α : I(aα ,bα) → V we must have that α(aα)(1F) = ∑β∈Ba kβ β (aα)(1F) for some coefficients

kβ ∈ F for all β ∈Baα . By naturality of α , this implies α = 1aα

(
�β∈Baα kβ β

)
. In particular, B

generates PVect(V). On the other hand, assume that B is not linearly independent. Then there

exist some nonempty subset S ⊆B together with coefficients kβ ∈ F\{0} such that �β∈S kβ β

is associated to an interval [maxβ∈S (aβ ),B) with B < maxβ∈S (bβ ). However this implies that

BB(1F) is not linearly independent inV(B), since ∑β∈S∩BB kβ β (B)(1F) = 0, but kβ ∈ F\{0} for

all β ∈S ∩BB 6= /0. This would break linear independence of BB(1F), reaching a contradiction.

Thus B must be linearly independent.

Now suppose that B generates PVect(V) and is linearly independent. We will prove that

B is a barcode base by using proposition 4.1.2, so that all we need to show is that Br(1F) is a

basis for the vector space V(r) for all filtration values r ∈ R. First, we will show that Br(1F)

generates V(r) for all r ∈ R. Consider any nonzero vector g ∈ V(r) and define the persistence

vector γ : I(r,s)→ V by setting γ(r)(1F) = g, where s = sup
{

a : a ∈ R and V(r ≤ a)(g) 6= 0
}

.

Thus, by generation of B there exists some subset S ⊆B together with some coefficients kβ ∈ F

such that γ = 1r
(
�β∈S kβ β

)
. In particular we have that g = γ(r)(1F) = ∑β∈S kβ β (r)(1F).

Therefore the claim follows. Next, let us show that Br(1F) is linearly independent. To see this,

consider any non-empty subset S ⊆Br together with coefficients kβ ∈ F \ {0} for all β ∈S .

Then Γ =�β∈S kβ β is associated to [maxβ∈S (aβ ),maxβ∈S (bβ )) which must contain r, and so

Γ(r)(1F) = ∑β∈S kβ β (r)(1F) 6= 0. Thus, Br(1F) is indeed linearly independent and it forms a

basis for V(r).

Let f : V→W be a morphism of tame persistence modules and consider two bases A and

B for V and W respectively. Given a persistence vector γ ∈ PVect(V) with γ ∼ [aγ ,bγ), we

define the image f (γ) : I(aγ ,b f (γ))→W where b f (γ) = sup
{

r ∈ [aγ ,bγ) | f (r)◦ γ(r) 6= 0
}

and

f (γ)(r) = f (r)◦ γ(r) for all r ∈ [aγ ,b f (γ)).

Now, for each barcode generator α ∼ [aα ,bα) in A , as B is a barcode base, there exist some

subset S ⊆B together with coefficients kβ ,α ∈ F\{0} for all β ∈S such that

f (α) = 1aα

�
β∈S

kβ ,αβ

 .

One might assume that S ⊂Baα since adding elements from B \Baα would have no effect or

would cut the startpoint to a value greater than aα . Also notice that if β (bα) 6= 0, then kβ ,α = 0,

since otherwise f would not be natural as a persistence morphism. Thus we can define the subset
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of Baα associated to α:

B(α) :=
{

β : β ∈B, β (aα) 6= 0, β (bα) = 0
}
⊆Baα ⊆B

The set B(α) contains the barcode generators β ∈ B such that the coefficients kβ ,α might be

non-zero; thus S ⊆ B(α). By pointwise-linearity and naturality of f , we have that for any

subset S ⊆A the equality

f

(
�

α∈S
kαα

)
= �

α∈S
kα f (α)

holds, where kα ∈ F for all α ∈S .

Corollary 4.1.11. Consider a pair of persistence modules V and W together with a pair of re-

spective barcode bases A and B. If there is a persistence morphism f : V→W, then there is

a unique associated matrix F =
(
kβ ,α

)
β∈B,α∈A which is well-defined in the sense that whenever

kβα 6= 0 then β ∈B(α). Conversely, assume that F is well-defined, then there exists a unique

persistence morphism f : V→W whose associated matrix is F.

Proof. By the reasoning above, we only need to prove the converse statement. First, notice that

for each α ∈ A such that α ∼ [aα ,bα), we can define f (α) := 1aα

(
�β∈B(α) kβ ,αβ

)
. By lin-

ear independence of B, f (α) is associated to the interval [aα ,B) for B = maxβ∈S (bβ ) with S

being the set {β ∈ B(α)|kβ ,α 6= 0}. We can extend the definition of f by the linear formula

f (�α∈A cαα) = �α∈A cα f (α) for any coefficients cα ∈ F for all α ∈ A . This implies the

claim as f is then natural and pointwise linear.

4.2 Computing Kernels and Images

Consider two finite barcode bases A = {αi}n
i=1 and B = {β j}m

j=1 for V and W respectively.

Additionally, suppose that both A and B have total orderings. That is, even if two barcode

generators are associated to the same interval αr,αs ∼ [a,b) for r 6= s, we have already made a

choice αr < αs. Then we consider MI = ( f (α1), . . . , f (αn)) the matrix of f in the bases A and

B. The aim will be to transform MI performing left to right column additions until obtaining the

reduced matrix

I =

(
f (α1)

∣∣∣∣∣ f (α2)� k2,1 f (α1)

∣∣∣∣∣ . . .
∣∣∣∣∣ f (αn)�

n−1

�
j=1

kn, j f (α j)

)
(4.1)

for suitable ki, j ∈ F and 1 ≤ j < i ≤ n. This I will have the property that its non-zero columns

form a basis Ĩ for Im( f ). The key to check this property will be, as in traditional linear algebra,

to pay close attention to the column pivots.
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Definition 4.2.1. Given some subset S ⊆A , we might consider a vector V = (kα)α∈A such that

kα 6= 0 iff α ∈ S . We call the pivot of V , to be the element τ ∈ S whose associated interval

[aτ ,bτ) is such that for any other element α ∈S associated to [aα ,bα) we have that bα ≤ bτ , and

if bα = bτ then α < τ in the chosen basis order from A . We will also refer to the pivot of S or

the pivot of �α∈S kαα .

In particular, notice that our definition of a pivot differs from the traditional “last nonzero en-

try” definition. A matrix I that has unique pivots yields a set of linearly independent persistence

vectors; we will show this in proposition 4.2.3.

Now, let us go back to the reduced matrix I from (4.1). By linearity of persistence morphisms

we have that the j column from I is f (α j �� j−1
i=1 k j,iαi); thus, its preimage p j is given as

α j �� j−1
i=1 k j,iαi; we define by PI the set of preimages of I . Given some preimage p j ∈PI ,

notice that it is associated to some interval [a j,b j) while its image f (p j) is associated to [a j,c j) for

filtration values c j ≤ b j. Thus, we must have that 1c j(p j) ∈ ker( f ) for all 1≤ j ≤ n. We consider

G K = {1c j(p j)}1≤ j≤n which generates ker( f ), as it is shown later in proposition 4.3.1. Then,

we order G K by choosing a permutation σ : {1,2, . . . ,n}→ {1,2, . . . ,n} such that it is consistent

with the standard order of barcode vectors. Using the order from G K we consider the matrix

MK =
(
1cσ(1)(pσ(1)), . . . ,1cσ(n)(pσ(n))

)
noticing that it is the associated matrix for the composition

of
⊕n

j=1 1cσ( j)(pσ( j)) :
⊕n

j=1 I(cσ( j),bσ( j)) � ker( f ) with the inclusion ker( f ) ↪→ V. Reducing

columns we find some coefficients qi, j ∈ F so that the resulting matrix has unique pivots:

K =

(
1cσ(1)

(
pσ(1)

)∣∣∣∣∣1cσ(2)

(
pσ(1)�q2,2 pσ(2)

)∣∣∣∣∣ . . .
∣∣∣∣∣1cσ(n)

(
pσ(n)�

n−1

�
i=1

q j,i pσ(i)

))
.

Taking the non-zero columns from K leads to a basis K̃ for Ker( f ). In the following we

will present an algorithm obtaining such bases Im( f ) and ker( f ). First we will go through an

illustrative example encoding some of the basic principles of the procedure.

Example 4.2.2. Consider two persistence modules

V' I(1,5)⊕ I(1,4)⊕ I(2,5), W' I(0,5)⊕ I(0,3)⊕ I(1,4)

with canonical barcode bases (α1,α2,α3) and (β1,β2,β3) respectively. Let the morphism f :V→

W be given by the |B|× |A | matrix MI that we depict on the left:
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0
1
2
3
4
5

Ker( f ) V Im( f ) W

Figure 4.1: Decomposition of barcodes in image, kernel, domain and codomain of f : V→W.
The colors correspond to the different generators associated to Ĩ and K̃ .


MI α1 α2 α3

β1 0 0 1

β2 1 0 0

β3 1 1 1




I α1 α2 � (−α1) α3

β1 0 0 1

β2 1 −1 0

β3 1 0 1

 .

Then notice that the first two columns from MI share the same pivot β3, while the third’s column

pivot is β1. We add the first column to the second multiplying by −1, so that we obtain the matrix

I above which has unique pivots for each column. From the matrix I we obtain:

f (α1) = 11(β2 �β3) f (α2 � (−α1)) =−11(β2) f (α3) = 12(β1 �β3) .

In particular, we obtain a basis for the image Ĩ =
{

11 (β2 �β3 ) , −11 (β2 ) , 12(β1 � β3)
}

,

which leads to the interval decomposition Im( f )' I(1,4)⊕ I(1,3)⊕ I(2,5). At the same time, we

obtain a corresponding set of preimages PI = {α1,α2 � (−α1),α3}. From this, we deduce the

ordered set of kernel generators G K = {13(α2 � (−α1)), 14(α1), 15(α3)}. Thus, we consider

the matrix MK for the kernels and reduce it


MK 13(α2 � (−α1)) 14(α1) 15(α3)

α1 −1 1 0

α2 1 0 0

α3 0 0 1




K 13(α2 � (−α1)) 14(α2) 15(α3)

α1 −1 0 0

α2 1 1 0

α3 0 0 1



Since 14(α2) = Z4 and 15(α3) = Z5 we have that the second and third columns from K vanish.

Thus, we obtain a basis for the kernel K̃ =
{

13 (α2 � (−α1))
}
. which will be such that ker( f )'

I(3,5). This is illustrated in Figure 4.1.

We end this section with useful result to obtain linear independence.
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Proposition 4.2.3. Let V be a persistence module with a barcode base A . Consider a set of

persistence vectors M ⊂ PVect(V) and suppose that their pivots on the basis A are all different.

Then M is linearly independent.

Proof. First, for each element m∈M we write it in terms of A as the sum m= 1rm

(
�α∈Sm

kαα
)

for some subset Sm ⊆A and coefficients kα ∈ F \{0} for all α ∈Sm and some filtration value

rm ∈ R. We will write [am,bm) for the associated interval of m and αm for its pivot from Sm. In

particular, by the definition of pivot we must have αm ∼ [cm,bm) for some filtration value cm ≤ am.

Now, consider a nonempty subset R ⊆M together with coefficients qm ∈ F\{0} for all m ∈R

and take the sum V =�m∈R qmm. We claim that V ∼ [maxm∈R(am),maxm∈R(bm)). Consider the

element P ∈R whose pivot αP is the ‘highest’ according to definition 4.2.1; i.e. the pivot from⋃
m∈R Sm. Consequently, we have that bP = maxm∈R(bm). Notice that the element P is unique,

since otherwise there would be two elements from M with the same pivots, contradicting our

assumption. This implies that V is written in terms of A with a nonzero coefficient for αP. By

linear independence of A the claim follows.

4.3 image kernel algorithm

Here, we present an algorithm performing the above procedure. Suppose that f : V→W is a

morphism between two tame persistence modules. Let A and B be barcode bases for V and

W respectively. Suppose also that we know f (A )B, the matrix associated to f with respect to

barcode bases A and B, and store it into MI . Performing left to right column additions on MI

will eventually lead to the reduced matrix I ; we will call this method box gauss reduce 1, and

it is summarized in algorithm 4.1. Notice that this procedure is a standard Gaussian elimination

using �. Here we use a method get pivot, which obtains the pivot of a given nontrivial column

from a matrix. Once we have run box gauss reduce, we obtain the reduced matrix for the

images I and the corresponding preimages PI . Then we obtain the set of generators G K for

ker( f ), order it according to the standard order and define a matrix G KA which expresses the

elements from G K in terms of A . Applying box gauss reduce to the triple (G K ,A ,G KA )

we recover the reduced matrix K . An outline of this procedure is shown in Algorithm 4.2.

Reading out the nonzero elements from I and K leads to the barcode bases Ĩ and K̃ .

Proposition 4.3.1. Algorithm 4.2 computes K̃ and Ĩ bases for the kernel and image of f . Fur-

thermore, it takes at most O(N|A |2) time, where N = max(|A |, |B|).
1Here we use the Python notation for matrices, where for a matrix M, the (i, j)-entry is denoted by M[i][j] and

the jth column is denoted by M[:,j]. Also, we implement persistence vectors as ordinary vectors, however, one needs
to make sure that ordinary vector addition is adapted to the operation �, also, one needs to keep track of the associated
intervals of the entries.
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Algorithm 4.1 box gauss reduce

Input: A , B, f (A )B
Output: I , PI

1: Set I = /0 and PI = /0.
2: Set MI = f (A )B, T = Id|A |, pivots= (−1,−1, · · · ,−1) ∈M (F)1×|A |
3: for 1≤ i≤ |A | do
4: pivots[i]← get pivot(I [:, i])
5: for 1≤ j ≤ i−1 do
6: if pivots[i] == pivots[ j] then
7: MI[:, i]←MI[:, i]� (−MI[pivots[i]][i]MI[:, j])
8: T [:, i]← T [:, i]−MI[pivots[i]][i]T [:, j]
9: pivots[i]← get pivot(MI[i])

10: end if
11: end for
12: Compute S i

I = {β j ∈B |MI[ j][i] 6= 0} ⊆B and also S i
P = {α j ∈A |T [ j][i] 6= 0} ⊆A .

13: Add f (pi) =�β j∈S i
I
MI[ j][i]β j to I .

14: Add pi =�α j∈S i
P

T [ j][i]α j to PI .
15: end for
16: return I and PI

Algorithm 4.2 image kernel

Input: A , B, f (A )B
Output: K̃ , Ĩ , PI

1: I ,PI ← box gauss reduce(A ,B, f (A )B)
2: Define G K to be the set containing all 1ci(pi) for all pi ∈PI with f (pi)∼ [ai,ci).
3: Order G K , also define the matrix G KA of coordinates from G K in terms of A .
4: K , ← box gauss reduce(G K ,A ,G KA )

5: We get rid of zero elements to obtain K̃ and Ĩ from K and I .
6: return K̃ and Ĩ (optionally return PI for preimages)
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Proof. First of all, notice that by proposition 4.2.3 we know that Ĩ and K̃ are linearly indepen-

dent, as these are both sets of persistence vectors with different pivots. Thus, all we need to show

is that both sets generate PVect(Im( f )) and PVect(Ker( f )) respectively.

Let us prove that Ĩ generates PVect(Im( f )). First, we will show that PI generates PVect(V).

Consider γ ∈ PVect(V) and write γ = 1a (�i∈I kiαi) for coefficients ki ∈ F \ {0} with i ∈ I for

some subset I ⊆ {1,2, . . . , |A |}. Then, consider the maximum index m from I and compute γ̃ =

γ � (−km pm). Here it is key to recall that the preimage pm ∈PI is written as αm ��m−1
i=1 km,iαi

for coefficients km,i ∈ F for 1 ≤ i < m. Now, γ̃ = 1a

(
�i∈J k̃iαi

)
for coefficients k̃i ∈ F \ {0}

with i ∈ J for some subset J ⊆ {1,2, . . . ,m− 1}. Repeating this argument, eventually we write

γ in terms of G I . This implies that f (γ) can be expressed in terms of Ĩ . Thus, Ĩ generates

PVect(Im( f )).

Now, let us show that K̃ generates PVect(Ker( f )). In fact, it will be enough to show that

G K generates PVect(ker( f )). This is because K̃ is obtained from reducing G KA in a similar

manner as Ĩ was obtained by reducing f (A )B. Consequently, by replicating the argument which

proved that PI generates PVect(V), we can show that K̃ generates PVect(ker( f )). So let us

prove our claim. Suppose that γ : I(a,b)→V lies in the kernel; i.e. f (γ) = Za. As PI generates

PVect(V), we have that γ = 1a (�i∈I ki pi) for coefficients ki ∈ F\{0} with i ∈ I for some subset

I ⊆ {1,2, . . . , |A |}. Applying f , we obtain the equality f (γ) = Za =�i∈I ki f (pi) and notice that

f (pi)(a) = 0 for all i∈ I; otherwise linear independence of Ĩ , and in particular that of Ĩ (a)(1F),

would be contradicted. However, if f (pi)(a) = 0 for all i ∈ I, then 1ci(pi) ∈ G K for some ci ≤ a

and all i ∈ I. Altogether we obtain that γ must be generated by G K .

The computational bound follows from computing box gauss reduce on lines 1 and 4 of

algorithm 4.2. For the image, it takes about O(|A |2) time to run the pair of nested “for loops”

from algoritmh 4.1 and about O(max(|A |, |B|)) time to perform the column additions from lines

7-8. Reducing the matrix associated to the kernel should take about O(|A |3) time.

Remark. The procedure for computing images and kernels described here relies heavily on propo-

sition 4.1.10. However, the early versions of PERMAVISS [116] used an image kernel proce-

dure which mainly relied on proposition 4.1.2. This original image kernel procedure, together

with its improved version, is described in appendix A. However, box gauss reduce algorithm

will outperform these methods as our estimates suggest. Nonetheless, for completeness, we in-

clude all these procedures in this thesis.
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4.4 Computing Quotients

Now we consider the problem of computing quotients. Suppose that we have inclusions H ⊆

G⊆V of finite dimensional persistence modules, together with totally ordered barcode bases H ,

G and A respectively. The aim will be to find a barcode base for G/H. Consider the inclu-

sions ιH :H ↪→V and ιG :G ↪→V, together with their respective associated matrices ιH(H )A ∈

M|A |×|H |(F) and ιG(G )A ∈M|A |×|G |(F). We consider the module H⊕G together with a bar-

code base given by the pair (H |G ); here we extend the orders from H and G with the rule

h < g for any pair of generators h ∈H and g ∈ G ; of course, this might break the standard per-

sistence vector order. Then, we consider the morphism given by the addition of the inclusions

ι = ιH+ ιG : H⊕G→ V which will have the associated block matrix (ιH(H )A |ιG(G )A ). We

send the triple ((H |G ),A ,(ιH(H )A |ιG(G )A )) to the box gauss reduce algorithm and ob-

tain the corresponding set of reduced columns I . Even though the standard barcode order was

not respected in the domain, notice that I will be linearly independent by proposition 4.2.3. A

key observation will be that the subset I [H ] containing the first |H | elements from I forms a

barcode base for H by proposition 4.3.1.

We will focus on the subset I [G ] =I \I [H ] from I . Recall that the box gauss reduce al-

gorithm adds columns from ιH(H )A and ιG(G )A to eventually obtain each element Γ ∈I [G ].

For each Γ ∈ I [G ], we will write it as Γ = ΓH�ΓG where ΓH and ΓG denote the respective

combinations from elements from ιH(H )A and ιG(G )A that we obtain in box gauss reduce.

Given Γ ∈ I [G ], we will use the notation ΓG ∼ [aΓ,dΓ) and Γ ∼ [bΓ,cΓ) for the corresponding

associated intervals; in particular, notice that aΓ ≤ bΓ. Then we define the persistence vector

ΓG : I(aΓ,cΓ)→
V
H

,

which is defined by ΓG(r) = pH(r)◦ΓG(r) for all r ∈ [aΓ,cΓ), where we use the projection pH :

V� V
/
H. We claim that ΓG is well-defined, i.e. ΓG(r) 6= 0 iff r ∈ [aΓ,cΓ). First, notice that

ΓG(cΓ) = 0 since by definition Γ(cΓ) = 0, which implies ΓG(cΓ) = −ΓH(cΓ). Next, we need to

show that ΓG(r) 6= 0 for all r ∈ [aΓ,cΓ). In fact, we will prove the stronger statement that

Q̃ =
{

ΓG | Γ ∈I [G ] such that aΓ < cΓ

}
is linearly independent. Take a subset S ⊆I [G ] such that {ΓG}Γ∈S is a nonempty subset of Q̃;

notice that this leads to any nonempty subset of Q̃. Also, take some coefficients kΓ ∈ F\{0} for

all Γ ∈S . We want to show that VG :=�Γ∈S kΓΓG is associated to the interval [A,C), where we

use the notation A = maxΓ∈S (aΓ), B = maxΓ∈S (bΓ), and C = maxΓ∈S (cΓ). By contradiction,
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suppose that VG is associated to [A,r) for some value r ∈ [A,C). This implies that 1r(VG) is in

PVect(H) and in particular 1max(r,B)(V ) is in PVect(H), where we define VG :=�Γ∈S kΓΓG and

V :=�Γ∈S kΓΓ. We consider two possible cases:

• Assume that B <C. There exists T ⊆I [H ] together with th ∈ F\{0} for all h ∈T such

that

1max(r,B)
(
�
h∈T

thh
)
= 1max(r,B)(V )

However, this implies that V �
(
−�h∈T thh

))
is associated to an interval whose endpoint

is max(r, B) < C; but this breaks linear independence of I , as S ∪T ⊆ I and C =

maxΓ∈S (cΓ).

• Assume that B =C, in this case V = ZB as V ∼ [B,C). Since we assume that the elements

from Q̃ are nonzero, we must have aΓ < cΓ for all Γ ∈S and in particular A < B =C. This

implies that VH :=�Γ∈S kΓΓH is associated to an interval whose startpoint is B, as this is

the case for V =VG�VH but VG ∼ [A,x) for some x ≥ A. Consequently, VH is written in

terms of I [H ] with a nontrivial coefficient on some element h ∈ I [H ] with h ∼ [B,y)

for some y∈R with B < y. Recall that 1r(VG)∈ PVect(H). Then VH�1r(VG) is written in

terms of I [H ] with h as a nontrivial summand, as it cannot be a summand from 1r(VG),

since 1r(VG)∼ [A,x) with A < B. By linear independence of I [H ], the sum VH�1r(VG)

must be associated to an interval containing [B,y), here recall that r <C = B. However, by

hypotheses VH�1r(VG) =V = ZB and we reach a contradiction.

It can be shown that Q̃ generates G
/
H by a similar reasoning as used in proposition 4.3.1. Con-

sequently, Q̃ is a barcode base for the quotient.

4.5 Homology of Persistence Modules

Consider a chain of tame persistence modules:

0 V0oo V1
d1oo V2

d2oo · · ·oo Vn,
dnoo (4.2)

where each term has basis B j for 0≤ j ≤ n. Then applying image kernel we will obtain bases

I j−1 and K j for the image and kernel of d j for all 0 ≤ j ≤ n. Proceeding as on the previous

section, we send triples ((I j|K j),B j,((I j)B j |(K j)B j) to box gauss reduce for all 0≤ j≤ n.

This leads to bases Q j for the homology for all 0≤ j ≤ n.

Example 4.5.1. Suppose that we have a filtered simplicial complex (Xr)r∈R in such a way that

Xr ⊂ Xs for all r≤ s. Thus, taking free chains on the k-simplexes of these leads to tame persistence
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modules S∆
k (X∗) for every positive integer k. This induces a sequence of tame persistence modules,

0 S∆
0 (X∗)oo S∆

1 (X∗)
d1oo S∆

2 (X∗)
d2oo S∆

3 (X∗)
d3oo · · ·oo

with the property that barcodes ‘never die’. This setting would be the classical case of persistence

homology over a filtered space presented in [59]. In this context, we can use the clear optimiza-

tion, as presented in section 3.2. From the point of view of barcode bases, this optimization is

because of the composition rule d ◦d = 0 and also because of the fact that barcodes never die in

the modules S∆
∗ (X∗). This property allows us to create a more efficient algorithm. Thus, perform-

ing the homology of the chain complex above we recover the persistent homology PHn(X∗) for all

degrees n≥ 0.

Remark. An interesting question arises here. Let f : V→W be a persistence morphism and

choose a base A for V. Supose that we have computed a base I for Im( f ) in terms of A . Can

we obtain some information about a base K for Ker( f ) from I ? The simple answer is no (this is

sometimes known as clear optimization and when working with persistence module homology we

will not be able to use it in general). In chapter 5 we will see in proposition 5.3.6 some conditions

on the relations between the interval decomposition of an inclusion, and in particular this applies

to Im( f ) ↪→ Ker( f ). Finding information of Ker( f ) from Im( f ) is an open question for future

research. A possible direction is to use the fact that the pivots from the generators from Ker( f )

are hinted by the obtained generators from Im( f ).
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Chapter 5

Barcode Shifts

In this chapter we will explore the impact of changing data on persistent homology. We will

continue in the direction started by B. Stolz [110], although from a different perspective. The

main result of this section will be the barcode shift lemma, which gives some conditions as to when

global changes in barcodes can be measured by computing barcode changes in a neighborhood.

The rest of this chapter will be geared towards the idea of obtaining a precise description of these

changes. The introduced theory on the Mayer-Vietoris spectral sequence from section 2.11 will

play a key role, while the barcode bases machinery developed in chapter 4 will be crucial.

5.1 Barcode Shift Lemma

Let K be a filtered simplicial complex and consider a small subset V ⊂ K; e.g. V could be the

subset St(σ) for some simplex σ ∈ K. We would like to know by how much PH∗(K \V ) and

PH∗(K) differ. Something one could do is to compute straight away PH∗(K) and PH∗(K \V ),

comparing both results. The problem with this approach is that it defeats the whole purpose of

complex reduction, where we want to avoid computing PH∗(K) as it is very expensive. Addi-

tionally, one might want to check this for different subsets V , but computing PH∗(K \V ) might

become as expensive as computing PH∗(K). Instead, we will consider a subset M ⊂ K which is

a neighborhood for V . In this case, we would like to know the differences between PH∗(K) and

PH∗(K \V ) relying uniquely on information from M.

We consider a sequence of filtered subsets of K

V ⊆ N ⊆U ⊆M ⊆ K.

such that M and N are subcomplexes of K. Then we have that K \U , M \V and N form a cover

for K; see figure 5.1 for an illustration for this covering. The following will be the main example

97
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K \U M \U

⊃ ⊂

M \V NN \V

⊃ ⊂

Figure 5.1: Illustration of a simplicial complex K covered by subcomplexes K \U , M \V and N.
Notice that there will be only two double intersections M \U and N \V .

that we will have in mind.

Example 5.1.1. Recall the definition of star St(p) and closed star St(p) of a vertex p from defi-

nition 3.4.1. Let X⊆ Rn be a finite point cloud, and consider the truncated Vietoris Rips complex

VRa
∗(X) at a > 0, so that VRa

r (X) = VRr(X) for all r ∈ [0,a) and it is undefined for r /∈ [0,a).

The choice of the parameter a > 0 will depend on the maximum persistence value that we will

perform our computations on. Then, taking a pair of radii r,R ∈ R such that a ≤ r < R, and also

a≤ R− r we have the covering by filtered subcomplexes

VRa
∗(X)\VRa

∗(Br(p)∩X) VRa
∗(BR(p)∩X)\St(p) St(p) .

In this case, V = St(p), N = St(p), U = VRa
∗(Br(p)∩X) and M = VRa

∗(BR(p)∩X).

For ease of notation, we use the naming convention A = PH(K \U), B = PH(M \V ) and

C = PH(N), as well as pB : A⊕B⊕C→ B for the projection onto the second summand. On the

other hand, we consider the morphisms

δ1 : PH(M \U)−→ A⊕B⊕C δ2 : PH(N \V )−→ A⊕B⊕C

which come from the chain maps

δ1 : S∆
k (M \U) // S∆

k (K \U)⊕S∆
k (M \V )⊕S∆

k−1(N)

s // (s,−s,0)

and

δ2 : S∆
k (N \V ) // S∆

k (K \U)⊕S∆
k (M \V )⊕S∆

k−1(N)

s // (0,s,−s).

These form the Čech differential δ = δ1 +δ2. For ease of notation, from now on we will omit the

closure overline sign, assuming that we are working with complexes.

Recall the definition of total complex from section 2.11. For a space K covered by
{

K \U,M\
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V,N
}

, we define the total complex in degree k ≥ 0 by

S Tot
k (K) = S∆

k (K \U)⊕S∆
k (M \V )⊕S∆

k (N)⊕S∆
k−1(M \U)⊕S∆

k−1(N \V ) .

The differential of the total complex is given by l dTot := dk+(−1)k−1δ̌ , which sends (a,b,c,γ1,γ2)

to

(dk(a)+(−1)k−1
γ1, dk(b)+(−1)k

γ1 +(−1)k−1
γ2, dk(c)+(−1)k

γ2, dk−1(γ1), dk−1(γ2)) ,

where we have used the definition of δ1 and δ2 above. One can easily check that dTot ◦ dTot = 0.

Such a differential can be summarized by the following diagram

S∆
k (K \U) ⊕ S∆

k−1(M \U) ⊕ S∆
k (M \V ) ⊕ S∆

k−1(N \V ) ⊕ S∆
k (N)

S∆
k−1(K \U) ⊕ S∆

k−2(M \U) ⊕ S∆
k−1(M \V ) ⊕ S∆

k−2(N \V ) ⊕ S∆
k−1(N).

dk dk−1(−1)k−1 (−1)k dk dk−1(−1)k−1 (−1)k dk

Notice that, by convenience, here we wrote the summands in a different order from the defi-

nition of S Tot
k (K) above. Additionally, from section 3.7, recall that one has an isomorphism

PH∗(S Tot
∗ (K)) ∼= PH∗(K). On the other hand, we could also consider the total complex associ-

ated to the space K \V with the cover
{

K \U,M \V
}

given by

S Tot
k (K \V ) = S∆

k (K \U)⊕S∆
k (M \V )⊕S∆

k−1(M \U)

which satisfies PH∗(S Tot
k (K \V ))∼= PH∗(K \V ). Notice that there is an inclusion of covers V ⊂

U , which induces a morphism φK : S Tot
k (K \V )→S Tot

k (K) by the assignment

(a,b,γ1) 7→ (a,b,0,γ1,0).

This induces a morphism of persistence modules φK : PH(K \V )→ PH(K).

In an analogous way we can define the total complex associated to the space M with the cover

by two subcomplexes
{

M \V,N
}

S Tot
k (M) = S∆

k (M \V )⊕S∆
k (N)⊕S∆

k−1(N \V )

and also S Tot
k (M \V ) = S∆

k (M \V ). These come with a chain complex morphism φM : S Tot
k (M \

V )→S Tot
k (M) induced by the inclusion of complexes M \V ⊆M. On the other hand, the inclu-

sions ϕ : M→ K and ψ : M \V → K \V induce respective morphism in persistent homology.
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Lemma 5.1.2 (Barcode Shift Lemma). Consider the following commutative square of persistence

modules and persistence morphisms

PHk(M \V ) PHk(M)

PHk(K \V ) PHk(K).

φM

ψ ϕ

φK

(5.1)

for any k≥ 0 inZ. Then the induced morphisms ϕ|Coker : Coker(φM)→Coker(φK) and ψ|Ker : Ker(φM)→

Ker(φK) are injective and surjective respectively. Furthermore, if we assume that

Im(δ1)∩ Im(δ2) = 0,

then ϕ|Coker and ψ|Ker are isomorphisms.

Remark. Recall the Excision Theorem for homology that we briefly discussed on section 2.4.

In [93] an Excision Theorem was obtained in the context of persistence. Thus, suppose that a

persistence version is used for the excision isomorphism Hk(K \V,M \V ) ' Hk(K,M), then we

can fit a pair of isomorphisms on the top and bottom of the commutative square (5.1). However,

it is not clear how we could use this for proving the barcode shift lemma.

Proof. First recall that from section 3.7 we have isomorphisms of persistence modules

PHk(M)∼= PHk(S
Tot
∗ (M)), PHk(K \V )∼= PHk(S

Tot
∗ (K \V ))

and also

PHk(K)∼= PHk(S
Tot
∗ (K)).

Additionally, recall that the induced map ϕ : S Tot
k (M)→ S Tot

k (K) respects the filtrations, and

thus it induces ϕ : PHk(S
Tot
∗ (M))→ PHk(S

Tot
∗ (K)). Similarly, ψ induces a morphism between

the respective persistence modules. Altogether, the square (5.1) is isomorphic to the middle square

in the following commutative diagram

Ker(φM) PHk (S∗(M \V )) PHk
(
S Tot
∗ (M)

)
Coker(φM)

Ker(φK) PHk
(
S Tot
∗ (K \V )

)
PHk

(
S Tot
∗ (K)

)
Coker(φK)

ψ|Ker

φM

ψ ϕ ϕ|Coker

φK

(5.2)

A comment on notation. Throughout this proof we will look at persistent homology classes

for different sets. In particular, for a given cochain (a,b,c,γ1,γ2) ∈S Tot
k (K), we will denote by

[a,b,c,γ1,γ2] the homology class in PHk(K). Additionally, we will denote by [a]A, [b]B, [c]C, [γ1]1
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and [γ2]2 the respective homology classes in A, B, C, PH∗(M \U) and PH∗(N \V ) respectively.

Surjectivity of ψ|Ker: Suppose that z ∈ Ker(φK)k and there is (a,b,γ1) ∈S Tot
k (K \V ), so that

z = [a,b,γ1]. By hypotheses, we have

φK(z) = [a,b,0,γ1,0] = 0.

This implies that there exists a chain (a′,b′,c′,β1,β2) ∈S Tot
k+1(K) such that

0 = (a,b,0,γ1,0)+dTot(a′,b′,c′,β1,β2)

= (a,b,0,γ1,0)+(dk+1a′+(−1)k
β1,dk+1b′+(−1)k−1

β1+(−1)k
β2,dk+1c′+(−1)k−1

β2,dk(β1),dk(β1))

In particular, one has that [a+(−1)kβ1]A = 0, [b+(−1)k−1β1+(−1)kβ2]B = 0, [(−1)k−1β2]C = 0,

and also [γ1]1 = 0. Thus, by adding the Čech differential image δ̌ (β1), we get identities between

classes from PHk(S
Tot
∗ (K \V ))

[a,b,γ1] = [a,b,0]+dTot([0,0,β1])

= [0,b+(−1)k−1
β1,0]

= ψ[b+(−1)k−1
β1].

It remains to be shown that b+(−1)k−1β1 is in Ker(φM). This follows from the equalities

φM[b+(−1)k−1
β1] = [b+(−1)k−1

β1,0,0]+dTot[0,0,β2]

= [b+(−1)k−1
β1,0,0]+ [(−1)k

β2,(−1)k−1
β2,0]

= [b+(−1)k−1
β1 +(−1)k

β2,(−1)k−1
β2,0]

= 0

since the B and C components vanish from our previous computations.

Injectivity of ϕ|Coker: Consider 0 6= q∈Coker(φM) and take a representative (b,c,γ2)∈S Tot
k (M)

such that q = [b,c,γ2]+ Im(φM), and suppose ϕ(q) ∈ Im(φK). This implies that there must exist

(a′,b′,γ ′1) ∈S Tot
k (K \V ) so that

ϕ[b,c,γ2] = [0,b,c,0,γ2] = φK([a′,b′,γ ′1]) = [a′,b′,0,γ ′1,0]

Consequently [−a′,b− b′,c,−γ ′1,γ2] = 0 which in turn implies [γ ′1]1 = 0 and [γ2]2 = 0. This

also implies that there exists (β1,β2) ∈ Sk(M \U)⊕ Sk(N \V ) so that [−a′ + (−1)kβ1]A = 0,
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[b−b′+(−1)k−1β1 +(−1)kβ2]B = 0 and [c+(−1)k−1β2]C = 0. But then, in PHk(M) one has

q = [b,c,γ2] = [b,c,0]+dTot([0,0,β2])

= [b+(−1)k
β2,0,0] = φM[b+(−1)k

β2] ,

reaching a contradiction, since we assumed 0 6= q ∈ Coker(φM).

Now, assume that condition Im(δ1)∩ Im(δ2) = 0 holds.

Injectivity of ψ|Ker: By contradiction, suppose that an element 0 6= z ∈ Ker(φM) is such that

ψ|Ker(z) = 0. Let s ∈ Sk(M \V ) be a representative so that [s]B = z. Since z ∈ Ker(φM), one has

that in PHk(M)

φM(z) = φM([s]B) = [s,0,0] = 0.

Consequently, there exists some β2 ∈ Sk+1(N\V ) such that [s+(−1)kβ2]A = 0 and [(−1)k−1β2]B =

0. This leads to z ∈ Im(δ2). On the other hand, since ψ|Ker(z) = 0 one has that

ψ(z) = [0,s,0] = 0

in PHk(K\V ). Thus, there exists β1 ∈ Sk+1(M\U) such that [(−1)kβ1]A = 0 and [s+(−1)k−1β1]B =

0. Which implies z ∈ Im(δ1), but then Im(δ1)∩ Im(δ2) 6= 0 contradicting our assumption.

Surjectivity of ϕ|Coker: Let q∈Coker(φK) and let (a,b,c,γ1,γ2)∈S Tot
k (K) so that q= [a,b,c,γ1,γ2]+

Im(φK). Using that dTot(q) = 0 together with the equalities

dTotq = dTot[a,b,c,γ1,γ2]

= [dka+(−1)k
γ1,dkb+(−1)k−1

γ1 +(−1)k
γ2,dkc+(−1)k−1

γ2,dk−1γ1,dk−1γ2]

= [(−1)k
γ1,(−1)k−1

γ1 +(−1)k
γ2,(−1)k−1

γ2,0,0]

we obtain [(−1)kγ1]A = 0, [(−1)k−1γ1 +(−1)kγ2]B = 0 and [(−1)k−1γ2]C = 0. Thus by the hy-

potheses that Im(δ1)∩ Im(δ2) = 0, we deduce that [γ1]B = [γ2]B = 0. Choosing a chain b̃1 ∈

Sk(M \V ) such that dk(b̃1) = γ1, one has that

dTot(b+(−1)k−1b̃1,c,γ2) = (dkb+(−1)k−1
γ1 +(−1)k

γ2,c+(−1)k−1
γ2,dk−1γ2) = (0,0,0)

and so (b+(−1)k−1b̃1,c,γ2) ∈ Ker(dTot
k : S Tot

k (K \V )→S Tot
k−1(K \V )). On the other hand, one
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K K \V M M \V

Figure 5.2: Example when Im(δ1)∩ Im(δ2) 6= 0. In this case one can see that in dimension 0,
Ker(φM) will contain a class that is not in Ker(φK). As in figure 5.1, from the inner dashed
rhombus to the outer circle, we denote the boundaries of the domains of the nested sets V ⊂ N ⊂
U ⊂M.

can also check that (a,(−1)kb̃1,γ1) ∈ Ker(dTot
k : S Tot

k (M)→S Tot
k−1(M)). Altogether we have that

ϕ[b+(−1)k−1b̃1,c,γ2] =[0,b+(−1)k−1b̃1,c,0,γ2]

=[a,b,c,γ1,γ2]−φK [a,(−1)kb̃1,γ1].

Thus, ϕ|Coker([b+(−1)k−1b̃1,c,γ2]+ Im(φM)) = q+ Im(φK), and the result follows.

This lemma tells us how much barcodes will change whenever we remove some subset V from

a complex K. In general we will compute:

pB(Im(δ1))∩ Im(δ2)

instead of Im(δ1)∩ Im(δ2). This is because we want to check these conditions locally, without

computing the whole persistent homology of K. Since Im(δ1)∩ Im(δ2) is a persistence submodule

of pB(Im(δ1))∩ Im(δ2), this will give us an upper bound on the shifts of the barcode diagram. It

is worth noticing that in dimension 0, one can have that Im(δ1)∩ Im(δ2) = 0. Indeed, if this did

not hold, then there exist s1 ∈ S0(M \U) and s2 ∈ S0(N \V ) such that [s1]A = 0 and [s2]C = 0. This

last statement does not need to hold in general.

Example 5.1.3. Consider diagram (5.2). In this case, we consider homology in dimension 0. One

can see that the two points in M \U are equivalent to the pair of points in N \V up to boundaries

in M \V . At the same time, the previous pairs of points are zero up to boundaries in both K \U

and N. Thus, one will have that Im(δ1)∩ Im(δ2) 6= 0, and a new 0-homology class will appear in

M \V , which does not appear in K \V . Consequently Ker(φM) � Ker(φK), and the barcode shift

lemma does not hold in this case, see figure 5.2 for an illustration.

Example 5.1.4. Consider a point cloud X together with a point p ∈ X as depicted on figure 5.3,
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r R
R′

Figure 5.3: We consider removing the red point p from X (left). Depiction of circles with radii
r < R < R′ around p (center). The complex VRr

∗(X) with the open star St(p) in red (right).

where p is marked in red. We consider the truncated Vietoris-Rips complex VRr
∗(X) together with

the cover that we considered on example 5.1.1 with parameter a = r. Suppose that one wishes to

take out the point p. For this, we take the maximum persistence value r > 0 together with an extra

radius R > r which constitutes the “local” region of VRr
∗(X) which we are willing to compute.

This leads to the diagram of our cover

VRr
∗
(
X∩Br(p)

)
\St∗(p) VRr

∗
(
X∩ (BR(p)\Br(p))

)

VRr
∗
(
X∩Br(p)

)
VRr
∗
(
X∩BR(p)

)
\St∗(p) VRr

∗
(
X\Br(p)

)
which we depict in figure 5.4. From example 5.1.1, recall that we must have a ≤ R− r in order

to have a well-defined cover for VRa
∗(X); and so 2r ≤ R, as we choosed a = r. Notice that

Im(δ1)∩ Im(δ2)' I(s, t), where s < t < r and t is the value at which we add the dashed red lines

in figure 5.4. In this case, the morphism

φM : PH∗
(
VRr
∗(X∩BR(p))\St∗(p)

)
−→ PH∗

(
VRr
∗(X∩BR(p))

)
,

has a bar I(s, t) in Ker(φM) for homology dimension 0, while such a bar does not appear in

Ker(φK), but instead it appears in Coker(φK) for homology dimension 1. Of course, this is due to

the fact that Im(δ1)∩ Im(δ2) 6= 0. To correct this, one might substitute R by a bigger radius. For

instance, R′ > 0 depicted on figure 5.3 solves the problem trivially as X⊆ BR′(p).

5.2 Stability to Local Changes

In this section, we will review a few stability results that can be easily deduced from the barcode

shift lemma.
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Figure 5.4: Depiction of the diagram of a cover for VRr
∗(X). In gray, we have drawn the complex

associated to VRr
∗(X) just before the dashed red lines are added; in this case Im(δ1)∩ Im(δ2) 6= 0.

Straight after the dashed lines are added, this intersection of images becomes zero.

Proposition 5.2.1. We have equalities and isomorphisms

Ker(ψ|Ker(φM)) = Im(δ1)∩ Im(δ2)' Coker(ϕ|Coker(φM)) ,

in particular, we obtain an exact sequence

0 Coker(φM) Coker(φK) Ker(φM) Ker(φK) 0

Im(δ1)∩ Im(δ2) .

ϕ|Coker ψ|Ker

Proof. The statement follows from the Barcode Shift Lemma. For the first equality, notice that we

have that Ker(ψ|Ker(φM))⊆ Im(δ1)∩ Im(δ2) from the argument showing that ψ|Ker(φM) is injective

within the proof of lemma 5.1.2. The other inclusion follows directly from the commutative

diagram (5.2), as well as the description of PHk(S
Tot
∗ (M)) and PHk(S

Tot
∗ (K \V )) for all k ≥

0. Next, we proceed to show the isomorphism Coker(ϕ|Coker) ' Im(δ1)∩ Im(δ2). Recall the

observation that if [a,b,c,γ1,γ2] ∈ PH(K), then [γ1]B = [γ2]B lies in Im(δ1)∩ Im(δ2). Then, we

define the morphism

f : Coker(ϕ|Coker(φM)) // Im(δ1)∩ Im(δ2)

[a,b,c,γ1,γ2]+ Im(ϕ)+ Im(φK) // [γ1]B ,

which is well defined; given a chain [a,b,γ1] ∈ PHk(S
Tot
∗ (K \V )), we have that [(−1)k−1γ1]B = 0

and so we obtain f (φK([a,b,γ1])) = 0, while if [b,c,γ2]∈ PHk(S
Tot
∗ (M)) then [(−1)kγ2]B = 0 and
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f (ϕ([b,c,γ2])) = 0.

We claim that f is an isomorphism. First, given some class Γ ∈ Im(δ1)∩ Im(δ2), there exist a

pair of cycles α1 ∈ S∆
k−1(M \U) and α2 ∈ S∆

k−1(N \V ) such that Γ = [(−1)k−1α1]B = [(−1)kα2]B

and also [α1]A = 0 and [α2]C = 0. Then, there must exist chains a′ ∈ S∆
k (K \U), b′ ∈ S∆

k (M \V )

and c′ ∈ S∆
k (N), such that

dA(a′)+(−1)k
α1 = 0

dB(b′)+(−1)k−1
α1 +(−1)k

α2 = 0

dC(c′)+(−1)k−1
α2 = 0

and so [a′,b′,c′,α1,α2] is a class in PHk(K). Thus, f ([a′,b′,c′,α1,α2]) = Γ, and so f is surjective.

Now, assume that f ([a,b,c,γ1,γ2]) = [γ1]B = [0]B. Then, we obtain the equality

[a,b,c,γ1,γ2] = φK [a,b,γ1]+ϕ[0,c,γ2]

and [a,b,c,γ1,γ2] is trivial in Coker(ϕ|Coker(φM)).

We will proceed to use the short exact sequence from proposition 5.2.1 to deduce a stability

result for local changes. For now, we recall proposition 4.6 and 4.14 from [65]. Before we do this,

we need to introduce left and right interleavings. For convenience, we adopt the notation M ∼ε N

to mean that M and N are ε-interleaved modules.

Definition 5.2.2 (Left Interleaving). Two modules M and N are ε-left interleaved, denoted by

M ∼ε
L N, whenever there is a short exact sequence 0→M→ N→ P→ 0, where P∼ε 0.

Definition 5.2.3 (Right Interleaving). Two modules M and N are ε-right interleaved, denoted by

M ∼ε
R N, whenever there is a short exact sequence 0→ Q→M→ N→ 0, where Q∼ε 0.

Notice that both notions of left and right interleavings are not symmetric; i.e. M ∼ε
L N does

not imply N ∼ε
L M. For more properties, we refer the reader to section 4 from [65]. Here we recall

two propositions from that manuscript.

Proposition 5.2.4 (4.6 from [65]). Suppose we are given an exact sequence

0→M→ N→ P→ 0

where M ∼ε1 0 and P∼ε2 0. Then N ∼ε1+ε2 0.

Proposition 5.2.5 (4.14 from [65], part 4.). If M ∼ε
R P and P∼ε

L N. Then M ∼ε N.
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Additionally, we add the following simple result:

Proposition 5.2.6. Given an exact sequence M
f // N // 0 , and suppose M ∼ε 0. Then

N ∼ε 0.

Proof. Denote by Σε the shift functor. This is proven by a similar argument to proposition 5.2.4.

That is, we have to prove that Σ2εN = 0; i.e. for all persistence values r ∈ R the shift morphism

Σ2ε
r N : Nr→Nr+2ε is zero. For n∈Nr, by surjectivity of f there exists m∈Mr such that f (m) = n.

Thus, since f is a persistence morphism we have

Σ
2εN(n) = Σ

2εN( f (m)) = f (Σ2εM(m)) = f (0) = 0 ,

and the result follows; since M ∼ε 0 iff Σ2εM = 0.

Now we can use this theory to prove a useful result from the barcode shift lemma.

Proposition 5.2.7. Suppose that we are in the situation from lemma 5.1.2. Further, assume that

Im(δ1)∩ Im(δ2)∼ρ 0, and Ker(φM)∼ε1 0 and Coker(φM)∼ε2 0. Then PH(K \V ) and PH(K) are

max(ε1,ρ + ε2))-interleaved.

Proof. From proposition 5.2.1 we have exact sequences

Ker(φM)→ Ker(φK)→ 0 ,

and

0→ Coker(φM)→ Coker(φK)→ Im(δ1)∩ Im(δ2)→ 0 .

By hypothesis, using proposition 5.2.6 and 5.2.4 we obtain Ker(φK)∼ε1 0 and Coker(φK)∼ε1+ρ 0.

Next, consider two short exact sequences with the obvious maps

0→ Ker(φK)→ PH(K \V )→ PH(K \V )

Ker(φK)
→ 0

and

0→ PH(K \V )

Ker(φK)
→ PH(K)→ Coker(φK)→ 0 .

These imply that there are interleavings

PH(K \V )∼ε1
R

PH(K \V )

Ker(φK)
and

PH(K \V )

Ker(φK)
∼ρ+ε2

L PH(K)

and by proposition 5.2.5 we obtain the result PH(K \V )∼max(ε1,ρ+ε2) PH(K).
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Notice that when applying proposition 5.2.7 one can use pB
(
Im(δ1)

)
∩ Im(δ2) ∼ρ 0 instead

of the weaker, but harder to check condition Im(δ1)∩ Im(δ2)∼ρ 0.

Remark. The barcode shift lemma and proposition 5.2.7 can be replicated in the context of filtered

regular CW-complexes X∗ and cellular chains Ccell
∗ (X). Thus, it could also be applied to complexes

such as the filtered cubical complex.

The barcode shift lemma, together with proposition 5.2.7 lead to a good comparison between

PH∗(K) and PH∗(K \V ) from just checking local information. In particular, if we assumed the

strong condition

Im(δ1)∩ Im(δ2) = Ker(φM) = Coker(φM) = 0

then PH∗(K)∼= PH∗(K \V ). The problem with this is that the nullity condition above might be too

restrictive. Instead, consider the case when pB(Im(δ1))∩Im(δ2) = 0 while allowing both Ker(φM)

and Coker(φM) to be nontrivial. Then, using the Barcode Shift Lemma, we have isomorphisms

Ker(φM)∼=Ker(φK) and Coker(φM)∼=Coker(φK). Next we consider the following exact sequence

0 Ker(φK) PH∗(K \V ) PH∗(K) Coker(φK) 0, ,

which can be broken down into two short exact sequences

0 Ker(φK) PH∗(K \V ) Im(φK) 0 ,

and

0 Im(φK) PH∗(K) Coker(φK) 0 .

Assuming that we already know a barcode decomposition for PH(K \V ), is it possible to

obtain PH(K)? More generally, consider a short exact sequence of persistence modules

0→M ↪→ N � P→ 0 ,

is it posible to obtain the barcode decomposition of one of the terms given the barcode decompo-

sitions for the other two? The next two sections will be dedicated to study this problem.

5.3 Embedding and projection of barcodes

Let us consider a short exact sequence of persistence modules

0 M N P 0 .
ι q

(5.3)
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In this section we will consider the embedding problem, which consists in the following: given

BM and BN two barcode decompositions for M and N respectively, we would like to obtain a

barcode decomposition for P without having any explicit knowledge of the morphism ι . Dually,

we will also consider the projection problem, where we are given barcode decompositions for N

and P and look for a barcode decomposition for M, without having any explicit knowledge of q.

We will start by revising proposition 6.1 from [8] which sheds some light on the considered

problem; this result is best known as the structure theorem of persistence submodules and quo-

tients. Here we give an alternative proof using the box gauss reduce Algorithm 4.1, and in

particular the pivots from definition 4.2.1.

Proposition 5.3.1. Let M and N be a pair of tame persistence modules, and suppose A and B

are barcode bases for M and N respectively.

(i) If ι : M ↪→ N is an injection, then ι induces an injection jι : A →B sending each barcode

generator α ∼ [aα ,bα) to jι(α)∼ [a jι (α),b jι (α)), with aα ≥ a jι (α) and bα = b jι (α). In such

a case, we say that jι is induced by ι .

(ii) If q : M � N is a surjection, then it induces an injection iq : B→A , sending each barcode

generator β ∼ [aβ ,bβ ) to iq(β ) ∼ [aiq(β ),biq(β )) with aβ = aiq(β ) and bβ ≤ biq(β ). We say

that iq is induced by q.

Proof. (i) We consider the setup from Algorithm 4.2 in section 4.3 for ι : M ↪→ N. Eventually

we obtain a reduced matrix

I =

(
ι(α1) ι(α2)� k2,1ι(α1) · · · ι(αn)�

n−1
�
i=1

kn,iι(αi)

)

with unique pivots and whose columns Ĩ form a basis for Im(ι) by proposition 4.3.1.

Suppose that each αr ∈ A is associated to [aαr ,bαr). Then, the corresponding column Ir

contains a pivot j(αr)∈B which is associated to [a j(αr),b j(αr)) with a j(αr) ≤ aαr . We claim

that b j(αr) = bαr . Now, the image ι(αr) must have a pivot whose associated interval has

bαr as an endpoint by injectivity and naturality of ι . Recall that the box gauss reduce al-

gorithm leads to this column by adding previous columns sharing the same pivot, and so

b j(αr) ≤ bαr . On the other hand, the preimage PIr of Ir must be associated to an in-

terval containing [aαr ,bαr) by linear independence of A . Since ι is injective, and since

Ir = ι(PIr), Ir is associated to an interval whose endpoint is greater or equal to bαr .

This proves the claim, as αr ∼ [aαr ,bαr) is sent to jι(αr)∼ [a j(αr),b j(αr)) with bαr ≤ b j(αr).

Thus, this defines jι(αr) for all 0≤ r≤ |A |, and since the pivots are unique, this defines an

injection jι : A →B with the desired properties.
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(ii) Again, we consider the matrix I , although this time it is associated to q : M � N; now A

and B denote bases for M and N respectively. Recall that by proposition 4.3.1 the nonzero

columns from I form a basis Ĩ for N. Consequently, for any β ∈B with β ∼ [aβ ,bβ ),

we might find Sβ ⊆
{

1,2, . . . , |A |
}

together with coefficients cβ

i ∈ F \ {0} for all i ∈ Sβ

such that β = 1aβ

(
�i∈Sβ cβ

i Ir
)
. In particular, by proposition 4.2.3, β must be the pivot of

some column Is ∼ [as,bβ ). Also, notice that as ≥ aβ by naturality of q and on the other

hand as ≤ aβ since we assume that s ∈ Sβ ; altogether as = aβ . Considering the particular

generator αs ∈A , whose index in the order of A corresponds to the column index of Is,

we define iq(β ) = αs. Also, notice that iq must be injective since I has unique pivots.

Let ι : M ↪→ N be an injection together with a pair of barcode decompositions BM and BN

for M and N respectively. Given two barcode bases A and B for M and N respectively, we can

use the induced injection jι : A →B from proposition 5.3.1. In turn, this induces an injection

jι : BM→BN sending each interval [a,b)∈BM to some interval [ jι(a), jι(b)) with jι(a)≤ a and

b = jι(b). Unless we had some prior knowledge about the barcode bases A and B as well as the

morphism ι , there might be multiple possibilities for jι and it is difficult to see which is the “best

choice” from the barcode decompositions BM and BN alone. This is why we need to assume

that barcode bases are general, in the sense that for each persistence value r ∈ R, either a single

bar is being born, a single bar is dying or nothing happens. For example, this holds whenever we

consider a simplicial complex with a different filtration value for each simplex. In such a case,

uniqueness of jι is guaranteed and we can obtain it directly from BM and BN ; all we need to do

is examine the common endpoints. Now, going back to the embedding problem and sequence 5.3,

one could try to ‘quotient out’ the intervals from BN modulo those from BM, to obtain a barcode

decomposition for P. The following definition describes this construction.

Definition 5.3.2. Consider two multisets of intevals BM and BN and assume there exists an

injection j : BM → BN such that an interval [a,b) ∈ BM is sent to some interval [ j(a), j(b))

with j(a) ≤ a and b = j(b). We define the quotient barcode denoted as BN/BM as the interval

decomposition computed by computing the ‘quotient’ of bars. That is

BN/BM := {[ j(a),a) | [a,b) ∈BM}∪ (BN \ j(BM)) .

The natural question to ask is whether BN/BM leads always to a barcode decomposition for

P. As the following example illustrates, in general this is not the case.
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5
4
3
2
1
0

BM BN BN/BM BP

(a) BM does not embed strongly into BN

5
4
3
2
1
0

BM BN BP = BN/BM

(b) BM embeds strongly into BN

Figure 5.5: The persistence direction is from top to bottom, going through values 0 up to 5.
Induced barcode assignments are indicated by the barcode coloring.

Example 5.3.3. Suppose that the short exact sequence (5.3) is realized as

0→ I(2,5)⊕ I(3,4)→ I(0,5)⊕ I(1,4)→ I(0,3)⊕ I(1,2)→ 0 , (5.4)

where the interval decomposition corresponding to this exact sequence corresponds to the bar-

codes labelled BM, BN and BP on subfigure 5.5a. Denote by {α1,α2}, {β1,β2} and {γ1,γ2}, the

corresponding canonical bases from the terms in the short exact sequence (5.4). We define ι and

p by the assignments:

α1 7→ 12(β1 � (−β2)) α2 7→ 13(β2) β1 7→ γ1 β2 7→ γ1 � γ2 .

These lead to

p◦ ι(α1) = p(12(β1 � (−β2))) = 12(γ1 � (−(γ1 � γ2))) = 12(γ2) = Z2 ,

since γ2 ∼ [1,2), and also

p◦ ι(α2) = p(13(β2)) = 13(γ1 � γ2) = Z3

One might also check that ι and p are injective and surjective respectively, and so (5.4) is indeed

a short exact sequence. Assume that we do not know the rightmost barcode decomposition BP.

Then, we inspect the injection jι which we illustrate by using the same colors in figure 5.5a.

However, by computing BN/BM we obtain
{
[0,2), [1,3)

}
, which is different from the original

decomposition BP. In general, unless we have some more information, this problem will have

no solution. However, it seems that there are some cases when BP can only be BN/BM. For

example, we will show in proposition 5.3.6 that for a short exact sequence whose interval decom-

position is that from figure 5.5b, this is indeed the case.

Consider a persistence module M together with bases A . We, define a change of basis as a
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matrix T ∈M|A |×|A |(F) such that

• Ti,i 6= 0F for all indices 1≤ i≤ |A |, and

• if Ti, j 6= 0, then ai ≤ a j and bi ≤ b j for indices 1 ≤ i, j ≤ |A | with αi ∼ [ai,bi) and α j ∼

[a j,b j).

In particular, notice that the set

Ã =

α̃ j | α̃ j =�
i∈S j

Ti, jαi where S j =
{

i
∣∣ 1≤ i≤ |A | such that Ti, j 6= 0

}
for all 1≤ j ≤ |A |

 ,

has unique pivots, and so by proposition 4.2.3, Ã is linearly independent. In fact, one can see that

Ã defines a new barcode base for M, as A is a barcode base and each generator α̃i has αi as a

pivot and both share the same associated interval. In this case we will say that T defines a change

of basis from Ã to A .

Lemma 5.3.4. Consider a pair of barcode bases A and Ã for M. There exists a change of basis

from Ã to A .

Proof. Denote by BM the interval decomposition of M, and suppose that both A and Ã are given

by the isomorphisms:

α :
⊕

1≤i≤|BM |
I(ai,bi)→M and α̃ :

⊕
1≤i≤|BM |

I(ãi, b̃i)→M ,

where we index the generators over the ordered bars from BM. Then, we consider the composition

α−1 ◦ α̃ , which is an isomorphism, and denote by T its associated matrix; where we take the

canonical base for
⊕

1≤i≤|BM | I(ai,bi). One can check that, up to reordering of the columns and

rows associated to the same intervals, T must satisfy the conditions of a change of base, since

otherwise α−1 ◦ α̃ could not possibly be an isomorphism.

Within the context of lemma 5.3.4, notice that for each index 1≤ i≤ |BM| we have

α̃ j =�
i∈S j

Ti, jα j ,

where S j =
{

i
∣∣ 1 ≤ i ≤ |A | such that Ti, j 6= 0

}
. Thus, given some coordinates x = (xi)1≤i≤|A |

in terms of Ã , we can “turn them” to coordinates in terms of A by multiplying T xT ; where xT

denotes the transpose of x. Here notice that one always needs to take care of which elements we

add when actually performing computations with �.
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Definition 5.3.5. Let f : M→N be a persistence morphism. We say that f admits a strong normal

form whenever there exits a pair of barcode bases A and B such that the associated matrix of f

has a unique nonzero entry for each row and column, and such an entry is equal to 1F. Suppose

that f admits a strong normal form, then we say that

(i) if f is an injection, then M embeds strongly into N, or

(ii) if f is a projection, then we say that M projects strongly onto N.

The choice of the word strong on definition 5.3.5 is due to the fact that these are strong

conditions. Now, given the short exact sequence (5.3), if we know that M embeds strongly into N,

then it is straightforward to compute a barcode basis for P. Indeed, there will exist barcode bases

A for M and B for N such that the associated matrix F of ι is in strong normal form. This means

that for each generator α ∈A with associated interval [aα ,bα), one has that ι(α) = 1aα
( jι(α)).

Then the barcode decomposition for the quotient module N
/

ι(M) coincides with the quotient of

barcodes BN
/
BM from definition 5.3.2. The next proposition will give a straightforward way to

check when there is a strong embedding or projection.

Consider a persistence morphism f : M → N together with bases A and B for M and N

respectively as well as its associated matrix F . If f admits a strong normal form, by lemma 5.3.4

there exist a pair of matrices TA and TB such that TBFTA is in strong normal form. Conversely,

given a pair of such matrices TA and TB, these determine a pair of barcode bases Ã and B̃ such

that F is written in strong normal form.

Proposition 5.3.6. Let M and N be two tame persistence modules with associated bases A and

B respectively.

(i) Let ι : M ↪→ N be an injection, and let jι : A →B be the injection induced by ι . Suppose

that for every generator α ∼ Iα = [aα ,bα) in A , we have that

• ∀γ ∈A \{α} with γ ∼ Iγ , if Iγ ⊂ Iα then either I jι (γ) 6⊂ I jι (α) or aα /∈ I jι (γ), and

• ∀β ∈B \ jι(A ) with β ∼ Iβ , we have that either Iβ 6⊂ I jι (α) or aα /∈ Iβ .

Then M embeds strongly into N.

(ii) Dually, let q : M � N be a surjection, and consider the associated injection iq : B→ A .

Suppose that for every β ∼ Iβ = [aβ ,bβ ) in B, we have that

• ∀γ ∈B \{β} with γ ∼ Iγ , if Iγ ⊂ Iβ then either Iiq(γ) 6⊂ Iiq(β ) or bβ /∈ Iiq(γ), and

• ∀α ∈A \ iq(B) with α ∼ Iα , we have that either Iα 6⊂ Iiq(β ) or bβ /∈ Iiq(α).

Then M projects strongly onto N.



114 CHAPTER 5. BARCODE SHIFTS

Proof. (i) Consider the matrix I resulting from algorithm 4.2. For each 1 ≤ r ≤ |A |, we

consider the column

Ir = ι(αr)�

(
r−1

�
i=1

kr,iι(αi)

)
= 1ar

(
�
s∈Sr

qr,sβs

)

where Sr ⊆ {1,2, . . . , |B|} and qr,s ∈ F \ {0} for all s ∈ Sr. For each column Ir we must

have a pivot βp(r) ∈B with p(r) ∈ Sr such that jι(αr) = βp(r). Assuming that αr ∼ [ar,br),

�s∈Sr
qr,sβs ∼ [Ar,Br) and βp(r) ∼ [cp(r),dp(r)), there are inequalities cp(r) ≤ Ar ≤ ar. Also,

since ι is injective, using proposition 5.3.1 we obtain br = Br = dp(r). Next we consider two

separate cases corresponding to whether cp(r) = Ar or cp(r) < Ar.

• If cp(r) = Ar then we define β̃p(r) =�s∈Sr
qr,sβs and we have that β̃p(r) is associated

to [cp(r),dp(r)). Also, if we define α̃r = αr �
(
�r−1

i=1 kr,iαi
)

then α̃r is associated to

[ar,br). Thus, replacing αr by α̃r in A , and replacing βp(r) by β̃p(r) in B, as we keep

the pivots on each expression we still have barcode bases. Furthermore, we have that

1ar(β̃p(r)) = ι(α̃r).

• Now, assume that cp(r) < Ar. Since B is finite, there exists βs(r) ∈B with qr,s(r) 6= 0

and βs(r) ∼ [Ar,ds(r)), and the endpoint ds(r) satisfies ar ≤ ds(r) ≤ dp(r) = br. Conse-

quently, ar ∈ [Ar,ds(r)) ⊆ [cp(r),br) and βs(r) ∈ jι(A ) since otherwise we contradict

our second hypotheses. Thus, there is some column Iu(r) with 1 ≤ u(r) ≤ |A | and

u(r) 6= r and with pivot j(αu(r)) = βs(r). In this case we write

Iu(r) = 1au(r)

�
s∈Su(r)

qu(r),sβs


and the coefficient of the pivot satisfies qu(r),s(r) 6= 0. This implies that αu(r) will be

associated to [au(r),ds(r)) with Ar ≤ au(r), as we know that βs(r) ∼ [Ar,ds(r)). Addi-

tionally, we have that au(r) < ar, since otherwise [au(r),ds(r)) ⊂ [ar,br), contradicting

our first assumption. Thus, we have that u(r) < r, and we can redefine the r-column

in I by the left to right column addition Ĩr = Ir � (−qr,s(r)/qu(r),s(r))Iu(r). No-

tice that Ĩr ∼ [ar,br) and that its pivot will still be βp(r). Now, we look into the

new expression Ĩr = 1ar

(
�s∈S̃r

q̃r,sβs
)

and write [Ãr,br) for the associated interval of

�s∈S̃r
q̃r,sβs. We must have that cp(r) ≤ Ãr ≤ Ar, and we consider two cases depending

on whether cp(r) = Ãr or cp(r) < Ãr. By repeating the above procedure as necessary,

since B is finite, eventually cp(r) = Ãr. This takes us back to the previous case.

Eventually, we have managed to perform a series of changes of basis such that the associated
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matrix is in strong normal form, and the claim holds.

(ii) Let us now show the second claim. In fact, we will use duality so that the first result

applies. We consider the matrix Q associated to the morphism q : M � N with respec-

tive barcode bases A and B for M and N. Recall that from corollary 4.1.11 the matrix

Q =
(
kβ ,α

)
β∈B,α∈A is compatible, in the sense that whenever kβ ,α 6= 0, then we have in-

equalities aβ ≤ aα ≤ bβ ≤ bα . We define the dual persistence modules

M∗ =
⊕

α∈A
I(−bα ,−aα) N∗ =

⊕
β∈B

I(−bβ ,−aβ )

together with the canonical barcode bases A ∗ and B∗ for M∗ and N∗ respectively. We

consider the dual matrix Q∗ =
(
kα∗,β ∗

)
α∗∈A ∗,β ∗∈B∗ ; if we order A ∗ and B∗ by choosing

the reverse order of A and B, then Q∗ = QT . Then Q∗ is well-defined in relation to A ∗

and B∗, in the sense that whenever kα∗,β ∗ 6= 0, then we obtain the inequalities −bα ≤

−bβ ≤−aα ≤−aβ ; where recall that α∗ ∼ [−bα ,−aα) and β ∗ ∼ [−bβ ,−aβ ). Thus, there

exists a persistence morphism q∗ : N∗ → M∗ by corollary 4.1.11. Next, we need to show

that q∗ is injective. By contradiction, assume that there exists a persistence value r ∈ R

together with a nonzero vector v ∈ N∗(r) such that q∗(r)(v) = 0. As N∗ is tame, there exists

s ∈ R such that r < s, the shifted image satisfies Σs−rN∗(v) 6= 0 and s is not an endpoint

or startpoint of any of the associated intervals to the generators from A ∗ and B∗. By

naturality of q∗, we must have q∗(s)
(
Σs−rN∗(v)

)
= Σs−rM∗(q∗(r)(v)) = 0, implying that

q∗(s) is not injective. Notice that q∗(s) is associated to the matrix Q∗(s), which denotes

the submatrix of Q∗ whose rows and columns are active at value s; that is those from A ∗s

and B∗s, see definition 4.1.1. Then the kernel of Q∗(s) is nontrivial. On the other hand,

by hypotheses q(−s) : M(−s)→ N(−s) is a linear morphism whose associated matrix is

a submatrix of Q which we denote by Q(−s); this submatrix is obtained by taking the

rows and columns of active barcode generators at −s. Thus, by standard linear algebra,

the standard dual morphism q(−s)∗ : hom(N(−s),F)→ hom(M(−s),F) is injective and its

associated matrix Q(−s)T has a trivial kernel. By hypothesis, s is not on the extremes of

any associated intervals from A ∗ and B∗, and therefore Q∗(s) = Q(−s)T . However, this

leads to a contradiction, as the kernel of Q∗(s) is nontrivial while the kernel of Q(−s)T has

to be zero. Thus, q∗ must be injective.

Now, notice that the barcode conditions from A and B in part (ii) translate to the needed

conditions in A ∗ and B∗ from part (i). Consequently, there exist a pair of basis changes TU
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and TL such that TLQT TU is in strong normal form. In particular, we have that the product

(
TLQT TU

)T
= T T

U QT T T T
L = T T

U QT T
L ,

is in strong normal form. Now, notice that both T T
U and T T

L are well defined changes of

bases on B and A respectively, and the result follows.

5.4 Glued and Entangled barcodes

We consider again the short exact sequence (5.3). Assuming that one has barcode decompositions

BM and BP for M and P respectively, can we find a barcode decomposition for N? In order to

solve this question, we will proceed very similarly to section 5.3, starting with the hypotheses that

barcodes are tame and general. Given an interval I = [a,b), we define the start point and endpoint

as the respective singleton sets s(I) = {a} and e(I) = {b}.

Definition 5.4.1. We define a gluing G : Bg
M →Bg

P between BM and BP to consist of:

• a pair of subsets Bb
M ⊆BM and Bb

P ⊆BP, together with a bijection B : Bb
M →Bb

P such

that each interval I ∈Bb
M is sent to an interval B(I) ∈Bb

P, with s(I) = e(B(I)),

• a pair of sets defined by Bg
M = BM ∪ e(BP \Bb

P) and Bg
P = BP∪ s(BM \Bb

M),

• a gluing morphism G : Bg
M →Bg

P sending each I ∈Bg
M to

G(I) =


B(I) if I ∈Bb

M,

s(I) if I ∈BM \Bb
M,

J if I = e(J) for J ∈BP \Bb
P .

Of course, G defines a bijection.

Using generality of barcodes, we can find the “canonical” gluing G : Bg
M →Bg

P by defining

Bb
M to be the set of intervals [b,c) from BM such that there exists an interval [a,b) in BP. This

correspondence leads to a uniquely determined bijection B : Bb
M→Bb

P. The other elements from

G : Bg
M →Bg

P are uniquely determined by definition 5.4.1.

Definition 5.4.2 (Join of barcodes). Suppose BM and BP are two barcode decompositions, to-

gether with a gluing G : Bg
M →Bg

P. Then, we define the G-join of BM and BP by setting

BM ∨G BP :=
{

I∪G(I) | I ∈Bb
M

}
∪ (BM \Bb

M)∪ (BP \Bb
P).
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Notice that each element in the G-join is a right-open interval.

Given the canonical gluing G : Bg
M →Bg

P, does BM ∨G BP lead to a barcode decomposition

for N? As in section 5.3 we will need to make some assumptions about the known barcode

decompositions BM and BP.

Definition 5.4.3. Let G : Bg
M → Bg

P be a gluing. We say that Bg
M and Bg

P are G-entangled

whenever there exists a pair of different elements I and J in Bg
M, such that I ⊆ J and G(J)⊆G(I).

The following example illustrates G-entanglement.

Example 5.4.4. Consider a short exact sequence of Z2 persistence modules

0 I(1,5)⊕ I(3,4) I(0,5)⊕ I(1,4) I(0,3) 0

where we consider the canonical bases, together with the associated matrices

 1 0

1 1

 (
1 1

)
.

One might check that the interval decomposition of the aforementioned short exact sequence

corresponds to the barcodes BM, BN and BP depicted on figure 5.6a. Then, we define canonical

gluing sets as Bg
M = {[1,5), [3,4)} and Bg

P = {[0,3),{1}} since s([1,5)) = {1}, and the canonical

gluing G : Bg
M →Bg

P is given by the assignments

[1,5) 7→ {1} and [3,4) 7→ [0,3) .

Then we have that Bg
M and Bg

P are G-entangled. In this case the G-join is BM∨G BP = {[0,4), [1,5)}

while we have that BN = {[0,5), [1,4)}. This is depicted on figure 5.6a.

On the other hand, we consider the case presented in figure 5.6b. Here we have that Bg
M =

{[2,5), [3,4)} and Bg
P = {[0,2), [1,3]} with the canonical gluing G defined by the assignment

[2,5) 7→ [0,2) and [3,4) 7→ [1,3).

In this case BM and BP are not G-entangled. We will see soon that BM∨G BP is the only possible

interval decomposition for the middle term.

We will now proceed to show that non-G-entangled pairs of barcodes lead to barcode decom-

positions of the missing term through the G-join construction. The key observation is to study

Algorithm 4.2 from section 4.3 as an inverse problem. That is, we see what barcode decomposi-

tion the missing term needs to have in order to be compatible with the others.
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5
4
3
2
1
0

Bg
M BM ∨G BP BN Bg

P

(a) Bg
M is G-entangled with Bg

P

5
4
3
2
1
0

Bg
M BN Bg

P

(b) Bg
M is not G-entangled with Bg

P

Figure 5.6: Illustration for G-entanglement of barcodes, where G is the canonical gluing.

Proposition 5.4.5. Let a short exact sequence of tame persistent modules

0 M N P 0 ,
ι q

where M, N and P decompose into the barcodes BM, BN and BP. Suppose that BM, BN and BP

are all general, in the sense that no two bars coincide at any endpoints, and take the canonical

gluing G : Bg
M→Bg

P. If Bg
M and Bg

P are not G-entangled, then the join BM∨G BP is an interval

decomposition for N.

Proof. We consider a pair of barcode bases B and C for N and P respectively, and assume that

these are ordered. Then we take the matrix q(B) with the i-column being q(βi) in terms of C .

Next, we reduce q(B) by following the box gauss reduce algorithm, denoting the resulting

reduced matrix by I . In particular, as q is surjective, one might take the set of columns
{
Ii
}n

i=1

as a new barcode basis for P. Suppose that the rth generator βr ∈B is associated to the interval

[ar,br) while the rth column Ir is associated to the interval [ar,cr); notice that cr ≤ br by naturality

of q. Meanwhile, we also pay attention to the preimages PIi ∈ N for all 1 ≤ i ≤ n, which are

given by the corresponding linear combinations of generators from B, so that

I = (I1 |I2 | · · · |In) = (q(PI1) | q(PI2) | · · · | q(PIn)) .

Assuming that the corresponding preimage PIr ∈ N is associated to [ar,Br), we have the in-

equality br ≤ Br, as βr is a nontrivial summand from PIr. Now, take indices i1, i2, . . . , in so that

the intervals on the set
{
[ci j ,Bi j)

}n
i=1 are ordered in the standard order. As done in image kernel,

we consider the matrix G K given by appending the columns

G K =
(
1ci1

(PIi1)|1ci2
(PIi2)| · · · |1cin

(PIin)
)
,
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and we compute its reduced form

K =

(
1ci1

(PIi1) | · · · | 1cir
(PIir)�

(
r−1

�
l=1

kr,l1cil
(PIil )

)
| · · ·

)
,

as done in the image kernel procedure. This leads to a barcode basis for Ker(q) ' M. Now,

the s-column from K , Ks, has associated interval [cis ,dis), where we must have that dis ≤ Bis .

Therefore, Ks ∼ [cis ,dis) is born just when Iis ∼ [ais ,cis) dies and we can use this correspondence

to define a gluing G̃ : Bg̃
M→Bg̃

P; where the endpoint and startpoint cases correspond to whenever

cis = dis or when ais = cis .

Notice that in principle G̃ does not need to be equal to the canonical gluing G. By contradic-

tion, consider an interval [cis ,dis) ∈BM and assume that G([cis ,dis)) 6= G̃([cis ,dis)). By generality

of BP, the only option is that there exists an interval [ait ,cis) ∈BP with it 6= is and ait < cis , such

that G([cis ,dis)) = [ait ,cis) while G̃([cis ,dis)) = {cis} and also G̃({cis}) = [ait ,cis). Thus, on the in-

dex is we have a generator βis ∈B associated to an interval with startpoint cis ; and there must exist

a bar in BN with startpoint cis . On the other hand, we pay attention to the column Iit ∼ [ait ,cis)

and consider its preimage PIit . By assumption, Kt = Zcis
which implies that

1cis
(PIit ) = 1cis

(
�
r∈S

krKr

)

for some subset S ⊆ {1,2, . . . , t − 1} and some coefficients kr ∈ F \ {0}. Notice that the sum

�r∈S krKr must have a startpoint C such that C < cis by generality of the barcode decomposition

from M. This implies that

Γit = PIit −�
r∈S

krKr

is associated to the nontrivial interval [C,cis). Also, by hypotheses p(Γit ) = 1ait
(Iit ) and thus the

pivot from Γit in the basis B must have endpoint cis ; and so an interval from BN must have cis as

an endpoint. However, by hypothesis we assumed that the barcode decomposition of N must be

general, and so we reach a contradiction. Thus, G and G̃ must coincide.

Let us show that BM ∨G BP is a barcode decomposition for N. This is equivalent to showing

that [ais ,bis) is contained in BM∨G BP for all 1≤ s≤ n. If dis = bis , then since [ais ,cis)∪ [cis ,dis) =

[ais ,bis), the claim follows. Otherwise we have two cases: either dis < bis or dis > bis .

• Suppose dis < bis . Recall that before reducing the matrix G K =
(
1cir

(PIir)
)n

r=1 the col-

umn is had βis as a pivot. Therefore, there must exist a minumum index t < s, such that

G Kt and also Kt contain a nonzero coefficient of βis , which implies that bis ≤ dit . As t < s,

we have cit ≤ cis and thus [cis ,dis) ⊆ [cit ,dit ), see figure 5.7. On the other hand, recall that
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bis

dit

dis

cis

cit

cit
cis

ais
ait

Figure 5.7: If dis < bis then BM and BP are G-entangled.

G([cis ,dis)) = [ais ,cis) and also G([cit ,dit )) = [ait ,cit ). As βit must be a nonzero summand

in G Kt , we have that it is a summand from PIit and so ais ≤ ait , since PIit was obtained

by adding columns from left to right in q(B). Consequently [ait ,cit )⊆ [ais ,cis), reaching a

contradiction, since then BM and BP are G-entangled, see again figure 5.7. Notice that if

Kis is zero, then we consider the interval [ais ,cis) together with its endpoint {cis}; the same

argument can be applied to find t < s such that {cis} ⊆ [cit ,dit ) and [ait ,cit ) ⊆ [ais ,cis). On

the other hand, if Iis is zero, then we consider [cis ,dis) together with its startpoint {cis}; we

reach a contradiction by following a similar argument as above.

• Now, assume instead bis < dis . Then Kis has a pivot βq1 with associated interval [aq1 ,bq1)

and with bq1 = dis . Then we consider the column Kq1 , whose associated interval will be

[cq1 ,dq1). Now if dq1 < bq1 , we are back in the previous case and reach a contradiction.

Hence we must have dq1 > bq1 = dis , as by generality of the barcode decomposition BM we

cannot have dq1 = bq1 = dis . Thus, we consider the pivot βq2 ∼ [aq2 ,bq2) with bq2 = dq1 . In

turn, this leads to a column Kq1 ∼ [cq2 ,dq2) and look for the pivot βq2 ∼ [aq2 ,dq2). Repeating

the same argument we did with βq1 successively, we find an infinite series is,q1,q2, . . . of

different indices, as we have that dis < dq1 < dq2 < · · · , from the finite set {1,2, . . . ,n},

reaching therefore a contradiction.

Thus, bis = dis for all 1≤ s≤ n, so that BM ∨G̃ BP defines an interval decomposition for N.



Chapter 6

Persistent Mayer-Vietoris Spectral

Sequences

6.1 Introduction

In this chapter we will study the spectral sequence that results from adapting the setup of Mayer-

Vietoris spectral sequences from section 2.11 to persistence modules, as briefly discussed on sec-

tion 3.7. The deep reason as to why we can do this adaptation is because PMod, the category

of persistence modules, is an abelian category as Vect is an abelian category and R is a small

category. The theory of spectral sequences can be developed for arbitrary abelian categories. For

an introduction to this, see chapter 5 in [118].

Suppose that we have covered a filtered simplicial complex X with filtered subcomplexes

U = {Ui}i∈I , so that X =
⋃

i∈I Ui. Then, we can compute the spectral sequence

E1
p,q(X ,U ) =

⊕
σ∈∆m

p

PHq(Uσ )⇒ PHn(X),

where p+q = n. However, unlike the case of vector spaces, we might have that

⊕
p+q=n

E∞
p,q(X ,U )� PHn(X).

All we know is that E∞
p,q(X ,U ) ∼= GpPHp+q(X) for all p,q ≥ 0. This is the extension problem,

which we will solve in section 6.2. After solving this problem we will obtain the persistent

homology for X . We will even recover more information. Notice that as pointed out in [119],

the knowledge of which subset J ⊂ I detects a feature from PHn(X) can potentially add insight

into the information given by ordinary persistent homology. The following example illustrates

this.

121
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U V

r = 0

U V

r = 0.5

U V

r = 0.6

Figure 6.1: As the radius increases, more edges are added. At radius r = 0.5 a circle will be across
the two covers U and V . Later on, at radius r = 0.6 this circle will be split into two.

0.5 0.6 1.0 r

E∞
1,0

E∞
0,1

PH1(X)

Figure 6.2: Barcode on associated module.

Example 6.1.1. Consider the case of a point cloud X covered by two open sets as in Figure 6.1.

From section 2.11 and chapter 4, we know how to compute the ∞-page (E∞
∗,∗)

r associated to any

value r ∈ R. In particular, when we take r = 0.5, then the combination of U and V detects a

1-cycle. On the other hand, when r = 0.6 this cycle splits into two smaller cycles which are

detected by U and V individually. Notice that if we want to come up with a persistent Mayer-

Vietoris method then we need to be able to track this behavior. That is, we need to know how

cycles develop as r increases. In particular, the barcode I(0.5,1) from PH1(X) will be broken

down into some smaller barcodes, see diagram 6.2. These will be E∞
1,0
∼= I(0.5,0.6) and also

E∞
0,1
∼= I(0.6,1.0)⊕ I(0.6,1.0). The way we will solve this problem is by using the barcode basis

machinery developed in chapter 4.

6.2 The Extension Problem

Recall the definition of the total complex, vertical filtrations and associated modules from sec-

tion 2.11. Through this section we study the extension problem. That is, we will recover Hn(S Tot
∗ )

from the associated modules Gp
V

(
Hn
(
S Tot
∗
))

for all integers n≥ 0. Also, we will assume that the

spectral sequence collapses after a finite number of pages. Consider the persistence module

V= V(n) := Hn
(
S Tot
∗
)
,
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together with the corresponding filtration

0 = F−1
V V⊂ F0

VV⊂ ·· · ⊂ Fn
VV= V. (6.1)

We define the associated modules of (V,F∗) as the quotients Gk = FkV/Fk−1V for all 0≤ k≤ n.

This gives rise to short exact sequences,

0 // Fk−1V ι // FkV
pk
// Gk // 0, (6.2)

for all 0 ≤ k ≤ n. On the sequences (6.2) we consider successive extension problems where we

know the first and last term and want to know the middle term for 0 ≤ k ≤ n; notice that this

differs from the usual group extension as we are extending persistence modules instead. This

leads to V; however, in this work we will obtain directly a persistence module isomorphic to

V (see proposition 6.2.1). Adding up all associated modules we obtain a persistence module

G :=
⊕n

i=0Gi with an additional filtration given by FkG =
⊕k

i=0Gi for all 0 ≤ k ≤ n. Since

Gk ∼= E∞
k,n−k for all 0 ≤ k ≤ n, a spectral sequence algorithm will lead to a barcode basis for G.

We formulate the extension problem as computing a basis for V from the obtained basis G of G.

To start, notice that for each r ∈ R the sequence (6.2) splits, leading to morphisms

F k(r) :Gk(r)→ FkV(r), (6.3)

such that pk(r) ◦F k(r) = IdGk(r) for all 0 ≤ k ≤ n. In particular, F k(r) is injective for all 0 ≤

k ≤ n. On the other hand, for any class [βk]
∞
k,n−k of E∞

k,n−k with representative βk ∈ E0
k,n−k, since

βk ∈ GKk,n−kr, we have that d(βk) = 0 and there exists a sequence of βi ∈ Si,n−ir such that

d(βi) =−δ̄ (βi+1) for all 0≤ i < k. The choice of this sequence determines F k(r), so that

F k(r)([βk(r)]∞k,n−k) = [(β0(r),β1(r), . . . ,βk(r),0, . . . ,0)]Tot
n .

Notice that if we already computed G from the Mayer-Vietoris spectral sequence, then there is no

need to do any extra computations to obtain these morphisms F k(r). All we need to do is to store

our previous results. Adding over all 0≤ k≤ n we obtain the isomorphism F (r) =
⊕n

k=0 F k(r) :⊕n
k=0Gk(r)→ V(r). This last morphism is an isomorphism since all its summands are injective,

their images have mutual trivial intersection, and the dimensions of the domain and codomain

coincide.

Recall that G has induced morphisms G(r ≤ s) from V(r ≤ s) for all values r ≤ s in R. Given

a basis G for G, we would like to compute a basis B for V from this information. Notice that

this is not a straightforward problem since (6.3) does not imply that one has an isomorphism
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r = 0 r ∼ 0.208 r = 0.5

Figure 6.3: A one loop is detected at value r ∼ 0.208 which goes through three covers. Later, at
radius r = 0.5, this loop splits into three loops, each included in one of the three covers.

F : G→ V. A point to start is to define the image along each generator in G . That is, for each

barcode generator gi ∼ [ai,bi) in G , we choose an image at the start F (ai)(gi(ai)). After, we set

F (r)(gi(r)) := V(ai < r) ◦F (ai)(gi(ai)) for all ai < r < bi. This leads to commutativity of F

along each generator gi. Nevertheless this is still far from even defining a morphism F :G→ V.

This si because gi ∼ [ai,bi) but its image might be associated to a barcode which dies after bi,

breaking therefore naturality.

The solution to the problem above is to define a new persistence module G̃. We define G̃(s) :=

G(s) for all s ∈R. Then, if G = {gi}N
i=1 is a barcode basis forG, by proposition 4.1.2 G s(1F) will

be a basis of G̃(s) for all s ∈R. Now, given gi ∼ [ai,bi) a generator in G , we define the morphism

G̃(r ≤ s) by the recursive formula

G̃(r ≤ s)(gi(r)(1F)) :=



∑
g j∈G bi

ci, jG̃(bi ≤ s)(g j(bi)(1F)) if r ∈ [ai,bi) and bi ≤ s,

gi(s)(1F) if r,s ∈ [ai,bi),

0 otherwise,

where ci, j ∈ F for all 1 ≤ i, j ≤ |G |. We want to define ci, j in such a way that G̃ is isomorphic to

V. For this we impose the commutativity condition

G̃(ai ≤ bi)(gi(ai)(1F)) = F (bi)
−1 ◦V(ai ≤ bi)◦F (ai)(gi(ai)(1F)),

which leads to the equation

∑
g j∈G bi

ci, jg j(bi)(1F) = F (bi)
−1 ◦V(ai ≤ bi)◦F (ai)(gi(ai)(1F)). (6.4)

This determines uniquely the coefficients ci, j for all 1 ≤ i, j ≤ |G |; here notice that we define

ci, j = 0 for all g j /∈ G bi . Notice that G̃ respects the filtration on V, since the right hand side
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in (6.4) is a composition of filtration preserving morphisms. In particular, if gi ∈ PVect(FkG̃),

then ci, j = 0 for all 1≤ j ≤ |G | such that g j /∈ PVect(FkG).

Fix a generator gi ∈ G such that gi ∈ PVect(Gk) and such that gi ∼ [ai,bi). Let us calculate

the coefficients ci, j. Suppose that we have a representative g̃ j = (β j
0 ,β

j
1 , . . . ,β

j
k ,0, . . . ,0) ∈S Tot

n

for each generator g j ∈ G , with g j = [β j
k ]

∞
k,n−k. Also, for all 0 ≤ q ≤ n we define the subset

Iq
bi
⊆ {1, . . . , |G |} of indices 1 ≤ j ≤ |G | such that g j ∈ PVect(Gq) and also g j(bi) 6= 0. Then the

coefficients ci, j for j ∈ Ik
bi
\{i} are determined by the following equality in Gk(bi) (where we use

pk from the sequence (6.2))

pk(bi)
(
[g̃i(bi)(1F)]

Tot
n

)
= ∑

j∈Ik
bi
\{i}

ci, jg j(bi)(1F).

Thus, we have

pk(bi)


g̃i(bi)(1F)− ∑

j∈Ik
bi
\{i}

ci, jg̃ j(bi)(1F)

Tot

n

= 0

where [·]Tot
n denotes the n-homology class of the total complex. Hence, by (6.2) there must exist

some chain Γ ∈S Tot
n+1(bi) such that

g̃i(bi)(1F)− ∑
j∈Ik

bi
\{i}

ci, jg̃ j(bi)(1F)−dTot
Γ (6.5)

is contained in Fk−1
V S Tot

n (bi). How do we compute Γ? We start by searching for the first page

r ≥ 2 such that β
i
k(bi)(1F)− ∑

j∈Ik
bi
\{i}

ci, jβ
j

k (bi)(1F)

r

k,n−k

= 0 (6.6)

where [·]rk,n−k denotes the class in the r-page in position (k,n− k). Notice that this r must exist

since we assumed that (6.6) vanishes on the ∞-page. In fact, there exists Γk+r−1 ∈Er−1
k+r−1,n−k−r+2(bi)

such that β
i
k(bi)(1F)− ∑

j∈Ik
bi
\{i}

ci, jβ
j

k (bi)(1F)

r−1

k,n−k

−dr−1(Γk+r−1) = 0

on Er−1
k,n−k(bi). Repeating for all pages leads to Γk+t ∈ Et

k+t,n−k−t+1(bi) for all 0≤ t ≤ r−1, such

that

β
i
k(bi)(1F)− ∑

j∈Ik
bi
\{i}

ci, jβ
j

k (bi)(1F)−
r−1

∑
t=0

˜dt(Γk+t) = 0, (6.7)

where ˜dt(Γk+t) ∈ Sk,n−k(bi) is a representative for the class dt(Γk+t) ∈ Et
k,n−k(bi). Notice that

equation (6.7) holds independently of the representatives, since if we changed some term, then
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the other representatives would adjust to the change. In particular, we have that the k component

of (6.5) vanishes, whereas the k−1 component will be equal to

β
i
k−1(bi)(1F)− ∑

j∈Ik
bi
\{i}

ci, jβ
j

k−1(bi)(1F)− δ̄ (Γk).

Next we proceed to find coefficients ci, j ∈ F so that in Gk−1(bi) we get the equality

β
i
k−1(bi)(1F)− ∑

j∈Ik
bi
\{i}

ci, jβ
j

k−1(bi)(1F)− δ̄ (Γk)

∞

k−1,n−k+1

= ∑
j∈Ik−1

bi

ci, jg j(bi)(1F) .

Then we proceed as we did on Gk. Doing this for all parameters 0≤ r ≤ k, there are coefficients

ci, j ∈ F, and an element Γ̄ ∈S Tot
n (bi) so that

g̃i(bi)(1F) = ∑
0≤r≤k

∑
j∈Ir

bi

ci, jg̃ j(bi)(1F)

+dTot
Γ̄.

Thus,

G̃(ai ≤ bi)(gi(ai)(1F)) = ∑
g j∈G bi

ci, jg j(bi)(1F).

Proposition 6.2.1. G̃∼= V.

Proof. Since each F (s) is an isomorphism, and also we have commutative squares:

G̃(r)
G̃(r≤s) //

F (r)
��

G̃(s)

F (s)
��

V(r)
V(r≤s)

// V(s)

for all r ≤ s, then F must be an isomorphism of persistence modules.

This gives G̃ ∼= V, but we still need to compute a barcode basis. In fact, this can be done

by considering a quotient. Define A '
⊕

gi∈G I(ai,∞) where gi ∼ [ai,bi) for all gi ∈ G ; here the

A = {αi}0≤i≤|G | will denote the canonical base for A. Consider the coefficients ci, j for 0≤ i, j ≤

|G | from the construction of G̃ and define the sets of indices Si = {0 ≤ j ≤ |G ||ci, j 6= 0} for all

0≤ i≤ |G |. We consider a submodule B⊆ A such that PVect(B) is generated by

{
1bi

(
(−αi)��

j∈Si

ci, jα j

)}
0≤i≤|G |

.

Also, notice that B '
⊕

0≤i≤|G | I(bi,∞). One might see that by construction G̃ ' A
/
B. Now, we
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pick up the canonical base for B and consider the inclusion ι : B ↪→ A; this will lead to an associ-

ated matrix (ι(B))A . Thus, we send ((B|A ),A ,((ι(B))A |Id|A |)) to box gauss reduce and

obtain the result.

6.3 Efficient implementation: PERMAVISS

Here we outline a procedure for implementing the persistence Mayer-Vietoris spectral sequence.

In section 6.2 we worked with GZr
p,q and IBr

p,q, which is very intuitive from a mathematical

perspective. However, it is more efficient to work directly with the sets Zr
p,q and Br

p,q. By stor-

ing representatives in Zr
p,q, we avoid repeating computations on each page and in the extension

problem. Furthermore, this approach allows to easily track the complexity of the algorithm. Ad-

ditionally, we will use more extensively barcode bases through this section, which enables to use

a more compact notation.

0-Page. We start by defining the 0-page as the quotient

E0
p,q =

F p
V S Tot

p+q

F p−1
V S Tot

p+q

∼= Sp,q =
⊕

σ∈NU
p

Sq(Uσ )

for all pair of integers p,q≥ 0. The 0 differential d0, is isomorphic to the standard chain differen-

tial

d0
p,q
∼= dq : Sp,q→Sp,q−1.

In particular, for each simplex σ ∈ NU
q , the morphism d0

p,q restricts to a local differential

dσ
q : Sq(Uσ )→ Sq−1(Uσ ).

Thus, we can compute persistent homology to obtain a local base for the image Im(dσ
q+1) and

the homology E 1
σ ,q. Putting all of these together, we get a basis for E1

p,q as the union E 1
p,q =⋃

σ∈NU
p

E 1
σ ,q. Additionally, we will denote by K 1

σ ,q the subset of representatives of the classes

from E 1
σ ,q contained in PVect(E0

σ ,q), and the same for K 1
p,q ⊆ PVect(E0

p,q). Here the notation K n
∗,∗

comes from the fact that these are persistence vectors contained on the kernels, and that these

represent n-page generators. Further, for each generator α ∈ E 1
p,q ⊆ PVect(E1

p,q), we store a chain

αp ∈Sp,q so that α = [(0, . . . ,0,αp,0, . . . ,0)]1p,q. Where we denote by [ · ]rp,q a class in Er
p,q for all

r ≥ 0. We define Ẽ 1
p,q to be the set of representatives in S Tot

p+q given by (0, . . . ,0,α0,0, . . . ,0).

1-Page. Recall that the first page elements are given as classes in the quotient

E1
p,q =

Z1
p,q

Z0
p−1,q+1 +B0

p,q
.
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Therefore, for each generator α ∈ E 1
p,q, with α ∼ [aα ,bα), there is a chain αp ∈ Sp,q, so that

α = [(0, . . . ,0,αp,0, . . . ,0)]0p,q. Then we compute

d1
p,q(α) =

[
dTot(0, . . . ,0,αp,0, . . . ,0)

]1

p−1,q
=
[(

0, . . . ,0, δ̄p(αp),0, . . . ,0
)]1

p−1,q
.

Now, for each simplex τ ∈ NU
p−1, we have local coordinates

(
δ̄p(αp)(aα)(1F)

)
τ
∈ Sq(Uτ)(aα).

We proceed to solve the linear equation at aα ∈ R

(
Im
(
(dq+1 )τ

)∣∣K 1
τ,q
)aα X =

(
δ̄p(αp)(aα)(1F)

)
τ
,

where the vector X has as many entries as needed for the equation to make sense. Also, we have

used (
Im
(
(dq+1 )τ

)∣∣K 1
τ,q
)aα

=
(

Im
(
(dq+1 )τ

)
(aα)

∣∣K 1
τ,q(aα)

)
for denoting the matrix on value aα , and whose rows correspond to a basis of Sq(Uτ)(aα). The

solution X leads to a subset T 1
τ,q ⊆K 1

τ,q together with c1
β
∈ F for all β ∈ T 1

τ,q and an element

Γτ ∈ Sq+1(Uτ) such that

δ̄p(ατ)�dq+1(Γτ) = 1aα

 �
β∈T 1

τ,q

c1
β

β

 .

Repeating this for all τ ∈ NU
p−1, we get a subset T 1

p−1,q ⊆K 1
p−1,q together with coefficients c1

β
∈

F\{0} for all β ∈J 1
p−1,q and an element Γp ∈ E1

p,q+1 so that

δ̄p(αp)�d0
p,q+1(Γp) = 1aα

 �
β∈T 1

p−1,q

c1
β

β

 .

This leads to d1
p,q(α) = 1aα

(
�β∈T 1

p−1,q
c1

β
[β ]1p−1,q

)
where [β ]1p−1,q ∈ E 1

p−1,q for all β ∈ T 1
p−1,q.

We will also denote by T 1
p−1,q the subset of E 1

p−1,q formed by elements [β ]1p−1,q for all β ∈T 1
p−1,q

(it should be clear by the context when we refer to the corresponding base). Repeating this for

all generators α ∈ E 1
p,q leads to an associated matrix D1

p,q for d1
p,q. Using image kernel, we

compute bases for the kernel and image. Additionally, we store a basis for Im(d1
p,q) together

with the corresponding preimages, as enabled by the image kernel algorithm. Thus, we might

compute a base E 2
p,q for the second page term E2

p,q by applying box gauss reduce to compute

the quotient Ker(d1
p,q)/Im(d1

p+1,q). We also store first page representatives K 2
p,q for the gen-

erators from E 2
p,q. Additionally, for each generator α ∈ E 2

p,q, we proceed to find a good rep-

resentative by using Ẽ 1
p,q together with the computed coordinates of α in terms of E 1

p,q. This

leads to α̃ = (0, . . . ,0,αp,0, . . . ,0) ∈ S Tot
p+q, so that α = [α̃]2p,q. Since by hypotheses [α̃]1p,q ∈
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Ker(d1
p,q), we might find αp−1 ∈ E0

p−1,q+1 such that d0
p−1,q(αp−1) = −δ (αp). Altogether, we set

α̃ ← (0, . . . ,0,αp−1,αp,0, . . . ,0) and store it in Ẽ 2
p,q; notice that it has the property that dTot(α̃) ∈

F p−2
V S Tot.

2-Page. Now, we proceed to compute the third page. We start from α ∈ E 2
p,q, with α ∼ [aα ,bα)

together with a total complex representative α̃ ∈ Ẽ 2
p,q, so that

d2
p,q(α) =

[
dTot(α̃)

]2
p−2,q+1 =

[
(0, . . . ,0,δ p−1(αp−1),0, . . . ,0)

]2
p−2,q+1.

As before, by solving local linear equations, we obtain T 1
p−2,q+1 ⊆ E 1

p−2,q+1 together with coeffi-

cients c1
β
∈ F for all β ∈T 1

p−2,q+1, so that

[
dTot(α̃)

]1
p−2,q+1 = 1aα

 �
β∈T 1

p−2,q+1

c1
β

β

 .

Now, we solve the linear equation on X

(
Im(d1

p−1,q+1)
∣∣K 2

p−2,q+1
)aα X = (c1

β
)

β∈E 1
p−2,q+1

,

where c1
β
= 0 for β /∈ T 1

p−2,q+1. The solution X leads to a subset T 2
p−2,q+1 ⊆K 2

p−2,q+1 together

with coefficients c2
β
∈ F for all β ∈T 2

p−2,q+1, and an element Γp−1 ∈ E1
p−1,q+1 so that

[
dTot(α̃)

]1
p−2,q+1 =

1aα

 �
β∈T 1

p−2,q+1

c1
β

β

1

p−2,q+1

+d1
p−1,q+1(Γp−1) = 1aα

 �
β∈T 2

p−2,q+1

c2
β

β

 .

This leads to an expression of d2
p,q(α) in terms of E 2

p−2,q+1. Repeating this for all generators

α ∈ E 2
p,q leads to a matrix D2

p,q associated to d2
p,q. Then applying image kernel we obtain bases

for the kernel, images and preimages. Then, applying box gauss reduce we obtain a base E 3
p,q

for the term E3
p,q; store second page representatives on K 3

p,q. Now, for each κ ∈ E 3
p,q ⊆ E2

p,q we

proceed to prepare a nice representative on the total complex. For this, we use the stored rep-

resentatives from Ẽ 2
p,q together with the expression of κ in terms of E 2

p,q to obtain κ̃ ∈ F p
V S Tot

p+q

such that κ = [κ̃]3p,q and also dTot(κ̃) ∈ F p−2
V S Tot. Next, by hypotheses [dTot(κ̃)]2p−2,q+1 = 0,

and so there exists some γp−1 ∈ E1
p−1,q+1 such that d1

p−1,q+1(γp−1) = [dTot(κ̃)]1p−2,q+1. From

the stored information, one might obtain γ̃p−1 ∈ S Tot
p+q such that [γ̃p−1]

1
p−1,q+1 = γp−1 and also

dTot(γ̃p−1) ∈ F2
V S Tot

p+q−1. Then, we set κ̃ ← κ̃ − γ̃ and obtain that [dTot(κ̃)]1p−2,q+1 = 0 while

dTot(κ̃) ∈ F2
V S Tot

p+q−1. Consequently, we might lift the p− 2 component of dTot(κ̃) by the ver-

tical differential. Modifying κ̃ using this information leads to a new redefinition of κ̃ such that

dTot(κ̃) ∈ F p−3
V S Tot

p+q−1. These new representatives are stored in Ẽ 3
p,q.
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k-Page. Suppose that we have computed generators E k
p,q ⊆ PVect(Ek−1

p,q ), together with total

complex representatives Ẽ k
p,q for some k≥ 3. Notice that if p−k+1≤ 0, then dk

p,q = 0. Thus, we

will focus on the case that p−k+1 > 0. Let a generator α ∈ E k
p,q with α ∼ [aα ,bα) together with

a representative α̃ ∈ Ẽ k
p,q with α̃ = (0, . . . ,0,αp−k+1, . . . ,αp,0, . . . ,0) so that

dk(α) = [dTot(α̃)]kp−k,q+k−1 = [(0, . . . ,0, δ̄p−k+1(αp−k+1),0, . . . ,0)]kp−k,q+k−1 .

We will proceed by ‘lifting’ dTot(α̃) to the k-page. As before, by solving local linear equations,

we obtain a subset T 1
p−k,q+k−1 ⊆ E 1

p−k,q+k−1 together with coefficients c1
β
∈ F \ {0} for all β ∈

T 1
p−k,q+k−1⊆S Tot

p+q−1 giving us an expression in terms of the first page basis [dTot(α̃)]1p−k,q+k−1 =

1aα

(
�β∈T 1

p−k,q+k−1
c1

β
β
)
. Next, for each 2≤ r ≤ k, we solve the linear equation on X

(
Im
(

dr−1
p−k+r−1,q+k−r+1

)∣∣∣K r
p−k,q+k−1

)aα

X = (cr−1
β

)
β∈E r−1

p−k,q+k−1
,

where cr−1
β

= 0 for β /∈ T r−1
p−k,q+k−1. This leads to a subset T r

p−k,q+k−1 ⊆K r
p−k,q+k−1 together

with coefficients cr
β
∈ F\{0} for all β ∈T r

p−k,q+k−1, and an element Γp−k+r−1 ∈ Er−1
p−k+r−1,q+k−r

such that1aα

 �
β∈T r−1

p−k,q+k−1

cr−1
β

β




r−1

p−k,q+k−1

�dr−1
p−k+r−1,q+k−r(Γp−k+r−1) = 1aα

 �
β∈T r

p−k,q+k−1

cr
β

β

 .

Thus, we deduce an expression of
[
dTotα̃

]r
p−k,q+k−1 in terms of E r

p−k,q+k−1. In particular, this

will hold for r = k, which leads to the associated matrix of dk
p,q, and then we can compute

image kernel, etc. Now, consider a generator κ ∼ [aκ ,bκ) from E k+1
p,q . There exists T (κ)⊆ E k

p,q

together with coefficients cκ

β
for all β ∈T (κ) such that κ = 1aκ

(
�β∈T (κ) cκ

β
β
)
. Then we define

κ̃ = 1aκ

(
�β∈T (κ) cβ β̃

)
, and notice that κ = [κ̃]k+1

p,q as well as dTot(κ̃) ∈ F p−k
V (S Tot). We will

use κ̃ = (0, . . . ,0,κp−k+1, . . . ,κp,0, . . . ,0). Now, by hypotheses

dk
p,q(κ) = [dTot(κ̃)]kp−k,q+k−1 = [(0, . . . ,0, δ̄p−k+1(κp−k+1),0, . . . ,0)]kp−k,q+k−1 = 0 .

Then, there exist γp−1 ∈ Ek−1
p−1,q+1 such that dp−1

p−1,q+1(γp−1) = [dTot(κ̃)]k−1
p−k,q+k−1. By writing γp−1

in terms of E k−1
p−1,q+1 and using their stored representatives, we may get γ̃p−1 ∈ S Tot

p+q such that

γp−1 = [γ̃p−1]
k−1 and also dTot(γ̃p−1) ∈ F p−kS Tot

p+q−1. In particular, [dTot(κ̃ − γ̃k−1)]
k−1 = 0 and

we set κ̃ ← κ̃− γ̃k−1. Hence, by induction, we can repeat this procedure for all 1≤ r ≤ k. Even-

tually, we should obtain a representative κ̃ = (0, . . . ,0,κp−k, . . . ,κp,0, . . . ,0) such that dTot(κ̃) ∈

F p−k−1S Tot
p+q−1. We denote the new set of representatives as Ẽ k+1

p,q .
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Extension Problem

After computing all pages of the spectral sequence, we still have to solve the extension problem.

It turns out that the procedure is almost exactly the same as for when computing a page on the

spectral sequence. We start from a basis E ∞
p,q, with total complex representatives Ẽ ∞

p,q. Since we as-

sume that the spectral sequence is bounded, it collapses at an L > 0 page. Then, for each generator

α ∈ E L
p,q, with α ∼ [aα ,bα), we have a corresponding representative α̃ = (α0, . . . ,αp,0, . . . ,0) ∈

S Tot
p+q in Ẽ L

p,q. The main procedure consists in lifting αp to the L-page. We do this by means of

local linear equations as done on the 1-page. However, this time, instead of using the value aα we

use bα . This leads to a subset T 1
p,q ⊆K 1

p,q together with coefficients c1
β
∈ F\{0} for all β ∈T 1

p,q

and Γp ∈Sp,q+1, so that 1bα
(αp)�dq+1(Γp) = 1bα

(
�β∈T 1

p,q
c1

β
β

)
. The same happens for all the

pages 1≤ r ≤ L; we find T r
p,q ⊆K r

p,q together with coefficients cr
β
∈ F\{0} for all β ∈T r

p,q and

Γp+r ∈Sp+r,q−r+1, so that

1bα
([α̃]rp,q)�dr

p+r,q−r+1(Γp+r) = 1bα

 �
β∈T r

p,q

c1
β

β


Now, using the same notation of T L

p,q for the corresponding subset from E L
p,q, we define

α̃
p−1 = 1bα

(α̃)�
L−1

�
r=0

 �
Γp+r∈E r

p+r,q−r+1

dr
p+r,q−r+1(Γp+r)

− �
β∈E L

p,q

cL
β

β̃ .

In particular, notice that [α̃ p−1]Lp,q = 0. In fact, for all integers L− 1 ≥ r ≥ 0 one has that

[α̃ p−1]rp,q = 0, since both the adding and substracting terms are a sum of elements in E r
p,q with the

same coefficients. As a consequence the p-component of α̃ p−1 vanishes, so α̃ p−1 ∈ F p−1
V S Tot

p+q.

Then, one can repeat this process with α̃r for all p− 1 ≥ r ≥ 0. This leads to all coefficients

(cL
β
)β∈E L

p−r,q+r
for all 0≤ r ≤ p. These can be used to define a basis for the submodule B from end

of section 6.2; this solves the extension problem by computing the corresponding quotient.

6.4 Complexity Analysis

Let Ds be the maximum simplex dimension in K, and dim(NU ) the dimension of the nerve. Let

L be the number of pages. Denote NU
≥1 =

⋃
k≥1 NU

k . Let

X = max
q≥0,σ∈NU

{# q-simplices in Uσ } and Y = max
q≥0,τ∈NU

≥1

{# q-simplices in Uτ } .
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Notice that X ≥ Y . On the other hand, we define

H = max
p,q≥0

{
|E 1

p,q| | where E 1
p,q is a base for E1

p,q
}
.

Assume P is the number of processors.

0-page. When computing the first page, all we need to do is calculate persistent homology in

parallel. Then, the complexity is

⌈
|U |
P

⌉
O(X3)+

⌈
|NU
≥1|
P

⌉
O(Y 3)

This leads to generators for the first page.

1-page. For the first page, recall that we start from a generator α ∈ E 1
p,q with α ∼ [aα ,bα) and

proceed to solve |NU
p−1| linear equations. Notice that this can be done for all generators from E 1

p,q

simultaneously. This is because as the value aα changes, only columns are added and removed

to the local linear equations, leaving the rows intact. On the other hand, we need to execute

image kernel on at most dim(NU )Ds elements on the first page. Notice that for each of these,

we first compute a basis for the images and kernels, and afterwards we perform the quotients using

box gauss reduce. Each of these takes a complexity of at most O(H3). Also, we need to add

the complexity of the Čech differential. An option for computing this, is to compare simplices in

different covers by their vertices; two simplices are the same iff they share the same vertex set.

This would take less than O(|NU |DsX2H) operations. Thus the overall complexity becomes

⌈
|U |
P

⌉
O(X2H)+

⌈
|NU
≥1|
P

⌉
O(Y 2H)+

⌈
dim(NU )Ds

P

⌉(
O(|NU |DsX2H)+O(H3)

)

k-page. Now, we proceed for the complexity of the page k ≥ 2. This is the same as for the

1 page, with the addition of Gaussian eliminations of higher pages. These take at most O(H2)

time for each generator in E r
p,q. If we do these for all generators simultaneously, since we need

to update both rows and columns in a matrix, we might use image kernel and the complexity

becomes O(H3). Denoting by L the infinity page, we have the new term

⌈
dim(NU )Ds

P

⌉
O(H3)
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which added to the complexity of the 1-page, we obtain

⌈
|U |
P

⌉
O(X2H)+

⌈
|NU
≥1|
P

⌉
O(Y 2H)+

⌈
dim(NU )Ds

P

⌉(
O(|NU |DsX2H)+O(H3)+O(LH3)

)
=

⌈
dim(NU )Ds

P

⌉(
O(|NU |DsX2H)+O(H3)

)
.

Extension problem. If the spectral sequence collapses at L > 0, then the complexity of ex-

tending all generators in E L
p,q is bounded by that of computing the L page about Ds times.

Overall complexity. Altogether, we have a complexity bounded by that of computing the first

page plus that of computing the L page L+Ds times. Here the L comes from computing the L

page L times and Ds from the extension problem. Thus, the overal complexity is bounded by

⌈
|U |
P

⌉
O(X3)+

⌈
|NU
≥1|
P

⌉
O(Y 3)+

(
L+Ds

)⌈dim(NU )Ds

P

⌉(
O(|NU |DsX2H)+O(H3)

)
.

Notice that in general Ds, L and dim(NU ) are much smaller than H and X . Thus, for covers such

that Y � X and |NU | � X , and assuming we have enough processors, the complexity can be

simplified to the two dominating terms

O(X3)+O(H3).

Notice that this last case is satisfied for those covers whose mutual intersections are generally

smaller than each cover. Also, in this case H is approximately of the order of nontrivial barcodes

over all the input complex. This shows that PERMAVISS isolates simplicial data, while only

merging homological information. It is worth to notice that in general H, being the number of

nontrivial bars, is much smaller than the size of the whole simplicial complex. However, in some

cases this might not be true. Nevertheless our complexity estimates are very generous, leaving

plenty of space for improvement on concrete applications.

6.5 Applications

We study three applications for our results. We will start analysing Vietoris-Rips complexes on

point clouds. Afterwards we will work with cubical complexes, showing the great advantage

these have on analysing images composed by pixels. Finally, we will study a mixture of both,

the α-complexes. These will allow us to analyse the topology of point clouds, but with similar

theoretical advantages than cubical complexes.
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Vietoris-Rips complexes

Whenever X is finite, this defines a tame persistent module Sn(VRr(X)) : R→ vect, for each

degree n ≥ 0. Given a cover of P into sub point clouds P = {Pi}N
i=1, we would like to recover

Sn(VRr(P)) from the persistence modules {Sn(VRr(Pi))}N
i=1. This is possible along an interval

[0,R). The following proposition and corollary generalize Lemma 13 from [119].

Proposition 6.5.1. Let P = {Pi}N
i=1 be a cover of P with P =

⋃N
i=1 Pi, and define

R := min
0≤i< j≤N

{d(Pi \Pj,Pj \Pi)}.

Then V Rr(P) =
⋃N

i=1V Rr(Pi) for all r ∈ [0,R).

Proof. Suppose that 0 < r < R and we take a k-simplex σ ∈ VRr(P). We want to prove that σ

must be contained in some VRr(Pj). For the sake of contradiction, we assume this is not the case.

Also, assume that max1≤i≤N{|σ ∩Pi|}= M, and take i such that |σ ∩Pi|= M. Then, since σ is not

contained in VRr(Pi), there must exist some point p /∈ Pi. On the other hand, since P is a cover

of P, there exists some Pk such that p ∈ Pk. Now since |σ ∩Pk| ≤M, there must exist some point

q ∈ Pi such that q /∈ Pk. Thus we have p ∈ Pk \Pi and q ∈ Pi \Pk. Consequently, d(p,q) ≥ R, and

σ cannot be in VRr(P), reaching a contradiction.

In particular, we obtain the following convergence result:

Corollary 6.5.2. Let P be a cover of P and let R be as in proposition 6.5.1. Then we have a

spectral sequence

E2
p,q = Hp(PHq(P), δ̄ )⇒ PHn(P)

which converges to PHn(P) along the interval [0,R). Here PHq is the q-persistent homology

precosheaf on NV , which is defined by setting

PHq(σ) := PHq(Pσ )

for all q≥ 0, and all simplices σ ∈ NV . For any inclusion τ ⊆ σ of simplices in NV , we have an

induced morphism:

PHq(τ ⊆ σ) := PHq(τ ⊆ σ) : PHq(Pτ)→ PHq(Pσ ).

Notice that exactly computing R might be expensive. In practice, we will divide P into convex

regions from Rn with some overlap between mutually adjacent regions. More precisely, consider

a finite covering U = {Ui}N
i=1 of Rn in such a way that each Ui is convex. One can, for instance,
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consider hypercubes spanned by pairs of points p,q ∈ Rn. With such a cover it is not difficult

to compute the value K := min0≤i< j≤N{d(Ui \U j,U j \Ui)}. Now considering the cover of point

clouds defined as PU := {Ui ∩P}N
i=1, one has that K ≤ R. Thus, in this case one can use the

previous results to recover PHn(P) from E2
p,q along the intervals [0,K). Vietoris-Rips complexes

grow very quickly in size and this is the main reason why we need an upper bound for recovering

its global information from local. Later on, we will see that α-complexes are much more well-

behaved for parallelization.

Cubical Complexes over Lattices

In this section we review Mayer-Vietoris spectral sequences on cubical complexes; these are

formed over a lattice subset V ⊆ Zm as presented in example 2.5.4. Our motivation for study-

ing these objects comes from image processing on grayscale images, as briefly mentioned on

section 3.1. Suppose that one has a greyscale image, e.g. a two dimensional or three dimensional

image. Since the image is greyscale, we can assign to each pixel (or voxel) a real number. Then

we fix a threshold parameter ρ > 0 and proceed to define a cubical complex Cρ on top of V ⊂ Zm.

Cρ will be defined to be the maximal cubical complex subject to two conditions:

1. All points in V with value less than ρ are exactly the vertices of Cρ .

2. A cube q ∈ C is contained in Cρ if and only if all its vertices are also contained in Cρ .

Notice that in example 2.5.4 the cubes from C have unit-length factors. This is very useful, since

it allows us to cover a cubical complex with a very small overlap between adjacent regions. This

presents a great advantage in comparison to the case of Vietoris-Rips complexes, where we had

to be careful with the maximum radius R. Given a pair of lattice points p,q ∈ Zm, we define the

rectangular set

R(p,q) = {x ∈ Zm | pi ≤ xi ≤ qi, for all 1≤ i≤ m} .

We will call I⊂ Zm a rectangle if I= R(p,q) for some pair p < q ∈ Zm. Here the poset relation in

Zm is induced by the coordinatewise order. That is, we have that p ≤ q if and only if pi ≤ qi for

all 1≤ i≤ m.

Proposition 6.5.3. Let I ⊂ Zm be a filtered rectangle (if we want to consider a cubical complex

that is not a rectangle we might assume that some of the cells from I take the infinity filtration

value). Next, consider a cover J = {Ik = R(pk,qk)}N
k=0 for I by rectangles with the same filtra-

tion. Suppose also that for any pair 1≤ k,r ≤ N, one has that (pk)l− (qr)l 6= 1 for all 1≤ l ≤ m.

Then C (I) =
⋃N

k=1 C (Ik).
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Proof. By contradiction, suppose that a cube c∈Cn(I) is such that c /∈Cn(Ik) for every 1≤ k≤N.

By definition, this means that not all vertices from c lie in some C (Ik) for all 1≤ k≤N. Since J

forms a cover of I, the vertex c(0,0,··· ,0) from c lies in Ik1 , for some 1≤ k1≤N. Let c j1 = c( j1
1 , j

1
2 ,..., j

1
m)

be the maximal vertex from c lying in Ik1 , and S1 ⊆ {1,2, . . . ,m} the subset of indices l satisfying

j1
l = 0. Notice that ( j1

1, j1
2, . . . , j1

m) 6= (1,1, . . . ,1) since otherwise c would be in Ik1 . Then we

consider c1(S1), where 1(S1)l = 1 if l ∈S1 and 1(S1)l = 0 for l /∈S1. Since (c1(S1))l > qk1
l for

all l ∈S1, we have that c1(S1) lies in some other Ik2 , for 1 ≤ k2 ≤ N with k2 6= k1. Therefore we

obtain pk2 ≤ c1(S1), and since (pk2)l − (qk1)l 6= 1 for all 1 ≤ l ≤ n, we must have (pr)l ≤ (qk)l

for all l ∈S1. In particular, c0 must be in Ik2 . Let c j2 be the maximal vertex from c lying in Ik2 ,

again this cannot be c1 since otherwise c would be contained in Ik2 . Hence, we define the subset

S2 ( {1,2, . . . ,m} of indices l such that (c j2)l = 0. Notice that S1 ∩S2 = /0 and we have that

S1 (S1∪S2. Then we consider the vertex c1(S1∪S2) and repeat the argument. Eventually there

will be an index t ≥ 1 such that S1 ∪ ·· · ∪Sn = {1,2, . . . ,m}. Then we consider Ir for some

1 ≤ r ≤ N containing c1. For each coordinate index 1 ≤ l ≤ m we will find (c1)l− (qki)l = 1 for

some 1≤ i≤ t. Then c0 must be contained in Ir. Nevertheless this implies c is in Ir, reaching a

contradiction.

Corollary 6.5.4. Let I ⊂ Zm be a filtered rectangle, together with a cover J = {Ii ⊂ Zm}N
i=0

by rectangles with the same filtration. Suppose also that for any pair 1 ≤ k,r ≤ N, one has that

(pk)l− (qr)l 6= 1 for all 1≤ l ≤ m. Then there is a converging spectral sequence,

E2
p,q = Hp(PHq(J ), δ̄ )⇒ PHn(I),

where PHq denotes the cubical q-persistent homology precosheaf on NJ .

α-complexes

Let P be a point cloud contained in the Euclidean space Rn. Given a point q ∈ P, recall from

section 3.1 the definition of Voronoi cell Vq about the point q. Also, recall the definition of alpha

complex Ar(P) of radius r > 0. As mentioned in section 3.1, an advantage of using Ar(P) instead

of VRr(P) is that the number of simplices gets reduced substantially. Given a subset Q ⊆ P we

define AP
r (Q) to be the maximal subcomplex of Ar(P) with vertices contained in Q.

Proposition 6.5.5. Consider two subpointclouds Q and S of a point cloud P. If the mutual com-

plements of Voronoi cells are non-adjacent, that is, if

V P
Q\S∩V P

S\Q = /0
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then

AP
r (Q∪S) = AP

r (Q)∪AP
r (S)

for all radii r ≥ 0. Where we have used the notation V P
Q =

⋃
p∈QV P

p .

Proof. The inclusion AP
r (Q)∪ AP

r (S) ⊆ AP
r (Q∪ S) is direct by definition. Let us consider the

opposite inclusion. By contradiction, suppose a simplex σ ∈ AP
r (Q∪S) is not contained in AP

r (Q)

or AP
r (S). Then there exists a pair of vertices v,w ∈ σ lying on the mutual complements v ∈ Q\S

and w ∈ S \Q. By hypothesis, V P
v ∩V P

w = /0 but then [v,w] ⊂ σ cannot be an edge in AP
r (Q∪ S),

and so σ /∈ AP
r (Q∪S), reaching a contradiction.

Corollary 6.5.6. Let P = {Pi}N
i=1 be a cover of P such that V P

Q\S∩V P
S\Q = /0 for all pairs 1≤ i <

j ≤ N, then

Ar(P) =
N⋃

i=1

AP
r (Pi).

Furthermore, there is a convergent spectral sequence

E2
p,q = Ȟp(NP ,PH α;P

q (P))⇒ PHα
n (P).

Where PH α,P
q denotes the α-complex persistent homology precosheaf over NP . That is, for all

σ ∈ NP we have

PH α,P
q (σ) = PHq

(
AP
∗

(⋂
i∈σ

Pi

))
Proof. The first statement follows inductively from proposition 6.5.5. Applying the persistent

Mayer-Vietoris spectral sequence leads to the result.
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Chapter 7

Regularly Filtered Diagrams

7.1 Regularly filtered CW-complexes

There are a number of situations in topological data analysis where it is not practical to work with

filtered complexes. For example, the Vietoris-Rips complex on a point cloud VR∗(X) grows very

quickly. Following on the collapsing idea from [52], we introduce a general object that will be of

interest.

Definition 7.1.1. A functor X : R→CW-cpx where the connecting morphisms X(r≤ s) : Xr→Xs

are regular for all r ≤ s from R will be called a regularly filtered CW complex. Given a pair of

regular CW-complexes X and Y , we will consider natural transformations f : X → Y such that fr

is a regular morphism for all r ∈ R. We denote the corresponding category by RCW-cpx.

The category of regularly filtered CW-complexes has similar definitions to that of persistence

modules, as both categories contain functors from R. We say that an object X ∈ RCW-cpx is

tame, whenever X is constant along a finite number of right open intervals decomposing the poset

R. For X ∈ RCW-cpx, we will write Xr for the regular CW-complex X(r) for all r ∈ R. We will

also use the ε-shift notation X [ε] and the shift functor Σε : RCW-cpx→ Hom(RCW-cpx) for all

ε ≥ 0.

If the morphisms X(r≤ s) : Xr→ Xs are injections preserving the cellular structure for all r≤ s

in R, then X is a filtered CW-complex, denoting by FCW-cpx the corresponding subcategory of

RCW-cpx. Notice that objects in FCW-cpx can be seen as a pair (colimX∗, f ) where colimX∗ is

a regular CW-complex and f : colimX∗→ R is a filtration function such that Xr = f−1(r) for all

values r ∈ R.

Definition 7.1.2. Let X ∈RCW-cpx. We define the n-persistent homology of X as the composed

functor Hcell
n (X) : R→ Vect. We will also denote this by PHn(X) for all integers n≥ 0.

139
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Notice that by finiteness of Xr, the vector space PHn(X)r is finite dimensional for all r ∈R. If

in addition X is tame, PHn(X) only changes at a finite number of points r ∈ R.

Remark. Notice that the standard algorithm for the computation of persistent homology cannot be

applied to objects in RCW-cpx. However, there are some cases which can be easily computed by

using the results from chapter 4. For example, consider X∗ ∈ RCW-cpx such that for any value

r ∈ R and any cell en
r ∈ Xr, the structure morphisms X∗(r ≤ s) send en

r to an n-cell en
s ∈ Xs or to a

lower dimensional subcomplex from Xs, for all pairs r < s from R. In this case, these “consistent”

cells en
∗ determine a barcode basis for the chain complex Cn(X) associated to X∗. Notice that if

we allow more general regular morphisms X∗(r ≤ s) then we might need to do more work, such

as using the quotients constructed on section 4.4.

7.2 Filtered Diagrams and Filtered Geometric Realizations

Recall that in section 2.8 we saw regular diagrams as well as their associated geometric realiza-

tions. We might adapt this to diagrams of regularly filtered complexes.

Definition 7.2.1. A regularly filtered regular diagram of CW-complexes D over K is a functor

D : Kop → RCW-cpx, we will denote this category by RRDiag(K). A morphism f : D → L

between a pair of diagrams over K consists of natural transformations f : D(σ)→L (σ) for all

σ ∈ K such that f ◦D(τ ≺ σ) =L (τ ≺ σ)◦ f for all τ ≺ σ in K. On the other hand if we restrict

to functors D : Kop → FCW-cpx we will call D a filtered regular diagram of CW-complexes

denoting the corresponding category by FRDiag(K). If for a diagram D ∈ FRDiag(K) the maps

D(τ ≺ σ) are inclusions respecting the cellular structures for all τ ≺ σ from K, then we call D a

fully filtered diagram of CW-complexes denoting the corresponding category by FFDiag(K). We

have embeddings of categories

FFDiag(K)⊂ FRDiag(K)⊂ RRDiag(K)

for all simplicial complexes K.

Example 7.2.2. Consider a filtered CW-complex X covered by filtered subcomplexes U =
{

Ui
}

i∈I .

For each r ∈R, one might consider a regular diagram XU (r) : Nop
U →CW-cpx as explained on ex-

ample 2.3.2. This leads to a fully filtered diagram XU : Nop
U →FCW-cpx. On the other hand, there

is also a constant diagram ∗U ∈ FFDiag(NU ) given by ∗U (J)r = ∗ if XU (J)r 6= /0 or ∗U (J)r = /0

otherwise; for all J ∈ NU and all r ∈ R. Then, there is an obvious epimorphism of diagrams

XU → ∗U . Continuing with the same example, we consider composing XU with π0 as in exam-

ple 2.8.5. This leads to π0(XU ) ∈ RRDiag(K). Each π0(UJ) is a disjoint union of points that
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are identified with each other as the filtration value increases. Altogether we have a sequence of

epimorphisms of diagrams XU → π0(XU )→∗U .

Recall definition 2.8.4 about the geometric realizations for regular diagrams. Notice that

this can be extended to a geometric realization ∆KD of a diagram D ∈ RRDiag(K), by setting

(∆KD)r := ∆K(Dr) for all r ∈ R. The corresponding gluing conditions from definition 2.8.4 are

consistent in this case as

D(τ � σ)◦Σ
tD(σ)(y) = Σ

tD(τ)◦D(τ � σ)(y)

for any pair τ � σ from K and all t > 0 and all points y ∈D(σ). Altogether we obtain ∆K(D) ∈

RCW-cpx.

Example 7.2.3. Consider a diagram D ∈ RRDiag(K). As with regular diagrams, we can also

define the constant diagram, which is given by

∗D(σ)r =


∗ if D(σ)r 6= /0

/0 else .

Note that there is a homotopy equivalence ∆(∗D)r ' |KD
r |, where KD is the filtered simplicial

complex with the same underlying vertex set as K and σ ∈ KD
r if and only if D(σ)r 6= /0. On the

other hand, we define the filtered multinerve of D as

MNerv(D) = ∆(π0(D)) .

There are epimorphisms ∆D →MNerv(D)→ ∆(∗D)' |K|.

One might also deduce analogous results to Theorem 2.8.6. An interesting direction of re-

search would be to use this result to define compatible complex simplifications, such as in Dis-

crete Morse Theory (see [86] and [3]) and end up with a diagram of regular CW-complexes. This

motivates the study of spectral sequences associated to such diagrams. We will see further rea-

sons in Section 7.3. On the other hand, given the importance of Theorem 2.8.6, we would like to

adapt it to an approximate version in the context of diagrams in RRDiag(K). Instead of studying

homotopy equivalences, we will consider equivalences induced by acyclic carriers. This will be

done in Section 8.2.
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7.3 Spectral Sequences for Geometric Realizations

Recall the persistent Mayer-Vietoris spectral sequence from chapter 6 associated to a pair (X ,U )

of a space with a cover:

E1
p,q(X ,U ) =

⊕
σ p∈NU

PHq(XU (σ p))⇒ PHp+q(∆XU )' PHp+q(X) . (7.1)

As pointed out in section 6.5, there are some limitations to the applicability of this spectral se-

quence to the computation of persistent homology on Vietoris-Rips complexes; it is only possible

to recover PH∗(X) up to some value R > 0 determined by the cover overlaps. In section 7.4 we

will present an alternative regular diagram of CW-complexes that avoids this upper limit problem

completely, see example 7.4.4.

We will proceed by first defining spectral sequences associated to regular diagrams, leaving

the case of filtrations for later; in particular, we will first define the cellular complex associated to a

geometric realization. Given a diagram D in RDiag(K), we will denote by D(τ �σ)∗ the induced

morphism of cellular chain complexes Ccell
∗ (D(σ))→ Ccell

∗ (D(τ)). The cellular chain complex

Ccell
∗ (∆D ,δ ∆) associated to ∆D is defined as follows: For all m ≥ 0 we have that Ccell

m (∆D) is a

vector space generated by products of cells σ p× cq with dim(σ p) = p and cq ∈ D(σ)q so that

p+q = m. On such a product cell σ p× cq the differential δ ∆ is given by

δ
∆(σ p× cq) = ∑

σ
p−1
i ≺σ p

(−1)i

 ∑
a∈D(σ p−1

i �σ p)(cq)

[a : D(σ p−1
i � σ

p)(cq)]σ p−1
i ×a


+(−1)p

∑
b∈cq\cq

[b : cq]σ p×b

where dq is the differential dq : Cq(D(σ p))→ Cq−1(D(σ p)) and the sum runs over the faces

σ
p−1
i of σ p. As we will see in the proof of Lemma 7.3.1 the map δ ∆ is indeed a differential. In

addition, notice that the filtration of ∆K(D) carries over to Ccell
∗ (∆KD) by taking F pC∗(∆KD) :=

C∗(F p∆KD) for all p≥ 0.

Now, consider the double complex (Cp,q(D),dV ,dH) given by

Cp,q(D) =
⊕

σ p∈K

Ccell
q
(
D(σ p)

)
for all p,q ≥ 0. The vertical differential is defined by the direct sum of chain differentials

dV
p,q =(−1)p⊕

σ p∈K dσ p

q where dσ p

∗ denotes the differential from Ccell
∗ (D(σ p)) for all σ p ∈K. The

horizontal differential is given by the Čech differential dH
p,q which is defined for a cell aq ∈D(σ)q

as ∑
σ

p−1
i ≺σ p(−1)iD(σ p−1

i ≺ σ p)∗(aq), where D(σ p−1
i ≺ σ p)∗ denotes the induced chain mor-
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phism Ccell
∗ (D(σ p))→ Ccell

∗ (D(σ p−1
i )) for all faces σ

p−1
i from σ p. Of course dV ◦ dV = 0 and

dH ◦dH = 0 by functoriality of Ccell
∗ (·) and the fact that D(ρ ≺ τ)D(τ ≺ σ) = D(ρ ≺ σ) for any

three simplices ρ ≺ τ ≺ σ from K. On the other hand, anticommutativity dV ◦ dH = −dH ◦ dV

follows since D(τ ≺ σ)∗ is a chain morphism for all cell pairs τ ≺ σ from K.

Now, we consider the double complex spectral sequence from [83, Section 2.4]. Given D in

RDiag(K) there is a spectral sequence

E1
p,q(D) =

⊕
σ p∈K

Hq(D(σ p))⇒ Hp+q(STot
∗ (D))

where STot(D) is the total complex defined as STot
n (D) =

⊕
p+q=nCp,q(D) together with a differ-

ential dTot = dV +dH . Also, recall from section 2.11 that the total complex has a filtration induced

by the vertical filtration on Cp,q(D) given by

FmSTot
∗ (D) =

⊕
p+q=n

p≤m

Cp,q(D)

for all integers m ≥ 0. We will now relate this total complex to the geometric realization from

Definition 2.8.4.

Lemma 7.3.1. There is an isomorphism Ccell
∗ (∆D ,δ ∆)' STot

∗ (D) which preserves filtration. That

is, F pCcell
∗ (∆D ,δ ∆)' F pSTot

∗ (D) for all p≥ 0.

Proof. First we define a chain morphism ψ : Ccell
m (∆D)→ STot

m (D) generated by the assignment:

a cell σ p×cq ∈ (∆D)m with p+q = m, is sent to ψ(σ p×cq) = (cq)σ p ∈ STot
m (D). Here we denote

by (cq)σ p the vector in STot
m (D) that is zero everywhere except at the entry Ccell

q (D(σ p)), where it

contains the chain cq. On the other hand, ψ is a chain morphism since we have the equality

ψ
(
δ

∆(σ p× cq)
)
= ∑

σ
p−1
i ≺σ p

(−1)i
(

∑
a∈D(σ p−1

i ≺σ p)(cq)

([a : D(σ p−1
i ≺ σ

p)(cq)]a)
σ

p−1
i

)
+(−1)dim(σ p)

∑
b∈cq\cq

([b : cq]b)σ p = ∑
σ

p−1
i ≺σ p

(−1)i(D(σ p−1
i ≺ σ

p)∗(cq))
σ

p−1
i

+(−1)p(dσ p

q (cq))σ p

= (dH +dV )((cq)σ p) = dTot((cq)σ p) = dTot(ψ(σ p× cq)).

One can see that ψ is injective, and admits an inverse ψ−1 : STot
m (D)→Ccell

m (∆D) that sends (σ p)cq

to σ p× cq. Notice that by definition ψ sends a chain in F pCcell
n (∆D) to a chain in F pSTot

n (D) for

all p≥ 0 and in particular it preserves filtration.
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7.4 The (K,P)-Join Diagram Spectral Sequence

In this section we will present an important spectral sequence related to filtered simplicial com-

plexes. For this, we will start by reviewing the join construction.

Definition 7.4.1. We will denote by K ∗ L the join of two simplicial complexes K and L. This

is given by a quotient on the space K× L×∆1, collapsing the subspace K× L×{0} to K and

collapsing also K× L×{1} to L. Similarly, given simplicial complexes Ki for 0 ≤ i ≤ m, the

iterative join is defined as the quotient space

K0 ∗K1 ∗ · · · ∗Km := K0×K1×·· ·×Km×∆
m
/
∼

where the relation ∼ identifies two elements

(a0,a1, . . . ,am,
m

∑
i=0

xi)∼ (b0,b1, . . . ,bm,
m

∑
i=0

yi)

whenever xi = yi for all 0≤ i≤ m and if ai = bi for all indices 0≤ i≤ m such that xi 6= 0.

The join will be useful for constructing a diagram of spaces whose geometric realization is

homeomorphic to |K| for any finite simplicial complex K. In order to proceed, we take a finite

partition P of the vertex set V (K) and denote by K(U) the maximal subcomplex of K with

vertices in U ∈P . We will denote by ∆P the standard simplex with vertices in P . For a simplex

τ ∈ K, we define P(τ) ∈ ∆P to be the simplex consisting of all partitioning sets U ∈P(τ) such

that τ ∩U 6= /0. In particular if U ∈P(τ), then it determines a standard simplex τ(U) ∈ K(U) of

dimension |τ ∩U |−1≥ 0. For a vertex v ∈ K, we will denote by P(v) the partitioning set from

P which contains v.

We define the (K,P)-join diagram J K
P : ∆P → FCW-cpx for all σ ⊆P by assigning the

subspace

J K
P (σ) =

⋃
ρ∈K

P(ρ)=σ

Im

(
∏

U∈σ

∆
ρ(U) ↪→ ∏

U∈σ

|K(U)|

)
,

for all σ ∈ ∆P . For any pair τ � σ in ∆P , the projection πτ�σ : ∏U∈σ |K(U)| → ∏U∈τ |K(U)|

induces a regular morphism J K
P(τ � σ) : J K

P(σ)→J K
P(τ).

Lemma 7.4.2. Let K be a simplicial complex together with a partition P of its vertex set V (K).

There is a CW-complex homeomorphism ∆(J K
P)' |K|.

Proof. Consider the continuous map f : ∆(J K
P)→ |K| defined by mapping a point

(
∑

U∈P(τ)

yUU,
(

∑
v∈U

xvv
)

U∈P(τ)

)
∈ ∆

P(τ)× ∏
U∈P(τ)

∆
τ(U)

/
∼
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to ∑v∈τ yP(v)xvv in ∆τ for all τ ∈ K; where we have values 0 ≤ yU ≤ 1 and 0 ≤ xv ≤ 1 for all

U ∈P(τ) and all v ∈ U , and such that ∑U∈P(τ) yU = 1 and ∑v∈U xv = 1 for all U ∈P . On

the other hand, let ∑v∈τ xvv ∈ ∆τ be a point such that 0 ≤ xv ≤ 1 for all v ∈ ∆τ and such that

∑v∈τ xv = 1. Then we can define the inverse continuous map

f−1
(

∑
v∈τ

xvv
)
=

(
∑

U∈P(τ)

(
∑
v∈U

xv

)
U,

(
ψU

(
∑
v∈τ

xvv
))

U∈P(τ)

)

where

ψU

(
∑
v∈τ

xvv
)
=


∑v∈τ

(
xv

∑v∈τ(U) xv

)
v if ∑v∈τ(U) xv 6= 0

∗ ∈ ∆τ(U) otherwise (see below),

.

If ∑v∈τ(U) xv = 0, then xv = 0 for all v ∈ τ(U) and the U-coordinate of the simplex τ in ∆P(τ) is

0, which means that τ(U) is collapsed to a single point by the equivalence relation used to define

∆(J K
P). It is straightforward to check that f and f−1 are well defined and consistent along K.

Example 7.4.3. Consider a simplicial complex K depicted in the top left part of Figure 7.1. We

consider a partition of the vertex set of K into the two subsets P = {U,V}, where points in U

are indicated by black circles and points in V are indicated by red squares. In the top right of

Figure 7.1, we depict the standard 1-simplex ∆P together with the diagram J K
P over it. In par-

ticular, notice that J K
P([U,V ]) is a subset of the product |K(U)|×|K(V )| and that the morphisms

J K
P([U,V ])→J K

P(V ) = |K(V )| and J K
P([U,V ])→J K

P(U) = |K(U)| are both projections.

Finally, the bottom left of Figure 7.1 shows the geometric realization ∆J K
P , where each green

line and each red dashed line gets “squashed” to a single point.

K

U V

J K
P(U) J K

P(V )

J K
P([U,V ])

[U,V ]U V

∆P

J K
P

∆J K
P

Figure 7.1: Illustration of an example of a J K
P diagram.
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Note that J K
P is not a diagram of simplicial complexes, but of prodsimplicial complexes as

in [73, Def. 2.43]. See Figure 7.2 for an example of J K
P where P partitions the vertex set of a

7-simplex. In particular, one can consider the spectral sequence

E1
p,q(J

K
P) =

⊕
σ∈∆P

Hq(J
K
P(σ))⇒ Hp+q(K) .

Figure 7.2: On the left the 7-simplex together with a partition P of its vertex set. On the right, the
associated diagram of spaces J K

P .

Now, let us consider a filtered simplicial complex K∗ ∈ FCW-cpx such that its vertex set

V (K∗) is fixed throughout all values of R. Let P be a partition of V (K∗). We define the filtered

regular diagram J K
P ∈ FRDiag(P) by sending r ∈ R to J Kr

P . These diagrams inherit the shift

morphisms ΣK∗ from K∗ in the following way: Let σ ∈ ∆P and notice that we have restrictions

Σs−rK|U : |Kr(U)| → |Ks(U)| for all U ∈ σ and all s≥ r, so that we have induced morphisms

∏
U∈σ

Σ
s−rK|U : J Kr

P (σ)→J Ks
P (σ)

for all σ ∈ ∆P . In turn, these induce a shift morphism on ∆JK
P which respect filtrations, so that

we have a commutative diagram

E∗p,q(J
Kr
P ) PHp+q

(
∆J Kr

P

)
PHp+q

(
Kr
)

E∗p,q(J
Ks
P) PHp+q

(
∆J Ks

P

)
PHp+q

(
Ks
)

'

'

and thus PH∗(∆J K
P) ' PH∗(K∗). For each simplex σ ∈ ∆P one can see J K

P(σ) as a filtered
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simplicial complex, so that

E1
p,q(J

K
P) =

⊕
σ∈(∆P )p

PHq(J
K
P(σ))⇒ PHp+q(K) .

Example 7.4.4. Consider a point cloud X, a partition P and consider its Vietoris Rips complex

VR∗(X) ∈ FCW-cpx. In this case we have a fixed partition of the vertex set of VR∗(X), which

allows us to consider the spectral sequence:

E1
p,q
(
J

VR∗(X)
P

)
=
⊕

σ∈∆P

PHq(J
VR∗(X)
P (σ))⇒ PHp+q(VR∗(X)) .

This is very convenient as it avoids the main difficulties with the Mayer-Vietoris blowup complex

associated to a cover. Namely, one recovers PH∗(K) completely without any bounds depending

on the cover overlaps. In addition, notice that ∆J
VR∗(X)
P does not ‘blowup’ more than VR∗(X),

as both are homeomorphic by Lemma 7.4.2.

The (K,P)-join diagram is related to [101, Example 4]. There the motivation behind the

filtrations is given by a consistency radius and a filtration based on the differences between local

measurements. A similar example appears (without a filtration) as one of the opening examples

in [68, Appendix 4.G].
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Chapter 8

Interleaving Mayer-Vietoris spectral

sequences

In this chapter we will explore persistence spectral sequences as invariants. First we will introduce

in section 8.1 a general framework to obtain interleavings in the category RCW-cpx. Then, we

will focus on the case of regularly filtered regular diagrams, and present which compatibility con-

ditions lead to stability of the geometric realization, see section 8.2. These conditions carry over

to the stability results on the first page of spectral sequences that are presented on section 8.3. The

next two sections contain a study of stability of the persistence Mayer-Vietoris spectral sequence

for changing the chosen covers.

8.1 ε-acyclic carriers

The following definition will encode our notion of ‘noise’.

Definition 8.1.1. Let X ,Y ∈ RCW-cpx. An ε-acyclic carrier Fε
∗ : X∗ ⇒ Y [ε]∗ is a family of

acyclic carriers Fε
a : Xa ⇒ Ya+ε for all a ∈ R such that

Y (a+ ε ≤ b+ ε)Fε
a (c)⊆ Fε

b (X(a≤ b)(c))

for all cells c of Xa and a,b ∈ R with a≤ b.

The proposition below is an adaptation of [85, Thm. 13.4] or [41, Lem. 2.4] to the context of

tame filtered CW-complexes.

Proposition 8.1.2. Let X∗,Y∗ ∈ FCW-cpx be tame, and assume that there exists an ε-acyclic

carrier

Fε
∗ : X∗⇒ Y [ε]∗ .

149
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Then there exist chain morphisms f ε
a : C∗(Xa)→ C∗(Ya+ε) carried by Fε

a for all a ∈ R, so that

Y (a+ ε ≤ b+ ε)◦ f ε
a = f ε

b ◦X(a≤ b). Furthermore, given another such sequence of morphisms

gε
a : C∗(Xa)→C∗(Ya+ε), there exist chain homotopy equivalences Hε

a : gε
a ' f ε

a which are carried

by Fε
a for all a ∈ R.

Proof. Let b ∈ R and assume that f ε
a has already been defined for all values a < b, where we

allow for b =−∞. We first define f ε
b on all cells which are in the image of X(a < b) for any a < b

using the definition

f ε
b ◦X(a < b) = Y (a+ ε < b+ ε)◦ f ε

a .

Notice that the assumption that Xa ⊆ Xb is crucial for this to work. By hypotheses, given a cell

c ∈ Im(X(a < b)), its image f ε
b (c) is then contained in

Y (a+ ε < b+ ε)Fε
a (c̃)⊆ Fε

b (X(a < b)(c̃)) ,

where c̃ ∈ Xa is such that c = X(a < b)(c̃). Hence, f ε
b satisfies the carrier condition. Next we

define f ε
b on the remaining cells in

X̃b = Xb \
(⋃

a<b

X(a < b)
)
.

We proceed to prove this by induction. First, choose a 0-cell f ε
b (v) ∈ Fε

b (v) for each remaining

0-cell v ∈ X̃b, and notice that d∗ f ε
b (v) = 0 = f ε

b (d∗v), where we use d∗ for the chain complex

differentials. Next, by induction, assume that for a fixed p≥ 0, the p-cells s∈Xb have image f ε
b (s)

carried by Fε
b (s) and such that d∗ ◦ f ε

b (s) = f ε
b ◦d∗(s). We would like to extend f ε

b to the (p+1)-

cells. By semicountinuity, given such a cell c∈Xb, its boundary d∗c will be contained in Fε
b (c). On

the other hand, notice that by linearity and the induction hypotheses d∗ f ε
b (d∗c) = f ε

b (d∗d∗c) = 0,

thus f ε
b (d∗c) is a cycle in Fε

b (c). By acyclicity, there exists h ∈ Fε
b (c) such that d∗h = f ε

b (d∗c) and

thus we can define f ε
b (c) = h. Altogether, we have defined a chain morphism f ε

b which is carried

by Fε
b . Since X is tame, the statement holds for all filtration values on R.

Now, assume that gε
b is also carried by Fε

b for all b ∈ R. Following [82, Sec. 12.3], we define

the chain complex I given by I0 = 〈[0], [1]〉 and I1 = 〈[0,1]〉 and Ik = 0 for k > 0. This is

the cellular chain complex of the unit interval I decomposed into two 0-cells and one 1-cell. A

chain homotopy hε
b : f ε

b ' gε
b corresponds to a chain map hε

b : Ccell
∗ (Xb)⊗I →Ccell

∗ (Yb) such that

hε
b(x, [0]) = f ε

b (x) and hε
b(x, [1]) = gε

b(x) for all x∈ Xb. Let Hε
b (c, i) = Fε

b (c) for a cell (c, i)∈ X× I.

By assumption Hε : X × I ⇒ Y is an ε-acyclic carrier. Note that Ccell
∗ (Xb)⊗I ∼= Ccell

∗ (Xb× I).

Replicating the first part of the proof we can now extend any map hε
b : Ccell

∗ (Xb)⊗I0→Ccell
∗ (Yb)

with the above properties to all cells of X× I.
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Definition 8.1.3. Let X∗,Y∗ ∈RCW-cpx. We will call an ε-acyclic carrier Iε
X : X∗⇒ X∗+ε carrying

the standard shift ΣεX∗ a shift carrier. Suppose that there are ε-acyclic carriers

Fε : X∗⇒ Y∗+ε ,

Gε : Y∗⇒ X∗+ε .

together with shift carriers I2ε
X and I2ε

Y . We say that X∗ and Y∗ are ε-acyclic equivalent whenever

we have inclusions Gε ◦Fε ⊆ I2ε
X and Fε ◦Gε ⊆ I2ε

Y .

The motivation for the definition of ε-acyclic equivalences is the following lemma:

Proposition 8.1.4. Let X∗ and Y∗ be two tame elements from FCW-cpx which are ε-acyclic equiv-

alent. Then PH(X∗) and PH(Y∗) are ε-interleaved.

Proof. By Prop. 8.1.2 we know that there exist two chain maps f ε
∗ : C∗(X∗) → C∗(Y∗+ε) and

gε : C∗(Y∗)→C∗(X∗+ε) carried by Fε and Gε respectively. By hypothesis the compositions gε ◦ f ε

and f ε ◦gε are carried by corresponding shift carriers I2ε
X and I2ε

Y . Thus, using the second part of

Prop. 8.1.2 we obtain chain homotopies gε ◦ f ε ' Σ2εC∗(X) and f ε ◦gε ' Σ2εC∗(Y ). Altogether,

in homology these compositions are equal to the corresponding shifts, and PH∗(X∗) and PH∗(Y∗)

are ε-interleaved.

Example 8.1.5. Consider two finite metric spaces X and Y. Let dH(X,Y) be their Hausdorff

distance and set ε = 2dH(X,Y). Given a subcomplex K ⊆ VR(X), we denote its vertex set by

X(K)⊆ X. Likewise for a simplex σ ∈ VR(X), we write X(σ)⊆ X for the vertices spanning σ .

Define a carrier Fε : VR(X)⇒ VR(Y) by mapping a simplex σ ∈ VR(X)a to

Fε(σ) = |sup{K ⊆ VR(Y)a+ε | dH(X(σ),Y(K))≤ ε/2}|

This is clearly semicontinuous. If v0, . . . ,vn are vertices in Fε(σ), then by definition {v0, . . . ,vn}

is an n-simplex in Fε(σ). Therefore we have Fε(σ) ' ∆N for some N ∈ N, which is acyclic.

In particular, Fε is an ε-acyclic carrier. Interchanging the roles of X and Y we also obtain an

ε-acyclic carrier Gε : VR(Y)⇒ VR(X). Similarly, we define for a simplex σ ∈ VR(X)a the shift

carrier

I2ε
X (σ) = |sup{K ⊆ VR(X)a+2ε | dH(X(σ),X(K))≤ ε}|

Analogously one defines I2ε
Y . Since Gε ◦Fε ⊆ I2ε

X and Fε ◦Gε ⊆ I2ε
Y , Prop. 8.1.4 implies that

PH∗(VR(X)) and PH∗(VR(Y)) are ε-interleaved. This is similar to the proof using correspon-

dences, see [92, Prop. 7.8, Sec. 7.3].
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Example 8.1.6. Consider RN together with a 1-Lipschitz function f : RN → R with constant

ε > 0. On the other hand consider the lattices ZN and rZN + l for a pair of vectors r, l ∈ RN such

that the coordinates of r satisfy 0 < ri ≤ 1 for all 1 ≤ i ≤ N. Then we take their corresponding

cubical complexes C (ZN) and C (rZN + l) thought as embedded in RN . The function f induces

a natural filtration for these cubical complexes: a vertex v ∈ C (ZN) is contained in C (ZN) f (v),

while a cell a∈C (ZN) appears at the maximum filtration value on its vertices. There is a ε-acyclic

carrier Fε : C (ZN)⇒ C (rZN + l) sending each cell a ∈ C (ZN) to the smallest subcomplex Fε(a)

containing all b ∈ C (rZN + l) such that b∩a 6= /0. In an analogous way the inverse acyclic carrier

can be defined, and the compositions Fε ◦Gε and Gε ◦Fε define the shift carriers. Thus, using

Proposition 8.1.4, one shows that PH∗(C (ZN)) and PH∗(C (rZN + l)) are ε-interleaved.

Here an important assumption of Proposition 8.1.2 is that we are dealing with tame filtered

CW-complexes. However, what if we considered instead a pair of elements X∗,Y∗ ∈ RCW-cpx?

In this context, we notice that given an ε-acyclic carrier Fε : X∗→ Y∗[ε], it is not necessarily true

that the compositions

Y (a+ ε ≤ b+ ε)Fε
a (c) and Fε

b (X(a≤ b)(c))

are still acyclic for all pairs a ≤ b from R. Thus, whenever we talk about ε-acyclic carriers

Fε : X∗→Y∗[ε] in this context we will assume that Fε
b (X(a≤ b)(c)) is acyclic for all pairs a,b∈R

with a≤ b and all cells c ∈ X(a).

Lemma 8.1.7. Let X∗,Y∗ ∈RCW-cpx be a pair of elements such that both are ε-acyclic equivalent

in the above sense. Then dI(PH∗(X∗),PH∗(Y∗))≤ ε .

Proof. For each persistence value a ∈ R, we use Theorem 2.7.3 twice to obtain a pair of chain

morphisms fa : Ccell
a (X)→Ccell

a+ε(Y ) and ga+ε : Ccell
a+ε(Y )→Ccell

a+2ε
(X). In a similar way we obtain

a pair of chain homotopies ga+ε ◦ fa ' (Σ2εCcell
∗ (X))a and fa+ε ◦ ga ' (Σ2εCcell

∗ (Y ))a so that we

have equalities between the induced homology morphisms [ga+ε ] ◦ [ fa] = [(Σ2εCcell
∗ (X))a] and

[ fa+ε ] ◦ [ga] = [(Σ2εCcell
∗ (Y ))a] for all a ∈ R. Now, for a pair of values a ≤ b from R, it is not

necessarily true that Y (a+ ε ≤ b+ ε) ◦ fa = fb ◦X(a ≤ b). However, since Y (a+ ε ≤ b+ ε) ◦

fa and fb ◦ X(a ≤ b) are both included in Fε
b (X(a ≤ b)(c)) by hypotheses, then by applying

Theorem 2.7.3 again there is a chain homotopy equivalence Y (a+ε ≤ b+ε)◦ fa ' fb ◦X(a≤ b),

which implies

[Y (a+ ε ≤ b+ ε)]◦ [ fa] = [ fb]◦ [X(a≤ b)] ,

and we have defined a persistence morphism [ f∗] : PH∗(X∗)→ PH∗(Y∗[ε]). Similarly we can also

put together the ga for all a ∈ R so that we obtain a morphism [g∗] : PH∗(Y∗)→ PH∗(X∗[ε]). This
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leads to the claimed ε-interleaving.

Example 8.1.8. Consider a point cloud X and a Vietoris Rips complex VR∗(X) on top of it. For

this example, we will look at this applying an exponential transformation Xr = VRexp(r)(X) for all

r ∈R. We will look for an element Y ∈RCW-cpx that is ε-equivalent to VRexp(r)(X) while being

of much less complexity. We let Pr be a partition of X in such a way that for any partitioning

set U ∈Pr, for any pair of points p,q ∈U , we have that d(p,q)≤ exp(ε)/2. For a point p ∈ X,

we will denote by Pr(p) the partitioning set from Pr containing p. Then we define a simpli-

cial complex Yr over the set Pr, and where we include a simplex [Pr(p0),Pr(p1), . . . ,Pr(pN)]

whenever there exists a simplex [p0, p1, . . . , pN ] in VRexp(r)(X); here we ignore degenerate sim-

plices. It is easy to see that in general Y∗ is not a filtered complex but rather a regularly filtered CW

complex. We define the ε-acyclic carrier Fε
r : Xr→Yr+ε by sending a simplex [p0, p1, . . . , pN ]∈ Xr

to the standard simplex ∆[Pr(p0),Pr(p1),...,Pr(pN)]. On the other way, we start from a simplex

[U0,U1, . . . ,UM] ∈ Yr and send it to the subcomplex of Xr+ε given by the join ∆(U0) ∗∆(U1) ∗

· · · ∗∆(UM), where by ∆(Ui) we mean the standard simplex with vertices on the elements from

Ui ∈Pr. These assignements lead to a ε-acyclic equivalence between Xr and Yr, where the shift

carriers are given by composition. Now, by Lemma 8.1.7 there is a ε-interleaving between PH∗(X)

and PH∗(Y ).

Remark. Notice that our notion of acyclicity is different from that in [28] and [65]. In [65] a

filtered complex K∗ is called ε-acyclic whenever the induced homology maps H∗(Kr)→H∗(Kr+ε)

vanish for all r ∈ R. In this case one can still (trivially) define acyclic carriers between ∗ and

K∗. The problem arises when defining the shift carrier IAε
K for some constant A > 0, which does

not exist in general. One can however, adapt the proof of Proposition 8.1.2 so that there is a

chain morphism ψε(dim(Kr)+1) : C∗(Kr)→C∗(Kr+ε(dim(Kr)+1)); and that this coincides up to chain

homotopy with the composition through C∗(∗). One does this by following the same proof as in

Proposition 8.1.2, but increasing the filtration value by ε each time we assume that some cycle lies

in an acyclic carrier. Thus, if we have dim(K) = supr∈R(dim(Kr)) < ∞, then one could say that

there is an ε(dim(K)+1)-approximate chain homotopy equivalence between C(∗) and C(K∗).

8.2 Interleaving Geometric Realizations

Next, we focus on acyclic carrier equivalences between a pair of diagrams D ,L ∈ RRDiag(K).

We start by taking ε-acyclic carriers Fε
σ : D(σ) ⇒ L (σ) for all σ ∈ K which have to be com-

patible in the following sense: For any pair τ � σ and any cell c ∈ D(σ), there is an inclusion

L (τ � σ)(Fε
σ (c))⊆ Fε

τ (D(τ � σ)(c)) (8.1)
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and we assume in addition that Fε
τ (D(τ � σ)ΣrD(σ)(c)) is acyclic for all r ≥ 0. This compat-

ibility leads to ‘local’ diagrams of spaces. That is, given a pair of values a ∈ R and r ≥ 0 and

a cell c ∈ D(σ)a, we consider an object Fr,ε
σ×c ∈ RDiag(∆σ ). It is given by the space Fr,ε

σ×c(τ) =

Fε
τ

(
D(τ � σ)ΣrD(σ)(c)

)
for all faces τ � σ . For any sequence ρ � τ � σ in K, there are

morphisms in Fr,ε
σ×c given by restricting morphisms from L

τ Fr,ε
σ×c(τ) Fε

τ

(
D(τ � σ)ΣrD(σ)(c)

)
ρ Fr,ε

σ×c(ρ) Fε
ρ

(
D(ρ � σ)ΣrD(σ)(c)

)
.

L (ρ�τ)�

Using condition (8.1) repeatedly on the cells from L =D(τ � σ)ΣrD(σ)(c), we see that we have

an inclusion

L (ρ � τ)
(
Fε

τ (L)
)
⊆ Fε

ρ

(
D(ρ � τ)(L)

)
.

Thus the diagram Fr,ε
σ×c is indeed well defined, and we may consider the geometric realization

∆Fr,ε
σ×c. By hypothesis each Fr,ε

σ×c(τ) is acyclic for all τ � σ , so that the first page of the spectral

sequence E∗p,q(F
r,ε

σ×c)⇒ Hp+q(∆Fr,ε
σ×c) is equal to

E1
p,q(F

r,ε
σ×c) =

⊕
τ p∈∆σ

Hq(F
r,ε

σ×c(τ
p)) =


⊕

τ p∈∆σ F if q = 0,

0 otherwise.

where F denotes our coefficient field for homology. In fact, computing the homology with respect

to the horizontal differentials on the first page corresponds to computing the homology of ∆σ .

Thus, E2
p,q(F

r,ε
σ×c) is zero everywhere except at p = q = 0 where it is equal to F. Thus, the spectral

sequence collapses on the second page, and ∆Fr,ε
σ×c is acyclic. We will use the notation Fε

σ×c =

F0,ε
σ×c.

Definition 8.2.1. Let D and L be two diagrams in RRDiag(K). Suppose that there are ε-acyclic

carriers Fε
σ : D(σ)⇒ L (σ) for all σ ∈ K, and such that

L (τ � σ)
(
Fε

σ (c)
)
⊆ Fε

τ

(
D(τ � σ)(c)

)
for all c∈D(σ) and in addition Fε

τ (D(τ �σ)ΣrD(σ)(c)) is acyclic for all r≥ 0. Then we say that

the set {Fε
σ }σ∈K is a (ε,K)-acyclic carrier between D and L . We denote this by Fε : D ⇒ L .

Theorem 8.2.2. Let D and L be two diagrams in RRDiag(K). Suppose that there are (ε,K)-

acyclic carriers Fε : D ⇒L and Gε : L ⇒D , together with a pair of shift (ε,K)-acyclic carriers
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I2ε

D : D ⇒ D and I2ε

L : L ⇒ L , and such that these restrict to acyclic equivalences

Gε
τ ◦Fε

τ ⊆ (I2ε

D )τ and Fε
τ ◦Gε

τ ⊆ (I2ε

L )τ

for each simplex τ ∈ K. Then there is an ε-acyclic equivalence Fε : ∆D ⇒ ∆L which preserves

filtrations. That is, there are ε-acyclic equivalences F pFε : F p∆D ⇒ F p∆L for all p≥ 0.

Proof. Let σ × c ∈ ∆D be a cell, where c is an m-cell in D(σ). Define an acyclic carrier Fε :

∆D ⇒ ∆L by sending σ × c to the acyclic carrier ∆Fε
σ×c, which is a subcomplex of ∆L . Let

us first check semicontinuity. For any pair of cells τ × a � σ × c in ∆D , the cell a is contained

in the subcomplex D(τ � σ)(c), and by continuity of D(ρ � τ) we have that D(ρ � τ)(a) ⊆

D(ρ � σ)(c). Thus there are inclusions

Fε
ρ (D(ρ � τ)(a))⊆ Fε

ρ (D(ρ � σ)(c)) = Fε
ρ (D(ρ � σ)(c))

for all ρ � τ . More concisely, Fε
τ×a(ρ)⊆Fε

σ×c(ρ) for all ρ � τ . As a consequence ∆Fε
τ×a⊆∆Fε

σ×c

and semicontinuity holds.

Next, notice that Fε
(
Σr∆D(σ × c)

)
= Fε

(
σ ×ΣrD(σ)(c)

)
= ∆Fr,ε

σ×c which is an acyclic car-

rier. In order for Fε to be an ε-acyclic carrier, it remains to show the inclusion Σr∆L ◦Fε ⊆

Fε ◦Σr∆D for all r ≥ 0. For this, take σ × c ∈ ∆D and see that

Σ
r
∆L ◦Fε(σ × c) = Σ

r
∆L

( ⋃
τ�σ

τ×Fε
τ

(
D(τ � σ)(c)

))
=
⋃

τ�σ

τ×Σ
rL (τ)

(
Fε

τ

(
D(τ � σ)(c)

))
⊆
⋃

τ�σ

τ×Fε
τ

(
Σ

rD(τ)D(τ � σ)(c)
)

=
⋃

τ�σ

τ×Fε
τ

(
D(τ � σ)ΣrD(σ)(c)

)
= Fε

(
σ ×Σ

rD(σ)(c)
)
= Fε ◦Σ

r
∆D(σ × c) .

Similarly, one can define an ε-acyclic carrier Gε : ∆L ⇒ ∆D sending σ ×c ∈ ∆L to ∆Gε
σ×c.

In addition, we define respective shift ε-acyclic carriers I2ε

D : ∆D ⇒ ∆D and I2ε

L : ∆L ⇒ ∆L ,

sending respectively σ × c ∈ ∆D to ∆(I2ε

D )σ×c and τ×a ∈ ∆L to ∆(I2ε

L )τ×a. Then we have

Gε ◦Fε(σ × c) = Gε(∆Fε
σ×c) = Gε

( ⋃
τ�σ

τ×Fε
τ

(
D(τ � σ)(c)

))
=

⋃
ρ�τ�σ

ρ×Gε
ρ

(
L (ρ � τ)Fε

τ

(
D(τ � σ)(c)

))
⊆
⋃

ρ�σ

ρ×Gε
ρFε

ρ

(
D(ρ � σ)(c)

)
⊆ ∆(I2ε

D )σ×c = I2ε

D (σ × c),

where we have used the commutativity condition and equivalence of Fε
ρ and Gε

ρ . Consequently
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Gε ◦Fε ⊆ I2ε

D ; the other inclusion Fε ◦Gε ⊆ I2ε

L follows by symmetry. Altogether, we have ob-

tained an ε-equivalence Fε : ∆D ⇒ ∆L . Finally, notice that for all p ≥ 0 and for each cell

σ × c ∈ F p∆D , its carrier ∆Fε
σ×c is contained in F p∆D and so it preserves filtration. The same

follows for the other acyclic carriers.

Let X be a filtered simplicial complex, together with a cover U by filtered subcomplexes.

Recall the definitions of the diagrams XU and πU
0 over NU from example 7.2.2. Consider the

case when dI
(
PH∗(XU (σ)),PH∗(πU

0 (σ))
)
≤ ε for all σ ∈NU . This example has been of interest

before, see for example [65] or [28]. As mentioned in the remark at the end of Section 8.1, our

notion of ε-acyclicity is much stronger than that from [65]. This is why we obtain a result closer

to the Persistence Nerve Theorem from [31] than to the Approximate Nerve Theorem from [65].

Corollary 8.2.3 (Strong Approximate Multinerve Theorem). Consider a diagram D in FRDiag(K).

Assume that there are is a (ε,K)-acyclic carrier Fε : π0D ⇒ D . Then, there is a ε-acyclic equiv-

alence Fε : MNerv(D)⇒ ∆D . Consequently,

dI(PH∗(MNerv(D)),PH∗(∆D))≤ ε .

Proof. Notice that π0D is a well defined element from RRDiag(K) and there is an obvious choice

for the (ε,K)-acyclic carrier Gε : D ⇒ π0D where we send cells to their corresponding connected

component classes. The compatibility condition

π0(D(τ � σ))(Gε(D(σ)))⊆ Gε(D(τ))

also follows. The shift (2ε,K)-carrier I2ε

π0D
sends points to points, while the other I2ε

D is defined as

the composition Fε ◦Gε , which can be checked to define a (2ε,K)-acyclic carrier. Altogether, we

can use Proposition 8.2.2 and there exists a ε-acyclic equivalence Fε : MNerv(D)⇒ ∆(D).

Example 8.2.4. Consider a point cloudX together with a partition P . Assume that the (VR∗(X),P)-

join diagram J
VR∗(X)
P is such that there are compatible ε-acyclic equivalences π0(J

VR∗(X)
P (σ))⇒

J
VR∗(X)
P (σ) for all σ ∈ ∆P. Then there is an ε-acyclic equivalence ∆π0

(
J

VR∗(X)
P

)
⇒ ∆J

VR∗(X)
P

so that

dI
(
PH∗(MNerv(J VR∗(X)

P )),PH∗(VR∗(X))
)
≤ ε .

Acyclic carriers have been used in [70] and in [86] for approximating continuous morphisms

by means of simplicial maps. Here we have used the same tools to obtain an approximate “homo-

topy colimit theorem”, i.e. an approximate version of Theorem 2.8.6. The acyclic carrier theorem

is an instance of the more general acyclic Model theorem. An interesting future research direction
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would be to see how that general result can bring new insights into applied topology.

8.3 Interleaving Spectral Sequences

Definition 8.3.1. Let A and B from SpSq. A n-spectral sequence morphism f : A →B is a

spectral sequence morphism f : A →B which is defined from page n.

Definition 8.3.2. Given two objects A and B in SpSq[0,∞). We say that A and B are (ε,n)-

interleaved whenever there exist two n-morphisms ψ : A →B[ε] and ϕ : B→ A [ε] such that

the following diagram commutes

A B

A [ε] B[ε]

A [2ε] B[2ε]

ψΣεA ϕ ΣεB

ψ[ε]ΣεA [ε] ϕ[ε] ΣεB[ε]

(8.2)

for all pages r ≥ n. This interleaving defines a pseudometric in SpSq[0,∞)

dn
I
(
A ,B

)
:= inf{ε |A and B are (ε,n)-interleaved} .

Proposition 8.3.3. Suppose that A and B are (ε,n)-interleaved. Then these are (ε,m)-interleaved

for all m≥ n. In particular, we have that

dm
I
(
A ,B

)
≤ dn

I
(
A ,B

)
for any pair of integers m≥ n.

Proof. Follows directly from the definitions.

We start now by considering Mayer-Vietoris spectral sequences. Under some conditions

which are a special case of Theorem 8.2.2, one can obtain one page stability. In fact this sta-

bility is due to morphisms directly defined on the underlying double complexes, which is a very

strong property.

Proposition 8.3.4. Let (X ,U ) and (Y,V ) be two tame elements in FCW-cpx together with covers

by subcomplexes, both having the same finite nerve K = NU = NV . Suppose that there are (ε,K)-

acyclic carriers Fε : XU ⇒ Y V and Gε : Y V ⇒ XU , together with a pair of shift (ε,K)-acyclic

carriers I2ε

XU : XU ⇒ XU and I2ε

Y V : Y V ⇒Y V , and such that these restrict to acyclic equivalences

Gε
τ ◦Fε

τ ⊆ (I2ε

XU )τ and Fε
τ ◦Gε

τ ⊆ (I2ε

Y V )τ
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for each simplex τ ∈ K. Then there are a pair of double complex morphisms φ ε : C∗,∗(X ,U )→

C∗,∗(Y,V )[ε] and ψε : C∗,∗(Y,V )→ C∗,∗(X ,U )[ε] inducing a first page interleaving between

E∗∗,∗(X ,U ) and E∗∗,∗(Y,V )).

Proof. Unpacking the definitions this means we have to give chain homomorphisms

(φ ε
σ )r : C∗(XU (σ)r)→C∗(Y V (σ)r+ε) ,

(ψε
σ )r : C∗(Y V (σ)r)→C∗(XU (σ)r+ε)

that are natural in σ ∈ K and in r ∈ R. Since K is a poset category, these can be constructed

inductively as follows: As in Prop. 8.1.2 we may define φ ε
σ on all simplices σ ∈ K of dimension

dim(σ) = dim(K). Note that (φ ε
σ )r is carried by (Fε

σ )r for all r ∈ R. Assume by induction that

φ ε
τ are defined and carried by Fε

τ for all τ ∈ K with n ≤ dim(τ) ≤ dim(K) in such a way that

for all cofaces τ � σ the naturality condition φ ε
τ ◦XU (τ ≺ σ) = Y V (τ ≺ σ)[ε]◦φ ε

σ holds. Now

let τ ∈ K have dimension dim(τ) = n− 1 ≥ 0. The naturality condition on the simplices fixes

φ ε
τ on the filtered subcomplex Xτ =

⋃
τ≺σ Im

(
XU (τ ≺ σ)

)
, where the union is taken over all

cofaces σ of τ . Here notice that we can assume that φ ε
τ is well defined since the previous choices

of φ ε
σ for all cofaces τ ≺ σ are consistent due to the fact that for each cell c ∈ Xτ there exists

a unique maximal simplex σ ∈ NU such that c ∈ Xσ . In addition, notice that by hypotheses

Y V (τ ≺ σ)((Fε
σ )(c)) ⊆ Fε

τ (X
U (τ ≺ σ)(c)) for all a ∈ R and c ∈ XU (σ), so that our definition

of φ ε
τ in Xτ is indeed carried by Fε

τ . We then proceed as in Prop. 8.1.2 to define (φ ε
τ )a on all

simplices in the subset XU (τ)a \Xτ
a for all a ∈ R. The resulting chain map (φ ε

τ )a is carried by

(Fε
τ )a for all a ∈ R. Since XU is tame, we only need finitely many steps to obtain a morphism

φ ε
τ : C∗(XU (τ))→C∗(Y V (τ)[ε]) that satisfies the induction hypotheses.

Thus, we obtain double complex morphisms φ ε
p,q : Cp,q(X ,U )→Cp,q(Y,V )[ε] for all p,q≥ 0

by adding up our defined local morphisms

φ
ε
p,q :

⊕
σ p∈K

φ
ε
σ p :

⊕
σ p∈K

Cq(XU (σ p))−→
⊕

σ p∈K

Cq(Y V (σ p))[ε] .

Notice that φ ε
p,q commute both with horizontal and vertical differentials since we assumed that

each φ ε
σ is a chain morphism and these satisfy a naturality condition with respect to K. Thus, this

double complex morphism induces a spectral sequence morphism φ ε
p,q : E∗p,q(X

U )→ E∗p,q(Y
V )[ε].

By doing the same construction, we can obtain ψε
σ : C∗(Y V (σ))→ C∗(XU (σ))[ε] so that by

Proposition 8.1.2 we have [ψε
σ ]◦ [φ ε

σ ] = [Σ2εC∗(XU (σ))] and also [φ ε
σ ]◦ [ψε

σ ] = [Σ2εC∗(Y V (σ))]

for all simplices σ ∈K. Then we get a double complex morphism ψε
p,q :Cp,q(Y,V )→Cp,q(X ,U )[ε]

inducing an “inverse” spectral sequence morphism ψε
p,q : E∗p,q(Y,V )→ E∗p,q(X ,U )[ε]. These are
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such that from the first page, φ ε
∗,∗ and ψε

∗,∗ form a (ε,1)-interleaving of spectral sequences.

Notice that the proof of Proposition 8.3.4 relies heavily on the fact that the diagrams we are

considering come from a cover. This allows us to define a pair of double complex morphisms that

are compatible along the common indexing nerve. However, in Theorem 8.2.2 we observed that,

under some conditions, the geometric realizations of regularly filtered regular diagrams are stable.

Does this stability carry over to the associated spectral sequences? The next theorem shows that

this is indeed the case.

Theorem 8.3.5. Let D and L be two diagrams in RRDiag(K). Suppose that there are (ε,K)-

acyclic carriers Fε : D ⇒L and Gε : L ⇒D , together with a pair of shift (ε,K)-acyclic carriers

I2ε

D : D ⇒ D and I2ε

L : L ⇒ L , and such that these restrict to acyclic equivalences

Gε
τ ◦Fε

τ ⊆ (I2ε

D )τ and Fε
τ ◦Gε

τ ⊆ (I2ε

L )τ

for each simplex τ ∈ K. Then

d1
I (E(D ,K),E(L ,K))≤ ε .

Proof. Recall from Theorem 8.2.2 that there is a filtration-preserving acyclic carrier Fε : ∆KD ⇒

∆KL [ε]. This implies that there are chain complex morphisms f ε
a : C∗(∆D)r → C∗(∆L )a+ε

which respect filtrations in the sense that f ε
r (F

pC∗(∆D)r) ⊆ F pC∗(∆L )r+ε for all p ≥ 0. By

Lemma 7.3.1 this defines a morphism f ε
r : STot

∗ (D)r → STot
∗ (L )r+ε which respects filtrations.

Altogether we deduce that f ε
r determines a morphism of spectral sequences f ε

r : E∗p,q(D)r →

E∗p,q(L )r+ε . Similarly as in Lemma 8.1.7 the commutativity

Σ
εE∗p,q(L )r+ε ◦ f ε

r = f ε
r+ε ◦Σ

εE∗p,q(D)r (8.3)

does not need to hold for all r ∈ R. However, recall from Theorem 8.2.2 that there is an inclusion

Σr∆L ◦ Fε ⊆ Fε ◦ Σr∆D where the superset is acyclic, so that ΣrC∗(∆D)a+ε ◦ f ε
a and f ε

a+r ◦

ΣrC∗(∆D)a are both carried by the filtration preserving acyclic carrier Fε ◦Σr∆D . This implies

that there exist chain homotopies hε
r : Cn(∆D)r→Cn+1(∆D)r+ε which respect filtrations and such

that

f ε
a+r ◦Σ

rC∗(∆D)a−Σ
rC∗(∆D)a+ε ◦ f ε

a = δ
∆ ◦hε

a +hε
a ◦δ

∆ .

for all a ∈ R and all r ≥ 0. Recall that the zero page terms are given as quotients on successive

filtration terms E0
p,q(D)a = F pSTot

p+q(D)a/F p−1STot
p+q(D)a, for all a ∈ R and all integers p,q ≥ 0.

Thus, by Lemma 7.3.1 these chain homotopies carry over to STot
∗ (D)a and the commutativity
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relation from equation (8.3) holds from the first page onwards.

Similarly, we can define spectral sequence morphisms gε
r : E∗p,q(D)a → E∗p,q(D)a+ε for all

a ∈ R which commute with the shift morphisms from the first page. Also, by inspecting the shift

carriers, we can obtain equalities of 1-spectral sequence morphisms gε
r+ε ◦ f ε

r = Σ2εE∗p,q(D)r and

also f ε
r+ε ◦gε

r = Σ2εE∗p,q(L )r for all r ∈ R, and the result follows.

Example 8.3.6. Consider a pair of point clouds X,Y ∈ RN , together with partitions P and Q

for X and Y respectively. Also, assume that there is an isomorphism φ : ∆P → ∆Q such that

dH(X∩V,Y∩φ(V ))< ε/2 for all V ∈P . As defined in example 8.1.5 there are ε-acyclic carrier

equivalences Fε
V : VR(X∩V )⇒ VR(Y∩V ) for all V ∈ U . For any σ ∈ ∆P , one can define ε-

acyclic equivalences Fε
σ : J VR∗(X)

P (σ)⇒J
VR∗(Y)
Q (σ) by sending a cell ∏V∈σ τV ∈J

VR∗(X)
P (σ)

to ∏V∈σ Fε
V (τV ) ∈J

VR∗(Y)
Q (σ). These acyclic equivalences are compatible so that applying the-

orem 8.3.5 we obtain the result:

d1
I (E(J

VR∗(X)
P ,∆P),E(J VR∗(Y)

Q ,∆Q))≤ ε .

8.4 Refinement Induced Interleavings

In the previous sections we considered general diagrams in RRDiag(K) for some simplicial com-

plex K. We will now focus on the situation where we have a filtered simplicial complex X together

with a cover U by filtered subcomplexes, which provides a diagram XU : NU → FCW-cpx. The

associated spectral sequence will be denoted by E∗∗,∗(X ,U ), as done at the start of section 7.3.

We want to measure how E∗∗,∗(X ,U ) changes depending on U and follow ideas from [105] to

achieve this. First we consider a refinement V ≺U , which means that for all V ∈ V , there exists

U ∈ U such that V ⊆U . In particular, one can choose a morphism ρU ,V : NV → NU such that

Vσ ⊆ Uρσ for all σ ∈ NV . This choice is of course not necessarily unique. We would like to

compare the Mayer-Vietoris spectral sequences of both covers. For this, we recall the definition

of the Čech chain complex outlined on section 2.10 paying attention to the remark at the end. This

leads to the following isomorphism on the terms from the 0-page

E0
p,q(X ,U ) :=

⊕
σ p∈NU

Ccell
q (Uσ p)'

⊕
sq∈X

Ccell
p (NU (sq)). (8.4)

Here, NU ∈ RDiag(X) denotes the nerve diagram over the regular CW complex X , so that

Ccell
n (NU ) ∈ PreCosh(X) for all n ≥ 0. The isomorphism in (8.4) is given by sending a gen-

erator (aq)σ p ∈
⊕

σ p∈NU
Ccell

q (Uσ ) to its transpose (σ p)aq , for all cells aq ∈ X and all σ p ∈ NU .

Returning to a refinement V ≺ U and a morphism ρU ,V : NV → NU , there is an induced
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double complex morphism ρ
U ,V
p,q : Cp,q(X ,U )→Cp,q(X ,V ) given by

ρ
U ,V
p,q ((σ p)aq) =


(ρU ,V σ p)aq if dim(ρU ,V σ p) = p,

0 otherwise,

for all generators (σ p)aq ∈Cp,q(X ,U ) with cells σ p ∈ NV and aq ∈ X .

Lemma 8.4.1. ρ
U ,V
∗,∗ is a morphism of double complexes. Thus, it induces a morphism of spectral

sequences

ρ
U ,V
p,q : E∗p,q(X ,V )→ E∗p,q(X ,U )

dependent on the choice of ρU ,V .

Proof. Let δV and δU denote the respective Čech differentials from Čp(V ;Ccell
q ) and Čp(U ;Ccell

q ).

As we have the refinement chain morphism ρ
U ,V
∗ : Ccell

∗ (NV )→Ccell
∗ (NU ) we also have commu-

tativity ρ
U ,V
∗,∗ ◦ δV = δ U ◦ρ

U ,V
∗,∗ . This implies that ρ

U ,V
∗,∗ commutes with the horizontal differ-

ential dH . For commutativity with dV , we consider a generating chain (σ p)aq ∈ E0
p,q(X ,V ) with

σ p ∈ NV and aq ∈ X . Then if dim(ρU ,V σ p) = p we have

ρ
U ,V
p,q−1 ◦dV ((σ p)aq

)
= ρ

U ,V
p,q−1

(
(−1)p

∑
b�aq

([b : aq]σ p)b

)
= (−1)p

∑
b�aq

([b : aq]ρU ,V
σ

p)b

= (−1)pdcell
q
(
(ρU ,V

σ
p)aq
)
= dV ◦ρ

U ,V
p,q

(
(σ p)aq

)
and for dim(ρU ,V σ p)< p commutativity follows since both terms vanish.

A morphism of double complexes gives rise to a morphism of the vertical filtrations. By [83,

Thm. 3.5] this induces a morphism of spectral sequences ρ
U ,V
∗,∗ .

Since ρU ,V : NV → NU is not unique, the induced morphism ρ
U ,V
∗,∗ on the 0-page will in

general not be unique either. We have, however, the following:

Proposition 8.4.2. The 2-morphism obtained by restricting ρ
U ,V
∗,∗ is independent of the particular

choice of refinement map ρU ,V : NV → NU .

Proof. We have to show that ρ
U ,V
∗,∗ is independent of the particular choice of the refinement mor-

phism. First, define a carrier R : NV ⇒ NU by the assignment

σ 7→ R(σ) =
{

ν ∈ NU |Vσ ⊆Uν

}
.

The geometric realisation of the subcomplex R(σ) is homeomorphic to a standard simplex, in

particular contractible, so R is acyclic. Note that ρ
U ,V
∗,∗ is carried by R. Hence, by Thm. 2.7.3
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a b c d

e f g h

a b c d

e f g h

A
a b c d

e f g h

A B
a b c d

e f g h

A B C

Figure 8.1: Cubical complex C∗ at values 0,1,2 and 3.

Id
0

U0

0
1

Id
2

0

U1

Id

Id

U2

Figure 8.2: Cubical complex C∗ with covers U0, U1 and U2, and with filtration values 0,1 and
2. Blue dots represent classes in E2

1,0(C ,Ui) and red loops represent classes on E2
0,1(C ,Ui), for

i = 0,1,2.

for any pair of refinement maps ρU ,V ,τU ,V : NV → NU , there exists a chain homotopy k∗ :

Cn(NV )→Cn+1(NU ) carried by R, so that

k∗δV +δ
U k∗ = τ

U ,V
∗ −ρ

U ,V
∗

for all n ≥ 0 and where τ
U ,V
∗ and ρ

U ,V
∗ are induced morphisms of chain complexes C∗(NV )→

C∗(NU ). In particular, using the same notation, this translates into chain homotopies k∗ : E0
p,q(X ,V )→

E0
p+1,q(X ,U ) on the 0-page such that

k∗δV +δ
U k∗ = τ

U ,V
∗,∗ −ρ

U ,V
∗,∗

Thus, τ
U ,V
∗,∗ = ρ

U ,V
∗,∗ from the second page onward.

Example 8.4.3. Consider a filtered cubical complex C∗. At value 0, C∗ is given by the vertices

on R2 at the coordinates a = (0,0),b = (1,0),c = (2,0),d = (3,0),e = (0,1), f = (1,1),g =

(2,1),h = (3,1), together with all edges contained in the boundary of the rectangle adhe. Then,

at value 1 there appears the edge b f with the face ab f e. At value 2 the edge gc with the face

f gcb, and finally at value 3 the face ghdc appears. This is depicted on figure 8.1. Denote the three

squares from C∗ by A = (a,b, f ,e), B = (b,c,g, f ) and C = (c,d,h,g), and consider the following
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three covers of C∗:

U0 =
{

A,B,C
}
, U1 =

{
A,B∪C

}
, U2 =

{
C∗
}
.

The induced morphisms on second page terms at different filtration values are either null or

the identity, as illustrated on figure 8.2. For example, on the top left of figure 8.2 a class in

E2
1,0(C ,U0)(0) is indicated by the four blue dots which are contained in the respective intersec-

tions A∩B and B∩C; applying the first page differential to these points leads to trivial classes in

the covers from U0 (assuming that we take Z2 coefficients). This same class is still maintained at

the term E2
1,0(C ,U0)(1), where it is represented by a pair of points from the intersection B∩C.

At value 2 we can see that this cycle appears on the term E2
0,1(C ,U0)(2) as a red loop; see bot-

tom left of figure 8.2. On the other hand, the refinement induced morphism E2
0,1(C ,U0)(0)→

E2
0,1(C ,U1)(0) sends the aforementioned class represented by the four blue dots to the class rep-

resented by two dots contained in B∩C. However, notice that E2
0,1(C ,U0)(1)→ E2

0,1(C ,U1)(1)

is the zero morphism since the class that previously appeared in E2
0,1(C ,U1)(0) now has been

“extended” to a class from E2
1,0(C ,U1)(1).

A consequence of Prop. 8.4.2 is that if we have a space X together with covers U ≺ V ≺

U , then by uniqueness the morphism on the second page induced by the consecutive inclusions

coincides with the identity. This happens for example when we consider two covers U and V

from X and we consider the pair of covers which result from adding the whole space as a covering

element: Ũ = U ∪{X} and Ṽ = V ∪{X}; in this case Ũ and Ṽ refine one another. This gives

rise to the next result.

Proposition 8.4.4. Suppose a pair of covers U and V of X are a refinement of one another. Then

there is a 2-spectral sequence isomorphism E2
∗,∗(X ,U )' E2(X ,V ).

This corollary implies that for any cover U of X , the cover U ∪X obtained by adding the

extra covering element X is such that the second page E2
p,q(X ,U ∪X) has only the first column

nonzero.

Lemma 8.4.5. Consider a cover U of a space X, and suppose that X ∈U . Then E2
p,q(X ,U ) = 0

for all p > 0.

Proof. This follows from the observation that the cover {X} consisting of a single element sat-

isfies {X} ≺ U ≺ {X}. Using Prop. 8.4.4 we therefore obtain isomorphisms E2
p,q(X ,U ) '

E2
p,q(X ,{X}), and the result follows.

Suppose that none of the two covers V and U refines the other. One can still compare them

using the common refinement V ∩U =
{

V ∩U
}

V∈V ,U∈U which is a cover of X . Thus, there are
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two refinement morphisms

E2
p,q(X ,U ) E2

p,q(X ,V ∩U ) E2
p,q(X ,V ).

ρ
U ,V ∩U
p,q ρ

V ,V ∩U
p,q

(8.5)

Following [105, Sec. 28] we can now build the double complex Cp,q(V ,U ,PHk) which is given

by

⊕
σ p+1∈NV

τq∈NU

PHk(Vσ p+1 ∩Uτq)
⊕

σ p+1∈NV

τq+1∈NU

PHk(Vσ p+1 ∩Uτq+1)

⊕
σ p∈NV
τq∈NU

PHk(Vσ p ∩Uτq)
⊕

σ p∈NV

τq+1∈NU

PHk(Vσ p ∩Uτq+1)

δV

(−1)p+1δ U

δV

(−1)pδ U

for any pair of integers p,q ≥ 0 and for each k ≥ 0. From this double complex we can study the

two associated spectral sequences

IE
1
p,q(V ,U ;PHk) =

⊕
σ p∈NV

Ȟq
(
(−1)p

δ
U |Vσ p∩U ;PHk

)
,

IIE1
p,q(V ,U ;PHk) =

⊕
τq∈NU

Ȟp
(

δ
V |V ∩Uτq ;PHk

)
,

whose common target of convergence is Ȟn(V ∩U ;PHk) with p + q = n. For details about

the spectral sequence associated to a double complex, the reader is recommended to look at [83,

Thm. 2.15].

Example 8.4.6. Consider the cubical complex C∗ from example 8.4.3. Set U = U1, that is, U

is the cover by the sets U1 = A and U2 = A∪B. On the other hand, consider V to be formed of

V1 = A∪B and V2 = C. The double complex Cp,q(C ,V ,U ,PHk) is illustrated on figure 8.3 for

filtration values 0 and 1, and for k = 0. One can see that the refinement morphisms from (8.5) are

actually projections.

Consider the nerve NU ∩V as a subset of the product of nerves NU ×NV . We have then two

projections πU : NU ∩V → NU and πV : NU ∩V → NV , both of which induce chain morphisms

πU
∗ : C∗(NU ∩V )→C∗(NU ) and πV

∗ : C∗(NU ∩V )→C∗(NV ). These induce a pair of morphisms

⊕
σ p∈NU

Ccell
k (Vσ p)

⊕
σ p∈NU
τq∈NV

Ccell
k (Vσ p ∩Uτq)

⊕
τq∈NV

Ccell
k (Uτq) ,

πU
q,kπV

p,k
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(
V1 ∩V2

)
∩U1

V1 ∩U1 V1 ∩U2 V2 ∩U2 V1 ∩ (U1 ∩U2)

(
V1 ∩V2

)
∩U1

V1 ∩U1 V1 ∩U2 V2 ∩U2 V1 ∩ (U1 ∩U2)

Figure 8.3: Cp,q(C ,V ,U ,PHk) at filtration values 0 and 1.

for any pair of integers p,q≥ 0. The induced map πV
p,k on Ck(Vσ p ∩Uτq) satisfies

π
V
p,k ((σ

p× τ
q)s) =


(σ p)s if dim(τq) = q = 0,

0 else,

for all σ p ∈ NV ,τq ∈ NU and a cell ak ∈ Vσ ∩Uτ . The map πU
∗,∗ acts similarly. By definition πU

∗,∗

and πV
∗,∗ both commute with the Čech differentials δU and δV respectively. Let σ p ∈ NV and

τ0 ∈ NU . Then we have a commutative square

(
σ p× τ0

)
ak (σ p)ak

∑b∈ak

(
[b : ak]σ p× τ0

)
b ∑b∈ak

(
[b : ak]σ p

)
b

πV
∗,∗

dn dn

πV
∗,∗

for all cells ak ∈ Vσ ∩Uτ . This implies that πV
∗,∗ commutes with dn and the same holds for πU

∗,∗.

We obtain a morphism

π
V
p,k :

⊕
σ p∈NV

τ0∈NU

Ck(Vσ p ∩Uτ0)→
⊕

σ p∈NV

Ck(Vσ p) ,

commuting with d∗ and δV and δU . Thinking of the 0-th column IE0
p,0(V ,U ;PHk) as a chain

complex with Čech differential δV , one has a chain morphism

π
V
p,k : IE

1
p,0(V ,U ;PHk)→ Čp(V ;PHk) = E1

p,k(X ,V )

for all p≥ 0. By the same argument there is another chain morphism

π
U
q,k : IIE

1
0,q(V ,U ;PHk)→ Čq(U ;PHk) = E1

q,k(X ,U ) .

for all q ≥ 0. There is a very natural way of understanding how much πV
p,k fails to be an isomor-
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phism. To do this, we take for each simplex σ p ∈ NV , the Mayer-Vietoris spectral sequence for

Vσ p covered by Vσ p ∩U

M2
q,k(Vσ p ∩U )⇒ PHq+k(Vσ p),

where we changed the notation from E2
q,k(Vσ p ,Vσ p ∩U ) to M2

q,k(Vσ p ∩U ) as it helps distinguish-

ing this spectral sequence from IE∗p,q. Then

IE
1
p,0(V ,U ;PHk) =

⊕
σ p∈NV

M2
0,k(Vσ p ∩U ) .

Here we notice that the restriction of πV
p,k to the summand M2

0,k(Vσ p ∩U ) is given by the compo-

sition

M2
0,k(Vσ p ∩U ) M∞

0,k(Vσ p ∩U ) PHk(Vσ p).

In consequence there is an induced morphism on the second page 0th column πV
p,k : IE2

p,0(V ,U ;PHk)→

Ȟp(V ;PHk). Notice that PH0 is a cosheaf, and in this case M2
0,0(Vσ p ∩U ) = PH0(Vσ p) for all

σ p ∈ NV . This implies that πV
p,0 is an isomorphism for all p≥ 0.

Now we turn to the morphism θ
V ,V ∩U
p,k defined by the composition

Ȟp(V ∩U ;PHk)
IE∞

p,0(V ,U ;PHk)
IE2

p,0(V ,U ,PHk) Ȟp(V ;PHk)
πV

p,k

and notice that θ
V ,V ∩U
p,k is carried by the acyclic carrier sending σ × τ ∈ NV ∩U to ∆σ ⊆ NV . In

particular, if V ≺U then by using Lemma 8.4.5 we have IE1
p,q = 0 for all q > 0 and the first two

arrows in the definition of θ
V ,V ∩U
p,k are isomorphisms. Similarly, in this case we obtain M2

q,k = 0

for all q > 0, and πV
p,k becomes an isomorphism. Altogether, the inverse (θV ,V ∩U

p,k )−1 is well-

defined, and by composition we define morphisms θ
U ,V
p,k = θ

U ,V ∩U
p,k ◦ (θV ,V ∩U

p,k )−1. Here notice

that θ
U ,V ∩U
p,k is defined in an analogous way to θ

V ,V ∩U
p,k , but using IIE∗0,p(V ,U ;PHk) instead of

IE∗p,0(V ,U ;PHk). The following proposition should also follow from applying an appropriate

version of the universal coefficient theorem to [105, Prop. 4.4]. Instead we will prove the dual

statement of this proposition by means of acyclic carriers.

Proposition 8.4.7. Suppose that V ≺U , and let ρU ,V denote a refinement map. The morphism

θ
U ,V
p,k : E2

p,k(X ,V )→ E2
p,k(X ,U ) coincides with the standard morphism induced by ρU ,V .

Proof. Since V ≺ U , the morphism θ
V ,V ∩U
p,k : Ȟp(V ∩U ,PHk)→ Ȟp(V ,PHk) is an isomor-
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phism. Now consider the diagram

Ȟp(V ;PHk) Ȟp(U ;PHk)

Ȟp(V ∩U ;PHk)
IIE∞

0,p(V ,U ;PHk)
IIE2

0,p(V ,U ;PHk).

ρ
U ,V
p,k

' πU
p,k

To check that it commutes we study the following triangle of acyclic carriers

NV ∩U

NV NU

πUF

R

where R is defined in Prop. 8.4.2. The carrier F is given for every σ ∈ NV by F(σ) = ∆σ ×

|R(σ)|. Since F is acyclic, there exists f∗ : C∗(NV )→ C∗(NV ∩U ) inducing a chain morphism

f∗ : Čp(V ,Sk)→ Čp(V ∩U ,Sk) by the assignment (σ)s 7→ ( f∗(σ))s for all simplices s ∈ Sk(X)

and all σ ∈ NV . In fact, F defines an acyclic equivalence by considering the inverse carrier

P : NV ∩U ⇒ NV sending σ × τ to ∆σ . In this case the shift carrier IV : NV ⇒ NV is given by the

assignment σ 7→ ∆σ , and IV ∩U : NV ∩U ⇒NV ∩U is given by σ×τ 7→ ∆σ×|R(σ)|. As θ
V ,V ∩U
p,k is

carried by P, this implies that f∗=
(
θ

V ,V ∩U
p,k

)−1 as morphisms Ȟp(V ,PHk)→ Ȟp(V ∩U ,PHk).

Consequently, θ
U ,V
p,k is carried by πU F = R. Altogether, we obtain the equality θ

U ,V
p,k = ρ

U ,V
p,k as

morphisms Ȟp(V ,PHk)→ Ȟp(U ,PHk) since both are carried by R.

Still assuming that V ≺U , we now look for conditions for the existence of an inverse ϕ
V ,U
p,k :

E2
p,k(X ,U )→ E2

p,k(X ,V ) of θ
U ,V
p,k .

Proposition 8.4.8. Suppose that V ≺ U . If M2
p,k(V ∩Uτq) = 0 for all p > 0, k ≥ 0 and all

τq ∈ NU , then the maps θ
U ,V
∗,∗ induce a 2-isomorphism of spectral sequences

E≥2
∗,∗ (X ,U )' E≥2

∗,∗ (X ,V ).

Proof. By Prop. 8.4.2 and Prop.8.4.7 we can choose a refinement map ρU ,V : NV → NU giving

a morphism of spectral sequences

ρ
U ,V
∗,∗ : E≥2

∗,∗ (X ,V )→ E≥2
∗,∗ (X ,U )

that coincides with θ
U ,V
∗,∗ . Our assumption about M2

p,k implies IIE2
p,q(V ,U ;PHk)= 0 for all p> 0,

which in turn gives

Ker
(
Ȟq(V ∩U ;PHk)�

IIE
∞

0,q(V ,U ;PHk)
)
= 0 (8.6)
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and

Coker
(

IIE
∞

0,q(V ,U ;PHk) ↪→ IIE
2
0,q(V ,U ,PHk)

)
= 0. (8.7)

Now note that πU
q,k yields an isomorphism IIE2

0,q(V ,U ,PHk) ' Ȟq(U ,PHk). This shows that

θ
U ,V
q,k is a composition of isomorphisms; thus the statement follows.

We will now relax the conditions in Prop. 8.4.8 and use the relations of left-interleaving

and right-interleaving of persistence modules (denoted by ∼ε
L and ∼ε

R, respectively) to achieve

this (see section 5.2 or [65, § 4]). We have to adapt [65, Prop. 4.14].

Lemma 8.4.9. Suppose that we have persistence modules A, B and C, and a parameter ε ≥ 0

such that A ∼ε
R B and B ∼ε

L C. Denote by Φ the morphism Φ : A→ C given by the composition

A � B ↪→C. Then there exists Ψ : C→ A[2ε] such that Φ and Ψ define a 2ε-interleaving A∼2ε C.

Proof. By hypothesis, we have a sequence

E1 A B C E2
f g

which is exact in A and C and where E1 ∼ε 0 and E2 ∼ε 0. Then, let v ∈ C and notice that

ΣεC(v) ∈ Im(g). Thus, there exists a unique vector w ∈ B such that g(w) = ΣεC(v). On the other

hand, there exists z ∈ A, not necessarily unique, such that f (z) = w. This defines a unique element

ΣεA(z) ∈ A. To see this, suppose that another z′ ∈ A is such that f (z′) = w. Then f (z− z′) = 0 and

z− z′ ∈ Ker( f ), which implies 0 = ΣεA(z− z′) = ΣεA(z)−ΣεA(z′), and then ΣεA(z) = ΣεA(z′).

Altogether, we set Ψ = ΣεA◦Φ−1 ◦ΣεC, which is well-defined.

Recall that for V ≺U we have that Ȟq(V ;PHk)' Ȟq(V ∩U ;PHk) for all k≥ 0 and q≥ 0.

There is a natural way to relax (8.6) and (8.7) to the persistent case. We assume that for ε ≥ 0,

there are right and left interleavings

Ȟq(V ∩U ;PHk)∼ε
R

IIE
∞

0,q(V ,U ;PHk)∼ε
L

IIE
2
0,q(V ,U ,PHk). (8.8)

If we define Φq,k : Ȟq(V ∩U ;PHk)→ IIE2
0,q(V ,U ,PHk) to be the composition of the associated

persistence morphisms as in Lem. 8.4.9, then there exists

Ψq,k : IIE
2
0,q(V ,U ,PHk)→ Ȟq(V ∩U ;PHk)[2ε],

such that Φq,k and Ψq,k define a 2ε-interleaving. We repeat this argument for the local Mayer-
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Vietoris spectral sequences. Assume that for some ν ≥ 0 there are interleavings

IIE
1
0,q(V ,U ,PHk)∼ν

R

⊕
τq∈NU

M∞
k,0(V ∩Uτq)∼ν

L

⊕
τq∈NU

PHk(Uτq). (8.9)

Let Πq,k : IIE1
0,q(V ,U ,PHk) →

⊕
τq∈NU

PHk(Uτq) be the composition of the associated mor-

phisms. By Lem. 8.4.9 there exists Ξq,k such that Πq,k and Ξq,k define a 2ν-interleaving. By slight

abuse of notation we will continue to denote the induced 2ν-interleaving between IIE2
0,q(V ,U ,PHk)

and Ȟq(U ;PH∗) by Πq,k and Ξq,k. Altogether we have that θ
U ,V
q,k = Πq,k ◦Φq,k ◦ (θV ,V ∩U

q,k )−1

and in this situation there is indeed an ‘inverse’ ϕ
V ,U
q,k = θ

V ,V ∩U
q,k ◦Ψq,k ◦Ξq,k, which increases

the persistence values by 2(ε +ν).

Theorem 8.4.10. Suppose that V ≺U and for ε ≥ 0 and ν ≥ 0 the interleavings in (8.8) and (8.9)

hold. Then

ϕ
V ,U
p,q : E∗p,q(X ,U )→ E∗p,q(X ,V )[2(ε +ν)]

defines a 2-morphism of spectral sequences such that θ
U ,V
p,q and ϕ

V ,U
p,q is a 2-page 2(ε + ν)-

interleaving between E∗p,q(X ,U ) and E∗p,q(X ,V ).

Proof. The only thing that remains to be proved is that ψ
V ,U
p,q commutes with the spectral se-

quence differentials dn for all n≥ 2. Since these differentials commute with the shift morphisms

Σ2(ε+ν), this follows from considering the diagram

En
p,q(X ,U ) En

p−n,q+n−1(X ,U )

En
p,q(X ,V ) En

p−n,q+n−1(X ,V )

En
p,q(X ,V )[2(ε +ν)] En

p−n,q+n−1(X ,V )[2(ε +ν)] ,

dn

ψ
V ,U
p,q ψ

V ,U
p−n,q+n−1

dn

ρ
U ,V
p,q

Σ2(ε+ν)

ρ
U ,V
p−n,q+n−1

Σ2(ε+ν)

dn

in which the two trapeziums and the two triangles commute.

Example 8.4.11. Consider a cubical complex C∗ as shown in Fig. 8.4, together with the covers

V = {A,B,C,D} and U = {A∪B,C∪D}, see Fig. 8.4 for the cells A,B,C and D. In this case we

have

Ȟ1(V ;PH0)' Ȟ1(V ∩U ;PH0)' I(0,1+ ε)⊕ I(1,1+ ε)∼ε I(0,1)' IIE
2
0,1(V ,U ,PH0)
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A B

C D

Figure 8.4: Cubical complex C∗ at values 0,1 and 1+ ε .

Id 0

Figure 8.5: Morphisms θ
U ,V
1,0 along [0,1) and along [1,1+ ε).

and also
IIE

1
0,0(V ,U ,PH1)' 0∼ε I(1,1+ ε)⊕ I(1,1+ ε)'

⊕
τ0∈NU

PH1(Uτ0).

These interleavings are shown in Fig. 8.5. Thm. 8.4.10 implies that there is a 4ε-interleaving

between E∗p,q(X ,U ) and E∗p,q(X ,V ). Notice that in this example, the nontrivial interleaved terms

are in different positions of the spectral sequences. Therefore we can improve the upper bound to

2ε . We will use this observation later in Prop. 8.5.1.

8.5 Interleavings with respect to different covers

Consider X ∈ FCW-cpx, together with a pair of covers W and U so that W ≺U . Motivated by

the interleaving constructed in Thm. 8.4.10 we take a closer look at the following finite sequence

of covers interpolating between W and a cover that both refines and is refined by U . Let the

strict r-th intersections of U be the family of sets U r = {Uτr}τr∈NU for all r ≥ 0. We define the

(r,W ,U )-interpolation as the covering set W r =W ∪U r. In particular, note that the (0,W ,U )-

interpolation has the property that W 0 ≺U ≺W 0, and consequently E2
p,q(X ,U )' E2

p,q(X ,W 0).

In addition if U is a finite cover, then we will have U N = /0 for N ≥ 0 sufficiently large and

consequently W N = W .

Proposition 8.5.1 (Local Checks). Let W ≺U be a pair of covers for X, where U is finite. Let

N ≥ 0 be such that U N = /0. For every 0 ≤ r ≤ N, we assume that there exist εr ≥ 0 and νr ≥ 0

such that for all τr ∈ NU

E2
0,q
(
Uτr ,W r+1

|Uτr

)
∼νr

R E∞
0,q
(
Uτr ,W r+1

|Uτr

)
∼νr

L PHq(Uτr)
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and also

dI(E2
p,q(Uτr ,W r+1

|Uτr
),0)≤ εr .

for all p > 0, and q≥ 0. Then we have that

d2
I
(
E∗p,q(X ,W k),E∗p,q(X ,W k+1)

)
≤ 2max(εr,νr).

Therefore, by using the triangle inequality, we obtain

d2
I
(
E∗p,q(X ,U ),E∗p,q(X ,W ))≤

N

∑
k=0

2max(εr,νr) .

Proof. We need to consider the spectral sequence IIE2
p,q(W

r+1,W r;PHk). Note that by construc-

tion of the covers W r we have that for each τr ∈NU with dim(τr) = r > 0 the set W r
τr is contained

in one of the open sets from W r+1. By Lemma 8.4.5 this implies that IIE1
p,q(W

r+1,W r;PHk) = 0

for all p> 0 and q> 0 and k≥ 0. Moreover, we have that IIE1
0,q(W

r+1,W r;PHk)=
⊕

τr∈Nq
W r

PHk(W
r

τr)

for all q > 0 and k ≥ 0. The resulting spectral sequence is shown in Fig. 8.6.

As a consequence of these observations condition (8.9) holds for these indices with ν = 0. In

addition, IIE2
0,q(W

r+1,W r;PHk) =E2
q,k(X ,W r) holds for all q≥ 2 and k≥ 0 (see Fig. 8.6 and 8.7).

In particular, there is only one possible non-trivial differential for each entry in the bottom row as

indicated in Fig. 8.7. Note that our hypothesis dI(E2
p,q(Uτr ,W r+1

|Uτr
),0) ≤ εr applies to the entries

in the first column with p > 0 and gives left and right interleavings of the form

Ȟq(W
r+1∩W r;PHk)∼εr

R
IIE

∞

0,q(W
r+1,W r;PHk)∼εr

L
IIE

2
0,q(W

r+1,W r;PHk)

for all q > 0 and k ≥ 0. Hence, condition (8.8) holds with value εr.

IIE
1
2,0(W

r+1 ,W r ;PHk) 0 0
. . .

IIE
1
1,0(W

r+1 ,W r ;PHk) 0 0 0

IIE
1
0,0(W

r+1 ,W r ;PHk)
⊕

τ1∈NW r
PHk(W

r
τ1 )

⊕
τ2∈NW r

PHk(W
r

τ2 )
⊕

τ3∈NW r
PHk(W

r
τ3 )

d1

Figure 8.6: First page of IIE∗p,q(W
r+1,W r;PHk).

Let us look now at the case q= 0. Here we have Ȟ0(W r+1∩W r;PHk)=
IIE2

0,0(W
r+1,W r;PHk)

and consequently (8.8) holds with value ε = 0. Next, by hypothesis, for all k ≥ 0 we have right
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∼ εr 0 0
. . .

∼ εr 0 0 0

IIE2
0,0(W

r+1,W r;PHk)
IIE2

0,1(W
r+1,W r;PHk) E2

2,k(X ,W r) E2
3,k(X ,W r)

d2

d3

Figure 8.7: Second page of IIE∗p,q(W
r+1,W r;PHk) together with higher differentials.

and left interleavings

M2
0,k
(
Uτr ∩W r+1)∼νr

R M∞
0,k
(
Uτr ∩W r+1)∼νr

L PHk(Uτr) ,

for all τr ∈ NU . Thus by taking the direct sum of these interleavings we obtain

IIE1
0,0(W

r+1,W r;PHk)∼νr
R

⊕
τr∈NW r

0

M∞
0,k(W

r
τr ∩W r+1)∼νr

L E1
0,k(X ,W r) .

and condition (8.9) also holds for q = 0. The result now follows from Thm. 8.4.10.

Notice that we can slightly improve the statement of Thm. 8.4.10 here: For each term in the

bottom row of the spectral sequence in this particular example only one of the two conditions (8.8)

and (8.9) is nontrivial, and the proof of Thm. 8.4.10 carries over with 2max(εr,νr) replacing

2(εr +νr).

Remark. Notice that for reasonable cases the parameters νr are bounded above by Kεr for some

constant K > 0 by a result from [65]. Nevertheless, we would like to keep νr and εr separated here,

since we hope to compute it from M∗p,k
(
Uτr ,W r+1

|Uτr

)
for τr ∈ NU hereby get more accurate esti-

mates. Intuitively, asking for εr and νr to be small is equivalent to asking for cycle representatives

in covers from W r to be approximately contained in covering sets from W r+1.

Finally, we would like to compare two separate covers U and V and have an estimate for the

interleaving distance between the associated spectral sequences. The main idea of Prop. 8.5.1 is to

translate this comparison problem into a few local checks that can be run in parallel. We formalize

this in the following Corollary.

Corollary 8.5.2 (Stability of Covers). Consider two pairs (X ,U ) and (X ,V ), where X is a space

and U and V are covers. Let W = U ∩V and denote by W r
U and W r

V the respective (r,W ,U )

and (r,W ,V ) interpolations. For every 0 ≤ r ≤ N, we assume that there exist εr,ε
′
r ≥ 0 and
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νr,ν
′
r ≥ 0 such that for all τr ∈ NU and σ r ∈ NV

E2
0,q
(
Uτr ,W r+1

U

)
∼νr

R E∞
0,q
(
Uτr ,W r+1

U

)
∼νr

L PHq(Uτr),

E2
0,q
(
Vσ r ,W r+1

V

)
∼ν ′r

R E∞
0,q
(
Vσ r ,W r+1

V

)
∼ν ′r

L PHq(Vσ r),

for all r ≥ 0, and also

dI(E2
p,q(Uτr ,W r+1

U ),0)≤ εr , dI(E2
p,q(Vσ r ,W r+1

V ),0)≤ ε
′
r

for all p > 0, and q≥ 0. Then we have that

d2
I
(
E∗p,q(X ,U ),E∗p,q(X ,V ))≤ R(U ,V )

where R(U ,V ) = max
(

∑
N
r=0 2max(εr,νr),∑

N
r=0 2max(ε ′r,ν

′
r)
)

.

Proof. By Lemma 8.4.1 there are double complex morphisms given by the refinement maps

Čp(U ,Ccell
q ) Čp(W ,Ccell

q ) Čp(V ,Ccell
q ) .

ρ
U ,W
p,q ρ

V ,W
p,q

In turn, these induce 2-morphisms of spectral sequences

E2
p,q(X ,U ) E2

p,q(X ,W ) E2
p,q(X ,V ) .

ρ
U ,W
p,q ρ

V ,W
p,q

Let ψ
U ,W
p,q and ψ

V ,W
p,q be the ‘inverses’ of ρ

U ,W
p,q and ρ

V ,W
p,q , respectively, witnessing the interleav-

ings of the two spectral sequences (see Thm. 8.4.10 and Prop. 8.5.1). The result follows from

considering the commutative diagram

E2
p,q(X ,U ) E2

p,q(X ,W ) E2
p,q(X ,V )

E2
p,q(X ,U )[R(V ,U )] E2

p,q(X ,W )[R(V ,U )] E2
p,q(X ,V )[R(V ,U )]

ΣR(V ,U )
ψ

W ,U
p,q

ρ
U ,W
p,q ρ

V ,W
p,q

ΣR(V ,U ) ΣR(V ,U )

ψ
W ,V
p,q

ρ
U ,W
p,q ρ

V ,W
p,q

where all arrows are 2-morphisms of spectral sequences.
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Chapter 9

PerMaViss

The aim of this chapter is to explain how one implements in practice the persistence spectral

sequence outlined in chapter 6. In doing so, we will review some examples that will illustrate how

these objects behave. Currently, our code can be found in the python module PERMAVISS [116],

which stands for Persistence Mayer Vietoris spectral sequence. Further, we will explain and

describe the main PERMAVISS pipeline, but avoiding getting too much focused on the details: for

these, see the PERMAVISS documentation. As a programming language, we have chosen Python

as its syntax is easy to read. This module handles the particular case of Vietoris Rips complexes

with spatial covers taken from point clouds. However, the code implementation has been kept as

abstract as possible so that other examples, such as the (K,P) join diagram, can be implemented

in the future. Just before we start, a couple of comments about some of the special notation from

this chapter:

• We will write commands after the signs >>>

• We will denote by “np” the NumPy python library.

• Matrices will be encoded using the np.array object, see the NumPy documentation.

• Given a numpy array M, we denote the ith row by M[i] while we denote the ith column by

M[:,i].

• We will often use python lists. These objects are given by square brackets containing some

elements, such as [a, 1, 64]. We will denote by [] the empty list. Given a list A, we will

use the notation a ∈ A to indicate that a is an element on the list A.

175
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9.1 Quick Start Guide to PERMAVISS

We start by revising how to run the code. First, before installing PERMAVISS, make sure that

you have python3 updated, as well as the modules scipy and numpy installed. Then, run the

command

>>> pip3 install permaviss

or alternatively you can download and install locally:

>>> git clone https://github.com/atorras1618/PerMaViss

>>> cd PerMaViss

>>> pip3 install -e .

As a first explanation of PERMAVISS, we will review a simple example using spectral sequences

to compute persistent homology on a noisy circle. We start by taking 200 points in a noisy cir-

cle of radius 1. Next, we use the maxmin procedure to take a subample of 50 points, which is

implemented in the function take sample

>>> from permaviss.sample_point_clouds.examples import (random_circle, take_sample)

>>> point_cloud = random_circle(200, 1, epsilon=0.3)

>>> point_cloud = take_sample(point_cloud, 50)

Now we set the parameters for generating a spectral sequence object instance. These are

• a prime number p,

• the maximum dimension of the Rips Complex max dim,

• the maximum radius of the Rips filtration max r,

• the number of divisions max div along the maximum range in point cloud,

• and the overlap between different covering regions.

In our case, we set the parameters to cover our circle with 4 covering square regions. Notice that

in order for the algorithm to give the correct result we need overlap> max r.

>>> p = 5

>>> max_dim = 3

>>> overlap = 1

>>> max_div = 2

>>> max_r = overlap*0.99
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Then, we compute the spectral sequence, noticing that the method prints the successive page

ranks.

>>> from permaviss.spectral_sequence.MV_spectral_seq import create_MV_ss

>>> MV_ss = create_MV_ss(point_cloud, max_r, max_dim, max_div, overlap, p)

PAGE: 1

[[ 0 0 0 0]

[ 7 2 0 0]

[79 29 0 0]]

PAGE: 2

[[ 0 0 0 0]

[ 5 0 0 0]

[50 1 0 0]]

PAGE: 3

[[ 0 0 0 0]

[ 5 0 0 0]

[50 1 0 0]]

Total PerMaViss time:12.526841640472412

We can inspect the obtained barcodes on the 1st dimension

>>> MV_ss.persistent_homology[1].barcode

array([[0.23081607, 0.29335407],

[0.25273638, 0.29106543],

[0.27194715, 0.28877474],

[0.28346206, 0.35987622],

[0.35728549, 0.39131679],

[0.39122743, 0.99 ]])

an we can plot this barcode, indicating in red the bar comming from the (1,0) position on the

spectral sequence:
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Notice that in this case, there was no need to solve the extension problem. Also, we can plot the

representative relating to the red bar

where the yellow regions indicate overlaps between consecutive covering subcomplexes. These

plots were created reading the information stored in the spectral sequence object MV ss and then

using Matplotlib.

9.2 Barcode Basis object

We created an object barcode basis that implements some information and methods relevant

when working with barcode bases as shown in section 4.1. A barcode basis object A is created

using the following information

• A matrix of dimensions (A.dim,2) storing the birth and death values for all bars of A,

• (Optional) a reference to another barcode basis B, together with coordinates of generators

of A in terms of B.

• (Optional) Whether we want to store the indices of which bars are well defined. Here, an

interval [a,b) from the barcode decomposition is “well-defined” whenever a < b.

• (Optional) Whether the barcode basis is broken1 and the corresponding associated bro-

ken base coefficients.

In this section we will review some of the methods that are used by the barcode basis object. For a

full documentation reference, see [116]. When a barcode basis object is created, the first thing

to check is that the given barcode is well-defined, that is, whether all birth values are strictly less

than all death values for each given interval. Following is an example where we create a barcode

basis object with four bars:

>>> import numpy as np

>>> from permaviss.persistence_algebra.barcode_bases import barcode_basis

1This was a former concept that was used for modelling the extension problem. Ultimately, these broken barcodes
where a way to deal with quotients of persistence morphisms.
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>>> bars = np.array([[0, 1], [-1, 2], [1, 3], [2, 2]])

>>> base1 = barcode_basis(bars, store_well_defined=True)

>>> base1.dim

3

>>> base1.well_defined

array([ True, True, True, False], dtype=bool)

>>> print(base1)

Barcode basis

[[ 0 1]

[-1 2]

[ 1 3]]

By default, the undefined bars that we have sent are not stored on the barcode basis object; thus,

since one of the given bars is trivial, the dimension of the resulting barcode basis object is 3

instead of 4. We can sort the bars according to the standard barcode order by using the sort()

method:

>>> base1.sort()

>>> print(base1)

Barcode basis

[[-1 2]

[ 0 1]

[ 1 3]]

Next, we will create a barcode basis which has coordinates in terms of the previously created

base1. These coordinates correspond to the columns of the matrix we need to send. Following is

an example:

>>> bars = np.array([[0, 2], [2, 3]])

>>> coordinates = np.array([[1, 0], [1, 0], [0, 2]])

>>> base2 = barcode_basis(bars, base1, coordinates)

>>> base2.dim

2

>>> print(base2)

Barcode basis

[[0 2]

[2 3]]

[[1 0]
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[1 0]

[0 2]]

To better understand base2 we will use some of the notation from chapter 4. First, base1 stores

the barcode basis A = {α0,α1,α2} with α0 ∼ [−1,2), α1 ∼ [0,1) and α2 ∼ [1,3), whereas base2

stores the barcode basis B = {β0,β1} with β0 ∼ [0,2) and β1 ∼ [2,3). The relations between both

barcode bases are given by the equations:

β0 = α0 �α1 β1 = 12(α2) .

In particular, notice that the persistence module generated by B is a submodule of that generated

by A .

Next, we give a list including the most relevant methods related to a barcode basis object:

• sort(self, precision=7, send order=False)):

This method sorts a barcode basis object acording to the standard order of barcodes. A

precision parameter is required to round the endpoints of bars. Also, one can set send order

to True if one needs to recover how the original barcodes have been ordered. Following is

an example with 4 bars:

>>> bars = np.array([[1,2],[0,4],[-1,3],[1,4]])

>>> base4 = barcode_basis(bars)

>>> base4.sort(send_order=True)

array([2, 1, 3, 0])

>>> base4 = barcode_basis(bars)

>>> print(base4)

Barcode basis

[[ 1 2]

[ 0 4]

[-1 3]

[ 1 4]]

>>> base4.sort(send_order=True)

array([2, 1, 3, 0])

>>> print(base4)

Barcode basis

[[-1 3]

[ 0 4]
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[ 1 4]

[ 1 2]]

• active(self, rad):

Given a persistence value rad, it returns the indices of the generators that are alive.

>>> base4.active(0.5)

array([0, 1])

• Similar to the active method, there are methods birth and death for getting the indices

of the generators being born or dying at a persistence value rad.

>>> base4.birth(1)

array([2, 3])

>>> base4.death(4)

array([1, 2])

9.3 Image Kernel

Next, we present a brief example computing the image and kernel barcode basis from exam-

ple 4.2.2 from section 4.2. To start, we do the necessary imports

>>> import numpy as np

>>> from permaviss.persistence_algebra.barcode_bases import barcode_basis

>>> from permaviss.persistence_algebra.image_kernel import image_kernel

Now, we can execute example 4.2.2, obtaining the expected result:

>>> p = 5 # computations to be performed mod 5

>>> A = barcode_basis([[1, 5], [1, 4], [2, 5]])

>>> B = barcode_basis([[0, 5], [0, 3], [1, 4]])

>>> F = np.array([[0, 0, 1], [1, 0, 0], [1, 1, 1]])

>>> Im, Ker, PreIm = image_kernel(A, B, F, p)

>>> print(Im)

Barcode basis

[[1. 4.]

[1. 3.]

[2. 5.]]

[[0 0 1]

[4 4 0]
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[4 0 0]]

>>> print(Ker)

Barcode basis

[[3. 5.]]

[[4.]

[1.]

[0.]]

>>> print(PreIm)

[[4. 4. 0.]

[0. 1. 4.]

[0. 0. 1.]]

Notice that the coordinate matrix on the barcode bases Im and Ker coincide with the respective

generators from the sets I and K from example 4.2.2. The preimages matrix PreIm contains

the combinations of generators from A whose images generate barcode bases for Im( f ). This is

very useful when computing the spectral sequence.

9.4 Quotients and Persistence Module Homology

One can also adapt image kernel to implement the computation of quotients, as briefly explained

in section 4.4. Essentially, suppose that we have a pair of barcode bases and we want to compute

the quotient of one by the other. For instance, consider again example 4.2.2, and assume that we

want to compute the quotient B
/

Im(F). Thus, we proceed as in section 4.4 by first defining the

barcode bases and the quotient matrix:

>>> A = barcode_basis([[1, 5], [1, 4], [2, 5]])

>>> B = barcode_basis([[0, 5], [0, 3], [1, 4]])

>>> A_B_barcode = np.concatenate((A.barcode, B.barcode, axis=0))

>>> A_B = barcode_basis(A_B_barcode)

>>> matrix_A_B = np.concatenate((F, np.identity(3)), axis=1)

>>> print(matrix_A_B)

[[0. 0. 1. 1. 0. 0.]

[1. 0. 0. 0. 1. 0.]

[1. 1. 1. 0. 0. 1.]]

Then we execute image kernelwith the aim of obtaining the quotient:

>>> Q, _ = image_kernel(

... A_B, B, matrix_A_B, 5, start_index=3, prev_basis=B)
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>>> print(Q)

Barcode basis

[[0. 2.]

[0. 1.]]

[[1. 0.]

[0. 1.]

[0. 0.]]

What the result means, using notation from example 4.2.2, is that the quotient module B
/

Im(F)

is generated by the classes [β1] and [β2] with associated barcodes [0,2) and [0,1) respectively.

Figure 4.1 might help in visualizing this quotient.

We want to be able to compute quotients so that we are able to compute persistence module

homology, as explained on section 4.5. In the following example we will do this for a short exact

sequence of persistence modules

M N P .
f g

First, we define the respective barcode bases and morphisms:

>>> A_bas = barcode_basis([[1, 4], [2, 4], [3, 5]])

>>> B_bas = barcode_basis([[0, 4], [0, 2], [1, 4], [1, 3]])

>>> C_bas = barcode_basis([[0, 3], [0, 2], [0, 2]])

>>> Base = [C_bas, B_bas, A_bas]

>>> f = np.array([

... [0, 1, 1],

... [1, 0, 0],

... [0, 4, 1],

... [0, 0, 0]])

>>> g = np.array([

... [0, 0, 0, 1],

... [4, 0, 1, 3],

... [1, 0, 1, 4]])

>>> D = [None, f,g]

where the entries in Base and D are included in reverse order to the arrows of the short exact

sequence. Then, we use the module persistence homology method to obtain barcode bases

for the homology groups, and we print the results.
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>>> from permaviss.persistence_algebra.module_persistence_homology import (

... module_persistence_homology)

>>> p = 5 # computations modulo 5

>>> Hom, Im, PreIm = module_persistence_homology(D, Base, p)

>>> print(Hom[2])

Barcode basis

[[2. 4.]

[4. 5.]]

[[1. 0.]

[0. 1.]

[0. 1.]]

>>> print(Hom[1])

Barcode basis

[[0. 1.]

[2. 3.]]

[[0. 1.]

[1. 0.]

[0. 0.]

[0. 0.]]

>>> print(Hom[0])

Barcode basis

[[0. 1.]

[0. 1.]]

[[1. 0.]

[0. 1.]

[0. 0.]]

9.5 Computing PERMAVISS

We will now present the Mayer-Vietoris spectral sequence setup, with the particular case of covers

taken on Vietoris-Rips complexes in mind. Let X ⊆ Rn be a point cloud with n small. We first

divide X into cubical regions that depend on two parameters: overlap and max div. Essentially,

this is done in three steps:
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• We start by taking the hypercube C that contains all data points from X.

• Next, we divide C into smaller hypercubes, so that all of them have equal length along all

their dimensions and the number of stacked hypercubes along any dimension is less than or

equal to max div.

• Afterwards, the dividing hypercubes are ‘thickened‘ so that the overlap between adjacent

cubes is greater or equal to overlap.

Of course, one could come up with more clever ways to divide X. However, since the focus here

is on developing an algorithm for computing persistent spectral sequences, these simple covers

are good enough. Once we have chosen a cover U = {Ui}i∈I , it is straightforward to obtain the

nerve NU .

As in section 9.1, we use the function create MV ss to introduce a spectral sequence ob-

ject with all relevant information filled in. This contains the cover taken for X, subcomplexes of

VR∗(X) arising from this cover as well as information related to all pages on the spectral sequence

E∗∗,∗(X,U ). An important aspect of the PERMAVISS algorithm is to treat differentily class rep-

resentatives contained on the total complex S Tot
∗ (X,U ) from those representatives contained on

the first or higher pages; the reason being that the former is much larger than the latter. Thus, the

terms on the total complex are stored using a class which we call local chains, which consists

of a compact way for storing sparse vectors where the sparsity depends on the location of each

chain with respect U . On the other hand, we use barcode basis objects for storing bases for

the successive page terms, as well as bases for the images of the differentials.

Once create MV ss is called, a cover is taken for X. Then, the first computational step con-

sists in computing the 0-th and 1-st pages in a parallel way. Essentially, for each simplex σ ∈ NU

we have a local point cloud Xσ , and we compute PH∗(Xσ ) by using the persistent homology

method included in PERMAVISS. The results are stored using the local chains class whose

information is ‘localized‘, in the sense that representatives of first page classes are given as chains

in some open cover Uσ . This is not the case for higher pages, where information is mixed up

from several covers. Even though there are various implementations of persistent homology com-

putations, as explained in section 3.4, we opted to implement our own since the spectral sequence

algorithm requires some information that the usual algorithms do not return. This has the unfor-

tunate effect that our resulting algorithm is not very efficient compared to standard algorithms.

However, this opens the door to further improvements by implementing some of the speedups

from the other approaches.

Let us now describe how we compute the second page from the first page terms. The first step

consists in computing the matrices associated to the horizontal differentials, which are induced by
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σ0 σ1 σ2 σ3

τ0 τ1 τ2 τ3 τ4 τ5

l0 l0 l0 l0 l0 l0

betas

Figure 9.1: For each τi ∈ Nn deg−1
U , in parallel, we read information from 1 representatives

over the simplices in Nn deg
U that are cofaces of τi, followed by a lift to first page li. We highlight

in blue the parallel computations over τ1.

the Čech differentials. Let us describe this in detail for a pair of integers n deg> 0 and dim≥ 0

indicating respectively the horizontal and vertical position of a term on the first page of the spectral

sequence. From the previous step, we have first page representatives 1 representatives in

local chains format for the position (n deg,dim). Next, we compute the Čech differential

applied to 1 representatives, followed by a lift to first page. We do this in a parallel way over

the simplices of Nn deg−1
U . At the end, we can join all the information to obtain the matrix betas

associated to the Čech differential induced on the first page. In the PERMAVISS code, within the

spectral sequence class, this is done using a function named cech diff and lift that calls

in parallel cech diff and lift local; see figure 9.1.

Using the procedure mentioned in the previous paragraph, we compute the Čech differen-

tials of a given dimension dim by going over all indices n deg > 0. This gives us the infor-

mation of a chain E1
∗,dim corresponding to the dim row from the spectral sequence. Once that

is done, we call module persistent homology to compute the persistent homology of E1
∗,dim

and obtain barcode bases generating the second page terms. We end the second page compu-

tation by storing ‘nice‘ total complex representatives for classes. First we compute the repre-

sentatives in (n deg,dim) by using the combinations from E2
n deg,dim, which are stored in the

local chains format, let us name this αn deg. Next, we compute the Čech differential and lift

by using cech diff and lift. Notice that in this case the lift to the first page should be zero

and the interesting data is given by the preimages of the vertical differential, which we store on

αn deg−1. Thus one has that

ddim+1(αn deg−1)+ δ̌n deg(αn deg) = 0 ,
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and the total complex chain is given by (αn deg−1,αn deg).

Computation of higher page representatives is slightly more complex, although it follows

exactly the steps outlined on section 6.3. These steps use cech diff and lift together with the

improved image kernel. The same follows for the extension problem.

Remark. We would like to notice that the computation of persistence module homology of the

bottom row from the first page (E1
∗,0, δ̌ ) becomes particularly expensive. However, in this case the

barcode bases of all terms have trivial birth values. This is why we think it is possible to speed up

computations by calling a special function in this case. However, as this is the part of speeding up

the code, we leave it for future research.

9.6 Examples

In this section we present some examples of the use of PERMAVISS.

Example 9.6.1. Consider 600 points from a ring torus of major radius 3 and minor radius 1, which

have been sub-sampled using the min max algorithm out of a randomly sample of 2300 points:

>>> X = torus3D(2500, min_rad=1, max_rad=3)

>>> X = take_sample(X,600)

Suppose that we want to compute persistent homology of the Vietoris Rips complex up to radius

0.8.

>>> max_r = 0.8

>>> max_dim = 4

>>> p = 5

>>> max_div = 2

>>> overlap = max_r * 1.01

>>> MV_ss = create_MV_ss(X, max_r, max_dim, max_div, overlap, p)

PAGE: 1

[[ 0 0 0 0 0 0 0 0]

[ 1 0 0 0 0 0 0 0]

[338 22 0 0 0 0 0 0]

[705 105 0 0 0 0 0 0]]

PAGE: 2

[[ 0 0 0 0 0 0 0 0]

[ 1 0 0 0 0 0 0 0]

[316 0 0 0 0 0 0 0]
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[600 9 0 0 0 0 0 0]]

Total PerMaViss time:178.7223949432373

Under the same conditions, it took our implementation of persistent homology without spectral

sequences about 737.7 seconds; thus, by using the spectral sequence we have managed to speedup

substantially the persistence algorithm. However, there is still work to do to make PERMAVISS ef-

ficient; for example, Ripser.py barely blinks at this example. Let us now have a look at the gen-

erated barcode on dimension 1. We plotted it using matplotlib, together with the information

contained in MV ss:

In this barcode we show the one-dimensional bars plus the two-dimensional interval in yellow at

the top. The splitted bars contain a red portion coming from the (1,0) position of the spectral se-

quence and a blue portion from the (0,1) position. Next, we might plot some cycle representatives

as, for example, the long red bar which indicates that a cycle is going across various covers along

all considered persistence values:
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Examining some of the extended bars, we might use the extension coefficients, together with total

complex representatives. The following diagram shows a representative for a cycle in the (1,0)

position (red) which ”breaks down” into smaller cycles that extend it which are contained on the

(0,1) position. We indicate these extending cycles with different tones depending on the cover

these are contained in:
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Although in the previous visualization the relation between cycle representatives seems quite

straightforward, sometimes this is not the case:

Example 9.6.2. In this example we will see that higher nontrivial differentials come up in fairly

general situations. Consider a uniform sample of 3000 points from a unit cube, and assume that

we take a subsample of 300 points through the min-max algorithm

>>> X = random_cube(3000,3)

>>> X = take_sample(X,300)

Then, we compute PERMAVISS setting appropriate parameters

>>> max_r = 0.2

>>> max_dim = 4

>>> p = 5

>>> max_div = 2

>>> overlap = max_r*1.01

>>> MV_ss = create_MV_ss(X, max_r, max_dim, max_div, overlap, p)

PAGE: 1

[[ 0 0 0 0 0 0 0 0]

[ 1 0 0 0 0 0 0 0]

[257 38 0 0 0 0 0 0]

[503 350 280 238 168 84 24 3]]
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PAGE: 2

[[ 0 0 0 0 0 0 0 0]

[ 1 0 0 0 0 0 0 0]

[221 0 0 0 0 0 0 0]

[300 27 2 0 0 0 0 0]]

PAGE: 3

[[ 0 0 0 0 0 0 0 0]

[ 1 0 0 0 0 0 0 0]

[219 0 0 0 0 0 0 0]

[300 27 0 0 0 0 0 0]]

Total PerMaViss time:118.49028873443604

In this case, notice that there is a nontrivial differential on the second page starting on position

(2,0) and ending in (0,1). We proceed to plot the first dimensional and second dimensional

barcodes as done on example 9.6.1, obtaining the following barcode:

In this case there are 27 extended bars in dimension 1. We can plot the representatives coming

from the (1,0) position in red, while plotting the corresponding extended representatives in po-

sition (0,1) in different colors depending on the cover region these come from, see figure 9.2.

In particular, notice that in general the extended cycle representatives differ substantially from

the cycle representatives from position (1,0). Although here it is important to notice that we are

looking at cycle representatives from a particular projection angle.

The last example will differ from the previous two in that we will take a custom cover.
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Figure 9.2: Depiction of cycle representatives on the (1,0) spectral sequence position, together
with the representatives of their respective extension.
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Example 9.6.3. We consider a sample of 500 points from a sphere with two circles attached. The

sphere is centered at the origin and has radius 1, while the two circles have radius 2 and touch the

sphere at a single point.

>>> circle1 = take_sample(random_circle(500,2,0.08,[3.3,0]),100)

>>> circle1 = np.c_[circle1, 0.3*circle1[:,0]]

>>> circle2 = take_sample(random_circle(500,2,0.07,[-3.3,0]),100)

>>> circle2 = np.c_[circle2[:,0], np.zeros(len(circle2)), circle2[:,1]]

>>> sphere = take_sample(random_sphere(2400, 1, 3), 300)

>>> X = np.r_[circle1, circle2, sphere]

For this example, instead of using cubical covers, we specified our own cover into three regions

with mutual overlaps whose diameters are bounded by 0.4, and which are determined as:

• A = {(x,y,z) ∈ X | z >−0.2 and x >−0.2 }

• B = {(x,y,z) ∈ X | z >−0.2 and x < 0.2 }

• C = {(x,y,z) ∈ X | z < 0.2 }.

Now we plot X by taking different colors for the different covering regions:

We aim to compute the persistent homology associated to the Vietoris-Rips filtration by paying

attention to the cover {A,B,C}. We can depict the mutual intersections by the diagram:
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Notice that from the triple intersection on the top, one might suspect that a nontrivial barcode

will appear on position (2,0) from the spectral sequence; as there are two connected components.

This is indeed the case, as we check when we compute the spectral sequence. As here we used a

custom cover, the computations where done by modifying some of the code from create MV ss.

Here we write the parameters and the output obtained:

>>> max_r = 0.

>>> max_dim = 4

>>> p = 5

...

PAGE: 1

[[ 0 0 0 0]

[ 2 0 0 0]

[195 15 0 0]

[596 103 7 0]]

PAGE: 2

[[ 0 0 0 0]

[ 2 0 0 0]

[180 0 0 0]

[500 10 1 0]]

PAGE: 3

[[ 0 0 0 0]

[ 2 0 0 0]
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[179 0 0 0]

[500 10 1 0]]

In addition, notice that there is a nontrivial second page differential.
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Chapter 10

Conclusions and Future Work

In this thesis we have explored connections between persistent homology and spectral sequences.

Following is an outline of the main contributions and possible directions for future research:

• We surveyed briefly the persistence filtration spectral sequence that is associated to a filtered

cellular complex on section 3.5 and in doing so we gave some links to the twisted double

complex from section 2.12. These lead to a straightforward way for proving Theorem 3.5.1

and also were useful in drawing further connections between the spectral sequence algo-

rithm and the persistence spectral sequence. It would be worth exploring this topic further.

• We have developed the concept of a barcode basis together with the �-operation. This lead

to a characterization of these bases in terms of generation and linear independence as out-

lined on proposition 4.1.10. Eventually we obtained an image kernel algorithm which

allows to compute images and kernels of persistence morphisms. Thanks to using barcode

bases many proofs where done in a compact way, such as those from chapter 5. Also, we

showed in section 4.4 that one might use the box gauss reduce algorithm 4.1 for comput-

ing quotients of persistence modules. All these tools are central for the persistence Mayer-

Vietoris spectral sequence computations. The early implementations of PERMAVISS use

the image kernel version described on appendix A. We hope that the current work devel-

oped in chapter 4 will lead to further improvements for PERMAVISS.

• In chapter 5 we have payed close attention to the problem of detecting changes in persistent

homology from local information. The barcode shift lemma 5.1.2 captures this idea very

precisely while Proposition 5.2.7 gives a direct way to measure these variations. The results

in sections 5.3 and 5.4 aim at tracking these changes precisely, leading to exact conditions

on the barcode decompositions of the involved short exact sequences. It would be worth

seeing how this works in practical situations and how these results could be adapted to be

used on natural datasets.
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• The Persistence Mayer-Vietoris spectral sequence is undoubtedly the main object of interest

in this work. Here we have presented how to compute persistent homology from this spec-

tral sequence on chapter 6, giving algorithmic descriptions which were later implemented

on the PERMAVISS module. In chapter 9 we have given an outline of how to parallelize

computations, presenting some illustrative examples of various principles such as higher

differentials, extension problems, etc. This approach, however has limitations which are

overcome by considering geometric realization constructions, such as the (K,P)-join dia-

gram from chapter 7. Implementing spectral sequences for join diagrams, while speeding

up the overall algorithm is a matter for future research.

• In chapter 8 we explored the Persistence Mayer-Vietoris spectral sequence as an invariant.

We gave stability results in terms of small changes on the diagram elements while also in

terms of different covers taken. These stability results are summarized by Theorem 8.3.5

and the results from section 8.5. Notice that this spectral sequence has two parameters in-

volved: the filtration of the covered complex and the simplicial complex of the correspond-

ing diagram. This is why one might think that there are some relations with 2-parameter

persistent homology. It would be worth exploring further the value of the extra information

contained on this spectral sequence.



Appendix A

(Original) image kernel Algorithm

Here, we present an algorithm which obtains barcode bases for the image and kernel of a per-

sistence morphism. This was already covered by the image kernel procedure explained in sec-

tion 4.3, however, here we present the original procedure which appeared in PERMAVISS v.0.0.1.

The core idea is to work based on proposition 4.1.2. Notice that this algorithm can be adapted to

obtain barcode bases for quotients of persistence modules. Also, we include a descripition of an

improved version of the image kernel procedure which was implemented in PERMAVISS ver-

sion 0.2.

Suppose that f : V→W is a morphism between two tame persistence modules. Let A and

B be barcode bases for V and W respectively. Suppose also that we know f (A )B, the matrix

associated to f with respect to barcode bases A and B. We want to find a barcode basis for the

image I , and a barcode basis for the kernel K . In order to achieve this, I will start being set to

be equal to the |B|× |A | matrix f (A )B. Performing left to right column additions will lead to

the nonzero columns of I forming a basis for the image. On the other hand, K will be a matrix

with |A |+ 1 rows and whose number of columns will ‘grow’ as the computations develop. The

extra row will be used for storing the parameter of the multiplying step function. Notice that K

will have at most |A | columns, which is useful to know if we wanted to preallocate space for

speed.

Notice that there exist values −∞ = a0 < a1 < · · · < an+1 = ∞ such that f is constant along

[ai,ai+1) for each 0≤ i≤ n. We start by computing the values ai for all 0≤ i≤ n. We will denote

by A ai( j) the index 1 ≤ A ai( j) ≤ |A | of the j-element from A ai . Also given a matrix A, we

will denote by A[ j] the jth column of A. The matrices Ri will denote the successive Gaussian

reductions as we increase the parameter 0≤ i≤ n+1. That is, we start with R̃0 which will be the

|Ba0 | × |A a0 |-matrix of f along the interval a0 < a1, then we reduce it to R0. Simultaneously,

we perform exactly the same transformations to I . In order to track these additions performed,

we will use a |A |× |A | matrix T . This T will be the identity matrix Id|A |. Thus, whenever we
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add columns in R0 we perform the same additions in T . On the other hand, if some column R0[ j]

becomes zero, where 1 ≤ j ≤ |A a0 |, we add T [A a0( j)] at the right end of the matrix of kernels

K0. Additionally, we append T [A a0( j)] to K , with associated step function coefficient a0. Since

we require K to be linearly independent, we will introduce a set pivots for tracking the pivots

of the elements in K . For each T [A a0( j)] that we add into K , we add A a0( j) into pivots.

Note that in this first step there will be no repeated elements in pivots and the matrix K will be

already reduced. Once we finish, we jump to the next parameter a1.

Let us go through the procedure for a1. For this, we add or take out rows and columns from R0

and K0 according to the life of each generator in A and B; these changes are stored into R̃1 and

K̃1, respectively. Observe that K̃1 might not be reduced. Since we would like to obtain a basis for

the kernel of f , we reduce it further to K1 = R(K̃1), performing the same additions on K . Next

we proceed to reduce R̃1. There is a trick we can use here to speed up the computations. For each

j-column in K1, if the pivot p of the column is such that A a1(p) is not in pivots, this means that

the p column in R̃1 will become zero after reducing. Then we set R̃1[p] to zero directly, substitute

the column I [A a1(p)] by f (K1[ j]), and add A a1(p) into pivots. Here by f (K1[ j]) we mean

the result after adding the columns from f (A )B with coefficients given by K1[ j]. Notice that this

is the same as performing left to right column additions to the column I [A a1(p)], although we

also permit this column be multiplied by a non-zero coefficient t ∈ F\{0}. After performing these

preprocessing tasks, we reduce R̃1 into R1, repeating the same transformations to T and I . Then

we examine R1, and look for columns 1 ≤ j ≤ |A a1 | of R1, such that R1[ j] = 0 and also A a1( j)

is not in pivots. For each such column j, we append T [A a1( j)] at the right end of K1, and also

into K with birth value a1. Finally, we add A a1( j) into pivots. This finishes the iteration for

a1.

We repeat the previous step again for parameters a1 < a2 < · · ·< an. On the i iteration, where

2 ≤ i ≤ n, we assume that we have well defined matrices Ri−1 and Ki−1. As before, we update

these matrices into a Bai ×A ai-matrix R̃i, and a matrix with |A ai | columns K̃i. These updates

are performed by adding and deleting columns as the barcodes from A and B are born or die

respectively. The rest of the procedure for ai is exactly as we outlined for a1 earlier. Notice that

while we are on the ith step, both Ki and K will have the same number of columns. An outline

of this procedure is shown in Algorithm A.1.

Proposition A.0.1. Algorithm A.1 computes K and I bases for the kernel and image of f .

Furthermore, it takes at most O(nM|A |2) time, where M = max(|A |, |B|).

Proof. The key observation is that K forms a barcode basis for Ker( f ) if and only if K r is a basis

for Ker( f )r for all r ∈ R. Now, notice that K r generates Ker( f )r since all kernel elements were

sent to K . On the other hand, each K r is a linearly independent set, since we have performed
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Algorithm A.1 image kernel

Input: A , B, f (A )B
Output: K , I

1: Find values a0 < a1 < · · ·< an where a barcode generator dies, or is born in A or B
2: Set I = f (A )B, K = /0, T = Id|A |, R−1 = /0, K−1 = /0, pivots= /0
3: for 0≤ i≤ n do
4: Update R̃i and K̃i from Ri−1, and Ki−1 respectively
5: Reduce K̃i obtaining Ki. Perform the same reductions to K
6: for each j-column of Ki with pivot p such that A ai(p) /∈ pivots do
7: I [A ai(p)]← f (Ki[ j])
8: R̃i[p]← 0
9: Add A ai(p) into pivots

10: end for
11: Reduce R̃i into Ri. Perform the same reductions to T and I
12: for 1≤ j ≤ |A ai | do
13: if Ri[ j] = 0 & A ai( j) /∈ pivots then
14: Append T [A ai( j)] at end of Ki, and also at K with step coefficient ai

15: Add A ai( j) into pivots

16: end if
17: end for
18: end for
19: return K and I (optionally return T for preimages)

Gaussian eliminations that ensured this. Similarly, for any r ∈R we have that I r generates all the

columns from f (A )r
B, and thus it generates Im( f )r. We have also ensured linear independence

of I r by the Gaussian elimination process. Thus, I is a barcode basis for Im( f ).

Let us compute the complexity of the algorithm. We start noticing that n comes from the

outer loop. Then the Gaussian reduction of K̃i might take at most O(|A |3) time. On the other

hand the reduction of R̃i might take O(|B||A |2) time. The first inner loop will take less than

O(|A |(log(|A |)+ |A ||B|)) time, where the multiplying |A | comes from the iteration. Within

round brackets, the first term comes from checking pivots by a hash table or similar, whereas

the second comes from computing f (Ki[ j]). The second inner loop takes O(|A |log(|A |)) time,

where |A | is for the iteration and log(|A |) for checking pivots. Putting all together we obtain

the following complexity:

n
(
O
(
|A |3

)
+O

(
|B||A |2

)
+O

(
|A |(log(|A |)+ |A ||B|)

)
+O

(
|A |log(|A |)

))
= nO

(
M|A |2

)
= O

(
nM|A |2

)
,

where M = max
(
|A |, |B|

)
.

In the first release of PERMAVISS v.0.0.1 we implemented image kernel as it is shown

in 4.3. However, the resulting method becomes slow very quickly. The main reason is that too

much information is updated about how the matrices of images and kernels are changed as the
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persistence values increase. However, most of this information is redundant. This is why we

decided to implement a version of the method that tracks only the necessary information; in this

case, the pivots on each column. This improved substantially the computational speed of the

image kernel method. This feature is included on PERMAVISS version 0.2.

We will now proceed to explain how the improved image kernel procedure works. As usual,

the setup will be a persistence morphism f : M→ N together with fixed barcode bases A and B

for M and N respectively. Here B can be given as a broken base, although for the moment we will

assume that B is not broken; we will look at this case at the end of this section. The following

will be the main variables to consider:

• Barcode basis objects A and B for the respective domain and codomain bases A , B.

• Matrix F storing f (A )B.

• Lists of pivots on image and kernel pivots Im and pivots Ker.

• We track the dimensioin of the kernel by using kernel dim, initially set to 0.

• Matrices for storing the barcode decompositions for Ker( f ) and Im( f ) which are called

Im barcodes and Ker barcodes respectively; both have dimensions (2,A.dim). The first

column of Im barcodes is equal to the birth values of the barcodes in A . That is, we run

the following command

>>> Im_barcodes[:, 0] = A.barcode[:, 0]

• Matrices for storing coordinates Im coordinates and Ker coordinates of respective

dimensions (B.dim,A.dim) and (A.dim,A.dim).

• (A.dim,A.dim) matrix T for tracking column addition operations. This starts being equal

to the identity matrix.

• Empty list new pivots.

• A pair of vectors pivots Im and pivots Ker which are of respective length A.dim and

B.dim and with all entries equal to −2.

The improved image kernel method consists of executing the image kernel procedure in an

implicit, rather than explicit way. For this, instead of updating kernel and image matrices, as done

in the standard procedure from section 4.3, we pay attention to the column pivots and update a

column only when it is strictly necessary. That is, we loop over all persistence values rad at which

either a bar is being born or dies in A or B, and we review the vectors pivots Ker and pivots Im;

a sequence of checks and updates are done depending on some conditions. These are very similar
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start C1(idx,p) pivot p at idx C2(idx,p)

reduce

exit

p!=-1new pivots.append(p)

Outcome A Outcome B

True

False

False

True

False

True

Figure A.1: Improved image kernel.

for both images and kernels and are summarized on figure A.1. Following, we list the instructions

for the Kernel, which are executed for an index idx going from 0 up to kernel dim:

1. p← pivots Ker[idx] and reset new pivots= [].

2. We check a condition which we will name C1(idx, p). This consists of checking whether

one of the following is True:

• p ∈ A.death(rad),

• p ∈ new pivots.

3. If C1(idx,p) is False, then we exit. On the other hand, if the condition is True, we go

on to step 4.

4. Take the idx column from Ker coordinates restricted to the rows given by A.active(rad);

in NumPy notation this is Ker coordinates[A.active(rad), idx]. We compute the

pivot index of this column and store it on the variable p active. Then, we assign to the vari-

able p the value A.active(rad)[p active], however, if A.active(rad) is the empty

list [], we assign −1 to p.

5. Check C2(idx,p), which is whether p ∈ pivots Ker[:idx] holds. That is, whether p is

contained in the list pivots Ker up to the entry with index idx; the subsequent entries are

ignored. If True go to step 6, otherwise go to step 7.

6. Take the index j at which pivots Ker[j] equals p. Then, we substract with a convenient

coefficient the column Ker coordinates[j] from Ker coordinates[idx] to change

the pivot of the idx column. Afterwards, go back to step 4.
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7. Check whether p 6=−1. If False, store p into new pivots (e.g. new pivots.append(p))

and execute the outcome A. Otherwise execute the outcome B:

• Outcome A: Set the death value of an image bar:

>>> Im_barcodes[p, 1] = rad

Store respective coordinates for the image, by multiplying the active rows of F times

the active entries in the idx column from Ker coordinates:

>>> Im_coordinates[:, p] = np.matmul(

... F[:, A.active(rad)], Ker_coordinates[A.active(rad), idx])

• Outcome B: Set the death value of a bar in the kernel:

>>> Ker_barcodes[idx, 1] = rad

In addition, we set pivots Ker[idx] to be equal to −2, this being done mainly to

avoid conflicts when checking C2(idx,p).

Next, for the image, we execute for all indices idx from 0 up to A.dim the following set of

instructions:

1. p← pivots Ker[idx] and reset new pivots= [].

2. We check a condition which we will name C1(idx, p). This consists in checking whether

one of the following is True:

• p ∈ B.death(rad),

• p ∈ new pivots,

• or idx ∈ A.birth(rad).

3. If C1(idx,p) is False, then we exit. On the other hand, if the condition is True, we go

on to step 4.

4. We select the column Im coordinates[B.active(rad), idx] and compute the pivot

which denote by p active. Next, we assign p the value B.active(rad)[p active]

while if the list B.active(rad) is empty, we assign −1 to p.

5. Check C2(idx,p), which is whether p ∈ pivots Im[:idx] holds. If True go to step 6,

otherwise go to step 7.

6. Take the index j at which pivots Im[j] equals p. Then, we subtract with a convenient

coefficient the column Im coordinates[j] to Im coordinates[idx]; this way the pivot

of the idx column is changed. We repeat the same operation by subtracting the column

T[j] to the column T[idx]. Afterwards, go back to step 4.
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7. Check whether p 6=−1. If False execute outcome A, otherwise execute outcome B:

• Outcome A: Store p into new pivots (e.g. new pivots.append(p)).

• Outcome B: Set death and birth values for bars in the image and kernel:

>>> Im_barcodes[p, 1] = rad

>>> Ker_barcodes[kernel_dim, 0] = rad

Set coordinates for the kernel, add a new pivot to pivots Ker and increase the di-

mension:

>>> Ker_coordinates[:, kernel_dim] = T[:, idx]

>>> pivots_Ker[kernel_dim] = idx

>>> kernel_dim += 1

To end, we set pivots Im[idx] to be equal to −2.
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[84] N. Milosavljević, D. Morozov, and P. Škraba. Zigzag persistent homology in matrix multi-

plication time. Proceedings of the Annual Symposium on Computational Geometry, pages

216–225, 2011.

[85] J. R. Munkres. Elements of algebraic topology. Addison-Wesley, 1984.

[86] V. Nanda. Discrete Morse theory for filtrations. PhD thesis, Rutgers University-Graduate

School-New Brunswick, 2012.

[87] C. T. Nathaniel Saul. Scikit-TDA: Topological Data Analysis for Python, 2019.

[88] M. Nicolau, A. J. Levine, and G. Carlsson. Topology based data analysis identifies a sub-

group of breast cancers with a unique mutational profile and excellent survival. Proceedings

of the National Academy of Sciences, 108(17):7265–7270, apr 2011.

[89] P. Niyogi, S. Smale, and S. Weinberger. Finding the homology of submanifolds with high

confidence from random samples. Discrete Comput. Geom., 39(1-3):419–441, 2008.

[90] NLab authors. Top. http://ncatlab.org/nlab/show/Top, 2021.

[91] N. Otter, M. A. Porter, U. Tillmann, P. Grindrod, and H. A. Harrington. A roadmap for the

computation of persistent homology. EPJ Data Science, 6(1), 2017.

[92] S. Oudot. Persistence Theory: From Quiver Representations to Data Analysis, volume 209.

American Mathematical Society, 2015.

[93] M. Palser. An Excision Theorem for Persistent Homology. arXiv:1910.03348, 2019.

[94] A. Patel. Generalized persistence diagrams. Journal of Applied and Computational Topol-

ogy, 1(3):397–419, 2018.

[95] J. A. Perea and J. Harer. Sliding windows and persistence: an application of topological

methods to signal analysis. Found. Comput. Math., 15(3):799–838, 2015.

[96] R. Rabadan and A. J. Blumberg. Topological Data Analysis for Genomics and Evolution:

Topology in Biology. Cambridge University Press, 2020.

http://ncatlab.org/nlab/show/Top


214 BIBLIOGRAPHY

[97] M. W. Reimann, M. Nolte, M. Scolamiero, K. Turner, R. Perin, G. Chindemi, P. Dłotko,

R. Levi, K. Hess, and H. Markram. Cliques of Neurons Bound into Cavities Provide a

Missing Link between Structure and Function. Frontiers in Computational Neuroscience,

11:48, 2017.

[98] J. Reininghaus, S. Huber, U. Bauer, and R. Kwitt. A stable multi-scale kernel for topo-

logical machine learning. In Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, volume 07-12-June, pages 4741–4748, 2015.

[99] V. Robins and K. Turner. Principal component analysis of persistent homology rank func-

tions with case studies of spatial point patterns, sphere packing and colloids. Physica D:

Nonlinear Phenomena, 334:99–117, nov 2016.

[100] M. Robinson. Topological Signal Processing. Springer-Verlag, Berlin Heidelberg, 2014.

[101] M. Robinson. Assignments to sheaves of pseudometric spaces. Compositionality, 2(2),

2020.

[102] A. Romero, J. Heras, J. Rubio, and F. Sergeraert. Defining and computing persistent Z-

homology in the general case. arXiv:1403.7086, 2014.

[103] A. Romero, J. Rubio, and F. Sergeraert. Computing spectral sequences. Journal of Symbolic

Computation, 41(10):1059–1079, 2006.

[104] A. Romero, J. Rubio, and F. Sergeraert. Effective homology of filtered digital images.

Pattern Recognition Letters, 83:23–31, 2016.
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box gauss reduce, 91
Čech chain complex, 34
Čech complex, 55
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PERMAVISS, 127
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ε , 149
shift, 151

alpha complex, 57, 137
approximate nerve theorem, 4, 78, 156
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barcode, 61
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entangled, 117
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generator, 81

barcode shift lemma, 6, 71, 97, 100
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base projection, 29, 30
birth value, 61, 64, 73
bottleneck distance, 65, 68

categories with a flow, 69
category, 12, 13

abelian, 121
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opposite, 13
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thin, 13

cell, 18
face, 22
negative, 61
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positive, 61

cellular chain complex, 18
cellular morphism, 18
chain complex, 12

augmented, 13, 36
exact, 13, 16

chain homotopy, 25
approximate, 153

chain morphism, 12
chains, 12
clear optimization, 64, 95
clique complex, 59
colimit, 14
colimit cone, 33
constant diagram, 29, 140, 141
cover, 10

interpolation, 170
cubical complex, 21, 135
curse of dimensionality, 58
CW-complex, 18

death value, 61, 64, 73
diagram of regular of CW complexes, 28
diagram of regularly filtered CW-complexes, 7
diagram of spaces, 7, 26
differential, 12

Čech, 35, 39
Discrete Morse Theory, 70
double complex, 39, 142

effective homology, 71
elementary simplicial collapse, 70
embedding problem, 109
excision theorem, 17, 100
extension problem, 40, 43, 49, 121, 123, 131,

133

filtered complex, 59, 60

sparse, non-sparse, 56
filtered differential graded module, 48
filtered regular diagram of CW-complexes, 140
filtration, 15

function, 139
truncated, 51, 98
value, 56, 61

flag complex, 59
fully filtered diagram of CW-complexes, 140
functor, 12, 13

constant, 15

geometric realization, 9, 11, 28, 141

Hausdorff distance, 67
homology, 1
homotopy colimit, 27

incidence numbers, 20
interleaving, 66

(ε,n), 157
distance, 66
left, 106, 168
multiplicative, 70
right, 106, 168

interval module, 60
isometry theorem, 68

join diagram, 7, 144
join of simplicial complexes, 144

landmark points, 58
local singular chains, 37
localized homology, 71
long exact sequence, 17
lower star filtration, 59

mapper, 3, 58
mapping cylinder, 79
Mayer-Vietoris blowup complex, 3, 29
Mayer-Vietoris sequence, 32
Mayer-Vietoris theorem, 4
multicomplex, 49
multinerve, 29

filtered, 141
multipersistence, 69, 75

natural transformation, 13
nerve, 10
nerve theorem, 30

persistence, 156

object, 13
offset, 55
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page lift, 76
perisistence module morphism, 60
persistence, 60

betti number, 75
persistence diagram, 61, 64
persistence images, 69
persistence landscapes, 69
persistence module, 60

isomorphism, 60
quotient, 127
tame, 5

persistence value , see filtration value 61
persistence vectors, 83

generate, 85
linear independence, 84, 85

persistent cohomology, 70
persistent homology, 1, 60, 139
pivot, 88
poset, 13
prodsimplicial complex, 146
projection problem, 109

reduced homology, 13
Reeb graph, 59
regular CW-complex, 22
regular morphism, 23
regularly filtered complex, 70, 139
regularly filtered regular diagram, 140
relative chain complex, 17
relative homology, 17
Ripser, 69

short exact sequence, 16
simplex, 9

face, 9
link, 71
star, 71

simplicial chains, 12
simplicial complex, 9

maximal, 56
simplicial cosheaf, 33, 35
simplicial homology, 12
simplicial morphism, 10
simplicial precosheaf, 33, 34
singular chain complex, 15
singular chains, 15
singular homology, 15
skeleton, 9, 18
snake lemma, 17
sparse Rips filtration, 70
spectral sequence, 1, 43

persistence Mayer-Vietoris, 77
collapses, 4, 46

converges, 45
geometric realization, 143
morphism, 49, 157
page, 44, 127, 130, 132
persistence filtration, 3, 72
persistence Mayer-Vietoris, 4

spectral sequence method, 3, 75
spectral systems, 75
standard simplex, 9
strong normal form, 113
strong Witness complex, 58
subcomplex, 9

total complex, 32, 39, 43, 143
twisted, 50

triangulation, 11
twisted double complex, see multicomplex 49

universal coefficient theorem, 19, 70

vertex set, 9
vertical filtration, 41
Vietoris-Rips complex, 56, 134
Voronoi diagram, 57

weak Witness complex, 58
weight function, 59

zig-zag persistence, 69
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