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Abstract: (1) Background: Aspect-based sentiment analysis (SA) is a natural language processing
task, the aim of which is to classify the sentiment associated with a specific aspect of a written text.
The performance of SA methods applied to texts related to health and well-being lags behind that
of other domains. (2) Methods: In this study, we present an approach to aspect-based SA of drug
reviews. Specifically, we analysed signs and symptoms, which were extracted automatically using the
Unified Medical Language System. This information was then passed onto the BERT language model,
which was extended by two layers to fine-tune the model for aspect-based SA. The interpretability
of the model was analysed using an axiomatic attribution method. We performed a correlation
analysis between the attribution scores and syntactic dependencies. (3) Results: Our fine-tuned model
achieved accuracy of approximately 95% on a well-balanced test set. It outperformed our previous
approach, which used syntactic information to guide the operation of a neural network and achieved
an accuracy of approximately 82%. (4) Conclusions: We demonstrated that a BERT-based model of
SA overcomes the negative bias associated with health-related aspects and closes the performance
gap against the state-of-the-art in other domains.

Keywords: sentiment analysis; natural language processing; deep learning; transformers; syntactic
dependencies

1. Introduction

Sentiment analysis (SA), also known as opinion mining, is an area of natural language
processing (NLP) that focuses on the classification of the sentiment that is expressed in a
written document. Formally, SA is defined as the task of identifying a quadruple (s, g, h, t)
whose values represent the sentiment, the object targeted by the sentiment, the holder of
the sentiment and the time at which the sentiment was expressed [1]. In practice, SA has
traditionally focused on a simpler task of finding the pair (s, g). Here, the sentiment s is
often conflated to polarity [2], which can be either positive or negative, even though other
classification schemes can be utilised [3]. The target g has typically been the overall topic
of an analysed text document. In principle, the target is some entity, but can also be an
aspect of such an entity. Here, an aspect represents some characteristic of such an entity [4].
The choice of these characteristics depends on a specific domain in which SA is applied.
Aspect-based SA refines the focus of SA by classifying the sentiment associated with a
specific aspect and not just the overall sentiment associated with the entity.

By lowering the barrier to entry, Web 2.0 solicited user feedback on institutional
platforms and encouraged user interaction on social media, giving rise to vast amounts
of user-generated content. This in turn presented an opportunity to study and monitor
public opinion in real-time by applying techniques from NLP, which led to SA becoming
one of the fastest growing areas of research in this space. Typically, text sources used to
facilitate such research originate from social media or customer reviews. Web 2.0 also
led to a proliferation of health-related online platforms, even more so in the most recent
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times, during which access to healthcare has been restricted for a wide range of possibly
undiagnosed medical conditions. In particular, many users resorted to self-medication,
exchanging information about pharmaceutical drugs online. Not surprisingly, much of the
research into SA in relation to health and well-being focuses on drug reviews. Aspect-based
SA of such reviews can in turn be used to support pharmacovigilance by detecting adverse
drug reactions [5]. The most obvious aspects in this case would be drug indications and
side effects. For instance, consider the following examples in which the word headache
represents an aspect:

1. It’s the only drug that works for my headache︸ ︷︷ ︸
positive

.

2. A dose of 750 mg twice daily had no effect on my headache︸ ︷︷ ︸
negative

.

3. Caused vomiting and gave me the worst headache︸ ︷︷ ︸
negative

.

4. I find using a half a capsule seems to work fine without giving me a headache︸ ︷︷ ︸
positive

.

These examples illustrate how the sentiment towards the same aspect can vary across
different contexts. Unlike their counterparts in other domains, e.g., quality and price in
product reviews, aspects such as headache are a priori negative. Many SA tools struggle
to counteract such bias and actually perform better when an otherwise negative aspect
is removed from consideration [6]. In general, SA applications in health and well-being
lag behind the state-of-the-art in other domains [7]. This can be attributed to the negative
sentiment that gets associated with medical conditions by default, which requires careful
analysis to disentangle such sentiment from that of its context. This cannot be achieved
by conflating the context into a flat bag-of-words representation. Instead, a more sophisti-
cated representation is required, together with an algorithm that can effectively process
such a representation. Neural networks cannot only learn complex relationships between
individual words in a sentence but can also utilise more complex sentence representations,
such as graphs, which can be based on syntactic parses. For example, convolution can be
successively applied to an aspect of SA by traversing through its syntactic dependencies [8].
More recently, language models that are pre-trained using transformer architectures [9]
have demonstrated significant improvements over recurrent neural networks in a variety
of NLP tasks, including natural language understanding, named entity recognition and
question answering [10]. The most popular architecture of this kind is called Bidirectional
Encoder Representations from Transformers (BERT) [10]. Its popularity lies in the fact that
it cannot only be pre-trained to generate contextualised word embeddings, but can also be
easily fine-tuned using relatively small datasets to support downstream NLP tasks such as
that of SA.

In this study, we investigate the potential of a BERT-based approach to aspect-based SA
in the domain of health and well-being. The remainder of this article is organised as follows.
Section 2 provides an overview of related work. Section 3 describes the methodology,
including data collection, implementation details and model training. In Section 4, we
evaluate the model and compare it to the baseline established in a previous study. Section 5
discusses a possible interpretation of the results by analysing the internal operation of the
model. Finally, Section 6 concludes the paper.

2. Related Work

Until recently, the vast majority of research in SA in health and well-being used
rule-based and traditional machine learning techniques [7]. Both approaches employ
simple features such as n-grams, which fail to capture relationships that are more complex
than simple co-occurrence. Not surprisingly, deep learning models, which can learn to
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capture the semantics of individual words and complex relationships among them, tend to
outperform traditional machine learning methods.

Various deep learning architectures have been built to support aspect-based SA. Most
of them represent some variation of recurrent neural networks (RNNs), such as long short-
term memory (LSTM), e.g., [11–13]. When it comes to aspect-based SA of drug reviews,
a bidirectional gated recurrent unit (GRU) with an attention layer was proposed in [14].
RNNs are optimised to process sequences and, therefore, are not ideally suited for context-
sensitive tasks such as aspect-based SA. Convolutional neural networks (CNNs) are better
suited to represent contextual information and, as such, have been used in SA applications
as local feature extractors [15,16]. Alternatively, an attention mechanism can be used to
improve the performance of RNNs in aspect-based SA by letting them know where to focus
their learning. An attention-based bidirectional CNN-RNN provides a hybrid model in
which bidirectional RNNs are used to model both long and short contextual dependencies,
local features robust to positional changes are selected using CNNs, and an appropriate
emphasis is placed on different words by applying the attention mechanism on the output
of bidirectional layers [17].

Aspect-based SA is a fine-grained task that aims to classify the sentiment towards a
particular aspect. The aspect’s relations to other words represent important features of
its sentiment, but are not taken into account in RNN-based approaches. In our previous
work, a graph convolutional network (GCN) designed to operate on syntactic dependencies
outperformed the traditional RNN approach by a large margin on the task of aspect-based
SA of drug reviews [8]. A GCN approach may not be able to capture the features of long-
distance dependence, thus struggling to effectively represent the aspect’s context. This
issue can be easily resolved by adding transitive edges to the dependency graph, which
has been proven to improve the representation of sentiment dependencies [18]. Alterna-
tively, a phrase dependency graph can be constructed by integrating the constituency and
dependency parse trees [19]. Further embellishing the dependency graph by leveraging
information from a sentiment lexicon was found to improve the learning ability of a GCN
model in aspect-based SA [20]. However, adding more information may introduce noise
and inefficient use of information relevant to SA. Namely, despite the direct or indirect
connection with an aspect in the dependency tree, only few words add value to predict-
ing the sentiment polarity of the aspects. These words tend to be adjectives and verbs.
Therefore, part-of-speech information can be used to prune the dependency tree, with two
benefits [21]: First, fewer unrelated words are connected directly or indirectly to the aspect,
which reduces the noise they bring to the convolution. Second, a more concise syntactic
dependency graph leads to fewer convolutions, thus making the corresponding GCN more
efficient. Apart from local dependencies, context is also a function of historical utterances.
To place an aspect into a wider context, which may still be relevant for its sentiment, lessons
can be learnt from conversational SA. The emotional recurrent unit provides a compact
RNN architecture that encodes the context information, captures the influence of context
information for a sentence and extracts features for sentiment classification [22].

SA suffers from domain dependency [2]. On the one hand, it requires a lot of training
data. In particular, deep learning algorithms are known to be data hungry. On the other
hand, when an SA model trained on one domain is applied to a different one without any
transfer of knowledge, the performance tends to deteriorate. One way to tackle the problem
of domain shift is to create an ensemble of models trained on different data sources [23].
An ensemble of models can combine individual predictions in a way that the given models
compensate for each other’s weaknesses [24]. In particular, heterogeneous ensembles
use different learning algorithms to generate different types of base classifiers. Recent
experiments in SA demonstrated that ensemble learning can improve the accuracy. For
example, the stacking of LSTM, CNN and CNN-BiLSTM and support vector machine
(SVM) significantly improved the accuracy of SA in Chinese, albeit failing to replicate the
success in English [25]. Nonetheless, another study, which widened the choice of base
classifiers to four pre-trained, lexicon-based models and six machine learning algorithms
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(naïve Bayes, SVM, logistic regression, feedforward neural network, CNN and LSTM)
managed to improve performance by more than five percentage points over the best
individual model [24]. The true potential of ensemble approaches to SA lies in leveraging
symbolic models (such as lexicons and grammatical relationships) to encode meaning and
subsymbolic methods (such as word embeddings and neural networks) to infer patterns
from data [2].

More recently, research attention has shifted towards large, pre-trained language mod-
els such as BERT [10]. BERT is a transformer-based architecture that provides contextual
word embeddings; it uses an attention-based mechanism, rather than recurrence, to de-
termine which words are important for the overall context within the document [9]. It
has enabled great performance improvements across a variety of NLP tasks. The main
advantage of BERT is that it can easily be fine-tuned using additional training data to solve
specific NLP tasks, such as aspect-based SA. This task can be formulated as a question-
answering task, where the aspect represents a question and its sentiment is the answer.
BERT typically represents this task by pairing up two sequences, one representing the
source sentence and the other one specifying the phrase that corresponds to the aspect.
This approach was successfully adapted to classify the sentiment associated with a specific
aspect of a product or a restaurant as expressed in user reviews [26–29]. Such an approach
improved the results relative to models that use a single sequence to perform aspect-based
SA [26].

BERT is commonly pre-trained for specific domains to improve its performance on
different sublanguages. For example, of relevance to the domain of health and well-being
are BioBERT [30] and ClinicalBERT [31]. However, when lay language is processed in this
domain, BERT’s performance may still be superior to the specially trained language models.
For example, when BERT was used to understand people’s opinion towards vaccination, a
multilingual BERT model outperformed both BioBERT and ClinicalBERT [32]. BERT was
successfully fine-tuned to perform SA of drug reviews [33], albeit without focusing on
specific aspects. In this study, we investigate the application of BERT to aspect-based SA of
drug reviews. We also relate the results to the ones achieved in our previous study, which
was based on graph convolution over the dependency graph [8].

3. Methodology

The goal of aspect-based SA is to classify the sentiment of a document with respect to
a particular aspect. Therefore, the document and the aspect considered constitute the input,
whereas the output represents the sentiment, classified into one of two classes, positive or
negative. Here, neutral sentiment is ignored in line with the vast majority of SA approaches,
which ignore neutrality despite the evidence that it is the key for distinguishing between
the two polarities [34,35]. However, the reason for ignoring neutrality in this study is not
pragmatic. Instead, this decision was related to the choice of aspects in this study. Namely,
we focused on signs and symptoms as the aspects of SA.

A sign is an objective observation of a potential health issue. A symptom is a subjective
experience of a potential health issue. Given that both signs and symptoms indicate a
potential health issue, they bear a negative sentiment. When taking a pharmaceutical drug
to address a given health issue, there are three possibilities for the associated signs and
symptoms. They can remain unchanged, they can worsen, or they can improve. In the
first two cases, the sentiment associated with a sign or symptom remains negative. In the
latter case, one may assume that the resolution of a sign or symptom leads to a better state
of health and thus turns the underlying negative sentiment into a positive one. In other
words, when it comes to health, no one is expected to be ambivalent; hence, we decided
not to consider neutral sentiment.

Before analysing their sentiment, all aspects are identified automatically by match-
ing concepts classified as signs or symptoms in the Unified Medical Language System
(UMLS), a large repository of inter-related biomedical concepts and the corresponding
terminology [36].
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3.1. Neural Network Architecture

The first step in fine-tuning BERT for aspect-based SA is choosing an appropriate
representation of the problem. BERT [10] is a transformer-based language model. Unlike
RNNs, which iterate through sequences, transformers are based on an encoder–decoder
NN architecture that uses an attention mechanism to support the holistic interpretation
of a sequence [9]. The self-attention layer considers all words, each represented by its
embedding and its position relative to other words, to improve its encoding of the entire
sentence. In other words, self-attention determines the impact of individual words on
sentence interpretation. During training, BERT hides a certain percentage of the words
by using a special token (MASK) instead and uses their position to infer these words.
This serves to prevent the decoder from looking ahead when predicting the next word,
thus effectively making the training parallel. By performing this task, BERT learns the
relationships between words.

Masked language modelling is only one of two tasks on which BERT is trained simulta-
neously. The second task is next sentence prediction, which allows BERT to learn long-term
dependencies across sentences. BERT uses two special tokens to support fine-tuning and
specific task training. The first one is a classification token (CLS). It indicates the beginning
of a segment, typically a sentence, and is commonly used for classification tasks, hence the
name. The output associated with this token is used to make a prediction about the given
segment. The other special token is a delimiter token (SEP). It simply indicates the end of a
segment. The type of segments used depends on the specific task BERT is fine-tuned for.
For instance, in question-answering, one segment can be a question, whereas the other one
can be the reference text. The two segments are then appended and separated by a special
delimiter token (SEP).

In our model, we chose the aspect of SA as one segment and its context (i.e., the
whole sentence) as the other. This can be seen at the top of Figure 1, which illustrates the
architecture of a BERT-based model for aspect-based SA. In this example, the sentence
and the aspect in question are “This medicine works great when it comes to pain” and
“pain”, respectively, which are combined into the following input sequence: “(CLS) This
medicine works great when it comes to pain (SEP) pain (SEP)” (see the yellow row in
Figure 1). Finally, to meet the fixed-length requirement BERT expects of its input, such a
sequence is padded using a special token (PAD) until the maximum length of 70 tokens has
been reached.

The input sequence is then processed as follows. First, each token’s vocabulary
identifier is mapped to a token embedding that was learned during training (see the orange
row in Figure 1). A binary vector is then used to differentiate between two text segments.
The binary vector is mapped to a segment embedding (see the grey row in Figure 1) using
a lookup table, which was also learned during training. Finally, local token positions are
mapped to positional embeddings (see the blue row in Figure 1) using a lookup table,
which was updated during training.

Similarly to binary classification tasks described originally in [10], the final transformer
output that corresponds to the special (CLS) token amounts to an aggregate problem
representation, i.e., a pooled output. To determine the sentiment from this aggregate
representation of a sentence and its aspect, the pooled output is fed into the classification
layer (see the pink rows in Figure 1). The classification layer reduces the size of the pooled
output to two dimensions, which correspond to the log-odds (or logits) of the classification
output with respect to the question of whether the implied sentiment is positive or negative.
The classification layer is not pre-trained, unlike the preceding layers of the NN. Multiple
pre-trained BERT models can be used here. They differ with respect to the choice of
hyperparameter values. We employed the BERTbase model, which was pre-trained using
12 layers of transformer encoders, 12 attention heads and the hidden dimension of 768.
Going back to the classification layer, its output is passed through the softmax function,
which estimates the probability distribution over positive and negative sentiments.
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Figure 1. BERT-based architecture for aspect-based SA.

3.2. Implementation and Training

To implement our approach described above, we used the publicly available pre-
trained BERTbase model. Specifically, we used its distribution from Hugging Face, an open-
source library that consists of state-of-the-art transformer architectures under a unified
API [37]. The pre-trained BERT model was fine-tuned by minimising cross-entropy loss,
which is calculated between the output from the softmax and the true labels. The loss
function was optimised with Adam optimizer [38], a stochastic gradient-descent method
that is based on adaptive estimation of first-order and second-order moments, with the
learning rate set to 2× 10−5. The specific learning rate was selected based on the suggestions
made in [10]. All other hyperparameters were set to their default values.

The classification model was trained for four epochs following the recommendations of
BERT’s original authors to use 2–4 epochs to fine-tune BERT for a specific NLP downstream
task [10]. We evaluated the model on the validation set after each epoch. During each
epoch, the model parameters were updated with respect to the error of each batch of the
training data. Batch size for training, validation and test sets was set to 16.

The overall SA system was implemented in Python programming language using
PyTorch [39], a deep learning framework that combines usability and speed by coding
executable models, thus making debugging easier while being efficient and supporting
further hardware acceleration. All our experiments were run on the CPU, not the GPU, of a
PC with an Intel processor with 6 cores, each running at 2.6 GHz, and 16 GB RAM.



Mach. Learn. Knowl. Extr. 2022, 4 480

4. Results
4.1. Data

To train the model and evaluate its performance, we used a dataset we created specifi-
cally for the task of aspect-based SA. It was described in detail in a previous study, which
proposed deep learning over the syntactic dependency graph using graph convolution [8].
Here we summarise its basic properties. It consists of drug reviews borrowed from another
study [40], which were publicly available from the UCI Machine Learning Repository.
These reviews were originally collected from the Drugs.com website [41]. Each review
comes with a star rating on a scale from 1 to 10, which was converted into a sentiment label.

To adapt this dataset for the task of evaluating aspect-based SA, aspects were automat-
ically annotated by matching concepts classified as signs or symptoms in the UMLS [36]. To
increase the likelihood of the overall sentiment being related to a specific aspect considered,
only short reviews, specifically those consisting of a single sentence, were considered. The
final dataset is comprised of 1232 sentences, out of which 639 and 593 sentences were la-
belled with positive and negative sentiment, respectively. Further details on this dataset are
available in our previous study [8], whose results were also used to establish the baseline
for this study.

The dataset was split randomly so that 80% and 20% of the data were used for training
and testing respectively. Further, approximately 20% of the training data were used to
validate the model trained on the remainder of the training data. Table 1 illustrates the
distribution of data across the three subsets (training, validation and test set) and the two
sentiment labels (positive and negative). No substantial differences in the distribution of
the two labels across the three datasets can be observed.

Table 1. The distribution of sentiment labels across the three datasets.

Positive Negative Total

Train 410 378 788

Validation 99 98 197

Test 130 117 247

Total 639 593 1232

4.2. Evaluation

To be able to make the direct comparison to the baseline results, we reused the eval-
uation measures described in the previous study [8]. Specifically, we used measures
commonly used to evaluate classification performance, including accuracy and cross en-
tropy loss. Accuracy represents the percentage of correctly classified instances. Accuracy is
not always a reliable metric. For example, it may provide misleading results when the test
dataset is unbalanced. As we can see from Table 1, this is not the case in this study, thus
justifying the use of this metric. Given that our model also provides probability distribution
over the sentiment labels as output, we used cross entropy loss to compare the predicted
probabilities to the gold standard labels as follows:

loss = − 1
n

n

∑
i=1

ln(pi) (1)

where pi is the corrected probability, i.e., the probability that a particular prediction matches
the gold standard label. The closer the predicted probability to the gold standard label, the
lower the cross entropy loss.

In addition to running experiments using the standard BERT model, we performed
experiments with its distilled version. DistilBERT is a smaller, general-purpose language
model, which can be fine-tuned for specific tasks just like its larger counterpart [42]. It
reduces the size of a BERT model by 40% while retaining 97% of its language understanding
capabilities with the benefit of being 60% faster to run. Both language models come in
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both cased and uncased versions. In the uncased models, the text is lowercased prior to
WordPiece tokenization, thus making the model case-insensitive. No case changes are
performed on text in the cased version.

Table 2 provides the results. The significance of case can be immediately observed. In
both BERT and DistilBERT, the cased model outperformed the uncased one by a large mar-
gin, with accuracy in the 70s and 90s, respectively. In fact, the uncased models performed
worse than the baseline. On the other hand, the cased models achieved an accuracy of
almost 95%, outperforming the baseline by more than 12 percentage points. The difference
in performance between the two cased models was negligible.

Table 2. The evaluation results.

Method Accuracy Loss

Baseline 81.78% 0.4570

BERTbase
uncased 78.14% 0.5270
cased 94.33% 0.3641

DistilBERTbase
uncased 73.28% 0.5688
cased 94.74% 0.3660

5. Discussion
5.1. Error Analysis

The impact of casing on the performance of SA was unexpected, so it warrants further
analysis to try to explain this phenomenon. Intuitively, one might expect this issue to be
related to the use of the personal pronoun I, which is often used to describe one’s state. In
particular, within the realm of health and well-being, the usage of pronouns was found to
have an effect on SA even more so than on standard English usage [43]. The total number of
sentences that were correctly classified by the cased model but incorrectly classified by the
uncased model was 47. Therefore, error analysis was not a laborious undertaking. Table 3
provides a sample of errors made by the uncased model that were corrected by the cased
model. For simplicity, the results in this section are based on the standard BERT model.

Table 3. A sample of sentences incorrectly classified by the uncased model but correctly classified by
the cased model.

ID Sentence Label Uncased Cased

1 Excellent headache reliever! + − +

2
Good medicine, it gets rid of your pain
without that drowsy sick feeling. + − +

3 Love this medicine, no headache. + − +

4 Sadly no effect on my pain. − + −

5
Made my symptom worse-so much for
24 h relief. − + −

6 No pain relief whatsoever. − + −

Within 47 sentences, we found only 10 mentions of the personal pronoun ‘I’ that were
not at the beginning of the sentence. In the majority of cases, such as those shown in Table 3,
we can see that the personal pronoun ‘I’ did not play any role in these sentences, so we
can dismiss our initial hypothesis and investigate other possible effects of casing on the
classification performance. In the same table, the words highlighted using a bold typeset
represent the aspect. The case of an aspect was clearly not affected by lowercasing. In
fact, none of the other words were affected by lowercasing apart from the first word of a
sentence. English grammar requires the first word of a sentence to be capitalised. A quick
inspection of the first words reveals the majority to be emotionally charged words that are
typically found in most sentiment lexica, e.g., excellent, good, love and sadly. We inspected
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all errors and indeed found that in all such cases the correct sentiment of the whole sentence
coincided with the sentiment of these words. When the model was pre-trained, it was
reasonable to assume that these words were also found at the beginning of a sentence, as
there are few other cases that would require their capitalisation. Therefore, their learnt
embeddings would be correlated with their initial position in a sentence. When the model is
fine-tuned, these words also have the most immediate impact on the neighbouring special
token (CLS), which represents a pooled output. Therefore, it is reasonable to assume that
the performance of the model is more directly linked to the position of these words rather
than their casing alone.

The baseline model was not case sensitive. It also used convolution relative to the
aspect of a sentence. It was, therefore, less influenced by the initial word, unlike the BERT
model that uses a pooled output that is associated with a special token positioned before
the start of a sentence. Nonetheless, BERT outperformed the baseline approach.

5.2. Model Interpretability

To investigate the internal logic of the BERT model, we used Captum [44], an open-
source library for model interpretability. It uses integrated gradients [45], an axiomatic
attribution method that attributes the prediction of a deep neural network to its inputs. Two
fundamental axioms that an attribution method should satisfy ensure that any artefacts
affecting the attribution method are related to either the data or the neural network rather
than the method itself. The first axiom, sensitivity, states that (1) whenever input and
baseline differ in only one feature but have different predictions, then that particular
feature should be given a non-zero attribution, and (2) if the function implemented by the
neural network does not depend on some variable, then that particular variable should be
always be given zero attribution. The second axiom, implementation invariance, states that
any two functionally equivalent networks should receive identical attributions regardless
of any differences in their implementations.

Of note, this attribution method only measures the relative importance of features
in a neural network but does not address the interactions between the features nor the
internal logic of the network. To study the extent to which syntactic dependencies between
an aspect and other tokens (i.e., features in this context) are correlated with the attributions
assigned to these tokens, we cross-referenced the attribution scores received by each token
to their distance from the aspect in the syntactic dependency graph. Figure 2 provides an
example of cross-referencing a token’s distance from the aspect to its attribution score. The
zero distance indicates the aspect, in this case the word ‘pain’. The attribution score has
been colour-coded using the heatmap colour palette given on the right. In this particular
example, the tokens that are one to two steps away from the aspect in the dependency
graph received the highest attribution score, with the exception of the punctuation token.
Of note, the closest token to the aspect’s right in the sequence graph (i.e., the word ‘and’)
received the lowest score. A similar trend continues to the right, including the positive
word ‘help’ also receiving a low attribution score and thus not contributing significantly to
the positive sentiment of the aspect ‘pain’.

Figure 2. An example of cross-referencing a token’s distance from the aspect in the dependency and
sequence graphs, respectively, to its attribution score.
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5.3. Statistical Analysis

To see whether this anecdotal evidence can be generalised, we performed statistical
analysis to check whether higher attribution scores are correlated with smaller distances in
the dependency graph. We used the Pearson correlation coefficient, which is calculated
according to the following formula:

r = ∑(xi − x)(yi − y)√
∑(xi − x)2 ∑(yi − y)2

, (2)

where xi represents the i-th data point in vector x, whereas x represents the mean value of
vector x. Here, the null hypothesis is that there is no correlation between the attribution
score and the distance of the token from the aspect in the dependency graph. The correlation
between the two variables was found to be −0.074. In other words, the smaller the distance,
the higher the attribution score and vice versa. The corresponding p-value of 5.4732× 10−19

was smaller than the set threshold of 0.05, indicating that the correlation between the two
variables was statistically significant. Therefore, the null hypothesis was rejected.

We performed analogous experiments using the sequence graph representation, i.e.,
we measured the correlation between the token attribution score and the distance of the
token from the aspect in the sequence graph. The correlation between these two variables
was found to be −0.069 with a p-value of 1.4107× 10−16. It came as no surprise that the local
context of an aspect was found to play an important role in determining its sentiment. This
could be partly due to an overlap of tokens that are close to the aspect in both dependency
and sequence graphs. However, the scatter plot shown in Figure 3, which illustrates the
relationship between the two ways of measuring distance from the aspect, indicates that
this is not generally the case. For example, tokens that are two steps away from the aspect
in the dependency graph are, on average, five steps away in the sequence graph.

Figure 3. Relationship between the distance in dependency graph and distance in sequence graph.

We further compared the average attribution score against the distance of a token in
both representations in Figure 4. We can see that the average scores for tokens that are
one or two steps away from the aspect do not vary much between the two representations.
Interestingly, the attribution score across the sequence graph distances is near constant for
all tokens that are between one and six tokens away. On the other side, we observe a sharp
decline in the attribution score for distances more than three steps away in the dependency
graph. This indicates that the dependency graph distance is a better discriminator of
relevant features according to their attribution score. This agrees with the previous finding
that the correlation between the token attribution score and the distance of the token from
the aspect was stronger for the dependency graph (−0.074) than for the sequence graph
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(−0.069). We, therefore, conclude that the BERT model accounts for syntactic dependencies
when performing sentiment classification.

Figure 4. Average attribution score against the distance within the dependency and sequence graph.

5.4. Key Findings

The results of our analysis are in agreement with previous observations that some
attention heads approximate syntactic structure by specialising to track individual depen-
dency types [46]. Moreover, individual dependency types are often tracked by the same
heads across typologically diverse languages [47]. At the same time, not all dependency
types are tracked with the same robustness [48]. Prioritising certain types of dependencies
over others may provide a plausible explanation as to why the fine-tuned BERT model
outperformed our previous GCN-based approach [8].

Namely, two successive convolutions were performed on each word represented by
its embedding following the edges in the syntactic dependency graph, hence propagating
information across the graph to the second-order neighbour. This approach significantly
outperformed alternative approaches, which did not take the syntactic structure into ac-
count; hence, its success was attributed to the way in which it incorporated syntactic
dependencies into the logic of the neural network. However, despite their apparent value
for the task of aspect-based SA, the convolution was applied to all syntactic dependencies
indiscriminately—in other words, predetermined convolution across explicit syntactic
dependencies. In this study, the test data suggest that the model takes into account im-
plicit syntactic dependencies with the added flexibility of varying attention across these
dependencies. The flexibility of the transformer-based approach embodied in the attention,
which is used to prioritise certain types of information, including different dependency
types, may hold the key to the superior performance of the transformed-based approach
compared to that of the GCN-based one.

6. Conclusions

In this study, we presented an approach to fine-tuning the BERT language model for
the specific task of aspect-based SA. BERT is pre-trained on a large dataset, which makes it
robust with respect to the out-of-vocabulary problem and allows for fine-tuning the model
for a specific NLP task by using a relatively small dataset. Our fine-tuned model achieved
an accuracy of approximately 95% on a well-balanced test set. It outperformed our previous
approach, which used syntactic information to guide the operation of a neural network.
Our latest approach demonstrated that a BERT-based model cannot only compensate for the
lack of explicit syntactic information but can, in fact, offer superior performance. Previous
studies provided evidence that during the training phase BERT does learn some forms of
linguistic structure [46–48]. In this study, we provide further evidence of this phenomenon
in the context of aspect-based SA. Specifically, we focused on the syntactic dependencies
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that involve a given aspect. The evidence suggests that the model’s attention is correlated
with the degree of separation from an aspect, calculated as the number of steps away from
the aspect in a syntactic dependency graph. This correlation was found to be stronger than
the one calculated for the distance in the flat sentence representation. This brings us to the
conclusion that the BERT model accounts for the syntactic dependencies when classifying
the sentiment of the given aspect.

Finally, the high accuracy the model achieved in the realm of health and well-being
opens up an array of possible applications in this domain [49]. When it comes to health,
modern society tends to be preoccupied with inherently negative phenomena, such as
diseases, injuries and disabilities [50]. However, for chronic patients, achieving a good
quality of life does not necessarily imply the absence of symptoms that are associated with
their medical condition. In reality, their quality of life is determined by the extent to which
these symptoms are effectively managed. However, the negative sentiment associated with
health symptoms a priori tends to skew the results of SA toward the negative spectrum.
Previously, such an a priori bias made it difficult to measure sentiment in this domain [7].
This study provides evidence that a BERT model can be successfully fine-tuned to overcome
this obstacle. The ability to accurately measure the sentiment associated specifically with
signs and symptoms can support the development of systems designed to engage patients
and monitor their self-management of chronic conditions remotely [51].

The aspect-based SA approach described in this study is based on an assumption
that the aspects in questions are given a priori. This limitation could be addressed in
future research by focusing on approaches that identify the aspects of SA automatically.
Furthermore, the proposed models take individual sentences as input. Future work would
focus on aggregating the sentiment related to a specific aspect across the whole document.
Finally, we used pre-trained word embeddings. Further performance improvements could
be gained by optimising the embeddings to reflect the underlying sentiment by providing
a clear separation between positive and negative words in the vector space.
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