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Abstract

The advanced Automated Fibre Placement (AFP) manufacturing technologies make the

synthesis of Variable Angle Tow (VAT) composites, which enable the design of lightweight

sandwich structures to possess variable stiffness facesheets. However, both global and lo-

cal instability phenomena of VAT sandwich plates under in-plane compressive loads are

rarely explored till now. The objective of this article is to fill this gap by developing a

Rayleigh-Ritz procedure based on a modified extended high-order sandwich plate theory

(EHSAPT). The original two-dimensional EHSAPT proposed by Phan et al. [1] is ex-

tended to a three-dimensional case with a minor modification that the first-order shear

deformation theory instead of the classical Kirchhoff–Love hypothesis is adopted for each

facesheet, which brings several merits such as the conciseness in derivation process and

the easiness in program implementation. The Rayleigh-Ritz approach combined with the

principle of minimum potential energy is employed to derive the eigenvalue equation that

governs the instability problem of VAT sandwich plates under in-plane compressive loads.

Both global buckling and wrinkling patterns of VAT sandwich plates can be captured un-

der this proposed analytical model framework. Before instability analysis, the nonuniform

prebuckling stresses over the entire sandwich plate are determined under the assumption

of membrane prebuckling state. The usage of Lagrange multiplier method in the prebuck-
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ling regime removes the restrictions inherent in conventional Rayleigh-Ritz formulation

and thus provides a general way to model in-plane boundary conditions. The accuracy

and effectiveness of the developed Rayleigh-Ritz procedure are validated by comparing

with previously published results and FE solutions given by ABAQUS. Effects of core

thickness, core orthotropy, and fibre orientation angle of the facesheets on the instability

behaviour of VAT sandwich plates are investigated. Finally, the mechanism of steering

the fibre trajectory over the facesheets to improve the buckling resistance for the sandwich

plate is studied and discussed.

Keywords: Global buckling, Wrinkling,Variable angle tow, Sandwich plate, EHSAPT,

Rayleigh-Ritz method

Nomenclature

θ fibre orientation angle

ϕ rotation angle of the fibre path

T0 fibre orientation angle at the starting point

T1 fibre orientation angle at the ending point

a plate length

b plate width

h plate thickness

ft thickness of the top facesheet

fb thickness of the bottom facesheet

2c core thickness

ut,b,c displacement of a point in the x direction

vt,b,c displacement of a point in the y direction

wt,b,c displacement of a point in the z direction

ut,b,c0 in-plane displacement of the mid-plane in the x direction
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vt,b,c0 in-plane displacement of the mid-plane in the y direction

wt,b,c0 out-of-plane displacement of the mid-plane

ϕt,b,cx0 rotation about the y axis of the mid-plane

ϕt,b,cy0 rotation about the x axis of the mid-plane

σt,b,cij normal stress

τ t,b,cij shear stress

εt,b,cij normal strain

γt,b,cij shear strain

N t,b
ij in-plane force resultant of the facesheet

M t,b
ij moment resultant of the facesheet

At,bij extensional stiffness of the facesheet

Bt,b
ij coupling stiffness of the facesheet

Dt,b
ij bending stiffness of the facesheet

Cij stiffness coefficient of the core

U strain energy

V virtual work

Ln the nth Legendre polynomial

Φ Airy’s stress function

Λij boundary stress coefficient

χij Lagrange multiplier

LA Lagrange function

Π∗
LM stress constraint function

Π∗
D displacement constraint function
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1. Introduction

Sandwich structures are typically constructed by two thin and stiff facesheets and a

thick and compliant core, which form an integrated structure with high strength, low

weight and strong durability. Due to these outstanding features, sandwich structures

have received many applications in aerospace, civil, marine, electronic and biomedical

fields [2]. Traditionally, the facesheets of a sandwich plate are made of metal materials or

straight-fibre composite laminates. Recently, the advent of variable angle tow composite

laminates by advanced automated fibre placement technologies enables the design of novel

sandwich plates with variable stiffness facesheets [3, 4]. This novel design concept for

sandwich plates may provide designers a considerably large stiffness tailoring flexibility

to design lightweight sandwich structures with superior performance. On the other hand,

the variable stiffness property inherent in this novel type of sandwich plate structures

often gives rise to significant challenges in the modelling and analysis. Therefore, there

remains ongoing interests to develop an efficient and accurate analytical model for the

analysis of the instability behaviours of VAT sandwich plates.

Generally, the instability behaviours of sandwich plates subjected to in-plane compres-

sion can be classified into two different types, that is, global or overall buckling and local

buckling (wrinkling) [5, 6, 7]. The former is characterized by the large half-wavelength

with the same order of magnitude of the in-plane dimension; whilst the latter is charac-

terized by the short half-wavelength that is comparable to the plate thickness [8]. Under

certain circumstances, such as in the deep post-buckling regime, these global and lo-

cal instabilities may interact with each other and finally lead to complex failure forms

[9, 10, 11, 12, 13]. Many methods have been developed to study these complex instability

phenomena of sandwich plate structures. Early works [14, 15, 16] on instability analysis

of sandwich structures considered global and local buckling models separately, namely,

uncoupled approach. Afterwards, global buckling of the sandwich structure was studied

based on the Equivalent Single-layer Theory (EST) or Layer Wise Theory (LWT) by a

large number of researchers [2, 17], while wrinkling was investigated based on various

elastic foundation model by relatively few researchers [18, 8]. On the other hand, the

coupled approach was also introduced by many researchers to study both global buckling

and wrinkling of sandwich plates and their interactions. For instance, Frostig et al. [19]

proposed a high-order sandwich plate theory (HSAPT) based on the variational principle
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and perform a rigorous buckling analysis of sandwich beams with soft cores. In their

work, the soft core exhibits both the transverse flexibility and the shear resistance but

is free of longitudinal normal stresses. By replacing the constant shear stress in the core

[20, 19] with the gradient of rotation, Léotoing et al. [21] developed a novel unified model

using five displacement variables to analyze both local and global instabilities of sand-

wich columns. In their works, the transverse and in-plane displacements in the core are

represented by second-order and third-order polynomials with respect to plate thickness,

respectively. Furthermore, the kinematics proposed by Léotoing et al. [21] has been im-

plemented into FE model for the analysis of both global and local instability phenomena

in sandwich structures [6, 22, 11, 23, 24, 13]. However, these sandwich models neglect the

in-plane rigidity of the core. This assumption is only valid for soft cores, since the elastic

modulus and flexural rigidity of the soft core are about three and two orders smaller than

those of the facesheets, respectively [1]. Recently, Phan et al. [1] proposed an extension

of the HSAPT, termed as EHSAPT, to model sandwich beams, in which the transverse

compressibility, shear resistance and in-plane rigidity of the core are taken into account,

simultaneously. Several research works [25, 26, 27, 28, 12] have adopted the fundamental

modelling strategy of EHSAPT to study the instability problem of sandwich structures. It

is worth noting that there exists a large difference between HSAPT/EHSAPT and HSDT

(Higher-order Shear Deformation Theory) [29, 30, 31, 32] in terms of theoretical formula-

tion and practical application. The former one is similar to the LWT, while the latter is

considered as one of the ESTs. Other coupled approaches for the study of both global and

local instability responses of the sandwich structure can be found in [33, 34, 35, 36, 37].

Among these sandwich plate models, it is worth highlighting the Carrera’s Unified For-

mulation (CUF) proposed by Carrera [38, 39] and the Generalized Unified Formulation

(GUF) developed by Demasi [40, 41]. Following the pioneering works by Carrera and

Demasi, D’Ottavio et al. [7] developed a variable kinematic model, which is a sublami-

nate version of the GUF, termed as S-GUF. In their works, an assessment of several well

known sandwich plate models for the global and local buckling analysis was presented.

Recently, Vescovini et al. [42] applied the S-GUF approach to study both global and local

buckling responses of anisotropic sandwich plates.

From the literature survey, it is evident that the research works on both global buckling

and wrinkling analysis mainly focused on conventional sandwich plate structures. Up to
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now, however, research works for instability analysis of VAT sandwich structures are very

limited. Coburn and Weaver [3] developed a semi-analytical model based on the Ritz

energy method for buckling analysis of VAT sandwich plates under in-plane compressive

loads. In their work, the proposed buckling model fails to capture the facesheet wrinkling

mode due to the fact that the core is assumed to be infinitely rigid (incompressible)

along the thickness direction under the framework of the EST. Therefore, developing a

more accurate model for both the global and local instability analysis of this novel type

of sandwich structures remains necessary. To the best of the authors’ knowledge, the

instability problem of VAT sandwich plates occurring under in-plane compressive loads has

not been well studied by using a coupled sandwich plate model. In this work, an efficient

and accurate analytical model based on a modified version of the EHSAPT for analyzing

both global buckling and wrinkling behaviours of VAT sandwich plates is developed.

Although a considerable amount of research efforts [43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53]

have been devoted to the study of buckling behaviour of VAT laminated plates, and

the mechanism behind the significant improvement in the buckling resistance of VAT

laminates had been well understood, the study of VAT sandwich plates is very limited. In

view of this, this work aims to further study the mechanics of VAT sandwich plates and

investigate the mechanism of applying VAT concept to improve the buckling performance

for sandwich plates.

In the present work, an efficient and accurate Rayleigh-Ritz model based on a modified

version of the EHSAPT is developed to study the instability problem of VAT sandwich

plates under in-plane compressive loads. The original two-dimensional EHSAPT proposed

by Phan et al. [1] is extended to a three-dimensional case with a minor modification that

the first-order shear deformation theory instead of the classical Kirchhoff–Love hypothesis

is adopted for each facesheet, which brings several merits such as the conciseness in deriva-

tion process and the easiness in program implementation. The Rayleigh-Ritz approach

combined with the principle of minimum potential energy is employed to derive the eigen-

value equation that governs the instability problem of VAT sandwich plates. Both global

buckling and wrinkling patterns can be captured under the proposed Rayleigh-Ritz an-

alytical model. Before instability analysis, the nonuniform prebuckling stresses over the

entire sandwich plate are determined under the assumption of membrane prebuckling

state. The usage of Lagrange multiplier method in the prebuckling analysis removes
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the restrictions inherent in conventional Rayleigh-Ritz formulation and thus provides a

general way to model in-plane boundary conditions.

The remainder of this work is organized as follows: In the next section, the con-

cept of VAT facesheets is introduced. Section 3 presents a theoretical formulation for

the instability problem of VAT sandwich plates under in-plane compressive loads. In

Section 4, the nonuniform prebuckling stresses of sandwich plates are determined using

Rayleigh-Ritz formulation enhanced with Lagrange multiplier method under the assump-

tion of membrane prebuckling state. In Section 5, the accuracy and effectiveness of the

proposed Rayleigh-Ritz model for VAT sandwich plates are verified by a series of com-

putational cases. Effects of core thickness, core orthotropy, and fibre orientation angle

of the facesheets on the instability behaviours of VAT sandwich plates are analyzed and

discussed by numerical examples. Finally, some conclusions are drawn in Section 6.

2. VAT facesheets

The orientation of fibre angles of each ply of the facesheets within the sandwich plate

are continuously varied with respect to the coordinates x and y, which result in the vari-

able stiffness properties. As such, VAT facesheets provide an extended stiffness tailoring

flexibility for the design of the structural performance of sandwich plates. Generally, the

fibre angle variation over the facesheets can be represented in a mathematical form using a

small number of fibre angle parameters [44]. For the sake of simplicity, the facesheet with

a linear fibre angle variation is considered in the present work, and the angle variation

along the x′ direction is given by [43],

θ(x′) = ϕ+
(T1 − T0)

d
| x′ | +T0 with x′ = xcosϕ+ ysinϕ (1)

where T0 and T1 are fibre orientation angles at two prescribed reference points; d is the

distance between the starting and ending points; ϕ is the angle of rotation of the fibre

path, which is chosen to be 0◦ and 90◦ in the present work such that d takes the half

of the panel length (when ϕ = 0◦) or width (when ϕ = 90◦). The layup configuration

for the tow-steered facesheet of the sandwich plate can be characterised by [ϕ⟨T0|T1⟩].

Fig. 1 illustrates a two-layers VAT facesheet [0 ± ⟨0|75⟩] with a linear variation of fibre

orientation angle, in which ϕ = 0◦, T0 = 0◦, and T1 = 75◦.
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3. Theoretical formulation

3.1. Displacements and strains

As shown in Fig. 2, a rectangular sandwich plate of length a and width b with a core

of thickness 2c is considered. The thicknesses of the top and bottom facesheets are ft

and fb, respectively. Herein, both top and bottom facesheets are constructed by the VAT

laminates, and thus exhibit variable stiffness properties. An orthogonal coordinate system

located in the centroid of the core is introduced to establish the kinematic model, in which

x and y respectively represent the length and width direction of the sandwich plate and

z denotes the thickness direction normal to the mid-plane of the core. In the present

work, the displacement field of the top and bottom facesheets is constructed based on the

first-order shear deformation theory instead of the Kirchhoff–Love thin plate theory as

done by Phan et al. [1]. The displacement field (ut, vt and wt) for the top facesheet is

then given by [54],

ut(x, y, z) = ut0(x, y) + (z − c− ft
2
)ϕtx0(x, y)

vt(x, y, z) = vt0(x, y) + (z − c− ft
2
)ϕty0(x, y)

wt(x, y, z) = wt0(x, y)

(2)

with c ⩽ z ⩽ c+ ft, while the displacement field (ub, vb and wb) for the bottom facesheet

is denoted as

ub(x, y, z) = ub0(x, y) + (z + c+
fb
2
)ϕbx0(x, y)

vb(x, y, z) = vb0(x, y) + (z + c+
fb
2
)ϕby0(x, y)

wb(x, y, z) = wb0(x, y)

(3)

with −c− fb ⩽ z ⩽ −c. Herein, ut,b0 , vt,b0 and wt,b0 represent the in-plane and out-of-plane

displacement components of a point on the mid-plane of each facesheet, respectively;

ϕt,bx0 and ϕt,by0 are the rotation of a transverse normal about the y− and x−axis on the

mid-plane of each facesheet, respectively. On the other hand, in order to capture the

complex behaviour of instability, the displacement field (uc, vc and wc) of the core requires

to be enriched by using a high-order sandwich plate theory. In the present work, the

original two-dimensional EHSAPT theory proposed by Phan et al. [1] is extended to
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a three-dimensional model, in which the transverse compressibility, shear resistance as

well as in-plane rigidity of the core are taken into account. According to the EHSAPT

theory, the displacement field for the core is expressed as a cubic function for the in-plane

displacements (uc and vc) and a quadratic function for the out-of-plane displacement (wc),

uc(x, y, z) = uc0(x, y) + ϕcx0(x, y)z + uc2(x, y)z
2 + uc3(x, y)z

3

vc(x, y, z) = vc0(x, y) + ϕcy0(x, y)z + vc2(x, y)z
2 + vc3(x, y)z

3

wc(x, y, z) = wc0(x, y) + wc1(x, y)z + wc2(x, y)z
2

(4)

with −c ⩽ z ⩽ c, where uc0, v
c
0 and wc0 are the in-plane and out-of-plane displacement

components of a point on the mid-plane of the core, respectively; ϕcx0 and ϕcy0 are the

rotations of a transverse normal about the y− and x−axis on the mid-plane of the core,

respectively; uc2, u
c
3, v

c
2, v

c
3, w

c
1 and w

c
2 are the unknown functions that will be determined

from the continuity conditions at the upper (z = c) and lower (z = −c) face-core interfaces,

which are given as follows,

ut(x, y, c) = uc(x, y, c)

vt(x, y, c) = vc(x, y, c)

wt(x, y, c) = wc(x, y, c)

ub(x, y,−c) = uc(x, y,−c)

vb(x, y,−c) = vc(x, y,−c)

wb(x, y,−c) = wc(x, y,−c)

(5)

Substituting Eqs. (2)-(4) into Eq. (5), one can directly obtain

uc2(x, y) =
ut0(x, y) + ub0(x, y)− 1

2
ftϕ

t
x0(x, y) +

1
2
fbϕ

b
x0(x, y)− 2uc0(x, y)

2c2

uc3(x, y) =
ut0(x, y)− ub0(x, y)− 1

2
ftϕ

t
x0(x, y)− 1

2
fbϕ

b
x0(x, y)− 2cϕcx0(x, y)

2c3

vc2(x, y) =
vt0(x, y) + vb0(x, y)− 1

2
ftϕ

t
y0(x, y) +

1
2
fbϕ

b
y0(x, y)− 2vc0(x, y)

2c2

vc3(x, y) =
vt0(x, y)− vb0(x, y)− 1

2
ftϕ

t
y0(x, y)− 1

2
fbϕ

b
y0(x, y)− 2cϕcy0(x, y)

2c3

wc1(x, y) =
wt0(x, y)− wb0(x, y)

2c

wc2(x, y) =
wt0(x, y) + wb0(x, y)− 2wc0(x, y)

2c2

(6)
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and thus the displacement fields of a point within the core can be rewritten as

uc(x, y, z) = α1u
t
0(x, y) + α2u

b
0(x, y) + α3u

c
0(x, y) + α4ϕ

t
x0(x, y) + α5ϕ

b
x0(x, y) + α6ϕ

c
x0(x, y)

vc(x, y, z) = α1v
t
0(x, y) + α2v

b
0(x, y) + α3v

c
0(x, y) + α4ϕ

t
y0(x, y) + α5ϕ

b
y0(x, y) + α6ϕ

c
y0(x, y)

wc(x, y, z) = β1w
t
0(x, y) + β2w

b
0(x, y) + β3w

c
0(x, y)

(7)

where

α1 =
z2

2c2
+

z3

2c3
; α2 =

z2

2c2
− z3

2c3
; α3 = 1− z2

c2

α4 = −ft
2
(
z2

2c2
+

z3

2c3
); α5 =

fb
2
(
z2

2c2
− z3

2c3
); α6 = z(1− z2

c2
)

β1 =
z

2c
+

z2

2c2
; β2 = − z

2c
+

z2

2c2
; β3 = 1− z2

c2

(8)

It is worth highlighting that the in-plane displacement component (uc or vc) is only related

to the in-plane displacements (ut,b,c0 or vt,b,c0 ) and the rotations (ϕt,b,cx0 or ϕt,b,cy0 ) on the mid-

plane of both the facesheets and the core, whilst the vertical displacement component (wc)

is only associated with the out-of-plane displacements (wt,b,c0 ). From a mathematical point

of view, the in-plane displacement component (uc or vc) of a point within the core can be

considered as a linear combination of the in-plane displacements (ut,b,c0 or vt,b,c0 ) and the

rotations (ϕt,b,cx0 or ϕt,b,cy0 ) with respect to the generalized coordinates αi (i = 1, 2, 3, 4, 5, 6 ),

while the vertical displacement component (wc) can be represented as a linear combination

of the out-of-plane displacements (wt,b,c0 ) with respect to the generalized coordinates βj

(j = 1, 2, 3). Due to the introduction of the rotation variables (ϕt,bx0 and ϕt,by0) on the

mid-plane of both the top and bottom facesheets as in Eqs. (2) and (3), no coupling

terms appear in these displacement components (uc, vc and wc) of a point within the

core, which means that the displacement components within the core are independent

with each other. It is noted that the modified EHSAPT will be degenerated into the

original EHSAPT if substituting the following expressions into Eqs. (2) and (3),

ϕt,bx0 = −∂w
t,b
0

∂x
; ϕt,by0 = −∂w

t,b
0

∂y
(9)

However, the existing of coupling terms in the original EHSAPT theory results in higher

order derivatives in Eq. (7), which lead to a tedious formula derivation process and
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further increases the difficulty for program implementation, albeit it has the merits such

as fewer unknown variables. The advantage of this modified EHSAPT lies in that it leads

to a concise derivation process and a simple program implementation. In addition, this

modified EHSAPT theory is also applicable to model the sandwich plates with moderately

thick facesheets, as the FSDT is applied.

With the displacement fields defined in Eqs. (2) and (3), the linear terms of strains

(εtxx, ε
t
yy, γ

t
yz, γ

t
xz and γ

t
xy) for the top facesheet are expressed as [54]



εtxx

εtyy

γtyz

γtxz

γtxy


=



∂ut

∂x

∂vt

∂y

∂vt

∂z
+ ∂wt

∂y

∂ut

∂z
+ ∂wt

∂x

∂ut

∂y
+ ∂vt

∂x


=



ε
t(0)
xx

ε
t(0)
yy

γ
t(0)
yz

γ
t(0)
xz

γ
t(0)
xy


+ (z − c− ft

2
)



ε
t(1)
xx

ε
t(1)
yy

0

0

γ
t(1)
xy


; c ⩽ z ⩽ c+ ft (10)

and similarly, the strains (εbxx, ε
b
yy, γ

b
yz, γ

b
xz and γ

b
xy) of the bottom facesheet are given by

[54]

εbxx

εbyy

γbyz

γbxz

γbxy


=



∂ub

∂x

∂vb

∂y

∂vb

∂z
+ ∂wb

∂y

∂ub

∂z
+ ∂wb

∂x

∂ub

∂y
+ ∂vb

∂x


=



ε
b(0)
xx

ε
b(0)
yy

γ
b(0)
yz

γ
b(0)
xz

γ
b(0)
xy


+ (z + c+

fb
2
)



ε
b(1)
xx

ε
b(1)
yy

0

0

γ
b(1)
xy


; −c− fb ⩽ z ⩽ −c (11)

with

εt,b(0)xx =
∂ut,b0
∂x

; εt,b(1)xx =
∂ϕt,bx0
∂x

εt,b(0)yy =
∂vt,b0
∂y

; εt,b(1)yy =
∂ϕt,by0
∂y

γt,b(0)yz = ϕt,by0 +
∂wt,b0
∂y

; γt,b(0)xz = ϕt,bx0 +
∂wt,b0
∂x

γt,b(0)xy =
∂ut,b0
∂y

+
∂vt,b0
∂x

; γt,b(1)xy =
∂ϕt,bx0
∂y

+
∂ϕt,by0
∂x

(12)

11



Moreover, the strains (εcxx, ε
c
yy, ε

c
zz γ

c
yz, γ

c
xz and γ

c
xy) of the core can be expressed as [54]



εcxx

εcyy

εczz

γcyz

γcxz

γcxy


=



∂uc

∂x

∂vc

∂y

∂wc

∂z

∂vc

∂z
+ ∂wc

∂y

∂uc

∂z
+ ∂wc

∂x

∂uc

∂y
+ ∂vc

∂x


(13)

with

∂uc

∂x
= α1

∂ut0
∂x

+ α2
∂ub0
∂x

+ α3
∂uc0
∂x

+ α4
∂ϕtx0
∂x

+ α5
∂ϕbx0
∂x

+ α6
∂ϕcx0
∂x

∂vc

∂x
= α1

∂vt0
∂x

+ α2
∂vb0
∂x

+ α3
∂vc0
∂x

+ α4

∂ϕty0
∂x

+ α5

∂ϕby0
∂x

+ α6

∂ϕcy0
∂x

∂wc

∂x
= β1

∂wt0
∂x

+ β2
∂wb0
∂x

+ β3
∂wc0
∂x

∂uc

∂y
= α1

∂ut0
∂y

+ α2
∂ub0
∂y

+ α3
∂uc0
∂y

+ α4
∂ϕtx0
∂y

+ α5
∂ϕbx0
∂y

+ α6
∂ϕcx0
∂y

∂vc

∂y
= α1

∂vt0
∂y

+ α2
∂vb0
∂y

+ α3
∂vc0
∂y

+ α4

∂ϕty0
∂y

+ α5

∂ϕby0
∂y

+ α6

∂ϕcy0
∂y

∂wc

∂y
= β1

∂wt0
∂y

+ β2
∂wb0
∂y

+ β3
∂wc0
∂y

∂uc

∂z
= α1

′ut0 + α2
′ub0 + α3

′uc0 + α4
′ϕtx0 + α5

′ϕbx0 + α6
′ϕcx0

∂vc

∂z
= α1

′vt0 + α2
′vb0 + α3

′vc0 + α4
′ϕty0 + α5

′ϕby0 + α6
′ϕcy0

∂wc

∂z
= β1

′wt0 + β2
′wb0 + β3

′wc0

(14)

where the symbol ′ denotes the first-order derivative with respect to z. It is clear that the

lower-order derivatives that appear in Eq. (14) are due to the introduction of the rotation

variables (ϕt,bx0 and ϕt,by0) on the mid-plane of both the top and bottom facesheets.

3.2. Constitutive equations

Following the first-order shear deformation theory, the relationships between the stresses

(σt,bxx, σ
t,b
yy , τ

t,b
yz , τ

t,b
xz and τ t,bxy ) and the strains (εt,bxx, ε

t,b
yy, γ

t,b
yz , γ

t,b
xz and γt,bxy) of each lamina

12



within either the top or bottom VAT facesheet are expressed as [54]


σt,bxx

σt,byy

τ t,bxy


(k)

=


Qt,b

11(x, y) Qt,b
12(x, y) Qt,b

16(x, y)

Qt,b
12(x, y) Qt,b

22(x, y) Qt,b
26(x, y)

Qt,b
16(x, y) Qt,b

26(x, y) Qt,b
66(x, y)


(k)

εt,bxx

εt,byy

γt,bxy

 (15a)

τ t,byzτ t,bxz


(k)

=

Qt,b
44(x, y) Qt,b

45(x, y)

Qt,b
45(x, y) Qt,b

55(x, y)

(k)γt,byzγt,bxz
 (15b)

where Qt,b
ij (i, j = 1, 2, 6 or i, j = 4, 5) are the transformed material stiffnesses of the kth

layer within the VAT top or bottom facesheet, which vary with the position over the plate

domain. In this work, the core is assumed to be a three-dimensional, orthotropic solid

body, in which the occurrence of buckling will cause the warping of core cross-sections

and the change of core thickness [25, 26]. Therefore, the stress-strain relationship of the

core within the VAT composite sandwich plate can be written as [54],



σcxx

σcyy

σczz

τ cyz

τ cxz

τ cxy


=



C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66





εcxx

εcyy

εczz

γcyz

γcxz

γcxy


(16)

where Cij (i, j = 1, 2, 3, 4, 5, 6 ) denotes stiffness coefficients, which are expressed in terms

of engineering constants [54] :

C11 =
1− νc23ν

c
32

Ec
22E

c
33∆

; C12 =
νc21 + νc31ν

c
23

Ec
22E

c
33∆

; C13 =
νc31 + νc21ν

c
32

Ec
22E

c
33∆

C22 =
1− νc31ν

c
13

Ec
11E

c
33∆

; C23 =
νc32 + νc31ν

c
12

Ec
11E

c
33∆

; C33 =
1− νc12ν

c
21

Ec
11E

c
22∆

C44 = Gc
23; C55 = Gc

13; C66 = Gc
12

∆ =
1− νc12ν

c
21 − νc23ν

c
32 − νc31ν

c
13 − 2νc21ν

c
32ν

c
13

Ec
11E

c
22E

c
33

(17)

13



3.3. Governing equations

The governing equations for the instability problem of VAT sandwich plates are derived

based on the principle of minimum potential energy, i.e., [54]

δΠ = δU + δV = 0 (18)

where δU denotes the variation of strain energy of the sandwich plate in a buckling state;

δV is the variation of the virtual work done by in-plane loadings. Herein, the virtual

strain energy δU contains the contributions from two facesheets and one core, that is,

δU = δU t + δU b + δU c (19)

with

δU t =

∫∫
Ω

{∫ c+ft

c

[
σtxxδε

t
xx + σtyyδε

t
yy + τ tyzδγ

t
yz + τ txzδγ

t
xz + τ txyδγ

t
xy

]
dz

}
dxdy (20a)

δU b =

∫∫
Ω

{∫ −c

−c−fb

[
σbxxδε

b
xx + σbyyδε

b
yy + τ byzδγ

b
yz + τ bxzδγ

b
xz + τ bxyδγ

b
xy

]
dz

}
dxdy (20b)

δU c =

∫∫
Ω

{∫ c

−c

[
σcxxδε

c
xx + σcyyδε

c
yy + σczzδε

c
zz + τ cyzδγ

c
yz + τ cxzδγ

c
xz + τ cxyδγ

c
xy

]
dz

}
dxdy

(20c)

By substituting Eqs. (10), (11) and (15) into Eqs. (20a) and (20b), introducing the

parameter z̄ = z−c− ft
2
for the top facesheet or z̄ = z+c+ fb

2
for the bottom facesheet and

integrating over z̄ through the thickness of z̄ ∈ [−ft
2
, ft

2
] for top facesheet or z̄ ∈ [−fb

2
, fb

2
]

for bottom facesheet, we can obtain,

δU t =

∫∫
Ω

{
N t
xxδε

t(0)
xx +N t

yyδε
t(0)
yy +N t

xyδγ
t(0)
xy +M t

xxδε
t(1)
xx +M t

yyδε
t(1)
yy +M t

xyδγ
t(1)
xy

+Qt
yδγ

t(0)
yz +Qt

xδγ
t(0)
xz

}
dxdy

(21a)

14



δU b =

∫∫
Ω

{
N b
xxδε

b(0)
xx +N b

yyδε
b(0)
yy +N b

xyδγ
b(0)
xy +M b

xxδε
b(1)
xx +M b

yyδε
b(1)
yy +M b

xyδγ
b(1)
xy

+Qb
yδγ

b(0)
yz +Qb

xδγ
b(0)
xz

}
dxdy

(21b)

with



N t,b
xx

N t,b
yy

N t,b
xy

M t,b
xx

M t,b
yy

M t,b
xy


=



At,b11(x, y) At,b12(x, y) At,b16(x, y) Bt,b
11 (x, y) Bt,b

12 (x, y) Bt,b
16 (x, y)

At,b12(x, y) At,b22(x, y) At,b26(x, y) Bt,b
12 (x, y) Bt,b

22 (x, y) Bt,b
26 (x, y)

At,b16(x, y) At,b26(x, y) At,b66(x, y) Bt,b
16 (x, y) Bt,b

26 (x, y) Bt,b
66 (x, y)

Bt,b
11 (x, y) Bt,b

12 (x, y) Bt,b
16 (x, y) Dt,b

11 (x, y) Dt,b
12 (x, y) Dt,b

16 (x, y)

Bt,b
12 (x, y) Bt,b

22 (x, y) Bt,b
26 (x, y) Dt,b

12 (x, y) Dt,b
22 (x, y) Dt,b

26 (x, y)

Bt,b
16 (x, y) Bt,b

26 (x, y) Bt,b
66 (x, y) Dt,b

16 (x, y) Dt,b
26 (x, y) Dt,b

66 (x, y)





ε
t,b(0)
xx

ε
t,b(0)
yy

γ
t,b(0)
xy

ε
t,b(1)
xx

ε
t,b(1)
yy

γ
t,b(1)
xy


(22a)

Qt,b
y

Qt,b
x

 = K

At,b44(x, y) At,b45(x, y)

At,b45(x, y) At,b55(x, y)

γ
t,b(0)
yz

γ
t,b(0)
xz

 (22b)

where N t,b
xx , N

t,b
yy and N t,b

xy are the in-plane force resultants of either the top or bottom

facesheet; M t,b
xx , M

t,b
yy and M t,b

xy are the moment resultants; Qt,b
y and Qt,b

x are the transverse

force resultants; K denotes the shear correction factor, which depends on lamina prop-

erties and lamination scheme [54], and in the present work, K is chosen to be 5/6 [3];

At,bij , B
t,b
ij and Dt,b

ij (i, j = 1, 2, 6 or i, j = 4, 5) are the extensional, coupling and bend-

ing stiffness, respectively [54]. For VAT layups, each stiffness coefficient varies with the

coordinates x and y over the plate domain (x, y) ∈ [−a
2
, a
2
] × [− b

2
, b
2
], which provides an

extended flexibility for stiffness tailoring. In particular, if the VAT layups of the top or

bottom facesheet is considered to be symmetric with respect to its respective mid-plane,

the coupling stiffness terms will vanish in the constitutive relation given by Eq. (22a),
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that is, Bt,b
ij = 0 (i, j = 1, 2, 6), and thus Eq. (22a) can be decoupled into,


N t,b
xx

N t,b
yy

N t,b
xy

 =


At,b11(x, y) At,b12(x, y) At,b16(x, y)

At,b12(x, y) At,b22(x, y) At,b26(x, y)

At,b16(x, y) At,b26(x, y) At,b66(x, y)



ε
t,b(0)
xx

ε
t,b(0)
yy

γ
t,b(0)
xy

 (23a)


M t,b

xx

M t,b
yy

M t,b
xy

 =


Dt,b

11 (x, y) Dt,b
12 (x, y) Dt,b

16 (x, y)

Dt,b
12 (x, y) Dt,b

22 (x, y) Dt,b
26 (x, y)

Dt,b
16 (x, y) Dt,b

26 (x, y) Dt,b
66 (x, y)



ε
t,b(1)
xx

ε
t,b(1)
yy

γ
t,b(1)
xy

 (23b)

Since the mid-plane symmetry of a composite layup that can eliminate the warping effect

induced by cure during practical manufacturing is generally preferred, the symmetrical

VAT composite laminates are employed to construct the two facesheets in the present

work. In addition, it is worth highlighting that the above derivation process for either

the top or bottom facesheet is very similar to that of the first-order shear deformation

plate. Indeed, both the top and bottom facesheets within the VAT sandwich plate are

independently deformed in its respective pattern and thus the local response of the entire

sandwich plate can be captured.

On the other hand, the virtual work δV of the prebuckling stresses (N̂ t,b,c
xx , N̂ t,b,c

yy N̂ t,b,c
xy )

induced by in-plane loadings arises from their action on the corresponding second-order

strains. Depending on whether considering the contribution of the core or not, the virtual

work δV can be expressed as follows,

δV = δV t + δV b + δV c (24a)

δV = δV t + δV b (24b)

In particular, if the von Kármán’s second-order strains are considered, the components of

16



Eq. (24) are expanded as,

δV t = −N̂ t
xx

∂wt0
∂x

δ(
∂wt0
∂x

)− N̂ t
yy

∂wt0
∂y

δ(
∂wt0
∂y

)− N̂ t
xy

∂wt0
∂x

δ(
∂wt0
∂y

)− N̂ t
xy

∂wt0
∂y

δ(
∂wt0
∂x

)

δV b = −N̂ b
xx

∂wb0
∂x

δ(
∂wb0
∂x

)− N̂ b
yy

∂wb0
∂y

δ(
∂wb0
∂y

)− N̂ b
xy

∂wb0
∂x

δ(
∂wb0
∂y

)− N̂ b
xy

∂wb0
∂y

δ(
∂wb0
∂x

)

δV c = −N̂ c
xx

∂wc0
∂x

δ(
∂wc0
∂x

)− N̂ c
yy

∂wc0
∂y

δ(
∂wc0
∂y

)− N̂ c
xy

∂wc0
∂x

δ(
∂wc0
∂y

)− N̂ c
xy

∂wc0
∂y

δ(
∂wc0
∂x

)

(25)

The prebuckling stresses (N̂ t,b,c
xx , N̂ t,b,c

yy N̂ t,b,c
xy ) depends on the in-plane loading and bound-

ary conditions, which will be determined in next section.

The Rayleigh-Ritz approach is applied to derive the governing equations for the in-

stability problem of VAT sandwich plates. Because the analytical formulation is derived

from a weak-form energy formula, only essential boundary conditions need to be satis-

fied. As such, the boundary constraints in terms of the in-plane displacements (ut,b,c0 and

vt,b,c0 ), out-of-plane placements (wt,b,c0 ) and rotations (ϕt,b,cx0 and ϕt,b,cy0 ) will be imposed on

the four edges of VAT sandwich plate. The different boundary conditions considered in

the present work are described as follows (Herein, S, C and F are denoted as simply

supported, clamped and free boundary condition, respectively.):

SSSS boundary conditions:

vt,b,c0 (−a/2, y) = 0; vt,b,c0 (a/2, y) = 0; ut,b,c0 (x,−b/2) = 0; ut,b,c0 (x, b/2) = 0;

wt,b,c0 (−a/2, y) = 0; wt,b,c0 (a/2, y) = 0; wt,b,c0 (x,−b/2) = 0; wt,b,c0 (x, b/2) = 0;

ϕt,b,cy0 (−a/2, y) = 0; ϕt,b,cy0 (a/2, y) = 0 ϕt,b,cx0 (x,−b/2) = 0; ϕt,b,cx0 (x, b/2) = 0.

(26)

CCCC boundary condition:

ut,b,c0 (−a/2, y) = 0; ut,b,c0 (a/2, y) = 0; ut,b,c0 (x,−b/2) = 0; ut,b,c0 (x, b/2) = 0;

vt,b,c0 (−a/2, y) = 0; vt,b,c0 (a/2, y) = 0; vt,b,c0 (x,−b/2) = 0; vt,b,c0 (x, b/2) = 0;

wt,b,c0 (−a/2, y) = 0; wt,b,c0 (a/2, y) = 0; wt,b,c0 (x,−b/2) = 0; wt,b,c0 (x, b/2) = 0;

ϕt,b,cx0 (−a/2, y) = 0; ϕt,b,cx0 (a/2, y) = 0; ϕt,b,cx0 (x,−b/2) = 0; ϕt,b,cx0 (x, b/2) = 0;

ϕt,b,cy0 (−a/2, y) = 0; ϕt,b,cy0 (a/2, y) = 0; ϕt,b,cy0 (x,−b/2) = 0; ϕt,b,cy0 (x, b/2) = 0.

(27)
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SFSF boundary condition:

vt,b,c0 (−a/2, y) = 0; vt,b,c0 (a/2, y) = 0;

wt,b,c0 (−a/2, y) = 0; wt,b,c0 (a/2, y) = 0;

ϕt,b,cy0 (−a/2, y) = 0; ϕt,b,cy0 (a/2, y) = 0.

(28)

CFCF boundary condition:

ut,b,c0 (−a/2, y) = 0; ut,b,c0 (a/2, y) = 0;

vt,b,c0 (−a/2, y) = 0; vt,b,c0 (a/2, y) = 0;

wt,b,c0 (−a/2, y) = 0; wt,b,c0 (a/2, y) = 0;

ϕt,b,cx0 (−a/2, y) = 0; ϕt,b,cx0 (a/2, y) = 0;

ϕt,b,cy0 (−a/2, y) = 0; ϕt,b,cy0 (a/2, y) = 0.

(29)

It is noted that for each case, the boundary conditions imposed on the two facesheets and

the core of the sandwich plate are similar to each other in buckling regime. Furthermore,

due to the fact that the Legendre polynomials are suitable for the cases with strong flexural

anisotropy [55, 42], the in-plane displacements (ut,b,c0 , vt,b,c0 ), out-of-plane displacements

(wt,b,c0 ) and rotations (ϕt,b,cx0 , ϕt,b,cy0 ) used for global buckling and wrinkling analysis are

therefore constructed by Legendre polynomials multiplying with boundary functions that

satisfy essential boundary conditions on four edges of the sandwich plate, for instance,

the displacement fields of VAT sandwich plates are expressed as,

ut,b,c0 (ξ, η) = Ψ1(ξ, η)

M1∑
m=0

N1∑
n=0

At,b,c
mn Lm(ξ)Ln(η) (30a)

vt,b,c0 (ξ, η) = Ψ2(ξ, η)

M2∑
m=0

N2∑
n=0

Bt,b,cmn Lm(ξ)Ln(η) (30b)

wt,b,c0 (ξ, η) = Ψ3(ξ, η)

M3∑
m=0

N3∑
n=0

Ct,b,cmn Lm(ξ)Ln(η) (30c)
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ϕt,b,cx0 (ξ, η) = Ψ4(ξ, η)

M4∑
m=0

N4∑
n=0

Dt,b,c
mn Lm(ξ)Ln(η) (30d)

ϕt,b,cy0 (ξ, η) = Ψ5(ξ, η)

M5∑
m=0

N5∑
n=0

E t,b,cmn Lm(ξ)Ln(η) (30e)

with

Ψ1(ξ, η) = (1 + ξ)ψ11(1− ξ)ψ12(1 + η)ψ13(1− η)ψ14

Ψ2(ξ, η) = (1 + ξ)ψ21(1− ξ)ψ22(1 + η)ψ23(1− η)ψ24

Ψ3(ξ, η) = (1 + ξ)ψ31(1− ξ)ψ32(1 + η)ψ33(1− η)ψ34

Ψ4(ξ, η) = (1 + ξ)ψ41(1− ξ)ψ42(1 + η)ψ43(1− η)ψ44

Ψ5(ξ, η) = (1 + ξ)ψ51(1− ξ)ψ52(1 + η)ψ53(1− η)ψ54

(31)

where ξ = 2x/a and η = 2y/b; Lm(ξ) and Ln(η) are the mth and nth Legendre poly-

nomials with respect to ξ and η, respectively; At,b,c
mn , Bt,b,cmn , Ct,b,cmn , Dt,b,c

mn and E t,b,cmn are the

corresponding polynomial coefficients of the displacement component ut,b,c0 , vt,b,c0 , wt,b,c0 ,

ϕt,b,cx0 and ϕt,b,cy0 , respectively; Ψ1, Ψ2, Ψ3, Ψ4 and Ψ5 are the functions which satisfy the

essential boundary conditions along the four edges of sandwich plates; ψij (i = 1, 2, 3, 4, 5;

j = 1, 2, 3, 4) are the boundary state coefficients of the displacement component ut,b,c0 ,

vt,b,c0 , wt,b,c0 , ϕt,b,cx0 and ϕt,b,cy0 , respectively, which are given as follows:

SSSS boundary condition:

ψ11 = 0; ψ12 = 0; ψ13 = 1; ψ14 = 1;

ψ21 = 1; ψ22 = 1; ψ23 = 0; ψ24 = 0;

ψ31 = 1; ψ32 = 1; ψ33 = 1; ψ34 = 1;

ψ41 = 0; ψ42 = 0; ψ43 = 1; ψ44 = 1;

ψ51 = 1; ψ52 = 1; ψ53 = 0; ψ54 = 0.

(32)
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CCCC boundary condition:

ψ11 = 1; ψ12 = 1; ψ13 = 1; ψ14 = 1;

ψ21 = 1; ψ22 = 1; ψ23 = 1; ψ24 = 1;

ψ31 = 1; ψ32 = 1; ψ33 = 1; ψ34 = 1;

ψ41 = 1; ψ42 = 1; ψ43 = 1; ψ44 = 1;

ψ51 = 1; ψ52 = 1; ψ53 = 1; ψ54 = 1.

(33)

SFSF boundary condition:

ψ11 = 0; ψ12 = 0; ψ13 = 0; ψ14 = 0;

ψ21 = 1; ψ22 = 1; ψ23 = 0; ψ24 = 0;

ψ31 = 1; ψ32 = 1; ψ33 = 0; ψ34 = 0;

ψ41 = 0; ψ42 = 0; ψ43 = 0; ψ44 = 0;

ψ51 = 1; ψ52 = 1; ψ53 = 0; ψ54 = 0.

(34)

CFCF boundary condition:

ψ11 = 1; ψ12 = 1; ψ13 = 0; ψ14 = 0;

ψ21 = 1; ψ22 = 1; ψ23 = 0; ψ24 = 0;

ψ31 = 1; ψ32 = 1; ψ33 = 0; ψ34 = 0;

ψ41 = 1; ψ42 = 1; ψ43 = 0; ψ44 = 0;

ψ51 = 1; ψ52 = 1; ψ53 = 0; ψ54 = 0;

(35)

Substituting Eqs. (30) into the strain-displacement equations, Eqs. (10), (11) and

(13), and the constitutive equations, Eqs. (16) and (23), and then into Eqs. (21) and

(24), applying the principle of minimum potential energy Eq. (18) and minimizing with

respect to the unknown coefficients At,b,c
mn (m = 0, 1, · · · ,M1;n = 0, 1, · · · , N1), Bt,b,cmn

(m = 0, 1, · · · ,M2;n = 0, 1, · · · , N2), Ct,b,cmn (m = 0, 1, · · · ,M3;n = 0, 1, · · · , N3), Dt,b,c
mn

(m = 0, 1, · · · ,M4;n = 0, 1, · · · , N4) and E t,b,cmn (m = 0, 1, · · · ,M5;n = 0, 1, · · · , N5), a set
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of algebraic equations is then obtained and expressed in the following matrix form:



K11 K12 K13 K14 K15

K12 K22 K23 K24 K25

K13 K23 K33 K34 K35

K14 K24 K34 K44 K45

K15 K25 K35 K45 K55


+ λ



0 0 0 0 0

0 0 0 0 0

0 0 L33 0 0

0 0 0 0 0

0 0 0 0 0







A

B

C

D

E


=



0

0

0

0

0


(36)

where Kij (i, j = 1, 2, 3, 4, 5) is the stiffness matrix of the VAT composite sandwich plate.

The symbols 1, 2, 3, 4, and 5 in the subscript of each stiffness matrix corresponding

to the in-plane displacement ut,b,c0 , the in-plane displacement vt,b,c0 , the out-plane dis-

placement wt,b,c0 , the rotation ϕt,b,cx0 around the x−axis, and the rotation ϕt,b,cy0 around the

y−axis, respectively, and in particular, a combination of two different symbols represents

the coupling effect between them. Note, each stiffness matrix in Eq. (36) contains the

contributions from both the two facesheets and the core. In addition, L33 denotes the ge-

ometric stiffness matrix obtained from the virtual work done by the prebuckling stresses,

for instance, Eq. (25) ; λ is the eigenvalue; {A,B, C,D, E}T is the vector of unknown

coefficients corresponding to the shape functions, which includes the contribution from

both the two facesheet and the core. The buckling loads and the corresponding instability

patterns of VAT sandwich plates can be obtained by solving the eigenvalue problem de-

fined in Eq. (36). A numerical routine based on Eq. (36) was implemented in MATLAB

for both global buckling and wrinkling analysis of VAT sandwich plates under in-plane

compressive loads.

4. Prebuckling analysis

Before the prebuckling analysis, three major assumptions are made as follows: (1) Both

the top and bottom facesheets are the same with each other in terms of material properties,

geometric properties and layup configurations. Considering that the core is of a fully three-

dimensional, orthotropic solid body, the entire sandwich plate is therefore symmetrical

with respect to its own mid-plane. (2) The core is assumed to be perfectly bonded with

both top and bottom facesheets during the prebuckling regime, and thus the compatibility

conditions at the face-core interfaces of sandwich plates are fully satisfied. (3) The normal

stress (σczz) along the thickness direction of the core induced by the Poisson effect is
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negligible. Therefore, the sandwich plate is in a plane stress state during the prebuckling

regime, and the equivalent single layer theory can be applied to determine the prebuckling

stress distribution for both the two facesheets and the core of VAT sandwich plates.

Herein, the Rayleigh-Ritz formulation based on the principle of minimum complementary

energy is adopted to solve the prebuckling problem of VAT sandwich plates with general

in-plane boundary constraint. As the entire sandwich plate is symmetrical with respect to

its mid-plane, the relationship between the in-plane and out-of-plane behaviours within

the sandwich plate is uncoupled. The in-plane strains (ε0xx, ε
0
yy, and γ

0
xy) are expressed in

terms of the in-plane stress resultants (N0
xx, N

0
yy, and N

0
xy) in the ESL theory framework

as follows [54, 51],
ε0xx

ε0yy

γ0xy

 =


a011(x, y) a012(x, y) a016(x, y)

a012(x, y) a022(x, y) a026(x, y)

a016(x, y) a026(x, y) a066(x, y)



N0
xx

N0
yy

N0
xy

 (37)

where the superscript 0 that is distinguished from the superscripts t (top facesheet), b

(bottom facesheet) and c (core) represents the entire sandwich plate under the ESL theory

framework, unless otherwise specified. a0ij (i, j = 1, 2, 6) are the in-plane compliance

coefficients, which can be obtained from


a011(x, y) a012(x, y) a016(x, y)

a012(x, y) a022(x, y) a026(x, y)

a016(x, y) a026(x, y) a066(x, y)

 =


A0

11(x, y) A0
12(x, y) A0

16(x, y)

A0
12(x, y) A0

22(x, y) A0
26(x, y)

A0
16(x, y) A0

26(x, y) A0
66(x, y)


−1

(38)

Herein, the core within the sandwich plate can be regarded as a composite lamina with

the principal material direction of orthotropy oriented at an angle of 0◦ with respect to

the x−axis. The in-plane stress resultants (N0
xx, N

0
yy and N0

xy) are represented by the

Airy’s stress function Φ as,

N0
xx =

∂2Φ

∂y2
, N0

yy =
∂2Φ

∂x2
, N0

xy = − ∂2Φ

∂x∂y
(39)

Furthermore, the complementary energy of the VAT composite sandwich plates without

considering any in-plane boundary conditions is expressed in terms of the Airy’s stress
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function Φ as,

ΠC =
1

2

∫∫
Ω

{
a011

(
∂2Φ

∂y2

)2

+ 2a012
∂2Φ

∂x2
∂2Φ

∂y2
+ a022

(
∂2Φ

∂x2

)2

− 2a016
∂2Φ

∂y2
∂2Φ

∂x∂y

−2a026
∂2Φ

∂x2
∂2Φ

∂x∂y
+ a066

(
∂2Φ

∂x∂y

)2
}
dxdy

(40)

In the following, the Rayleigh-Ritz formulation combined with the Lagrange multiplier

method is applied to determine the prebuckling stresses for both facesheets and core of

the VAT sandwich plates. The proposed approach for solving the prebuckling problem

of the sandwich plate is general in terms of in-plane boundary conditions and loading

cases [51]. Note, the VAT sandwich plates under uniform end-shortening, which leads

to mixed stress and displacement boundary conditions, is only studied in this paper.

For the sake of completeness, however, three different types of in-plane boundary con-

ditions are briefly introduced herein, i.e., pure stress boundary condition (Case-A), pure

displacement boundary condition (Case-B) and mixed stress and displacement boundary

condition (Case-C). The Case-C boundary condition is mainly considered in this paper.

Case-A

If only pure stress in-plane boundary conditions are considered, the Airy’s stress func-

tion Φ is constructed by employing the semi-inverse method, i.e., the admissible functions

can be directly chosen to satisfy the natural (or force) boundary conditions along the four

edges of the plate, as follows, [44]

Φ(ξ, η) = Φ0(ξ, η) + (1− ξ2)2(1− η2)2
P∑
p=0

Q∑
q=0

GpqLp(ξ)Lq(η) (41)

where ξ = 2x/a and η = 2y/b; Lp(ξ) and Lq(η) are the pth and qth Legendre polynomials

with respect to ξ and η, respectively. Φ0 satisfies the applied stress constraint condition

along the edges of the plate, while the second part on the right hand side of Eq. (41) sat-

isfies the stress-free boundary conditions. Applying the semi-inverse method to construct

the Airy’s stress function Φ depends on the characteristics of both layup configuration

and in-plane boundary constraint. Nevertheless, there always remains a challenging for

the traditional semi-inverse modelling method to deal with complex in-plane boundary

constraints such as non-uniform shear boundary constraint. Recently, Wu et al. [56] and
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Chen and Nie [51] proposed an generalised Rayleigh-Ritz approach combined with the

Lagrange multiplier method, which has been successfully used for predicting the in-plane

response of VAT composite plates with general boundary constraints [51, 52]. By means of

applying the Lagrange multiplier method, the individual admissible function do not need

to satisfy the natural (or force) boundary conditions, alternatively, the series function as a

whole is imposed to satisfy the boundary conditions by introducing additional constraint

equations. In so doing, the requirement of satisfying the boundary conditions for the

admissible functions in the Rayleigh-Ritz method is relaxed, and it is more appropriate

to deal with general in-plane boundary conditions. Based on this modelling strategy, the

Airy’s stress function Φ is directly expressed as,

Φ(ξ, η) =
P∑
p=0

Q∑
q=0

GpqLp(ξ)Lq(η) (42)

Substituting Eq. (42) into Eq. (39), the in-plane stress resultants (N0
xx, N

0
yy and N

0
xy) are

expanded as,

N0
xx =

4

b2

P∑
p=0

Q∑
q=2

GpqLp(ξ)
∂2Lq(η)

∂η2

N0
yy =

4

a2

P∑
p=2

Q∑
q=0

Gpq
∂2Lp(ξ)

∂ξ2
Lq(η)

−N0
xy =

4

ab

P∑
p=1

Q∑
q=1

Gpq
∂Lp(ξ)

∂ξ

∂Lq(η)

∂η

(43)

If the boundary stress distribution (Ñ0
xx, Ñ

0
yy, and Ñ

0
xy) along the four edges of the sand-

wich plate is prescribed, the following expressions can be obtained by using Eq. (43):

Ñ0
xx(η)

∣∣∣
ξ=−1

=
4

b2

Q∑
q=2

Λ1
q

∂2Lq(η)

∂η2
, Ñ0

xx(η)
∣∣∣
ξ=1

=
4

b2

Q∑
q=2

Λ2
q

∂2Lq(η)

∂η2

Ñ0
yy(ξ)

∣∣∣
η=−1

=
4

a2

P∑
p=2

Λ3
p

∂2Lp(ξ)

∂ξ2
, Ñ0

yy(ξ)
∣∣∣
η=1

=
4

a2

P∑
p=2

Λ4
p

∂2Lp(ξ)

∂ξ2

Ñ0
xy(η)

∣∣∣
ξ=−1

= − 4

ab

Q∑
q=1

Λ5
q

∂Lq(η)

∂η
, Ñ0

xy(η)
∣∣∣
ξ=1

= − 4

ab

Q∑
q=1

Λ6
q

∂Lq(η)

∂η

Ñ0
xy(ξ)

∣∣∣
η=−1

= − 4

ab

P∑
p=1

Λ7
p

∂Lp(ξ)

∂ξ
, Ñ0

xy(ξ)
∣∣∣
η=1

= − 4

ab

P∑
p=1

Λ8
p

∂Lp(ξ)

∂ξ

(44)
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with

Λ1
q =

P∑
p=0

GpqLp(−1), Λ2
q =

P∑
p=0

GpqLp(1)

Λ3
p =

Q∑
q=0

GpqLq(−1), Λ4
p =

Q∑
q=0

GpqLq(1)

Λ5
q =

P∑
p=1

Gpq
∂Lp(ξ)

∂ξ

∣∣∣
ξ=−1

, Λ6
q =

P∑
p=1

Gpq
∂Lp(ξ)

∂ξ

∣∣∣
ξ=1

Λ7
p =

Q∑
q=1

Gpq
∂Lq(η)

∂η

∣∣∣
η=−1

, Λ8
p =

Q∑
q=1

Gpq
∂Lq(η)

∂η

∣∣∣
η=1

(45)

where Λij (i = 1, 2, · · · , 8; j = p, q) is the jth boundary stress coefficient on the ith stress

boundary condition, which can be determined by applying the appropriate mathematical

curve fitting method to Eq. (44). In the present work, a linear fitting method combined

with a set of control points is adopted to retrieve the boundary stress coefficients from the

in-plane stress boundary conditions given by Eq. (44). The Chebyshev–Gauss–Labotto

point distribution, due to its non-uniformity and stability, is superior to the uniform point

distribution in capturing the local feature of the boundary stress distribution and is thus

chosen to be distributed on the boundary edges (ξ = ±1, η = ±1) of the plate, which are

given as

ξ = ±1 : ηj = cos(
j − 1

N η
CGL − 1

π) j = 1, 2, · · · ,N η
CGL

η = ±1 : ξi = cos(
i− 1

N ξ
CGL − 1

π) i = 1, 2, · · · ,N ξ
CGL

(46)

where N η
CGL and N ξ

CGL are the number of the Chebyshev–Gauss–Labotto points, which

equals to the number of terms in each stress boundary condition of Eq. (44). Substituting

the Chebyshev–Gauss–Labotto points into Eq. (44), a set of linear algebraic equations

corresponding to each stress boundary condition can be obtained. A detailed process of

determining the boundary stress coefficients can be found in Ref. [51]. Furthermore, the

constraint equations in Eq. (45) need to be included into the complementary energy ΠC

to build a Lagrange function LA, that is,

LA(G00,G01, · · · ,GPQ, χ1
2, χ

1
3, · · · , χ8

P ) = ΠC +Π∗
LM (47)
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with

Π∗
LM =

4

b2

Q∑
q=2

χ1
q

(
P∑
p=0

GpqLp(−1)− Λ1
q

)
+

4

b2

Q∑
q=2

χ2
q

(
P∑
p=0

GpqLp(1)− Λ2
q

)
+

4

a2

P∑
p=2

χ3
p

(
Q∑
q=0

GpqLq − Λ3
p

)
+

4

a2

(
P∑
p=2

χ4
p

Q∑
q=0

GpqLq(1)− Λ4
p

)
−

4

ab

Q∑
q=1

χ5
q

(
P∑
p=1

Gpq
∂Lp(ξ)

∂ξ

∣∣∣
ξ=−1

− Λ5
q

)
− 4

ab

Q∑
q=1

χ6
q

(
P∑
p=1

Gpq
∂Lp(ξ)

∂ξ

∣∣∣
ξ=1

− Λ6
q

)
−

4

ab

P∑
p=1

χ7
p

(
Q∑
q=1

Gpq
∂Lq(η)

∂η

∣∣∣
η=−1

− Λ7
p

)
− 4

ab

P∑
p=1

χ8
p

(
Q∑
q=1

Gpq
∂Lq(η)

∂η

∣∣∣
η=1

− Λ8
p

)
(48)

where χij (i = 1, 2, · · · , 8; j = p, q ) are the jth Lagrange multiplier on the ith stress bound-

ary condition; Π∗
LM represents the constraint function generated by the stress boundary

conditions on four edges of the sandwich plate. Substituting Eq. (43) into Eqs. (40) and

(47), and minimizing the Lagrange function LA with respect to Gpq (p = 0, 1, · · · , P ; q =

0, 1, · · · , Q) and χij (i = 1, 2, · · · , 8; j = p, q), that is,

∂LA

∂Gpq
= 0,

∂LA

∂χij
= 0 (49)

a set of linear algebraic equations can be obtained and expressed in the following matrix

form: K LM

LMT 0

G

χ

 =

0

Λ

 (50)

where K is the extensional stiffness matrix of the sandwich plate; LM is the Lagrange

multiplier matrix generated by the constraint conditions; LMT is the transposed form of

LM; G and χ are the unknown vectors to be determined; Λ is the boundary stress vector,

which is related to the prescribed stress distribution on the edges of the sandwich plate.
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Case B

Without loss of generality, the in-plane displacement boundary conditions on four

edges (ξ = ±1, η = ±1) of the sandwich plate can be expressed as

ξ = −1 :

u0 = ũ01(η)

v0 = ṽ01(η)
; ξ = 1 :

u0 = ũ02(η)

v0 = ṽ02(η)

η = −1 :

u0 = ũ03(ξ)

v0 = ṽ03(ξ)
; η = 1 :

u0 = ũ04(ξ)

v0 = ṽ04(ξ)

(51)

where ũ0i and ṽ
0
i (i = 1, 2, 3, 4) are the prescribed in-plane displacements on the ith bound-

ary edge of the sandwich plate. As the boundary conditions on four edges are specified

solely in terms of displacements, there exists no stress boundary constraints along the

edges of the sandwich plate. As such, the stress constraint function Π∗
LM obtained by ap-

plying the Lagrange multiplier method is unnecessary. However, the displacement bound-

ary constraints on four edges of the plate require to be satisfied in boundary integral form

and given by [51]

Π∗
D =

2

b

∫ 1

−1

[
∂2Φ

∂η2
ũ01

]
ξ=−1

dη − 2

a

∫ 1

−1

[
∂2Φ

∂ξ∂η
ṽ01

]
ξ=−1

dη+

2

b

∫ 1

−1

[
∂2Φ

∂η2
ũ02

]
ξ=1

dη − 2

a

∫ 1

−1

[
∂2Φ

∂ξ∂η
ṽ02

]
ξ=1

dη−

2

b

∫ 1

−1

[
∂2Φ

∂ξ∂η
ũ03

]
η=−1

dξ +
2

a

∫ 1

−1

[
∂2Φ

∂ξ2
ṽ03

]
η=−1

dξ−

2

b

∫ 1

−1

[
∂2Φ

∂ξ∂η
ũ04

]
η=1

dξ +
2

a

∫ 1

−1

[
∂2Φ

∂ξ2
ṽ04

]
η=1

dξ

(52)

where Π∗
D denotes the displacement constraint function representing the work done by

the unknown force along the applied boundary displacement. Accordingly, imposing the

in-plane displacement boundary constraint Π∗
D into the complementary energy Eq. (40),

we can obtain

ΠTotal = ΠC +Π∗
D (53)

Substituting Eq. (43) into Eqs. (40) and (52) and then into Eq. (53), and minimizing the

total complementary energy ΠTotal with respect to Gpq (p = 0, 1, · · · , P ; q = 0, 1, · · · , Q)
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as,

∂ΠTotal

∂Gpq
= 0 (54)

a set of linear algebraic equations is then generated and expressed in the following matrix

form:

KG = P (55)

where K and G are similar to those in Eq. (50). P is a load vector, which is related to

the prescribed in-plane displacement along the edges of the sandwich plate.

Case C

For a general case, both in-plane stress and displacement boundary conditions are

applied simultaneously. Therefore, both the stress constraint conditions Π∗
LM and dis-

placement boundary conditions Π∗
D need to be imposed into the complementary energy

ΠC to derive a Lagrange function LA, as follows,

LA(G00,G01, · · · ,GPQ, χ1
2, χ

1
3, · · · , χ8

P ) = ΠC +Π∗
LM +Π∗

D (56)

Substituting Eq. (43) into Eqs. (40), (48) and (52) and then into Eq. (56), and minimizing

the Lagrange function LA with respect to Gpq (p = 0, 1, · · · , P ; q = 0, 1, · · · , Q) and χij

(i = 1, 2, · · · , 8; j = p, q) as,

∂LA

∂Gpq
= 0,

∂LA

∂χij
= 0 (57)

A set of linear algebraic equations governing the in-plane stress problem of composite

plates subjected to mixed in-plane boundary conditions can be obtained and expressed in

the following matrix form: K LM

LMT O

G

χ

 =

P

Λ

 (58)

The in-plane stress and displacement boundary conditions along each boundary edge

are conjugate, which indicates that if the in-plane displacement constraint condition in

28



that direction of the edge is activated, the conjugate stress constraint condition tends

to be suppressed, and vice versa. From this point of view, there exists two extreme

cases, for instance, when the stress boundary constraints are imposed on all four edges

of the sandwich plate, the corresponding displacement boundary constraints are dormant

and thus the terms induced by the displacement constraint function Π∗
D needs to be

removed from Eq. (58), which eventually leads to Eq. (50). On the other hand, when

the displacement boundary constraints are imposed on all four edges of the sandwich

plate, the corresponding stress boundary constraints are suppressed and thus the stress

constraint function Π∗
LM needs to be removed from Eq. (58), which eventually leads to

Eq. (55). In the present work, however, particular attention is paid to the case of mixed

in-plane boundary condition, for instance, if the sandwich plate is subjected to uniform

end-shorting with transverse edges free to deform, the in-plane boundary condition is

written as

x = ±a/2 : u0(±a/2, y) = ∓∆x; N0
xy(±a/2, y) = 0

y = ±b/2 : N0
yy(x,±b/2) = 0; N0

yx(x,±b/2) = 0
(59)

For this case studied, the boundary stress coefficients related to the prescribed stress

boundary conditions equal to zero, that is,

0 =

Q∑
q=0

GpqLq(−1), 0 =

Q∑
q=0

GpqLq(1)

0 =
P∑
p=1

Gpq
∂Lp(ξ)

∂ξ

∣∣∣
ξ=−1

, 0 =
P∑
p=1

Gpq
∂Lp(ξ)

∂ξ

∣∣∣
ξ=1

0 =

Q∑
q=1

Gpq
∂Lq(η)

∂η

∣∣∣
η=−1

, 0 =

Q∑
q=1

Gpq
∂Lq(η)

∂η

∣∣∣
η=1

(60)

As such, the stress constraint function Π∗
LM can be simplified as

Π∗
LM =

4

a2

P∑
p=2

χ3
p

Q∑
q=0

ϕpqLq(−1) +
4

a2

P∑
p=2

χ4
p

Q∑
q=0

ϕpqLq(1)

− 4

ab

Q∑
q=1

χ5
q

P∑
p=1

ϕpq
∂Lp(ξ)

∂ξ

∣∣∣
ξ=−1

− 4

ab

Q∑
q=1

χ6
q

P∑
p=1

ϕpq
∂Lp(ξ)

∂ξ

∣∣∣
ξ=1

− 4

ab

P∑
p=1

χ7
p

Q∑
q=1

ϕpq
∂Lq(η)

∂η

∣∣∣
η=−1

− 4

ab

P∑
p=1

χ8
p

Q∑
q=1

ϕpq
∂Lq(η)

∂η

∣∣∣
η=1

(61)
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At the same time, the displacement constraint function Π∗
D can be degenerated into

Π∗
D =−

∫ 1

−1

2

b

∂2Φ

∂η2
∆xdη −

∫ 1

−1

2

b

∂2Φ

∂η2
∆xdη (62)

Finally, the prebuckling problem of the VAT composite sandwich plate subjected to uni-

form end-shortening can be solved through Eq. (58). With the aid of Eqs. (37) and

(39), the prebuckling stresses (N̂ t,b,c
xx , N̂ t,b,c

yy , and N̂ t,b,c
xy ) of both the two facesheets and

the core within the VAT composite sandwich plate under uniform end-shortening can be

determined from
N̂ t,b,c
xx

N̂ t,b,c
yy

N̂ t,b,c
xy

 =


At,b,c11 (x, y) At,b,c12 (x, y) At,b,c16 (x, y)

At,b,c12 (x, y) At,b,c22 (x, y) At,b,c26 (x, y)

At,b,c16 (x, y) At,b,c26 (x, y) At,b,c66 (x, y)



ε0xx

ε0yy

γ0xy

 (63)

where Acij (i, j = 1, 2, 6) denotes the extensional stiffness of the core. Note, in the pre-

buckling analysis, the contributions from both the two facesheets and the core to the

overall extensional stiffness of the entire sandwich plate are taken into account. In fact,

this loading condition simulates the situation of sandwich plates loaded by means of rigid

blocks, where the applied in-plane load is introduced to both of the two facesheets and

the core [7, 42]. Moreover, this modelling strategy for predicting the prebuckling stresses

is also applicable to the case where the load is only applied to the two facesheets, while

the core is unloaded. Under such circumstance, the contribution of the core to the overall

extensional stiffness of the whole sandwich plate is removed from Eqs. (37) and (63).

The latter loading case resembles the well-known anti-plane stress assumptions used for

deriving wrinkling closed-form solutions [42].

5. Results and discussion

This section presents a detailed investigation on the instability analysis of VAT sand-

wich plates under in-plane compressive loads. Firstly, a series of comparison studies are

conducted to validate the accuracy of the developed Rayleigh-Ritz analytical model. Sub-

sequently, the Rayleigh-Ritz model is applied to perform several parametric studies for

investigating the influences of core thickness, core orthotropy, and fibre orientation angle

of the facesheets on the instability behaviours of VAT sandwich plates under uniform end-
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shortening. The mechanism of applying the VAT design concept to improve the buckling

resistance of sandwich plates is finally explored. In order to further validate the present

Rayleigh-Ritz model, FE modelling using ABAQUS (6.12-1 version) is established for

sandwich plates with relatively soft cores. The SC8R element is chosen to discretize each

facesheet, whilst the C3D8R element is employed for the core’s discretization. A subrou-

tine is developed to generate the composite element with independent fibre orientations

for each facesheet within the sandwich plate so that the fibre orientation angle of each ply

varies according to Eq. (1). In addition, very fine meshes are used to obtain an accurate

and convergent simulation for the complex response, especially in the wrinkling analysis.

Note, the thickness variation of both the top and bottom facesheets within the VAT sand-

wich plates due to tow overlap or gaps are not considered, therefore the ply-thickness is

assumed as a constant in the present work.

5.1. Comparison studies

5.1.1. Conventional sandwich plates

In order to validate the proposed Rayleigh-Ritz model for VAT sandwich plates, the

global buckling problem of a short sandwich beam with orthotropic facesheets and or-

thotropic core given by Ji and Waas [57] is firstly studied. The sandwich beam is simply

supported at both ends and subjected to a uniform end-shortening. The uniform compres-

sive load is imposed at both the facesheets and the core, and therefore the contribution

of the core to the extensional stiffness of the entire sandwich plate is considered in the

prebuckling regime. The geometry of the sandwich beam is given by a = 3mm, h = 1mm,

ft = fb = 0.1mm, and 2c = 0.8mm. The material properties of the facesheets are:

Ef
11 = 107GPa, Ef

22 = Ef
33 = 15GPa, Gf

23 = Gf
13 = Gf

12 = 4.3GPa, νf23 = νf13 = νf12 = 0.3,

and the material properties of the core are: Ec
33 = 4 × Gc

13, G
c
13 = Gf

13/200, ν
c
13 = 0.25.

The maximum number of trial functions in the loading direction is assumed to be 12,

which is sufficient to accurately capture the first buckling mode. The buckling loads of

the sandwich beam as a function of the orthotropy ratio Ec
11/E

c
33 predicted by the present

Rayleigh-Ritz model are shown in Fig. 3. The 2D exact elasticity solutions obtained by

Ji and Waas [57] are also provided for the comparison purpose. Note, the buckling load

Pcr (as used in Ref. [57]) is normalized with respect to the global beam buckling load PB
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defined as

PB =
PE

1 + PE/GA
(64)

with

PE =
π2EI

a2
(65)

where PE is the equivalent Euler buckling load; EI and GA are the effective bending

stiffness and shear stiffness of the sandwich beam, respectively, which are determined

according to Huang and Kardomateas [58] or Bažant et al. [59]. It is also worth high-

lighting that the present three-dimensional Rayleigh-Ritz model can be reduced to the

two-dimensional one by eliminating the terms along the y direction such that the compar-

ison against the results by Ji and Waas [57] is of significance in the plane-strain regime.

From Fig. 3, it is clear that the normalized buckling loads obtained by the present

Rayleigh-Ritz model agree well with the exact elasticity solutions given by Ji and Waas

[57], even for the cases with a high orthotropy ratio Ec
11/E

c
33. The maximum error of

the results shown in Fig. 3 is less than 1%. These results demonstrate the accuracy of

the proposed Rayleigh-Ritz model in predicting the critical buckling load of the sandwich

beam. Moreover, it is observed that the buckling mode of the sandwich beam studied

herein always has only one single halfwave, which is consistent with other analysis results

by Ji and Waas [57], D’Ottavio et al. [7], and Vescovini et al.[42].

The second comparison case is to study the wrinkling behaviour of a symmetrical

sandwich wide beam in a general 2D plane strain state, which has been studied by Ji

and Waas [60, 7, 42]. Both the boundary condition and loading condition are the same

with those of the first comparison case. The geometry of the sandwich plate is defined by

a = 200mm, h = 70mm, ft = fb = 1mm, and 2c = 68mm. The material property of each

facesheet is the same with that of the first comparison case, which is however replaced

with the equivalent Young’s modulus Ef = 61.443GPa and Poisson’s ratio νf = 0.0738

[7]. The core is made of Divinycell H-grade isotropic material with Poisson’s ratio νc = 0.3

and Young’s modulus Ec depends on the foam quality [61, 60, 7]: Ec = 40MPa for H45

foam, Ec = 80MPa for H80 foam and Ec = 140MPa for H130 foam. Herein, the maximum

number of trial functions in the loading direction is assumed to be 50 to ensure that a
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sufficient number of buckling modes can be accurately captured. The normalized buckling

strain (λ/a) as a function of the normalized half-wavelength (Lx/ft) for sandwich beams

with three different types of cores is plotted in Fig. 4 and compared against those provided

by Ji and Waas [60]. Note, although the present Rayleigh-Ritz model can capture any type

of wrinkling pattern (antisymmetrical or symmetrical), only the results of antisymmetric

wrinkling mode, which is considered as the predominant failure mode of the sandwich

wide beam in [5, 60, 7, 42], is presented herein. As shown in Fig. 4, the results obtained

by the present Rayleigh-Ritz model match well with the exact elasticity solutions by

Ji and Waas [60]. It was found that the buckling patterns corresponding to the lowest

critical buckling strain for the sandwich wide beams with H45, H80 and H130 are the

antisymmetric wrinkling modes with eight, ten, and twelve halfwaves, respectively, which

are also illustrated in Fig. 4.

The third comparison case study is focused on a more complex wrinkling analysis of

a three dimensional sandwich plate with each facesheet that possesses the anisotropic

property. The sandwich plate is clamped on the edges of x = ±a/2 and free on the edges

of y = ±b/2, and simultaneously loaded by a uniform end-shortening. The geometry of

the sandwich plate is defined by a = 200mm, b = 150mm, h = 52mm, ft = fb = 1mm, and

2c = 50mm. Each facesheet is made of four plies with stacking sequence [α/(90 +α)]s, in

which α represents the rotation of the orthotropy principal axes and varies between 0◦ and

90◦. The material property of each facesheet is the same as that of the first comparison

case, and the core is made of the isotropic material with Ec
11 = Ec

22 = Ec
33 = 20MPa,

Gc
23 = Gc

13 = Gc
12 = 13MPa, νc23 = νc13 = νc12 = 0.25. The maximum number of trial

functions in the loading direction is assumed to be 18, which is sufficient to accurately

capture the first buckling mode. The critical buckling load (N cr
x,sm) predicted by the

present Rayleigh-Ritz model is plotted against the rotation angle (α) in Fig. 5 and

compared with those previously published by Fagerberg et al. [62] and Vescovini et al.

[42]. A good agreement between the present results and those obtained in previous works is

reached, which proves that the proposed Rayleigh-Ritz model is capable for the wrinkling

analysis of the anisotropic sandwich plate. The wrinkling pattern of the sandwich plate

for each rotation angle is of antisymmetric pattern. Furthermore, the skew angle of the

wrinkles are found to vary with the rotation angle α and match well with those obtained

by Fagerberg et al. [62] and Vescovini et al. [42].
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In order to further demonstrate the modelling capability of present method for both

global and local instability analysis of the sandwich plate, the fourth comparison case

study is carried out on a rectangular sandwich plate with a large range of core thickness,

as also studied by Rose et al. [63]. The sandwich plate is simply supported on four edges

and loaded by a uniform end-shortening. However, the uniform compressive loading herein

is only imposed on both the top and bottom facesheets, which is the same as that of Rose

et al.’s work [63]. This means that the contribution of the core to the extensional stiffness

of the sandwich plate is removed from the prebuckling analysis. The geometry of the

sandwich plate is defined by a = 508mm, b = 254mm, ft = fb = 2.794mm with the

range of the core thickness 2c from 5.08mm to 203.2mm. The material properties are

given for each facesheet: Ef
11 = Ef

22 = Ef
33 = 68.95GPa, Gf

23 = Gf
13 = Gf

12 = 4.3GPa,

νf23 = νf13 = νf12 = 0.3 and for the core: Ec
11 = Ec

22 = 0.6895MPa, Ec
33 = 68.95MPa,

Gc
12 = 0.265MPa, Gc

13 = 82.74MPa, Gc
23 = 49.64MPa, νc12 = 0.3, νc23 = νc13 = 0.01. The

maximum number of trial functions in the loading direction is assumed to be 18, which

is sufficient to accurately capture the first buckling mode. The critical buckling load

(N cr
x,sm) versus the normalized core thickness (2c/a) obtained using the present Rayleigh-

Ritz model are shown in Fig. 6 and compared with those predicted by using the finite

element code STAGS [63]. The results obtained using the S-GUF approach by Vescovini

et al. [42] are also provided for comparison purposes. From Fig. 6, it can be seen that for

a variety of core thicknesses, the present results agrees well with those published by Rose

et al. [63] and Vescovini et al. [42]. Furthermore, the entire curve can be divided into

two stages, that is, the buckling load of the sandwich plate gradually increases until the

normalized core thickness 2c/a arrives at 0.06 (the first stage), and then goes down with

a further increase of the normalized core thickness 2c/a (the second stage), accompanying

by a transition from antisymmetrical buckling mode to symmetrical wrinkling mode. The

buckling modes corresponding to 2c/a = 0.03 and 2c/a = 0.2 are also illustrated in

Fig. 6. These results further demonstrate the ability of the present Rayleigh-Ritz model

to accurately capture both the symmetrical and antisymmetrical buckling modes of the

sandwich plate.

5.1.2. VAT sandwich plates

The fifth comparison case study is focused on the VAT sandwich plates, which are

rarely studied in previous works. The current study has two major objectives: the first one
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is to verify the accuracy of prebuckling stresses computation by the proposed Rayleigh-

Ritz model under the assumption of membrane prebuckling state, and the second one

is to analyze the both global and local instability behaviours of VAT sandwich plates.

The geometry properties, material properties, and loading conditions of VAT composite

sandwich plates are similar to those in the third comparison case, except that the core

thickness is 2c = 10mm and 2c = 30mm. Both the top and bottom facesheets are designed

by the VAT design concept, and their layup configuration is [±⟨0|45⟩]s. The non-uniform

prebuckling stress resultants (N̂ t
xx, N̂

t
yy, and N̂ t

xy) of the top facesheet for the sandwich

plate [±⟨0|45⟩]s with core thickness 2c = 30mm obtained using the present analytical

formulation are presented in Fig. 7 and are found to be consistent with FEM results. The

results shown in Fig. 7 approve that the proposed Rayleigh-Ritz model can accurately

predict the prebuckling behaviours for VAT sandwich plates under the three assumptions

outlined in Section 4. Fig. 8 shows the buckling loads and their corresponding buckling

patterns for the sandwich plate [±⟨0|45⟩]s with two different core thicknesses. The results

obtained by the FEM model are also included for the comparison purposes. It is obvious

that the results obtained by the present Rayleigh-Ritz model agrees well with FE results

for both cases of core thickness, that is, 2c = 10mm and 2c = 30mm. It is also interesting

that the lower core thickness (2c = 10mm) triggers the global instability (global buckling),

while the higher core thickness (2c = 30mm) leads to the local instability (antisymmetrical

wrinkling), which will be further studied in the parametric studies. It is noted that in

order to achieve the required accuracy, a mesh density of 100 × 75 is selected in the

x−y plane of VAT sandwich plates, and one element (SC8R) for each facesheet and eight

element (C3D8R) for the core were used through the depth of the sandwich plate. It

took approximately 30 minutes to solve the eigenvalue problem for each sandwich plate

buckling model on the computer with i7 CPU (2.9GHz) and 8G RAM.

To verify the convergence of the proposed Rayleigh-Ritz model, the critical buckling

loads (N cr
x,sm) of the same sandwich plate obtained using different shape-function terms

in the length direction are also presented in Table 1. It is clear that the buckling loads

predicted by the present Rayleigh-Ritz formulation rapidly converges to FE solutions with

the increase of the number of Legendre polynomial terms. It is found that 12 terms in the

length direction are sufficient to yield an accurate prediction for the buckling load of the

VAT sandwich plates, and yet, despite this, 18 trial functions in the loading direction will
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Table 1: Critical buckling load N cr
x,sm of the tow-steered sandwich plate [±⟨0|45⟩]s with two different core

thicknesses obtained using different shape-function terms in the length direction. (unit: N/mm)

2c
Mi (i = 1, 2, 3, 4, 5)

ABAQUS
6 8 10 12 14 16 18

10mm 161.17 160.98 160.92 160.90 160.89 160.88 160.87 160.42

30mm 403.26 397.25 390.06 384.22 381.79 381.09 380.82 381.72

be used in the following parametric studies. It is also worth highlighting that a relatively

small number of shape-function terms in the width direction is enough for both global and

local instability analysis due to the fact that the sandwich plate are neither constrained

nor loaded along the edges of y = ±b/2. On the other hand, it was found that 9 terms of

Legendre polynomial in the Airy’s stress function are sufficient to obtain the convergent

results in the prebuckling analysis.

5.2. Parametric studies

5.2.1. Effects of core thickness

The aim of the first parametric study is to gain a deep insight into the effect of the core

thickness on the instability behaviour of VAT sandwich plates. The geometry properties,

material properties, and loading conditions of the VAT sandwich plates are also similar to

those in the third comparison case study except that the core thickness varies over a wide

range from 2c = 2mm to 2c = 50mm. The VAT layup is [90±⟨0|75⟩]s. The critical buck-

ling load (N cr
x,sm) versus the core thickness (2c) obtained using the present Rayleigh-Ritz

formulation is shown in Fig. 9. As a relatively soft core is adopted, the results predicted

using ABAQUS are also included for the comparison purpose. It is clearly seen that the

core thickness has a significant influence on the instability behaviour of the VAT sand-

wich plates, the buckling load initially increases as the core thickness increases, and then

gradually tends to be flat with the further increase of the core thickness. Furthermore, a

remarkable transition of the buckling pattern from global instability (global buckling) to

coupled instability and finally to local instability (wrinkling) also appears on the sand-

wich plate with the increase of core thickness. It is observed that either the global or

coupled bucking mode remains the predominant failure mode until the core thickness 2c

arrives at 10mm, and afterwards the wrinkling mode plays a major role in the instability

process as the core thickness further increases. In particular, the effect of edge wrinkling

36



within the sandwich plate is pronounced when local instability occurs. The mechanism

of load redistribution offered by the VAT layup [90± ⟨0|75⟩]s, which transfers a majority

of compressive loads within the facesheets from the central region to both free edges, is

responsible for this phenomenon of edge wrinkling. Moreover, it is also observed that the

higher the core thickness, the more the halfwaves near the free edge of the facesheets, as

shown in Fig. 9. In Fig. 9, the buckling mode shapes for the VAT layup [90 ± ⟨0|75⟩]s
with 2c = 4mm, 2c = 10mm, 2c = 20mm, and 2c = 30mm obtained using the present

Rayleigh-Ritz model are also presented. In addition, it is noted that the finite element

model implemented in ABAQUS software mimics the clamped boundary conditions in an

approximate manner, which results in a slight difference between the analytical results

and FE solutions. However, the maximum error is found to be less than 1.7%, which

means that the usage of approximate boundary condition within the FE model is appro-

priate and effective for both global buckling and wrinkling analysis for VAT sandwich

plates with soft core.

5.2.2. Effects of core orthotropy

The second parametric study aims to investigate the effect of the core orthotropy on

the buckling performance of VAT composite sandwich plates. The geometry properties

of the sandwich plate are similar to those in the third comparison case study except that

the thicknesses of the facesheets and the core are assumed to be ft = fb = 1.0176mm and

2c = 30mm, respectively. Two different boundary conditions are studied, that is, SFSF

and CFCF. The entire sandwich plate is loaded by a uniform end-shortening, which means

that the contribution of the core to the extensional stiffness of the sandwich plate is con-

sidered in the prebuckling analysis. The material properties are given for the highly

anisotropic facesheets: Ef
11 = 181.0GPa, Ef

22 = Ef
33 = 10.27GPa, Gf

23 = 5.96GPa,

Gf
13 = Gf

12 = 7.17GPa, νf23 = νf13 = νf12 = 0.277 with thickness of each ply equal to

0.1272mm, and for the varying orthotropic core: Ec
11 = Ec

22 = rcE
c
33, E

c
33 = 4 × Gc

13,

Gc
23 = Gc

13 = Gc
12 = Gf

13/500, ν
c
23 = νc13 = νc12 = 0.25, where rc = Ec

11/E
c
33 represents

the orthotropy ratio of the core ranging from 1 to 100. The layup configuration of both

the top and bottom facesheets is chosen to be [90± ⟨0|75⟩]2s. The critical buckling loads

(N cr
x,sm) as a function of the core orthotropy ratio (Ec

11/E
c
33) for the SFSF and CFCF

boundary conditions are plotted in Fig. 10 and Fig.11, respectively. The present results

are also presented in Table 2 for the convenience of using as the benchmark for other nu-
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Table 2: Critical buckling load N cr
x,sm of the tow-steered sandwich plate [90±⟨0|75⟩]2s for both SFSF and

CFCF boundary conditions. (unit: N/mm)

Boundary type
Ec

11/E
c
33

1 10 20 30 40 50 60 70 80 90 100

SFSF 260.73 296.85 329.01 357.17 378.96 397.02 408.75 410.92 412.71 414.21 415.49

CFCF 262.01 297.51 332.47 361.35 384.22 401.58 414.59 424.11 430.90 435.73 439.55

merical or analytical results. Note, the results obtained using ABAQUS are not provided

herein, since that the commercial FE packages such as ABAQUS may produce incorrect

results for the sandwich plates with significant core orthotropy [64, 57, 7]. From Fig.

10, it is seen that the core orthotropy has a considerable effect on the buckling loads

and their corresponding buckling patterns of the tow-steered sandwich plate, for instance,

with the increase of core orthotropy ratio Ec
11/E

c
33, the buckling load gradually increases

in accompany with a sudden transition of the buckling pattern from local instability (an-

tisymmetrical wrinkling) to global instability (global buckling). In particular, the edge

wrinkling with multiple halfwaves occurs when the core orthotropy ratio is relatively low,

while the global buckling with one single halfwave appears when the core orthotropy ratio

is sufficiently significant, as shown in Fig. 10. A similar conclusion can also be drawn

from Fig. 11, where a remarkable transition of the buckling pattern from local instabil-

ity (wrinkling) to coupled instability and finally to global instability (global buckling) is

observed with the increase of core orthotropy ratio Ec
11/E

c
33. These results indicate that

the possibility of encountering the wrinkling pattern is greatly increased for a relatively

low core orthotropy. It is also noted that there is little difference in the predicted buck-

ling loads between two different boundary conditions when the core orthotropy ratio is

relatively low, as shown in Table 2, and the primary reason is attributed to the occurence

of local instability (wrinkling), while this difference becomes significant when the core

orthotropy ratio tends to be large.

5.2.3. Effects of fibre orientation angle

The third parametric study mainly focuses on the effect of varying fibre orientation

angle of the facesheets on the instability response of VAT sandwich plates, and in par-

ticular, the possibility of applying the novel VAT design concept to improve the buckling

resistance of the sandwich plate is emphatically explored. Herein, a rectangular sandwich
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plate (a = 200mm and b = 150mm) with SSSS boundary conditions under a uniform

end-shortening is considered. The VAT layup configuration of either the top or bottom

facesheet is assumed to be [ϕ ± ⟨T0|T1⟩]2s, where ϕ = 0◦ or ϕ = 90◦ and both T0 and

T1 increase from 0◦ to 90◦ with a step of 10◦. The facesheet thickness is assumed to

be ft = fb = 1.0176mm, whilst the core thickness is chosen to be 2c = 10mm. The

material properties of the facesheets are similar to those in the second parametric study,

whilst the core is composed of the soft isotropic material, whose properties are given by:

Ec
11 = Ec

22 = Ec
33 = 56MPa, Gc

23 = Gc
13 = Gc

12 = 22MPa, νc23 = νc13 = νc12 = 0.25. Nor-

malized values of buckling load versus stiffness for various VAT layup configurations with

ϕ = 0◦ and ϕ = 90◦ obtained using the present Rayleigh-Ritz model are plotted in Fig.

12 and Fig. 13, respectively, where each curve represents a series of VAT sandwich plates

generated by varying the value of T1 (from 0◦ at the right-end to 90◦ at the left-end for

the case of ϕ = 0◦ or from 0◦ at the left-end to 90◦ at the right-end for the case of ϕ = 90◦)

with a same value of T0. For the sake of convenience, it is recommended to represent the

both the critical buckling load and prebuckling stiffness of the tow-steered sandwich plate

in a smeared approach [3]. Herein, the smeared (or averaged) critical buckling load N cr
x,sm

and prebuckling stiffness Ex,sm of the sandwich plate are expressed as [3]:

N cr
x,sm =

λcr
b

∫ b/2

−b/2
N0
x(±a/2, y)dy (66a)

Ex,sm =
a

hb∆x

∫ b/2

−b/2
N0
x(±a/2, y)dy (66b)

For comparison purposes, the smeared critical buckling load and prebuckling stiffness are

normalized by the following expression [3]:

N
cr

x,sm =
N cr
x,sm

max[N cr
x,sm|T0=T1 ]

(67a)

Ex,sm =
Ex,sm

max [Ex,sm]
(67b)
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From Figs. 12 and 13, it is clear that the instability response of the sandwich plate is signif-

icantly affected by the fibre orientation angle, and in particular, the critical buckling load

varies with both fibre orientation angles T0 and T1, which makes the VAT sandwich plate

possess extended freedom in stiffness tailoring when compared to the straight-fibre com-

posite sandwich plates. Furthermore, for the case of ϕ = 0◦, the buckling loads obtained

with VAT layup configurations are found to be enveloped within the curve representing

the straight-fibre sandwich plates, as shown in Fig. 12, which means the advantage of

applying VAT concept to improve the buckling resistance of the sandwich plate is not

obvious for the case of ϕ = 0◦. However, Fig. 13 presents a completely different scenario

for the case of ϕ = 90◦, and in particular, it is found that the maximum buckling load is

achieved by the VAT layup [90 ± ⟨0|70⟩]2s, in which a 23% improvement in the buckling

resistance is obtained when compared to the maximum one of the straight-fibre format

[±10]2s. Actually, the majority of compressive loads within both the top and bottom

facesheets are redistributed away from the central region towards the supported edges,

which enables the VAT layup [90± ⟨0|70⟩]2s to arrive at higher buckling resistance. The

distinct superiority of applying the VAT concept enabled by automated fibre placement

technologies to improve the stability performance of the sandwich plate is demonstrated.

6. Conclusion

In this paper, a Rayleigh-Ritz analytical model based on a modified version of the

EHSAPT was developed for studying the instability behaviour of VAT sandwich plates

under in-plane compressive loads. Both global buckling and wrinkling patterns were

observed under the present model framework. The proposed three-dimensional sandwich

plate model benefits from the introduction of the first-order shear deformation theory into

the facesheets, which has shown some advantages such as the conciseness in derivation

process and the convenience of modelling implementation. Before instability analysis, the

nonuniform prebuckling stresses over the entire sandwich plate were determined under the

assumption of membrane prebuckling state. The usage of Lagrange multiplier method in

the prebuckling analysis removes the modelling limitations in conventional Rayleigh-Ritz

method and thus provides a general way to model in-plane boundary conditions. Compar-

ison studies were firstly conducted to demonstrate the accuracy and effectiveness of the

present Rayleigh-Ritz analytical model, and subsequently a series of parametric studies
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were provided to investigate the influences of core thickness, core orthotropy, and fibre

orientation angle of the facesheets on the instability behaviours of VAT sandwich plates.

The results have shown that the change of the core thickness greatly affects the critical

buckling load of VAT sandwich plates, and simultaneously triggers a pronounced transi-

tion in the instability pattern from global buckling to wrinkling. The core orthotropy has

a significant influence on the instability behaviour of the VAT sandwich plates, and in par-

ticular, for a relatively low core orthotropy, the possibility of encountering the wrinkling

pattern is greatly increased. Moreover, it was observed that the VAT composite sandwich

plates exhibits a 23% higher critical buckling load than the straight-fibre format by ap-

propriately selecting VAT pattern over the facesheets. The favorable stress redistribution

mechanism that a majority of compressive loads within the facesheets is transferred from

the central region to both supported edges was found to be responsible for this significant

improvement of the buckling resistance, and the distinct superiority of applying the VAT

concept to the sandwich plate was accordingly demonstrated.
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Figure 1: A two-layers VAT facesheet [0±⟨0|75⟩] with a linear variation of fibre orientation angle (ϕ = 0◦,
T0 = 0◦, and T1 = 75◦).
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Figure 2: Schematic diagram of a typical VAT sandwich plate with two facesheets and one core. (The
orthogonal coordinate system is located in the centroid of the core)
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Figure 3: Comparison of the normalized critical buckling load between the present results and the previ-
ously published results for a short sandwich beam with different orthotropy ratios Ec

11/E
c
33.
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H45

H80

H130

Figure 4: Comparison of the normalized critical strain λ/a versus the normalized half-wavelength Lx/ft
between the present results and the previously published results for a symmetrical sandwich wide beam
with three different cores, that is, H45, H80, and H130.

51



Figure 5: Comparison of the critical buckling load (N cr
x,sm) between the present results and the previously

published results for a rectangular sandwich plate with different rotation angles (α). (unit: N/mm)
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(symmetrical)

(antisymmetrical)

Figure 6: Comparison of the critical buckling load (N cr
x,sm) between the present results and the previously

published results for a rectangular sandwich plate with different values of normalized core thickness
(2c/a). (unit: N/mm)
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Figure 7: Comparison of FEM and Rayleigh–Ritz results on the nonuniform prebuckling stress distri-
bution of of the top facesheet within the VAT sandwich plate [±⟨0|45⟩]s under uniform end shortening

(∆x = 0.5mm) with transverse edges free to deform: (a) longitudinal stress resultant N̂ t
xx; (b) transverse

stress resultant N̂ t
yy; (c) in-plane shear stress resultant N̂ t

xy.
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Figure 8: Comparison of FEM and Rayleigh–Ritz results on the critical buckling loads and the corre-
sponding instability patterns of the VAT sandwich plate [±⟨0|45⟩]s under uniform end shortening with
transverse edges free to deform: (a) 2c = 10mm; (b) 2c = 30mm.
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coupled instability

wrinkling(5)

wrinkling(7)

global buckling

Figure 9: The critical buckling load (N cr
x,sm) as a function of the core thickness (2c) of the VAT sandwich

plate [90±⟨0|75⟩]s under uniform end shortening (The results obtained using ABAQUS are also included
for comparison purposes). (unit: N/mm)
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wrinkling

global buckling

Figure 10: The critical buckling load (N cr
x,sm) as a function of the core orthotropy (Ec

11/E
c
33 ) of the

VAT sandwich plate [90± ⟨0|75⟩]s with SFSF boundary conditions under uniform end shortening. (unit:
N/mm)
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coupled instability

wrinkling

global buckling

Figure 11: The critical buckling load (N cr
x,sm) as a function of the core orthotropy (Ec

11/E
c
33 ) of the

VAT sandwich plate [90±⟨0|75⟩]s with CFCF boundary conditions under uniform end shortening. (unit:
N/mm)
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Figure 12: Normalized buckling load versus normalized prebuckling stiffness of the VAT sandwich plates
with all the VAT configurations [ϕ± ⟨T0|T1⟩]2s under uniform end-shortening for the case of ϕ = 0.
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Figure 13: Normalized buckling load versus normalized prebuckling stiffness of the VAT sandwich plates
with all the VAT configurations [ϕ± ⟨T0|T1⟩]2s under uniform end-shortening for the case of ϕ = 90.
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