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Abstract

Transcriptomes are known to organize themselves into gene co-expression clusters or mod-

ules where groups of genes display distinct patterns of coordinated or synchronous expres-

sion across independent biological samples. The functional significance of these co-

expression clusters is suggested by the fact that highly coexpressed groups of genes tend

to be enriched in genes involved in common functions and biological processes. While gene

co-expression is widely assumed to reflect close regulatory proximity, the validity of this

assumption remains unclear. Here we use a simple synthetic gene regulatory network

(GRN) model and contrast the resulting co-expression structure produced by these net-

works with their known regulatory architecture and with the co-expression structure mea-

sured in available human expression data. Using randomization tests, we found that the

levels of co-expression observed in simulated expression data were, just as with empirical

data, significantly higher than expected by chance. When examining the source of corre-

lated expression, we found that individual regulators, both in simulated and experimental

data, fail, on average, to display correlated expression with their immediate targets. How-

ever, highly correlated gene pairs tend to share at least one common regulator, while most

gene pairs sharing common regulators do not necessarily display correlated expression.

Our results demonstrate that widespread co-expression naturally emerges in regulatory net-

works, and that it is a reliable and direct indicator of active co-regulation in a given cellular

context.

Introduction

Organismal development arises from the interplay of thousands of gene products governed by

an underlying network of regulatory interactions [1, 2]. Understanding the detailed architec-

ture of these gene regulatory networks (GRNs) is an important interdisciplinary challenge for

both molecular genetics and developmental biology [3–5]. While gene expression can respond

to changes in numerous environmental variables, the dynamic expression of each gene is fully
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driven by the underlying structure of the genetic regulatory architecture (Bodaker, et al., 2013;

Das, et al., 2004; Schlitt and Brazma, 2007) [6–8]. Because genes exert a continuous, direct or

indirect, regulatory influence on each other, the collective profile of gene expression in a given

cell type or tissue is never a static cellular feature (i.e., a constant level of expression for each or

most genes), even under extremely stable physiological conditions (Schlitt and Brazma, 2007)

[8]. Instead, it is the dynamic equilibrium reached by the whole genetic network what will

determine the functional competence of a given cell or tissue under defined physiological con-

ditions (Hartwell, et al., 1999; Payne and Wagner, 2013; Payne and Wagner, 2015; Stead, et al.,

2006; Sterner, et al., 2012) [1, 2, 9–11]. One way of capturing the nature of this dynamic equi-

librium states is by examining the collective pattern of gene expression variations in a given

cell type or tissue.

Along these lines, transcriptomes are well-known to organize themselves into gene co-

expression clusters or modules where groups of genes display distinct patterns of coordinated

or synchronous expression across independent biological samples [12–18]. The functional sig-

nificance of these co-expression clusters is suggested by the fact that highly coexpressed groups

of genes tend to be enriched in genes involved in common functions and biological processes

[13, 19, 20]. While this co-expresion structure is believed to reflect, in some sense, the underly-

ing regulatory architecture of the genetic machinery, the exact source of these coordinated pat-

terns of expression remains unclear. More specifically, co-expression is commonly assumed to

be the result of genes sharing common regulators (i.e., jointly targeted by shared transcription

factors), however this assumption has never been formally tested as correlated expression

could also emerge in principle even in the absence of regulatory proximity.

Previous attempts to assess whether genes displaying high expression correlation are more

likely to share transcription factor binding sites (TFBS), when compared to those with low

expression correlation, have been carried out with conflicting results. Thus, for instance, in the

single-cell model Saccharomyces cerevisiae, for which both extensive microarray expression

data and experimentally verified TFBS data exist [12, 17, 21], only gene pairs with a very high

degree of co-expression share significantly larger number of TFBS [12]. However, a similar

analysis carried out in Drosophila, a much more complex multicellular model, found that gene

pairs with high expression correlations do not share significantly larger numbers of TFBS [13].

Understanding the relationship between the dynamics of expression profiles, and the

underlying regulatory architecture, will eventually allow us to develop adequate tools to better

interpret the effect of regulatory relationships under both normal and pathological conditions.

At its most basic level, GRNs can be represented as a web of transcription factor proteins bind-

ing specific regulatory sequences on target genes to control their spatial and temporal expres-

sion [5, 8, 22–26]. This means that actual genetic networks integrate vast webs comprised of

thousands of genes interlinked by either positive or negative regulatory interactions depending

on whether a given transcriptional regulator exerts a positive or negative influence on the rate

of transcription of targeted genes [8, 27, 28]. Synthetic computational models of GRNs offer

an adequate and experimentally tractable tool to investigate the relationship between the gene

regulatory architectures on the one hand and the expected dynamical patterns of gene expres-

sion on the other [27–29]. However, the objective of the present study is not to present a

method for regulatory network inference. While synthetic gene regulatory network models

have been extensively used as benchmarks for regulatory network inference methods [27–29],

no previous study has actually used them to explore the potential source of co-expression

itself.

In this study, we combine brain-derived gene expression data with synthetic GRN model

simulations to investigate: first, if the correlated structure observed in natural transcriptomes

deviates in any way from random expectations. Second, where these correlations could actually
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come from; and, third, the extent to which co-expressed pairs of genes are expected to be in

close regulatory proximity compared to random background gene pairs. This approach will

allow us to gain mechanistic insights into how co-expression patterns relate to the regulatory

interactions between genes, and will provide a theoretical framework to properly interpret co-

expression dynamics in living cells both in health and disease.

Methods

The GRN model

For this study, we used a simple GRN model aimed at capturing the essential statistical features

of real transcriptional regulatory networks: The regulatory architecture of our synthetic GRN

was represented by an interaction network composed of a defined number of nodes and

arrows, where each node represents a gene, and arrows linking them represent regulatory

interactions. We specifically used networks consisting on 1000 nodes, each one regulated by a

variable number of nodes randomly drawn from the entire network, with a set minimum

number of regulators per gene. As detailed analysis of promoter architecture (transcription

factor binding site distribution) for the human genome has revealed a distribution of regula-

tors to a target gene closely fitting a power law [30], the number of regulators k per gene i was

set to follow a power law distribution defined as:

ki ¼ minþ roundð1=x12Þ ð1Þ

Where min is the minimum number of regulators and x is a uniformly distributed random

number. With the second term rounded, as ki is set to be a whole number.

The expression state of a gene is represented by a real number and the initial state of the

network was set to be a random number for each gene/node drawn from a uniform distribu-

tion between 0 and 100. The rate of expression of a gene under the influence of a single regula-

tor is given by a sigmoid function of the level of expression of that single regulator.

fi ¼ A
1

1þ eB� CGi

� �

þ 1 ð2Þ

Where Gi is the level of expression of the regulator; A, B and C are parameters controlling

the maximum value, the inflexion point (threshold) and slope at that point for this function

(S1 File). Note that fi is defined in the interval [1, A+1] (where the minimum influence exerted

by Gi is 1 and the maximum is A+1).

This model assumes that the expression level of a target gene (under the influence of a single

regulator), is itself the rate f with which that regulator will contribute to the expression of the

target, and that when several regulators act on a gene, they interact cooperatively.

If fi is the rate of expression induced by the regulator i, the overall expression of the target

(Ex) under the influence of k regulators will be given by:

Ex ¼ f1�f2�f3� . . . fk ð3Þ

The expression state of each gene was simulated over a succession for 500 discrete time

points, with the state of a given node at time t being a function of the state of its regulators at

time t-1. Parameters associated to the sigmoid function used in the model were tuned to avoid

frozen states (that is, where all nodes become locked in constant values, S1A Fig and S1 File).

This model, was implemented in Matlab (R2017b) and for every simulation, expression profile

time courses were stored as CSV files for further analysis (the corresponding Matlab script

used in this study can be found in S1 File). Regulatory interaction networks were stored as
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edge list matrices for further analysis (an example of a synthetic expression dataset and the

associated network edge list can be found in S2 and S3 Files).

Source and processing of empirical expression data

RNA-seq human brain expression data (RPKM values) was sourced from the BrainSpan data-

base (http://www.brainspan.org), corresponding to a total of 18 separate brain regions from a

range of ages going from eight weeks post-conception through to 40 years of age. CAGE

expression data for 60 brain tissue samples from the FANTOM5 dataset were obtained from

Hurst et al., 2014 [30]. Quantile normalized expression values from both datasets were anno-

tated to Ensembl gene IDs (for Brain span data, individual expression values for more than

one Ensembl transcript ID annotated to the same Ensembl gene ID were averaged). Genes dis-

playing a standard deviation = 0.0 were excluded.

Annotations of Entrez IDs for transcription factors MYC, PAX2 and SRY target sites were

obtained from the Molecular Signatures Database v4.0 (MSigDB; http://www.broadinstitute.

org/gsea/msigdb/index.jsp). These annotations are based on transcription factor (TF) binding

sites compiled in the TRANSFAC (version 7.4, http://www.gene-regulation.com/) database.

Entrez IDs and gene symbols were mapped to Ensembl IDs with a correspondence table

downloaded from Ensembl’s Biomart (S4 and S5 Files).

Co-expression network analysis

Weighted gene co-expression network analysis was carried out based on pairwise correlations

between the quantile-normalized expression profiles obtained from either the BrainSpan data-

base (http://www.brainspan.org) or the FANTOM5 dataset [30] for over 21 000 genes. Spear-

man correlations were used here in order not to assume linear relationships between

coexpressed genes [18], and genes displaying standard deviation equal to zero, if any, where

eliminated in both empirical and simulated data Unsupervised hierarchical clustering was

used to detect groups, or modules, of highly coexpressed genes following the method described

by Zhang & Horvath, 2005 [18].

Topological distance analysis

Using Matlab’s network analysis functions, and based on the connectivity network of each

simulated GRN, we measured the topological distance between pairs of highly correlated

genes. Topological distance is defined as the minimum number of nodes linking any two

nodes in a directed or undirected network. In this study we used undirected topological dis-

tance between correlated gene pairs. These measurements were compared to the average topo-

logical distances between randomly paired genes sampled from the same network and this

comparison was statistically tested for significant differences using a student’s t test.

Programming and statistical software

All additional large-scale calculations, numerical simulations and statistical analyses were car-

ried out in R.

Results

We started by directly examining the correlated structure observed in empirical expression

data and whether it deviates in any way from random expectations.

To this end, we used available human expression data derived from two separate datasets

(See methods) and calculated the correlation coefficient of all possible pairs of genes. Cluster
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analysis based on co-expression reveals a clear structure in the correlated patterns of the entire

transcriptome. Fig 1A and 1B, show the clustered structure of two representative random sam-

ples of 1000 genes. As correlated pairs of genes are likely to occur by mere chance among mil-

lions of possible gene pairs, we next confirmed that the frequency with which genes display

highly correlated expression actually exceeds chance expectations. To this end, we examined

the global distribution of absolute correlation values and compared it with the expected distri-

bution of correlation coefficients resulting from randomly permuting each gene’s expression

values across all the included samples (see methods). As shown in Fig 1C and 1D, the empirical

distribution of correlation values shows a clear spread of large correlations when compared

with the distribution resulting from the randomized data. The number of correlated gene pairs

with a coefficient /R/> 0.5 was also significantly larger relative to chance expectations, con-

firming that the highly correlated structure observed in transcriptomes is not the result of

expected random statistical associations (insets in Fig 1C and 1D).

Fig 1. Frequency of co-expression is higher than expected by chance in natural transcriptomes. A and B) Typical co-expression structure and modular organiza-tion of

a random sample of 1000 genes from the human brain transcriptome (Brain-span dataset) and 60 brain tissue samples obtained from the Fantom5 dataset. C) and D)

Distribution of absolute correlations of all gene pairs in a random sample of 1000 genes compared with the distribution resulting from random permutations of expression

data in the same genes. Inset: Bars show the mean (±SEM) number of highly correlated pairs (/R/>0.5) among 1000 independent samples of 1000 genes each compared

with the expected mean number of highly correlated pairs (absolute correlation) resulting from random permutations of the gene expression values in the same samples.

https://doi.org/10.1371/journal.pone.0247671.g001
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In order to identify the possible origin of excessive correlations in GRNs, we generated a

simple computational gene network model of regulatory interactions capable of simulating

expression dynamics based on simplified but realistic kinetic properties (see methods section

and S1 Fig). The model generates random networks representing regulatory interactions

between genes, according to defined statistical topologies. Direct interactions between individ-

ual regulators and their targets are modelled by a simple sigmoid function dependent on two

main parameters: the inflexion point (threshold) and the saturating value (the maximum target

expression in response to the regulator’s expression; see methods). Under a wide range of val-

ues for these parameters, successive iterations of this model generate fluid and dynamic

expression time series that can be easily tuned to avoid frozen states (i.e., where all nodes

become locked in constant values, S1 Fig and S1 File). Starting from any arbitrary initial set of

expression values the dynamics of this model quickly reaches realistic equilibrium distribu-

tions of gene expression readily comparable with those observed in natural transcriptomes,

based on frequency of transcript read counts (S1B–S1D Fig).

Using this model, we simulated expression data in networks of 1000 nodes for 500 time

points (iterations) and generated the corresponding correlation matrix for all possible gene

pairs in the network. Cluster analysis based on co-expression reveals a clear clustered struc-

ture, indicating that transcriptomes generated by the synthetic model organize themselves into

co-expression modules (Fig 2A).

We then asked if the frequency of high correlations, in these synthetic GRNs, also exceeds

chance expectations. Using the approach we followed earlier, we obtained the global distribu-

tion of absolute correlation values and compared it with the expected distribution of correla-

tion coefficients resulting from randomly permuting each gene’s expression across all samples.

Fig 2. High co-expression naturally emerge in synthetic gene regulatory networks. A) Co-expression clustering dendrogram based on expression data generat-

ed by a synthetic GRN after 1000 time steps (iterations). B) The distribution of the absolute correlation of all synthetic gene pairs in in a simulated network of 1000

genes compared with the distribution resulting from random permutations of the same expression data. Inset: Bars show the mean (±SEM) number of highly

corre-lated pairs (/R/>0.5) obtained from 1000 independent GRN simulations compared with the expected mean number of highly correlated pairs (absolute

correlation) resulting from random permutations of the gene expression values of the same networks.

https://doi.org/10.1371/journal.pone.0247671.g002
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As shown in Fig 2 the distribution of absolute correlation values in synthetic networks shows

again a clear spread of large correlations in stark contrast with the distribution resulting from

the randomized data (Fig 2B). The number of correlated gene pairs with /R/ > 0.5 was also sig-

nificantly larger relative to chance expectations (χ2 = 1969, p<10−16, inset Fig 2B). These

results demonstrate that the distinct co-expression structure observed in natural transcrip-

tomes also emerges in the dynamics of synthetic regulatory networks. While the co-expression

structure observed in Fig 2, was based on a network architecture consisting of a power law dis-

tribution of regulators per target (also used in all following analyses), we also explored alterna-

tive architectures (fixed number of regulator and a normal distribution of regulators per

target, respectively) where a similar excess of co-expression emerges (S2 Fig). These results

offer the opportunity to investigate the source of highly correlated behaviour in regulatory net-

works in general and in the genetic regulatory networks in particular.

Along these lines, we asked if the simplest possible regulatory interaction between any two

genes (i.e. an individual regulator and its direct target or targets) results in a correlated behav-

ior at the level of expression. In principle, we would expect direct regulatory interactions to

result in strong correlations, either positive or negative for positive or negative regulators

respectively. To test this assumption, we identified in our synthetic GRNs all individual gene

pairs linked by a direct regulatory interaction (regulator-target pairs), and examined their

association. Fig 3A–3D, shows scatter plots for four randomly chosen examples of individual

positive regulator-target pairs displaying the observed level of expression of each of these tar-

gets as a function of the regulator’s expression. These examples suggest a clear lack of associa-

tion between the level of expression of individual targets and their direct positive regulators. In

order to confirm this observation we calculated the correlation coefficient of all existing gene

pairs linked by a positive regulatory interaction in the network (>3000 regulator-target pairs).

As shown in Fig 3E, positive regulators and targets display, on average, an extremely poor or

no correlated expression. This result was replicated when only negative regulators where con-

sidered (Fig 3F–3J), further confirming a general lack of correlated expression between regula-

tors and their direct targets. When these same analyses were carried out using alternative

architectures (fixed number of regulator and a normal distribution of regulators per target), a

similar lack of average correlated expression between regulators (both positive and negative)

and targets (see S3 Fig) was observed. These results imply that correlated expression does not

emerge as the result of the direct interaction between a regulator’s gene (i.e., transcription fac-

tor), and their immediately targeted genes.

To test if the same lack of correlation between regulators and targets is found between gene

regulators (transcription factors) and their direct target genes in experimental data, we exam-

ined expression data of three representative and well-known transcription factors, MYC,

PAX2 and SRY, and their direct known targets. We identified over 400 direct target genes for

each of these three transcription factors using the MsigDB dataset, which compiles data for

known transcription factor binding sites across all annotated human genes (see methods).

Using normalized expression data from the Brainspan dataset, we calculated the correlation

between these transcription factors and each of their targets. Fig 4A–4D, shows a poor average

correlated expression between MYC and its targets. This uncorrelated behaviour was also

observed for PAX2 (Fig 4E–4H) and SRY (Fig 4I–4L). It is worth noting that these distribu-

tions are much narrower than those resulting from equally-sized samples of random gene

pairs drawn from the background gene population. These results show that the expression of

these three representative and well-known transcription factors, is poorly correlated with the

expression of their known direct targets.

Because a transcription factor-target pair is the simplest possible regulatory interaction

between any two genes, the observed general lack of co-expression between regulators and
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Fig 3. Regulators and direct targets show poorly correlated expression levels in synthetic GRNs. A-D) Typical scatter graphs

showing the level of expression of four independent target genes (Tgt, expressed as log-transformed values) as a function of the level

of expression of one direct positive regulator (TF). E) Distribution of correlation values of all individual regulator-target pairs

involving only positive regulators. F-I) Typical scatter graphs showing the level of expression of four independent target genes as a

function of the level of expression of one direct negative regulator (TF). J) Distribution of correlation values of all individual

regulator-target pairs involving only negative regulators.

https://doi.org/10.1371/journal.pone.0247671.g003
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their targets suggests that correlated expression in GRNs can only be the result of more indi-

rect associations. In order to assess the regulatory proximity of correlated genes in a GRN, we

measured the undirected topological distance (see methods) between the top most highly cor-

related gene pairs (/R/ > 0.8) in our synthetic GRNs, and compared this measure with the

average topological distance between random background gene pairs. As shows in Fig 5A the

average topological distance between highly correlated gene pairs in the regulatory network

was significantly shorter than that observed between random background genes (p< 10−13,

student T test). Crucially, the average distance between highly correlated gene pairs was very

close to two, regardless of the topology or density of regulatory interactions in the network,

strongly suggesting that highly correlated genes tend to be linked by only one regulatory com-

ponent. There are only three possible configurations involving a directed network linking any

two focus genes through a third one. However and in the context of co-expression, only one

Fig 4. Transcriptional regulators in natural transcriptomes are poorly correlated with their individual targets. (A-C): Scatter graphs showing the level

of expression of three out of 400 known targets (Tgt, expressed as log-transformed values) of the transcription factor MYC, as a function of the level of

expression of this same transcription factor (TF). D) Distribution of correlations between MYC expression against 400 identified MYC targets. (E-G):

Scatter graphs showing the level of expression of three independent targets of the transcription factor PAX2, as a function of the level of expression of this

same transcription factor. H) Distribution of correlations between PAX2 expression against 400 identified targets. (I-K): Scatter graphs showing the level

of expression of three independent targets of the transcription factor SRY, as a function of the level of expression of this same transcription factor. L)

Distribution of correlations between SRY expression against 400 identified targets. Ensembl IDs for each individual target in the scatter graphs are

indicated. For each transcription factor, the scatter graph shown correspond to percentiles 25, 50 and 75 of the correlation distribution for each set of

targets.

https://doi.org/10.1371/journal.pone.0247671.g004
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configurations is likely to lead to correlated expression of two genes if they need to be linked

by a third one: two genes under the control of a common regulator. We tested this hypothesis

by measuring, in our simulated GRNs, the proportion of highly correlated gene pairs (/R/

>0.8) sharing a common regulator compared to the proportion of lowly correlated pairs (/R/

<0.2) also sharing a common regulator. As shown in Fig 5B, the vast majority of highly corre-

lated gene pairs (>90%) shared common regulators across 1000 independent simulations of

GRNs. By contrast, only an extremely low proportion of lowly correlated gene pairs shared

common regulators (p<10−16, Student T test). These results show that highly correlated gene

pairs would disproportionately tend to share common regulators (the reverse however not

being necessarily the case). A virtually identical result was obtained when these same analyses

were conducted using alternative architectures with networks with either a fixed number of

regulators of a normal distribution of regulators per target where a similar dependency for co-

expression on co-regulation is observed (see S4 Fig). This finding suggests that the observed

dependency between co-expression and co-regulation is robust to other network architectures.

In order to test this link between correlated expression and co-regulation, we reasoned that

if over 90% of highly correlated gene pairs share common regulators, but not the other way

around (that is, not all gene pairs sharing regulators will display correlated expression), we

would expect that gene pairs known to be targeted by common regulators (shared TF binding

sites), would tend to be, on average, more correlated with each other than background gene

pairs. On the other hand, given the observed poor average correlation between regulators and

targets, we would expect regulator-target pairs to display a much weaker average absolute cor-

relation. We first tested this notion in our synthetic GRN simulations and measured the

Fig 5. Correlated pairs of genes share common regulators in synthetic GRN. A) Typical average topological distance (a

measure of regulatory proximity in the GRN) between pairs of highly correlated genes (/R/> 0.8) compared with the average

distance between random pairs of background genes in the synthetic regulatory network. In both cases, the associated p value in a

T test was below 10–16. B) Bar chart showing the average proportion (±S.E.M) of pairs of genes sharing a common regulator

among either highly correlated pairs (/R/>0.8) or lowly correlated pairs (/R/< 0.2) found in 1000 independent simulations.

https://doi.org/10.1371/journal.pone.0247671.g005
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average absolute correlation of all existing gene pairs sharing at least one common regulator,

as well as regulator-target pairs (n>15000 gene pairs, excluding genes with zero standard devi-

ation, when occurring). We compared these two measures (see arrows in Fig 6A) with the dis-

tribution of average absolute correlations in 1000 equally-sized samples of gene pairs

randomly drawn from the background gene population. We used random background gene

pairs as a reference because in a real biological system it is currently impossible to know with

certainty no transcriptional regulator is shared between any two given genes. Accordingly, we

use background gene pairs as a reference point of comparison (rather than pairs of genes

known not to share any transcriptional regulator). While this lack of complete knowledge is

not the case for synthetic data, we chose to use the same reference to background gene pairs

for consistency, and to make it directly comparable with the empirical expression data (next

paragraph). As shown in Fig 6A, we found a highly significant bias, towards a higher average

absolute correlation for gene pairs sharing common regulators. Regulator-target pairs, on the

other hand showed an average absolute correlation no different to that of random background

gene pairs.

Using brain expression data derived from the Brainspan dataset we measured the pooled

average correlation between all possible pairs of known target genes for either MYC, PAX2 or

SRY separately, as well as regulator-target pairs involving any of these three regulators, and

compared them with the average correlation of 1000 equally-sized samples of random gene

pairs drawn from the background gene population. As shown in Fig 6B, gene pairs jointly tar-

geted by any of these transcription factors, displayed a significantly higher average absolute

correlation (right arrow) than expected by chance (Fig 6B, histogram). Regulator-target pairs,

Fig 6. Pairs of genes sharing a common regulator tend to be more highly correlated than random background and regulator-target pairs of

genes in both synthetic and natural transcriptomes. A) Average co-expression (absolute correlation) between those pairs of genes sharing a

common regulator, as well as regulator-target pairsin the synthetic GRN (arrows) compared with the distribution of average correlations of 1000

equally sized samples of random background pairs of genes. B) Average coexpression (absolute correlation) between pairs of targets of either MYC,

PAX2 or SRY, as well as regulator-target pairs involving all these three regulators, (pooled data, arrows) compared with the distribution of average

correlations of 1000 equally-sized samples of random background pairs of genes using expression data derived from the Brainspan database.

https://doi.org/10.1371/journal.pone.0247671.g006
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on the other hand showed an average correlation significantly lower than random background

gene pairs. This result confirms that, in line with our GRN simulations, gene pairs sharing reg-

ulators would tend to display a higher average correlation when compared with both back-

ground random gene pairs as well as with regulator-target pairs.

Taken together our results demonstrate that while immediate regulatory interactions

between two genes (regulators-target pairs) fail to explain correlations in gene regulatory net-

works, co-expression emerges only when pairs of genes are being actively co-regulated.

Discussion

In this study, we found that correlated patterns of gene expression observed in natural tran-

scriptomes exceed the number of random correlations naturally expected by chance alone.

This distinct structural signature has been hypothesized to reflect underlying regulatory and

functional relationship between thousands of genes displaying coordinated levels of expression

[13, 14, 17, 20, 21]. While functional relationships between co-expressed genes have been

widely documented, [13, 14, 17–21], the exact nature of the regulatory relationships underly-

ing correlated expression between groups of genes has remained poorly understood. Using

simulations based on a synthetic GRN model we found that co-expression patterns naturally

emerge under a wide range of regulatory architectures, and that these correlations also exceed

simple random expectations. This clustered structure could potentially be the result of: A) a

group of genes being under close regulatory proximity, in which case we could expect corre-

lated genes to be in close proximity in the regulatory circuit. Or, B) a reduction in the total

number of potential expression trajectories due to the global constraints imposed by the regu-

latory network, thereby forcing a large number of correlations even between genes located at

any arbitrary distance in the regulatory network. In this study, we tested these two hypotheses

by asking whether correlations occur between genes linked by the closest possible regulatory

distance (regulator-target pairs), and found that the expression level of all targets is on average

poorly or no correlated with that of their immediate regulators. Transcript levels are known to

be poorly correlated with the level of the corresponding protein products, and, consequently,

the expression level of a given transcription factor is not necessarily expected to be correlated

with its regulatory activity [31]. However, at the transcriptome level the closest regulatory

proximity between any two genes (regardless of any post-translational events) is the one that

exists between a gene encoding for a transcriptional regulator and a gene directly targeted by

it. So, in order to investigate the origin of correlated expression we needed to start by looking

at the closest regulatory proximity between pairs of genes (at the transcriptome level). Even

though our synthetic model does not take into account intermediate events between the

expression of a transcription factor and its direct regulatory activity at the protein level, we still

find a lack of correlation between the expression of regulators and targets. This result implies

that, even when intermediate post-translational events are removed, co-expression still fails to

emerge from the most direct regulatory interaction that exists between any two genes (regula-

tor-target gene pairs). Instead, we find that high co-expression is to be found (both in simu-

lated and real data), not between genes linked by the closest possible regulatory interaction (at

the transcriptome level), but by pairs of genes further away in terms of regulatory proximity.

Regarding regulator-target pairs, it is worth considering what would happen if time delays

between regulator and target expression are considered in the analysis. This can be easily done

using our synthetic model, by simply looking at the regulator’s expression at time t and corre-

sponding targets at time t+1. As shown in S5 Fig of the Supporting material, a bimodal distri-

bution emerges, revealing a large population of close-to-zero correlations and a smaller

subpopulation of strong correlations (positive or negative depending on the regulator’s sign).
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It is however important to stress that obtaining this kind of data in actual experimental set-

tings, currently constitutes a considerable technical challenges as it requires obtaining

minutely detailed time series in synchronous cell populations. On the other hand, co-expres-

sion is currently documented in conditions in which expression data for both regulators and

targets are obtained at the same time point, and is this observed co-expresssion the one we

address in this study.

Given the lack of a direct correlation between the expression of a transcriptional regulator

and its direct target, we asked whether highly correlated gene pairs could be located at any

arbitrary regulatory distance within the control network (that is, no closer at a regulatory level

than any two random genes). Using our GRN model, where the precise architecture of the

transcriptional regulatory network is known, we measured the topological distance between

every pair of highly correlated genes and found that highly coordinated genes were closer

within the regulatory network than background genes and that, on average, any two highly

correlated genes were linked by just one intermediary regulatory component. As this result

strongly suggests that co-expressed genes share at least a single common immediate regulator,

we measured the proportion of highly correlated gene pairs sharing a common immediate reg-

ulator compared with lowly correlated gene pairs and confirmed that over 90% of highly corre-

lated gene pairs indeed shared immediate upstream regulators (the reverse, however, not

being true). Our finding that the average correlation of all possible pairs of genes known to be

targeted by any of three well-known transcription factors is significantly higher than the aver-

age correlation expected among random background gene pairs, further supports the notion

that highly correlated gene pairs, in natural transcriptomes, share common immediate

upstream regulators. The potential influence of other factors on co-expression, as normally

measured in a range or experimental settings, has been recently examined in a study carried

out by Farahbod and Pavlidis (2020). In it, the authors show that correlated patterns of expres-

sion in heterogeneous tissues (such as the brain tissue data used here), mainly reflect correlated

changes in expression across cell types, as opposed to variations within cell types [32]. How-

ever, correlated changes in expression across cell types are also themselves a function of the

underlying regulatory relationships and the focus of the present study is, precisely, the link

between co-expression and the regulatory proximity of correlated genes given an underlying

regulatory network. Our finding that genes sharing a common regulator tend to be more

highly correlated than random background pairs of genes, even in heterogeneous brain tissue,

lends further support to this notion. It is important to stress at this point that we use a syn-

thetic gene regulatory network model to gain insights on possible sources of co-expression,

and test these insights on empirical expression data. While a match between the insights

gained with the synthetic model and the actual data suggests the underlying mechanisms

could be similar, it does not unequivocally demonstrate that they are.

The assumption that co-expressed genes are more likely to share common regulators, has

been examined in yeast where gene pairs with a very high expression correlation show a signif-

icant excess of shared binding sites in yeast [12, 17, 21]. However, in a subsequent study car-

ried out in a more complex organism, Drosophila melanogaster, based on experimentally

determined TFBS and microarray expression data, it was found that pairs of genes with shared

TFBS show, on average, a higher degree of co-expression than those with no common TFBS

[13]. However, the study in Drosophila also finds that gene pairs with high expression correla-

tions do not share large numbers of TFBS [13]. In the latter study, the authors note that the

microarray-based data used in their analysis is typically obtained from the whole organism

and that the lack of relationship between the extent of co-expression and the number of shared

TFBS may be related to the heterogeneity of cells and tissue types involved in these expression

level data. It is worth noting that, in agreement with this possibility, the same authors find that
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when the same analysis is restricted to a short developmentally early time window, when the

cell type heterogeneity is presumably less pronounced, a very large proportion of highly corre-

lated gene pairs were found to share at least one TFBS [13]. Although the authors highlight

that this relationship may be confined to a specific property of the early developmental pro-

gramme, their result is consistent with our finding that the vast majority highly correlated

genes will share common regulators. In this regard, our findings are also consistent with the

relatively higher efficiency to infer regulatory sequences in mammalian genomes, when

expression data from specific tissues are used, as opposed to using global expression data from

the whole organism [13, 16, 33].

In summary, our results show that the levels of co-expression observed in simulated expres-

sion data are, just as in empirical data, significantly higher than expected by chance. When

examining the source of correlated expression, we also find that high co-expression is unlikely

to be the result of the closest existing regulatory proximity between any two genes at the tran-

scriptome level (transcription factor-target gene relationships). Instead, highly correlated gene

pairs tend to share at least one common regulator, while most gene pairs sharing common reg-

ulators do not necessarily display correlated expression. Our results also demonstrate that

widespread co-expression naturally emerges in regulatory networks, and that it is likely to be a

reliable and direct indicator of active co-regulation in a given cellular context.

Supporting information

S1 Fig. Synthetic GRNs generate realistic gene expression distributions. A) 3D plot showing

the dependence of fluidity in the dynamic behaviour of the synthetic GRN model used in this

study (percentage of frozen nodes or genes) as a function of a range of values for parameters A

and B of the sigmoid function used to calculate the response of a target gene to a single regula-

tor. B) Distribution of log-transformed gene expression data generated by the synthetic GRN

model after 500 time points (iterations) in a typical network consisting of 1000 genes, with

parameters A = 5 and B = 5, proportion of negative regulators = 0.4 and minimum number of

regulators = 3. C and D) Distribution of log-transformed gene expression values in natural

transcriptomes using RNA-seq based data from Brainspan and Fantom5 datasets respectively.

(TIF)

S2 Fig. High co-expression in synthetic gene regulatory networks with alternative distribu-

tions of regulators per target. A) Co-expression clustering dendrogram based on expression

data generated by a synthetic GRN after 1000 time steps (iterations), using a fixed number of

regulators per target (n = 4 which corresponds to the mean number of regulators in the power

law distribution used in Fig 2). B) The distribution of the absolute correlation of all synthetic

gene pairs in the same network compared with the distribution resulting from random permu-

tations of the same expression data. C) Co-expression clustering dendrogram based on expres-

sion data generated by a synthetic GRN after 1000 time steps (iterations), using a normal

distribution of regulators per target (mean = 4, SD = 2, which corresponds to the mean and

standard deviation of regulators in the power law distribution used in Fig 2). D) Distribution

of the absolute correlation of all synthetic gene pairs for the above network compared with the

distribution resulting from random permutations of the same expression data. Inset: Bars

show the mean (±SEM) number of highly correlated pairs (/R/>0.5) obtained from 1000 inde-

pendent GRN simulations compared with the expected mean number of highly correlated

pairs (absolute correlation) resulting from random permutations of the gene expression values

of the same networks.

(TIF)
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S3 Fig. Regulators and direct targets show poorly correlated expression levels in synthetic

GRNs with fixed and normally distributed regulators per target. A) Distribution of correla-

tion values of all individual regulator-target pairs involving only positive regulation in a net-

work using a fixed number of regulators per target (n = 4, corresponding to the mean number

of regulators in the power law distribution used in Fig 2). B) Distribution of correlation values

of all individual regulator-target pairs from the same previous network involving only positive

regulation. C) Distribution of correlation values of all individual regulator-target pairs involv-

ing only positive regulation in a network using a fixed number of regulators per target

(mean = 4, SD = 2, which corresponds to the mean and standard deviation of regulators in the

power law distribution used in Fig 2). D) Distribution of correlation values of all individual

regulator-target pairs from the same previous network involving only negative regulatory

interactions.

(TIF)

S4 Fig. Highly correlated pairs of genes tend to share common regulators in synthetic

GRN with alternative distributions of regulators per target. A) Bar chart showing the aver-

age proportion (±S.E.M) of pairs of genes sharing a common regulator among either highly

correlated pairs (/R/>0.8) or lowly correlated pairs (/R/ < 0.2) found in 1000 independent

simulations using a fixed number of regulators per target (n = 4). B) Bar chart showing the

average proportion (±S.E.M) of pairs of genes sharing a common regulator among either

highly correlated pairs (/R/ >0.8) or lowly correlated pairs (/R/ < 0.2) found in 1000 indepen-

dent simulations using a normally distributed number of regulators per target (mean = 4,

SD = 2).

(TIF)

S5 Fig. Effect of time delays on the observed correlated expression between regulators and

targets. A and B) histograms showing the correlation distribution between either positive reg-

ulators and their targets (A) or negative regulators and their targets (B). C and D) histograms

showing the correlation distribution between either positive regulators measured at time t, and

their targets measured at time t+1 (C) or negative regulators at time t and their targets at time t

+1 (D).

(TIF)

S1 File. Matlab code for the synthetic GRN model.

(M)

S2 File. Example of simulated n = 1000 nodes GRN edge list. First column lists target nodes.

Second column lists regulator and sign.

(TXT)

S3 File. Example of simulated n = 1000 nodes GRN raw expression data. Running parame-

ters: A = 5, B = 5, MinReg = 3.

(TXT)

S4 File.

(ZIP)

S5 File.

(ZIP)
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