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ABSTRACT This paper deals with the detection and classification of two types of lamination faults
(i.e., edge burr and lamination insulation faults) in a three-phase transformer core. Previous experimental
results are exploited, which are obtained by employing a 15 kVA transformer under healthy and faulty
conditions. Different test conditions were considered such as the flux density, number of the affected lamina-
tions, and fault location. Indeed, the current signals were used where four features (Average, Fundamental,
Total Harmonic Distortion (THD), and Standard Deviation (STD)) were extracted. Elaborating A total of
328 samples, these features are utilized as input vectors to train and test classification models based on SVM,
KNN, and DT algorithms. Based on the selected features, the results confirmed that the transformer current
can be used for the detection of lamination faults. An accuracy rate of more than 84% was obtained using
three different classifiers. Such findings provided a promising step toward fault detection and classification
in electrical transformers, helping to prevent the system and avoid other related issues such as the increase
in power loss and temperature.

INDEX TERMS Edge burrs, classification algorithm, decision tree algorithm, fault detection, lamination
insulation, KNN classifier, SVM classifier, transformer core.

NOMENCLATURE
SVM: Support Vector Machine.
KNN: K-Nearest-Neighbor.
DT: Decision Tree.
STD: Standard Deviation.
THD: Total Harmonic Distortion.

I. INTRODUCTION
Electrical transformers present a key component in the power
network, from generation to end-costumer. Therefore, the
safety and reliability of these components is an essential step
in ensuring the continuity of the utility services. In this light,
several researchers have studied and analysis the impact of
fault in transformers in order to offer a better understanding
of the impact of these faults and provide appropriate protec-
tion techniques. In addition, these studies may also provide
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consistent monitoring and diagnostic techniques to detect
transformer faults at earlier stages, improving the duration of
operation and the reliability of the equipment [1], [2].

In literature, numerous studies were carried out to investi-
gate the impact of faults in the electrical machines, includ-
ing the power transformers e.g., [3]–[6]. Other researchers
focused on developing and improving solution techniques
to prevent such faults or to increase the performance of the
transformers e.g., [7]–[10]. A couple of works aimed to detect
and classify faults in transformers e.g., [11]–[13]. For these
reasons, the techniques developed help to better exploit elec-
trical transformers, and avoid material losses resulting from
possible malfunctions.

According to a study in [8], the authors found that 37%
of power transformer failures were caused by an insulation
problem. These results come from a study on 343 power
transformers with a voltage range of 33–400 kV. Among
many other failures, winding, bushings, on-load tap changer
and core failures are the most pertinent. In low voltage
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transformers, the rate of insulation failures is reduced whilst
core failure can be identified as a primary failure regarding
the laminations and interlaminations issues [14]. Therefore,
these failures should be analyzed to provide a better under-
standing of these problems in power transformers as well
as to identify and develop techniques for the diagnostic and
maintenance.

In previous work [15], the authors studied the effects of
transformer core faults - edge burrs and lamination insu-
lation faults. They experimentally simulated and analyzed
both faults utilizing a 15 kVA three phase power transformer
where different scenarios are considered such as the area of
the affected regions and the number of short-circuited lam-
inations. Various flux densities are considered ranging from
0.5 to 1.8 T. The obtained results represent a good indication
of the severity of short circuits relative to their position in the
transformer core and can be exploited to discuss the power
losses in the transformer core.

Based on the results presented in [15], this paper aims to
detect and identify laminations faults in the core of a 15 kVA
electrical transformer. Under normal and faulty conditions,
different scenarios are considered such as the flux density,
number of affected laminations and number-place of faults.
Features are extracted from the measured current signals and
used as input vectors for the training and testing process elab-
orating SVM,KNN andDT classifiers. A total of 328 samples
are used where four features are selected.

The paper is organized as follows: Section II provides
details about the experimental results and the signal pro-
cessing process. Examples of the dataset is also presented
and discussed in this section. Section III starts with a brief
description of the used classifiers, followed by the obtained
results from different scenarios. The obtained results are
presented and discussed where detailed example is given for
the results of the DT algorithm.

II. PRE-PROCESSING METHODOLOGY AND RESULTS
This section briefly provides the process of feature extraction
for the detection and classification of lamination faults in
the transformer core. Features have been extracted using
signal processing techniques - Fourier Analysis applied to the
current signals. The obtained dataset is then treated to reduce
the number of the features, selecting those most contributing
to the overall accuracy. Examples of the obtained results are
presented and discussed in this paper since the full details are
the core of other work where the authors studied the effect of
these faults [15].

A. CURRENT SIGNALS
Mechanical deformations shear causes burrs on the cut edges
usually followed by the process of punching and cutting the
electrical steel. Both faults are the edge burrs and insula-
tion deterioration between laminations, which are the most
appeared faults in this type of transformer. These deforma-
tions in the core laminations affect the performance of the
transformer and electrical machines, causing power losses

FIGURE 1. Waveforms of the transformer currents under normal and
faulty conditions, obtained for different flux densities.

as experimentally verified in many studies (e.g., [15]–[17]).
Figure 1 illustrates two examples of the measured current
signals under normal and faulty conditions.

For a healthy mode, one can see that the flux density has an
important effect on the magnitude and waveshape of the no-
load current. At low flux density, the current is of incredibly
low magnitude in the order of 0.7 A. In the same range
of flux density, the current waveform is like a noise signal
accompanied by a periodical signal of low amplitude. With
regards to flux density, detailed discussion on the effect of
each type of faults on the current waveforms can be found
in [15] and [18].

From the current waveform, one can obviously distinguish
between each operation mode of the transformer. The cur-
rent magnitude increases with both faults of laminations.
However, the waveforms of the current are practically similar.
This approach in the waveforms may affect the classification
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or detection of transformer faults. Quantifying the current
signals is a common technique to help the process of detection
and classification of faults in electrical transformers, or other
electrical systems [19], [20]. For this, signal processing tech-
niques have been applied to the current signals for the matter.

B. FEATURES EXTRACTION
In the first stage, the data has been collected without applying
any faults - normal conditions (Healthy operating mode).
In order to increase the credibility of the database, several flux
densities are considered namely, 0.5, 0.8, 1.0, 1.5, 1.7 and
1.8 T. In the second stage, two types of faults have been
applied on the transformer core to form the database. A full
day was allotted to take the data of each error separately. This
is to leave the transformer core enough time to cool down. The
studied cases are summarized in Table 1.

TABLE 1. Description of the database.

For reliable and feasible results, each test was examined
many times. In order to increase the database furthermore,
and examine the obtained results, each scenario of Table 1 has
been repeated several times on different dates. Data collection
started in November 2020 and continued for five months.
It should be noted that a detailed description of the experi-
mental results has been presented in [15].

A MATLAB code’s tool ‘‘FFT_Analyzer_App’’ has been
used to perform Fourier analysis on the measured results.
Current signals have been used, and the frequency spectrum
has been determined for each case of the experimental results.
In general, the features extraction process starts by displaying
the frequency spectrum over [0–500 Hz] frequency band.
Figure 2 shows an example of the frequency analysis obtained
for 1.8 T flux density for healthy and faulty operation modes.

As can be seen from this figure, the healthy operationmode
can be distinguished from the faulty one in the proposed
case. This healthy mode is characterized by the appearance
of harmonics of the order 3, 5 and 7. Other odd harmonics
appear with neglected amplitude along the frequency spec-
trum of the current signals. In terms of magnitude, the healthy
mode is characterized by a small magnitude of about 0.6 A
against 2.73 A in edge burr fault. In faulty conditions, the
magnitude and number of harmonics increase compared to
healthy conditions.

FIGURE 2. Frequency spectrum of the transformer currents at 1.8 T flux
density, obtained under healthy and faulty conditions.

The feature selection step is used to minimize dimension-
ality by excluding irrelevant features and Feature selection
helps in improving the model performance by focusing only
on the important variables. This step is conducted using
differential evolution. For instance, the features have been
selected based on a graphical representation to distinguish the
independent features among the others, which are optimized
into representative features. Figure 3 shows an example of
fundamental values as a function of the THD of the trans-
former currents under 1.7 T flux density for healthy and faulty
conditions.
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FIGURE 3. Fundamental values as a function of the THD of the
transformer currents under 1.7 T flux density for both the healthy and
faulty conditions.

This figure clearly shows how THD and fundamental are
different between healthy and faulty conditions. This means
that both features can be applied to detect both types of faults
of the power transformers core. For instance, the obtained
results for any couple of points located in this figure, a simple
line of equation ‘‘Fundamental = αTHD + β’’ can be used
to separate between the two operation modes.

Figure 4 shows a second example of the distribution of
the STD values with respect to the THD of the transformer
current under healthy and faulty conditions.

The same ascertainment can be obtained from this figure.
However, a graphical method is not practical in the actual
situation since a large number of samples is considered. For
this, four features (fundamental, average, THD and STD)
are used in this investigation. It was found that the use of
such features is appropriate for the detection purpose. Refer-
ring to Figures 3 and 4, the same ascertainment has been
observed with different combinations of the four selected
features.

FIGURE 4. STD values as a function of the THD of the transformer currents
under 1.7 T flux density for both the healthy and faulty conditions.

C. DATASET
The FFT technique was applied to themeasured current under
both healthy and faulty conditions. Features are extracted
from the transformer currents, four features have been con-
sidered: the average value, the magnitude of the fundamental,
total harmonic distortion (THD) and the standard deviation
(STD). Table 2 gives the selected features, extracted from the
current signal at 0.5 T flux density, representing a relatively
low flux density.

As shown in this table, the average values for the healthy
and faulty cases are not practically different; the healthy is
0.0655 and the highest point is 0.0677 which is in fault 3,
and the lowest point is 0.0552 in fault 2. These results are
logical as shown in Table 2 due to the fact that the continuous
component of the current signal can be neglected. Also, the
results indicate that both types of faults do not affect the sym-
metry in the current signal. Furthermore, it is clear that the
fundamental values are practically different for the healthy
and the other faults, while the healthy value is 0.655 the
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TABLE 2. Features in normal and faulty condition at 0.5 T flux density.

TABLE 3. Features in normal and faulty condition at 1.7 T flux density.

highest point is in fault 4 which is 0.765 and the lowest point
is 0.598 in fault 2. On the other hand, the values of the Total
harmonic distortion (THD) are also not that much different;
they are less than values of Fundamental features and better
than values of Average features; the highest point is 1.645 A,
and the lowest point is 1.473 A.

For a relatively high flux density of 1.7 T, Table 3 gives
the selected four features under both healthy and faulty
conditions.

Comparing between faulty and healthy conditions, the
results are clearly separated in this table compared to those
obtained for relatively low flux density. In this case, the
margin between the obtained results in healthy conditions are
different from those measured when a fault is applied.

III. METHODS, RESULTS AND DISCUSSIONS
This section describes the methods used for the detection and
the classification of faults in the transformer core. Samples
of the database used to train and test the classifiers have

been presented and discussed. The section also provides the
obtained accuracy rate of each classifier for different datasets.

A. CLASSIFICATION ALGORITHMS
For detection and classification, three classifiers have been
exploited. These include SVM, KNN and DT techniques.
SVM techniques are usually used in the classification prob-
lems, prediction models, and regression [21]. For the clas-
sification problems, the principle of the SVM is to find
hyperplanes of separation between two classes yi and yj.
The hyperplanes should be with maximum margin. Find
the hyperplanes solution, which means the classification
becomes an optimization problem. The optimization solution
is particularly important because hyperplanes represent the
decision boundaries that help to distinguish two different
classes [22].

The second classifier consists of KNN algorithm. In this
algorithm, the decision of the classifier can be obtained from
the vote of theKNN. The vote is based on calculated distances
between the sampling points to the nearest neighbors of the
total assigned points. Gaussian, triangular and cosine are
some of the typical distances used in this classifier. It should
be noted that the KNN technique is easy to implement and
apply to any problems, including complex ones such as geo-
graphic information, text, images, and sound [23], [24]. Also,
it is robust to noise. The introduction of new data does not
require the reconstruction of a model. The class is assigned to
an object with ease and clarity once the closest neighbors are
displayed. The method performance depends on the distance
type, and the number of neighbors, and how the neighbors’
responses are combined. The results could be of inferior qual-
ity if the number of relevant attributes is low relative to the
total number of characteristics. The distances on the irrelevant
attributes will drown out the proximity on the appropriate
attributes. The calculations made in the classification phase
can be very time-consuming if the number of data sets is too
large. The third classifier consists of the decision tree (DT)
algorithm. In this technique, a decision is obtained following
the tree, starting by a root node down to a leaf node [25]. The
leaf node comprises the classifier response.

The data has been managed by considering different sce-
narios. Three types of decomposition of the database have
been selected, the decomposition 30-70 means that 30% of
the database is reserved for the training process and 70% for
testing. The second type of decomposition is 50-50, 50% of
the database used for training and the remaining of 50% of
data exploited for testing. The last decomposition is based on
70% for the training phase and 30% for testing.

B. RESULTS OF FAULT DETECTION
In this section, both types of faults have been grouped to
form a separate class, representing the results of the faulty
operation mode. Therefore, a binary classification (healthy
and faulty) is formulated where the aim is to detect the
presence of faulty conditions. This process is based on the
features extracted from the measured current. Table 4 gives
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TABLE 4. Accuracy rate for fault detection execution.

TABLE 5. Accuracy rate for each class of faults using different classifiers
and considering three scenarios.

the accuracy rate obtained using three different classifiers,
namely SVM, KNN and DT.

From the obtained results, one can see that the proposed
classifiers give roughly equivalent results, and that for the
three proposed scenarios (data decomposition for training
and testing). Overall, the accuracy rate is around 80% with
a maximum of more than 82%, obtained when using half of
the dataset for the training. This indicates that the number and
the quality of the input vectors have both an important impact
on the detection results.

C. RESULTS OF FAULT CLASSIFICATION
In this part, the classification between health conditions
and both types of faults has been considered. The problem
becomes a three-group classification. Table 5 provides the
calculated results using the three classifiers, and for three
scenarios of the training and testing process. The results in
this table show the accuracy rate of each class separately,
which is the ratio of the number of the correct decisions over
the total number of samples for each given class.

From this table, one can clearly see that the classification
results are affected by the type of fault. For instance, the
results of the second fault show good accuracies for all the
considered cases. This means that the lamination’s insulation
fault can be easily identified from the other conditions. This
ascertainment is in good accordance with the conclusion
made from the experimental results in [15]. In addition,
edge burr faults show a good result for classification using
larger data in the training process. For smaller data size for
the training, the accuracy rate for this second class shows

FIGURE 5. Confusion matrix obtained using training/testing scenarios for
the DT classifier.
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TABLE 6. Global accuracy rate for fault classification.

TABLE 7. Precision and recall of each class of DT classification.

a slight decrease. Moreover, the health conditions show rel-
atively lower accuracy rates, especially when using the DT
classifier. The overall accuracy rate for each case is presented
in Table 6.

Overall, the results of the KNN classifier show a better
accuracy rate compared to those obtained using the SVM
classifier. For SVM, the accuracy rate is affected by the
number of samples used to train the classifier. It is between
70.55% and 84.26% when using 30/70 and 70/30 decom-
position scenarios, respectively. It is more than 80% for all
decomposition scenarios when utilizing a KNN classifier.
An accuracy rate of 84.05% is obtained for the case 50/50
using this classifier. For better visualization, Figure 4 shows
an example of the confusion matrices obtained using the DT
algorithm for the three scenarios.

From the confusion matrices, one can get a general under-
standing of the classification process. For example, precision
and recall can be defined for each of the classes. Table 7 gives
the precision and recalls for each class using the DT classifier.

In general, the results indicated that the classification was
successful, especially for the second class of fault. Such find-
ings gave encouragement in the direction of fault detection
and classification of lamination insulation faults in electrical
transformers. However, large databases are required to reach
higher precision, and more accurate classifications are also
required to provide assistance in preventing the electrical
system.

IV. CONCLUSION
This paper presented a study on the detection and classifica-
tion of lamination faults in the power transformer core. From
a previous work [15], experimental results obtained using a
15 kVA transformer were exploited. Overall, the obtained

results indicated that the transformer current signal is an
effective tool for the detection and classification of lamination
faults in the transformer core. The following conclusions are
also drawn.

1. SVM, KNN, and DT classifiers gave a good accuracy
rate of around 82% in the detection purpose where two
classes were considered.

2. For the classification, an accuracy rate of 84.26% was
obtained using the SVM algorithm. It was 84.04% for
KNN andDT classifiers. The classification process was
also sensitive to the data decomposition, especially for
the DT algorithm.

3. It was found that the insulation lamination fault
presents a good accuracy rate compared to other
classes. Higher precision and recall were obtained for
this class.

Such findings indicated that better detection and classifica-
tion results may be obtained by enlarging the database or
by using more accurate classification algorithms. It is also
suggested to investigate the classification using other features
by employing other signal processing techniques.
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