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ABSTRACT 17 

To avoid information loss, the auditory system must adapt the broad dynamic range of 18 

natural sounds to the restricted dynamic range of auditory nerve fibers. How it solves this 19 

dynamic range problem is not fully understood. Recent electrophysiological studies showed that 20 

dynamic-range adaptation occurs at the auditory-nerve level, but the amount of adaptation found 21 

was insufficient to prevent information loss. We used the physiological MATLAB® Auditory 22 

Periphery model to study the contribution of efferent reflexes to dynamic range adaptation. 23 

Simulating the healthy human auditory periphery provided adaptation predictions that suggest 24 

that the acoustic reflex shifts rate-level functions towards a given context level and the medial 25 

olivo-cochlear reflex sharpens the response of nerve fibers around that context level. A simulator 26 

of hearing was created to decode model-predicted firing of the auditory nerve back into an 27 

acoustic signal, for use in psychophysical tasks. Speech reception thresholds in noise obtained 28 

with a normal-hearing implementation of the simulator were just 1 dB above those measured 29 

with unprocessed stimuli. This result validates the simulator for speech stimuli. Disabling 30 

efferent reflexes elevated thresholds by 4 dB, reaching thresholds found in mild-to-moderately 31 

hearing-impaired individuals. Overall, our studies suggest that efferent reflexes may contribute 32 

to overcoming the dynamic range problem. Because specific sensorineural pathologies can be 33 

inserted in the model, the simulator can be used to obtain the psychophysical signatures of each 34 

pathology, thereby laying a path to differential diagnosis. 35 

 36 

  37 
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SIGNIFICANCE STATEMENT 38 

The saturation of auditory nerve fibers at moderate sound levels seen in rate-level 39 

functions challenges our understanding of how sounds of wide dynamic range are encoded. Our 40 

physiologically inspired simulations suggest that efferent reflexes may play a major role in 41 

dynamic range adaptation, with the acoustic reflex moving auditory-nerve rate level function 42 

towards a given context level and the medial olivocochlear reflex increasing fiber sensitivity 43 

around that context level. A psychophysical task employing advanced simulations showed how 44 

the existence of the efferent system could prevent unrecoverable information loss and severe 45 

impairment of speech-in-noise intelligibility. These findings illustrate how important the precise 46 

modeling of peripheral compression is to both simulations and understanding of normal and 47 

impaired hearing. 48 

INTRODUCTION 49 

The dynamic range of an auditory neuron is the portion of its rate-level function (RLF), 50 

where its firing rate increases with the input level. Most sounds important to humans, such as 51 

speech and music, are highly modulated in amplitude by nature. Changes in firing rate, combined 52 

with frequency tuning, is the most straightforward mechanism by which these spectro-temporal 53 

modulations in the stimulus might be encoded on the auditory nerve (AN). However, traditional 54 

physiological measurements of AN rate-level functions (RLFs) indicate that most AN fibers are 55 

already saturated at moderate sound levels (Liberman, 1978; Winter et al., 1990), prompting 56 

some researchers to look for alternative codes based on phase-locking, such as the average, 57 

localized synchronized rate (Young and Sachs, 1979). Such a timing mechanism, now known to 58 

be essential for firing-rate cues at the cortical levels, seemed to be the only way to explain why 59 



 

 4

mammals can continue to process spectral information over a wide dynamic range while AN 60 

fibers become saturated. However, recent work has suggested that processes of adaptation lead to 61 

a shift of the dynamic range of AN fibers in response to the prevailing sound level in the 62 

environment (termed ‘dynamic range adaptation’, DRA), potentially providing a degree of 63 

reprieve for firing-rate mechanisms. 64 

Wen et al. (2009) showed such DRA in AN fibers of Cat. As seen in early 65 

electrophysiological studies, classical firing-rate adaptation is a decrease in firing rate to a steady 66 

tone or repeated stimulation (Kiang et al., 1965; Smith and Zwislocki, 1975; Harris and Dallos, 67 

1979; Smith, 1979; Chimento and Schreiner, 1991). The RLF shows proportional reductions in 68 

firing rate at all stimulus levels. In contrast, DRA is defined as a horizontal shift of RLFs toward 69 

the sound levels with the highest frequency of occurrence. Somewhat stronger DRA is seen in 70 

the inferior colliculus (Dean et al., 2005) and auditory cortex (Watkins and Barbour, 2008). By 71 

shifting RLFs so that AN fibers respond best around the context level, DRA enables fibers to 72 

encode short-term amplitude changes with variations in response rate across a wide range of 73 

sound levels without saturation. The absence of such adaptation is thus expected to weaken an 74 

individual’s ability to process normal-level speech in noise. 75 

The mechanisms underlying DRA are unclear. Zilany and Carney ( 2010) used a 76 

phenomenological model of the auditory periphery. They showed that such adaptation could be 77 

simulated by applying power-law dynamics at the inner haircell/fiber junction, but this 78 

mechanism does not have a physiologically known source. Moreover, although Wen et al. 79 

showed DRA at the auditory nerve, the amount of RLF shift (about 0.27 dB/dB) was insufficient 80 

to prevent fiber saturation at moderate sound levels. Here, we hypothesize that the efferent 81 

reflexes in the auditory periphery, the acoustic reflex and medial olivocochlear reflex (MOCR), 82 
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have the potential to contribute to DRA. The partial or complete anesthesia-related deactivation 83 

of efferent reflexes in electrophysiological studies may have led to substantial underestimation of 84 

the amount of adaptation that occurs in an awake state.  85 

These efferent reflexes seem good candidates for DRA, because they both reduce 86 

acoustic sensitivity following mid- to high-level sounds. The acoustic reflex contracts the 87 

middle-ear muscles and reduces the amplitude of stapes vibrations transferred to the cochlea oval 88 

window for intense sound levels (Hung and Dallos, 1972). The MOCR reduces the displacement 89 

of the basilar membrane by reducing cochlear amplification by outer hair-cells from moderate 90 

sound levels upwards (Guinan and Gifford, 1988).  91 

The current study explores the mechanisms underlying auditory-nerve-level DRA 92 

through computational modelling and simulation based on a computer model of the human 93 

auditory periphery (Meddis et al., 2013). First, emergent DRA properties of the human model 94 

were compared to previous RLF findings in small mammals. The model reveals the distinct role 95 

of each efferent reflex, providing a full picture that had previously been partially hidden by 96 

anesthesia in electrophysiological studies. Second, a simulator that decodes the modelled 97 

auditory-nerve activity back into sound was used to present reconstructions of the stimulus based 98 

on the pattern of AN firing to human listeners. Simulations for which the two reflexes were 99 

disabled tested how important the reflexes are for speech perception. Human listeners achieved 100 

near-normal speech reception thresholds in noise when listening to simulations that included the 101 

efferent reflexes. 102 

MATERIALS AND METHODS 103 

A simulator of normal and impaired hearing was created, based on the MATLAB® 104 

Auditory Periphery (MAP) model (Meddis et al., 2013). Coined ‘MAPsim’, the simulator 105 
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employs two modules (Figure 1). The first module is the MAP model, used to encode stimuli at 106 

the auditory nerve level. The second module is a decoder that regenerates an acoustic signal 107 

based on MAP-encoded auditory-nerve activity. MAP is used to generate RLF predictions and 108 

estimate the contribution of efferent reflexes to DRA. MAPsim is used to simulate normal 109 

hearing and illustrate the impact of knocking out efferent reflexes on speech-in-noise 110 

intelligibility. 111 

Simulation of auditory nerve activity 112 

The stimuli were encoded into simulated auditory nerve activity using the MAP model. 113 

MAP is a physiologically inspired computational model of the auditory periphery with a detailed 114 

modular structure that has been parameterized to replicate many physiological and 115 

psychophysical data sets (e.g. Panda et al., 2014). As shown in the left-hand section of Figure 1 116 

(‘MAP/Encoder’), MAP includes: (1) the outer and middle ear filtering, which outputs the stapes 117 

displacement, (2) the dual-resonance non-linear (DRNL) model of basilar membrane 118 

displacement (Lopez-Poveda and Meddis, 2001), (3) stereocilia flexing and inner hair cell 119 

transduction, (4) inner-hair-cell receptor potential, ion currents and neurotransmitter processing, 120 

(5) release of neurotransmitter vesicles at the synaptic cleft between inner hair cells and AN 121 

fibers, (6) resulting spiking activity of the fibers, (6) two layers of coincidence-detecting 122 

MacGregor neurons (MacGregor, 1987) that represent a simplified auditory brainstem network, 123 

and (7) the efferent pathways, including a broadband acoustic reflex signal that modulates the 124 

stapes displacement and a frequency-specific MOCR signal that differentially modulates the 125 

basilar membrane displacement within each best frequency (BF) channel at the DRNL stage.  126 
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 127 

 128 

Figure 1. Schematic processing stages of the MAP simulator (MAPsim). Rectangles: signal 129 

processing modules of the simulator. Rounded rectangles: input or output signals. One arrow: 130 

broadband processing. Three arrows: frequency-specific processing within each BF channel. 131 

MAP predicts the AN spike trains of ~30,000 auditory-nerve fibers across 30 BFs and 3 SRs. 132 

 133 

 The closest model implementation to the current study is in Panda et al. (2014). The parameters 134 

to simulate the normal-hearing condition for this study are provided in Table 1. A total of 29,970 135 

AN fibers were arranged over 30 BFs (equally spread on an ERB scale between 56 and 8000 Hz) 136 

and 3 levels (low, medium and high) of spontaneous rate (SR), rendering 333 fibers per BF and 137 

SR combination. The role of efferent reflexes in efficient coding of sound intensity was first 138 

examined through a dynamic range analysis of the encoder. 139 
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Module component and Parameter name Value
OME – Outer & Middle ear - two resonance filters [gain order lowpass highpass (Hz)] 
high-pass stapes filter [order cut-off frequency (Hz)] 
air to stapes displacement scalar 

[10 1 1000 4000; 25 1 2500 7000] 
[1 600] 
45e-9 

Acoustic Reflex - latency and smoothing time constant (ms) 
low SR stream threshold (spks/s) 
broadband rate-to-attenuation factor applied to low SR IC firing rate 

10   250 
40 
5e-3 

DRNL - number of best frequencies (BFs) 
frequency range [low high] over which BFs are ERB-spaced (Hz) 
gain a & compression exponent c 
compression knee-point (dB relative to ref. displacement) ct 
non-linear bandwidth parameters [p, q] 
linear gain g and bandwidth parameters [p, q] 
linear CFs parameters [p, q] with CF = p*BF + q 
order of all gammatone filters 

30 
[56 8000] 
6e3   0.25 
25 
[0.14, 180] 
500   [0.2,235] 
[0.6,266] 
3 

DRNL MOC efferent - latency (ms) 
maximum attenuation (dB) 
time constants (s) and weights 
BF-specific rate-to-attenuation factor applied to IC firing rate 

10 
35 
[0.055 0.4 1] [0.9 0.1 0] 
[6e3 0 0] 

Inner hair-cell (IHC) cilia/basilar membrane time constant (ms) 
basilar membrane/cilia displacement scalar 
maximum and resting conductance (nS) 
displacement sensitivity [s0 s1] (nm-1) and offset [u0 u1] (nm) 

1.2 
0.01 
6   0.1 
[6 1] [0.3 1] 

IHC - endocochlear potential Et and potassium reversal potential Ek (mV) 
potassium conductance Gk (nS) 
IHC capacitance Cab (pF.cm-2) 
combined resistance Rpc (ohm.cm-2) 

100   -80 
21 
1 
0.04 

IHC Pre-synaptic calcium current - reversal potential ECa (mV) 
channel opening parameters [βCa γCa] 
membrane time constant τM (μs) 
spontaneous-rate fiber types 
calcium clearance [low- medium- high-SR] time constants τCa (μs) 
[Ca2+]3 to probability scalar z 
maximum Ca2+ conductance (nS) 

66 
[400 100] 
50 
low, medium and high SR 
[80 120 200] 
45e12 
25 

IHC-AN neurotransmitters (3-store model) – maximum vesicles available for release M  
rate of vesicle replenishment from depletion y (s-1) and loss from the cleft l (s-1) 
rate of vesicle reprocessing from re-uptake to ready-release pools x (s-1) 
rate of vesicle re-uptake from cleft to cell r (s-1) 
AN fiber refractory period (ms) 

17 
8   5 
100 
4 
0.75 

Brainstem 1st (CN) & 2nd (IC) order MacGregor chopper cells 
number of input AN/CN fibers per CN/IC cell and of CN cells per BF 
current per spike [CN IC] (nC) 
dendritic low-pass cutoff [CN IC] (Hz) 
membrane capacitance Cm (nF) 
potassium recovery time constant tauGk (ms) 
increment in conductance Gk after spike (μS) 
equilibrium threshold Th0 (mV) 
variable threshold tauTh and membrane time constant tauM (ms)  
potassium reversal potential Ek, resting potential Er and spike height Eb (mV) 

 
10   10 
[29 150] 
[50 100] 
16.7 
0.5 
133 
10 
20   2 
-10   -60   60 

 140 

Table 1. Parameters for the MAP (v.1_14j_2017) model of the normal auditory periphery. 141 
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 142 

Dynamic range analyses 143 

The role of the efferent system in DRA at the AN level was examined by comparing the 144 

output of the encoder under four efferent conditions. These included the normal-hearing 145 

condition (‘normal’) and conditions disabling the acoustic reflex (‘noAR’), the MOCR 146 

(‘noMOCR’) and both efferent reflexes (‘noEff’). The parameters in the MAP model to create 147 

different efferent-disabled conditions are described below: 148 

(1) To disable the acoustic reflex in MAP, the parameters that determine the minimum 149 

number of spikes to activate the reflex, was raised from 40 (‘normal’) to 106 spikes/sec so that no 150 

attenuation was applied to the stapes displacement. 151 

(2) To disable the MOCR, the DRNL parameter that determines the attenuation strength 152 

applied to the basilar membrane displacement in the non-linear path of the DRNL module 153 

(DNRLa) was changed from 1 (‘normal’) to 0, effectively deactivating the MOCR. 154 

Based on physiological findings (e.g. Wen et al., 2009), RLFs exhibit DRA when firing 155 

rates are probed at various levels along a continuous and silent-free stimulation that sets a 156 

context level. We expected RLFs to shift closer to the context level when both efferent reflexes 157 

are activated (under ‘normal’ simulation). Following the analyses in Wen et al. (2009), our 158 

measures included RLFs, normalized RLFs, level at 50% of normalized RLFs, firing rate slope, 159 

and sensitivity index δ’. 160 

The RLFs were based on the mean firing at the BF and SR of interest, as a function of 161 

probe level. The RLFs were fitted with a four-parameter logistic function: 162 𝑅(𝐿) = 𝑅௠௜௡ + (ோ೘ೌೣି ோ೘೔೙)ଵାୣ୶୮ (ିௌ∙(௅ି ఏ೐))   (EQ.1) 163 
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where L is the input level; Rmin and Rmax are the minimum and the maximum firing rates, 164 

respectively; θe is the response threshold in dB SPL; S is the slope of the RLF. The least-squared 165 

method was used to determine the parameters. The firing rates under each condition were also 166 

normalized between 0 and 1 using the following equation: 167 𝑅௡௢௥௠ = ோି ோ೘೔೙(ோ೘ೌೣି ோ೘೔೙)   (EQ.2) 168 

The horizontal shift of RLFs was quantified by measuring the increase in the threshold 169 

parameter θe, the level at which the function reaches half its maximum. Wen et al. (2009) also 170 

used rate slope and sensitivity index δ’ to examine the impact of rate variabilities on the 171 

precision of intensity coding along the RLF. The rate slope is the slope of the RLF at a given 172 

probe level. Sensitivity index δ’, developed by Colburn et al. (2003), is defined as the ratio of the 173 

rate slope to the standard deviation (SD) of the rates.  174 

In order to observe the change of RLF shift under various efferent activation conditions, 175 

three experimental paradigms were implemented and compared. 176 

A ‘baseline’ paradigm was used to generate predictions of human RLFs without DRA. 177 

This paradigm was similar to those traditionally used in small-mammal electrophysiological 178 

studies, where a silent gap preceded each probe, thereby resetting efferent reflexes and hair cells 179 

to resting states prior to each measure of firing rate. The probe signal was either a pure tone pip 180 

(of frequency matching the fiber’s BF) or a broadband noise burst, each 50 ms in duration, with 181 

2-ms rise/fall times and preceded by a 200-ms silence. The probe level spanned 0 – 80 dB SPL 182 

for tones and 20 – 100 dB SPL for broadband noise in 4-dB steps. At each probe level, the 50-ms 183 

probe was processed through the encoder model, and the mean firing rates were averaged from 184 

the activities of all 333 fibers of the same SR and BF.  185 
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A second paradigm emulated that employed by Dean at al. (2005) and Wen et al. (2009). 186 

In each stimulus, a ‘high probability region’ (HPR) was specified where a range of probe levels 187 

occurred more frequently than other probe levels throughout a continuous and silent-free 188 

stimulation. The probe signals were the same tone pips or noise bursts as those used in the 189 

baseline paradigm. This HPR paradigm differed from that of Wen et al. (2009) in that they used 190 

continuous stimulation for 5 minutes, while the computational demands of the MAP model 191 

limited our stimuli to 8 seconds. The probe levels (each 50 ms in duration, with 2-ms rise/fall 192 

times) were randomly varied over the duration of stimulation, but the ongoing stimulation was 193 

always dominated by a range of sound levels centered on a given context level. Specifically, the 194 

probe level spanned 0 – 80 dB SPL for tones and 20 – 100 dB SPL for broadband noise in 4-dB 195 

steps, but the probe levels inside the HPR occurred 80% of the time while the levels outside of it 196 

occurred 20% of the time (Figure 2, left panel). The HPR mean levels were 36, 48, 60, and 72 dB 197 

SPL for tonal stimulation and 48, 60, 72, and 84 dB SPL for noise stimulation. Within a 198 

stimulation sequence, HPR levels spanned a 12-dB range. During our 8-second stimuli, 160 50-199 

ms probes were presented continuously, and probe levels were assigned in a pre-determined 200 

random order (Figure 2, right panel). Ten continuous runs of different level randomizations were 201 

completed for each of the four efferent conditions. As in the Wen et al. (2009) studies, the 202 

response of a single fiber was recorded. The firing rate was averaged for each probe level and 203 

across the ten runs (over a total of 20 occurrences per probe level). 204 

 205 
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 206 

Figure 2. An HPR mean level of 36 dB: (Left) histogram of probe levels and (Right) example of 207 

probe level changes during a continuous, 8-second stimulation made of 160 x 50 ms pips/bursts. 208 

 209 

The ‘precursor’ paradigm was employed as a more computationally efficient alternative 210 

to the HPR paradigm. The processing of the HPR paradigm at a given HPR level requires a 211 

continuous and prolonged signal, usually hundreds of seconds, in order to present a randomized 212 

sequence of probe levels to a single fiber. A disadvantage of such processing is that measuring 213 

the activity of one fiber among thirty thousand does not make computationally efficient use of 214 

the MAP model. Instead, the precursor paradigm employs a steady precursor signal of set 215 

duration that immediately precedes a given probe level. For each combination of precursor and 216 

probe levels, firing rate is then computed over the 50 ms probe duration as the average firing rate 217 

of the 333 AN fibers of same BF and SR, thereby greatly improving computational efficiency. A 218 

similar approach is often used in psychophysical studies on the effects of efferent stimulation 219 

(e.g. Strickland, 2008). Here, the precursor duration was set long enough (400 ms, with 5 ms 220 

rise/fall times) that the modelled efferent reflexes fully stabilized. The 50-ms target probe was 221 

presented immediately after this precursor (with 2 ms rise/fall times). The precursor was the 222 
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same type of sound as the probe (i.e., tones of the same frequency or noises of the same 223 

spectrum). The precursor levels were set to the same levels as the HPR paradigm mean levels, 224 

following which the probe level was selected between 0 and 80 dB SPL for tones or 20 and 100 225 

dB for noise (in 4-dB steps). As in the baseline paradigm, each 450-ms (precursor + probe) 226 

combination was processed through the model independently. 227 

The MAPsim decoder 228 

The purpose of the decoder (right-hand section of Figure 1) in MAPsim is to invert the 229 

encoding process and reconstruct the original input signal as well as the encoding stage will 230 

allow. The role of the efferent reflexes in the efficient coding of sound can thus be studied 231 

psychophysically from the quality of the reconstructed acoustic signal. There are two steps in the 232 

decoding stage.  233 

First, the decoder takes in the spike trains from the modelled AN fibers and feeds them 234 

through a bank of gammatone filters (fourth order) centered on corresponding BFs to generate 235 

wavelets (EQ.3): 236 𝑂௡(𝑡) =  𝛤௡ ∗ 𝐼௡(𝑡)             (EQ.3) 237 

where n is the BF channel index (1 to 30), t is time, Γn is the gammatone filter centered on the 238 

channel n BF, In(t) is the input AN spike train at time t in channel n, and On(t) is the result of the 239 

convolution between the input spike train and the gammatone filter (i.e. the resulting gammatone 240 

wavelet train) at time t in channel n. Using this approach to decoding, the amplitude envelope of 241 

the output waveform is largely determined by the spike rate (and hence the number of wavelets 242 

at a given time), while the fine structure of the waveform is determined by the timing of the 243 

action potentials (the average wavelet phase).  244 
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Second, the wavelet trains are summed across BFs and SRs, as follows. Since the brain 245 

has access to efferent signals, we posit that it naturally incorporates them in its interpretation of 246 

input signal level. Efferent signals are thus used to re-expand the signal, i.e. to invert most of the 247 

compression the cochlear encoder had applied. To implement this re-expansion, the signal at 248 

each BF is multiplied by the inverted MOCR attenuation, before summing wavelet trains across 249 

BFs and finally multiplying the resulting signal by the inverted acoustic reflex attenuation. The 250 

channel-specific, MOCR attenuation, Attn(t) and the broadband acoustic reflex attenuation, 251 

Attb(t), both time-dependent, are extracted from the MAP model and expansion is implemented 252 

according to EQ. 4: 253 𝑂(𝑡) =  ∑ [ை೙(௧)/஺௧௧೙(௧)]యబ೙సభ ஺௧௧್(௧)            (EQ.4) 254 

 255 

Finally, a spectral correction is applied to the reconstructed soundwave for its long-term 256 

spectrum to match that of the MAPsim input soundwave. The scripts for the MAP model and the 257 

decoder are available on request. 258 

Psychophysical evaluation 259 

If the efferent system is key to DRA, the absence of the system will result in widespread 260 

saturation of firing rates and drastically impair the ability to encode and recognize complex 261 

spectro-temporal patterns, such as those of speech. Additionally, previous simulations using 262 

automatic speech recognition have shown the potential improvement of speech intelligibility in 263 

noise under efferent reflexes (Clark et al., 2012). Here, speech recognition in noise with human 264 

subjects was used in a perceptual evaluation task to examine the role of efferent reflexes on 265 

efficient coding of intensity. The importance of efferent reflexes in MAPsim output quality were 266 

assessed through speech reception thresholds (SRTs) in noise. The experiment is designed to 267 
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measure the beneficial effects of the two compressive efferent reflexes working together. Since 268 

these reflexes both act to compress the dynamic range, compensating expansions were explored 269 

in order to improve the quality of the output. Since the reconstructed signal from the simulator 270 

represents the brain’s interpretation of the stimulus, and the brain has access to the reflex signals, 271 

it is presumed that it can take them into account. The SRTs were obtained with young normal-272 

hearing adults presented with stimuli that underwent different processing conditions (Table 2). 273 

 274 

 Efferent reflexes disabled Efferent reflexes enabled 

no eff. no exp. MOC exp. MOC*AR exp. 

MOC-based 
expansion 

✗ ✗ ✓ ✓ 

AR-based 
expansion 

✗ ✗ ✗ ✓ 

 275 

Table 2. Expansion applied under each experimental condition for the processed conditions. 276 

 277 

To assess the importance of efferent-based expansion at the decoding stage, with efferent 278 

reflexes enabled at the encoding stage, three conditions applied different amounts of expansion. 279 

The first applied no expansion to the output of EQ. 3 (called ‘no exp.’). The second applied only 280 

the EQ. 4 MOCR expansion (called ‘MOCR exp.’). The third applied both (EQ.3 and EQ.4) 281 

acoustic reflex and MOCR expansions (called ‘MOCR*AR exp.’). A control condition 282 

(‘unproc.’) employed the unprocessed, original stimuli. The condition applying the full 283 

expansion (‘MOCR*AR exp.’) was expected to yield SRTs closest to those obtained with 284 

unprocessed stimuli, which, if close enough, would constitute a validation of MAPsim. To 285 

demonstrate the importance of efferent reflexes, a final condition had both reflexes disabled at 286 



 

 16

the encoding stage (called ‘no eff.’). Since efferent reflexes were disabled, no expansion was 287 

applied in this condition. SRTs for the ’no eff.’ condition were compared to those for the 288 

‘MOC*AR exp.’ and ‘unproc.’conditions to measure the impact of knocking out efferent reflexes. 289 

Twelve young adults with self-assessed normal hearing (17-31 years old, mean 22 years 290 

old) were recruited from the Cardiff University undergraduate population to perform the SRT 291 

task. All participants were briefed in writing and verbally before signing a consent form. All 292 

testing and forms complied with the ethical rules of the Cardiff University School of Psychology 293 

Institutional Review Board. 294 

SRT measurements employed a digit-triplet recognition task. Each stimulus comprised of 295 

a 400-ms precursor followed by three non-repeating, randomly selected digits from 0 to 9 296 

(except disyllabic digit 7) uttered by a British female, each centered within a 700-ms audio file. 297 

The precursor was steady-state noise spectrally colored to the female voice, which set the 298 

stimulus context level and allowed the efferent reflexes of the MAP model to stabilize. The 299 

masker was the same speech-shaped noise as the precursor noise. 300 

SRTs were measured using a one-down-one-up adaptive procedure. In each run, the 301 

signal-to-noise ratio (SNR) started with the digits being highly intelligible (at 0 dB SNR) and 302 

decreased by a step size of 4 dB as long as correct responses were given. After the first reversal, 303 

the step size was reduced to 2 dB. Correct recognition of two or three digits in the correct 304 

positions was scored a correct response. Recognition of one or zero digits was scored an 305 

incorrect response. The overall level of the speech and the noise mixed was maintained at 65 dB 306 

SPL, both at the input and the output of the simulator. Each run stopped when 10 reversals were 307 

reached, and the SNRs of all trials over the last 8 reversals were averaged to compute the SRT of 308 

that run. The SRT was taken as the average over 3 runs under each condition. Before testing, one 309 
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practice run using unprocessed stimuli was given to the participants to familiarize them with the 310 

task. The practice run was also used to screen for unsuspected participant hearing impairment. 311 

The entire experiment took about 1 hour to complete. Participants received payment at the end of 312 

the experiment. Repeated-measure analysis of variance was conducted for the SRTs in the IBM 313 

SPSS software (version 26.0). 314 

RESULTS 315 

First, the model was used to simulate auditory nerve responses for two cases: baseline vs. 316 

HPR using tones, and baseline vs. HPR using broadband noise. These cases are compared with 317 

those from Wen et al. (2009) from their Figures 2 and 4, respectively, so we use simulated nerve 318 

fibers that are matched in best frequency and spontaneous rate with the fibers they observed. 319 

Second, the results of the precursor paradigm were compared to those of the HPR paradigm 320 

using tones to verify that the outcomes were similar. The precursor paradigm was also used to 321 

show the responses of the auditory nerves of different spontaneous rates presented with various 322 

types of stimuli. Third, the results of the speech-in-noise test were compared under deactivation 323 

vs. full activation of efferent reflexes and with varying amounts of expansion when efferent 324 

reflexes were activated. The validation outcome of the simulator is also reported in this section. 325 

Dynamic range adaptation through the HPR paradigm 326 

Figure 3 shows the average responses of a high SR fiber whose BF matched the probe 327 

tone frequency, comparing baseline and HPR-paradigm conditions. The rightmost column shows 328 

the physiological data of Wen et al. (2009) collected from a cat fiber responding to 550-Hz tones. 329 

The rest of the data were from a simulated high-SR human fiber responding to 580-Hz tones 330 
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under ‘normal’ (leftmost column), ‘noMOC’ (second left column), ‘noAR’ (middle column), and 331 

‘noEff’ (second right column) processing conditions. 332 

 333 

 334 

Figure 3. Response of a high SR fiber (BF = 580 Hz) to 580-Hz tones. From left to right panels: 335 

modeled human data for normal, noMOCR, noAR and noEff conditions, and Cat 336 

electrophysiological data (BF = 550 Hz, tone at 550 Hz, from Figure 2 of Wen et al., 2009, 337 

adapted with permission, Copyright © 2009 Society for Neuroscience). Different colored 338 

symbols and lines are data points and fitted curves for different HPR levels, indicated by colored 339 
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segments on the x-axis, while black is the baseline condition (with no DRA). A: RLFs (top) and 340 

normalized RLFs (bottom). B: level at 50% rate. C: rate slope (top) and sensitivity index δ’ 341 

(bottom). 342 

Under ‘normal’ condition, the RLFs shift toward the right with increasing HPR levels 343 

(Figure 3A), a DRA that was observed in the physiological data. Classical firing rate adaptation, 344 

the decrease of the maximum firing rate with increasing HPR level, is minimal in the simulation, 345 

but when the RLFs are normalized for maximum firing rate (second row of panels), there is 346 

greater DRA than in the physiological data. The 50% point shifts by 0.42 dB per dB change in 347 

HPR level for the modeled data, and only by 0.16 dB/dB for the physiological data. As HPR 348 

level increases, there is also a clear rightward shift in the peak rate slope and the peak sensitive 349 

index δ’ in the ‘normal’ condition. 350 

DRA is present under ‘noMOCR’ condition and reaches 0.48 dB/dB. However, the rate 351 

slope and sensitive index δ’ of ‘noMOCR’ are shallower compared to ‘normal’, suggesting a 352 

reduction of sensitivity in encoding intensity change. On the other hand, ‘noAR’ shows a 353 

drastically reduced DRA with HPR levels compared to ‘normal’ or ‘noMOCR’ conditions, 354 

reaching only 0.17 dB/dB. The absence of acoustic reflex does not affect the sensitivity of 355 

intensity change coding as its sensitivity indices are comparable to those of ‘normal’. Finally, the 356 

absence of both acoustic reflexes (i.e., ‘noEff’) shows combined effects of severe reduction, but 357 

not an eradication, of DRA. 358 

Figure 4 shows modeling of the second fiber type measured by Wen et a. (2009): the 359 

average response of a medium-SR fiber to broadband noise in the baseline and the HPR 360 

paradigm conditions. The BF of the modeled human fiber was selected at 1280 Hz to best match 361 

the 1300 Hz BF of the Cat fiber. Overall, the results using noise and a medium-SR fiber are 362 
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similar to those observed for tones with a high SR fiber, but with two small differences. First, the 363 

maximum firing rate decreases more markedly with increasing HPR level. Second, the amount of 364 

DRA is larger for noise than for tones, which is 0.55 and 0.52 dB/dB for ‘normal’ and ‘noMOCR’ 365 

under noise stimulation, respectively. 366 

 367 

 368 

Figure 4. As figure 3, but for a medium SR fiber (BF = 1280 Hz) responding to broadband noise. 369 
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Precursor paradigm shown as a more efficient alternative to HPR paradigm 371 

The results of the precursor paradigm are similar to those of the HPR paradigm (Figure 5). 372 

With the precursors, the normal RLFs show rightward shift with increasing precursor level, and 373 

the amount of such DRA is slightly larger than that of the HPR level, yielding 0.57 dB/dB shift 374 

for HSR fibers with 580-Hz BF responding to tones at the BF. The deactivation of efferent 375 

reflexes reduces DRA to 0.15 dB/dB. 376 

 377 

 378 

Figure 5. RLFs of high-SR fibers (BF 580 Hz) to 580-Hz tones under different paradigms, 379 

hearing conditions and context levels. From left to right panels: modeled human data for normal, 380 

noMOCR, noAR and noEff conditions. Top panels: HPR paradigm. Bottom panels: precursor 381 

paradigm. Dotted lines: RLFs with context levels in the 36-72 dB range. Solid lines: logistic fits 382 

of predicted RLFs. Top left of each panel: DRA (dB/dB). 383 

 384 
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 385 

Figure 6. RLFs for model AN fibers of different SRs for broadband noise (BBN) or tones. From 386 

left to right panels: BF = 1 kHz, noise stimuli; BF of 580 Hz, 2.1 kHz and 3.8-kHz with 387 

matching-frequency tone stimuli. Top to bottom panels: low, medium- and high-SR fibers, and 388 

average responses of fibers of the three spontaneous rates. 389 

 390 

Analysis of normal fibers responding to various types of stimuli (noise and tones of 391 

different frequencies) was performed for each spontaneous rate class using the precursor 392 

paradigm. The results (Figure 6) show that (1) RLFs tend to saturate at lower probe levels for 393 

fibers with high SR than for fibers with low SR regardless of the stimulus frequencies, but robust 394 

DRA occurs for fibers of all three SRs, (2) the amount of DRA decreases with increasing tone 395 
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frequency, especially for low-SR fibers, and (3) the amount of DRA increases with fibers’ SRs 396 

for high-frequency tones, but the effect is not obvious for low-frequency tones. 397 

Efferent reflexes in the efficient encoding of speech  398 

Figure 7 shows the SRTs (signal-to-noise ratio for 50% digits correctly reported) 399 

achieved by listeners attending to the MAPsim output. Intelligible speech was thus heard using 400 

each simulation, but SRTs were improved by including certain features in the simulation.  401 

 402 

 403 

Figure 7. Digit-triplet SRTs obtained from listeners attending to the original signal (unproc.) 404 

and MAPsim outputs with efferent reflexes disabled (no eff.), with them enabled but without 405 

expansion (no exp.) and with expansion based on inverted efferent signals (MOCR exp. and 406 

MOCR*AR exp.). Error bars are standard errors of means. 407 

 408 
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  Mean Difference SE p 

no eff. no exp.  1.773* 0.410 0.012 

 MOCR exp.  2.059**  0.452  0.008 

 MOCR*AR exp. 2.689**  0.299  0.001 

 unproc.  3.647**  0.509  0.001 

no exp. MOCR exp.  0.286  0.265 1.000 

 MOCR*AR exp. 0.916 0.356 0.260 

 unproc.  1.873**  0.376 0.004 

MOCR exp. MOCR*AR exp. 0.630  0.308 0.657 

 unproc.  1.587**  0.222 0.001 

MOCR*AR exp. unproc.  0.958 0.343  0.176 

 409 

Table 3. Post hoc pairwise comparisons between MAPsim processing conditions. Adjustment for 410 

multiple comparisons: Bonferroni. *: p < 0.05. **: p < 0.01. 411 

 412 

The importance of compensating for the peripheral compression introduced by the MAP 413 

model was evaluated. The SRTs of ‘no exp.’ (neither expansion applied), ‘MOCR exp.’ (MOCR 414 

expansion only), ‘MOCR*AR exp.’ (both expansions applied), and ‘unproc.’ (original, 415 

unprocessed stimuli) were compared (Table 3). The mean thresholds were progressively reduced 416 

by adding compensation for the MOCR and then the MOCR and AR, with deficit compared to 417 

the unprocessed case reaching less than one dB. However, they did not improve significantly 418 

over the ‘no exp.’ case.  419 
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The role of efferent reflexes in coding speech in noise was examined by comparing ‘no 420 

eff.’ to ‘MOCR*AR exp.’ and ‘unproc.’ conditions. Under ‘no eff.’, efferent reflexes were 421 

deactivated in the MAP model, hence no expansion was applied. The results show that when 422 

efferent reflexes are absent, the SRT increases significantly, elevating nearly 2.7 dB from that of 423 

‘MOCR*AR exp.’, p < 0.001, and 3.6 dB from that of ‘unproc.’, p < 0.001. 424 

DISCUSSION 425 

The modeling based on the MAP model (Panda et al., 2014), shows how DRA may occur at 426 

sound levels up to at least 72 dB, such that the system can remain mostly saturation-free and 427 

efficiently transmit to the brain information about temporal modulations of speech uttered at 428 

normal levels. Specifically, DRA is brought about by two efferent feedback loops: the acoustic 429 

reflex shifts RLFs with context level, by attenuating transmission through the middle ear; the 430 

MOCR works in parallel with the acoustic reflex by modulating the electromotility of the outer 431 

hair cells, fine-tuning the slope of the RLFs to ensure optimal and precise encoding of sound 432 

intensity. Compared to the Wen et al. data, the MAP model predicts a greater effect of DRA but 433 

much smaller classical adaptation effects. Greater DRA results from the inclusion of the two 434 

efferent processes, which were suppressed by anesthesia in the physiological work. Reduced 435 

classical adaptation may come from the use of much shorter HPR stimuli (8 seconds, compared 436 

to 5 minutes) in our study, combined with a model that, in any case, only simulates short-term 437 

adaptation. 438 

After decoding the firing patterns predicted by MAP  back into an acoustic signal, speech 439 

recognition in noise through MAPsim significantly improves with activated efferent reflexes, 440 

illustrating the role of efferent reflexes in efficient coding of speech, which is a signal highly 441 

modulated in spectral and temporal domains (Drullman et al., 1994). 442 
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Mechanisms of dynamic range adaptation in AN fibers 443 

The shifting of RLFs toward higher levels as context level increases was first shown in 444 

animal studies at the auditory nerve (Wen et al., 2009) and the inferior colliculus (Dean et al., 445 

2005, 2008) levels. Many adaptive properties of the AN are associated with the synapses 446 

between inner hair cells and fibers (Moser and Beutner, 2000; Goutman and Glowatzki, 2007), 447 

inspiring auditory modeling scientists to simulate DRA through changing the dynamics of inner-448 

hair-cell-auditory-nerve synapses. Zilany & Carney (2010) have successfully simulated DRA by 449 

implementing power-law dynamics at the junction between inner hair cells and fibers in their 450 

auditory model. However, it is unclear whether these power-law dynamics are physiologically 451 

plausible. The current study suggests that DRA at the AN could originate from the efferent 452 

reflexes, especially the AR, which would not be evident from studies with anesthetized small 453 

mammals. Interestingly, anesthetized animals still show DRA at higher centers (Dean et al. 2005, 454 

2008), suggesting that other mechanisms are also at work at these levels of the nervous system. 455 

The MAP model predicts that the MOCR and the acoustic reflex take on different roles in 456 

DRA. The modeled MOCR receives contributions from the AN fibers of all three spontaneous 457 

rates. When disabling the MOCR, the slope of the RLF decreases, suggesting that the auditory 458 

system becomes less sensitive to sound intensity change. In other words, a slight change in sound 459 

intensity does not induce as much difference in the firing rates in the absence of MOCR as in the 460 

normal condition. On the other hand, the acoustic reflex is activated only at high intensities to 461 

attenuate the stapes displacement, and the amount of attenuation solely depends on the output 462 

from the stream that involves the low-SR fibers. When the acoustic reflex is disabled, the firing 463 

rates at high probe levels are no longer suppressed, causing the RLFs of the higher context levels 464 

to shift leftward and overlap with the RLFs of the lower context levels. Therefore, the absence of 465 
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acoustic reflex impacts the sensitivity and accuracy of intensity coding at higher context levels 466 

and the auditory system’s ability to perform DRA efficiently. 467 

The efferent reflexes have been suggested as a source of DRA but their role could not be 468 

examined in small mammals because anesthesia in physiological studies at least partially 469 

suppresses the efferent system. Note that, in the current study, when efferent reflexes are 470 

activated, the amount of DRA far exceeds what has been found in physiological studies, 471 

suggesting that the contribution of efferent reflexes to DRA was obscured under anesthesia but 472 

can be revealed using computational modeling.  473 

Some DRA remained in both modeled and empirical data, even with both efferent 474 

reflexes disabled, suggesting an additional source of adaptation in the peripheral auditory system. 475 

The most plausible explanation for this remaining adaptation resides in the dynamics of 476 

neurotransmitter vesicle release into the cleft, replenishment within the inner hair cell and 477 

reuptake by the hair cell from the cleft, as emulated by the 3-store model (Meddis, 1986, in its 478 

probabilistic implementation, and Sumner et al., 2002, in the quantized implementation used in 479 

this study). While such depletion accounts for some firing-rate adaptation, the presence of DRA 480 

with deactivated efferent reflexes shows that non-efferent-related DRA is an emergent property 481 

of the 3-store hair cell model. 482 

Classical adaptation in AN fibers 483 

Figure 6 shows some evidence of classical adaptation, but mainly in the low SR fibers 484 

and much less than seen throughout the Wen et al. data. Firing-rate adaptation occurs on 485 

different timescales. Short timescales (a few milliseconds or tens of milliseconds) are expressed 486 

in the 3-store model via fast available-store depletion but long-term firing-rate adaptation (Kiang 487 

et al., 1965) is not. Long-term adaptation may stem from a gradual decrease, under steady 488 
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stimulation, of the ion flux (Strimbu et al., 2019) required by inner hair cells to drive 489 

neurotransmitter release into the cleft. It is not captured in the MAP model and therefore not in 490 

our predictions. The HPR paradigm used in Wen et al. (2009) may capture such adaptation in 491 

high SR fibers because the stimulus is minutes in duration (see Figures 3 and 4). 492 

The model predicts differences in short-term adaptation as a function of spontaneous rate 493 

(Figure 6) due to differences in the time constant τCa, which reflects the dwell time of presynaptic 494 

calcium in the vicinity of the synapse and therefore determines the release characteristics of the 495 

synapse.  At saturation, despite high depletion of the available store, the probability of release of 496 

vesicles is much higher in high-SR than in low SR-fibers, such that short-term firing-rate 497 

adaptation of high-SR fibers is limited in the HPR or precursor paradigms. 498 

The precursor paradigm 499 

The precursor paradigm significantly improves the efficiency of setting up the context 500 

level compared to the HPR paradigm. The precursor precedes the probe with an identical signal 501 

that is 400-ms long and sets the context level. The precursor allows sufficient time to activate the 502 

efferent system to produce a given level of DRA. The precursor paradigm performed 503 

equivalently to the HPR paradigm in revealing DRA. Importantly, signals could be processed 504 

much more efficiently under the precursor paradigm so that the roles of efferent reflexes could 505 

be studied with perceptual measures using MAPsim. The equivalence of the HPR and precursor 506 

paradigms is reassuring given that psychophysical studies generally employ the latter when 507 

attempting to activate the efferent system. 508 

Future use of the MAPsim simulator 509 

MAPsim provides a new simulation framework for efficiently exploring peripheral 510 

auditory physiology, its pathologies and the corresponding perceptual impacts. Since all hearing 511 
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depends upon the signal encoded on the AN, the decoded sound will reflect any loss of 512 

information occurring within the model of peripheral transduction and thus the effects of 513 

modeled pathologies. MAPsim proved successful in that SRTs at the simulator validation stage 514 

differed from those obtained with unprocessed stimuli by just 1 dB, suggesting very limited 515 

information loss when simulating normal hearing.  516 

MAPsim could serve as a powerful tool to simulate perceptual effects of specific hearing 517 

pathologies, such as loss of inner vs. outer hair cells, loss of endocochlear potential and 518 

synaptopathy. The present simulations enable us to see via psychophysical measures that a 519 

deficient caudal efferent system could cause unrecoverable information loss and severely impair 520 

the ability to recognize speech in steady-state noise. Previously, the role of the efferent system, 521 

especially the MOCR, on speech recognition in noise was only studied through coupling the 522 

MAP model with an artificial observer, such as an automatic speech recognition system (Clark et 523 

al., 2012; Yasin et al., 2020), or through correlational studies where speech performance was 524 

examined under different levels of efferent activation (Mertes et al., 2018). Here, the simulator 525 

indicates specific effects of both MOCR and AR on human speech reception thresholds.  526 

Conclusion  527 

Our findings confirm the potential of efferent reflexes to maintain DRA and enable 528 

efficient coding of speech at the auditory nerve level. The MAP model predicts that the acoustic 529 

reflex shifts the dynamic range of auditory-nerve fibers towards contextual levels and the MOC 530 

reflex increases fiber sensitivity around that level. Our MAPsim simulator was validated for 531 

normal hearing of speech stimuli. Being based on MAP, MAPsim can be used to simulate 532 

specific sensorineural pathologies, opening the door to establishing their psychophysical 533 

signatures, such that they may be differentially diagnosed.  534 
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