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Abstract— For robots to perform advanced manipulation of
objects, touch is a critical source of information, and a high-
quality tactile sensor is essential. Image-based optical tactile
sensors, and its inheritances, which have soft touch interfaces,
can provide high-resolution tactile images of the contact ge-
ometry, contact pressure, and slip conditions. However, due to
the lack of robustness provided by the current tactile sensors,
the ability to grasp hard or sharp objects is minimal. In this
work, we propose an image-based optical tactile sensor and
overcome the above limitation of poor robustness by introducing
a latex layer on the touch interface. We use a combination of
silicone elastomer covered with a latex material and an acrylic
sheet to support the silicone elastomer. A camera placed at the
bottom of the sensor housing captures the deformation of the
elastomer surface illuminated by an inner light. To evaluate
the performance, we carried out a series of experiments. First,
we evaluated the mechanical characteristics of the silicone
elastomer with three types of coating, namely latex membrane,
metallic coating, and no coating. The proposed latex membrane
clearly outperformed the other two in terms of robustness.
Second, we carried out the force-displacement experiments
quantitatively to further study the sensitivity and robustness.
Last, we validated the sensor performance in terms of its
spatial resolution by applying the VGG-19 neural network for
classifying touch patterns captured by the sensor. Overall, the
proposed sensor achieved the desired robustness, sensitivity, and
spatial resolution performance.

I. INTRODUCTION

For robots to perform advanced manipulation of objects,
touch is a critical source of information. Tactile sensors can
provide direct information on a system’s state, as they can
detect the exact forces that a robot applies to touch items.
The acquired first-hand information, such as shape, texture,
and hardness [1] would provide essential feedback knowl-
edge that allows for smoother and more consistent hand-
object interaction patterns and better execution of complex
manipulation tasks.

Researchers have developed many different types of tac-
tile sensors for robots in the past decades [2][3]. Tactile
sensors can be designed based on various sensing principles,
including resistance [4], capacitance [5], piezo-electric [6],
optics [7], and magnetics [8]. These sensor arrays usually
have limited spatial resolution due to manufacturing con-
straints. Robots would generally require rich information
from tactile sensors to perform manipulation tasks, such as
pressure distribution, contact force, location of the contact,
as well as slip detection [9]. On the other hand, most
existing tactile sensors fall into one of two categories: those
that give excellent spatial resolution on a flat surface, such
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Fig. 1: The proposed robust optical tactile sensor mounted
on a gripper, grasping a hard object with a rough surface.

as optical tactile sensors [10], [11], [12], or those that
allow sensitivity on substantially curved surfaces but with
significantly lower spatial resolution [5], [6], [7]. Although
high-resolution tactile sensing is essential for high-fidelity
manipulation, the roust sensing surface plays a vital role in
sensor durability over the number of grasping. However, less
attention is paid to enhancing sensor performance on the
sensors’ robustness or durability.

A tactile sensor must be robust and compact enough to
fit into a robot’s finger and deliver a sufficiently rich signal
to offer the robot important information about the contact
state in order to be effective in robotic manipulation. It is
also critical for general-purpose robotic manipulation that the
tactile sensor is sensitive on as much of the finger’s surface
as durable. A robotic finger with a robust sensing surface
can make it possible to handle rough and sharp objects and,
therefore, should improve the grasping repeatability of the
sensor.

Among all tactile sensors, optical sensors based on vision
stand out from tactile sensors because they have simple
wiring and require simple fabrication processes. Such sensors
typically have reasonably high spatial precision in locating
contact areas [11]. In addition, the sensing medium for
vision-based tactile sensors is typically a deformable body,
such as a silicone of rubber, with a camera capturing
the deformation of the sensing medium and having the
capability to retrieve force information with deep learning
algorithms [12]. The contact medium for the sensor was a
hollow hemispherical rubber dome with a reflective inside
surface. The sensor measures the reflective light from the
deformed dome with three receivers in the bottom, measuring



the three-axis contact force. Furthermore, based on the data
collected during the sensing process, it is possible to estimate
the object’s shape while also analysing the force data by
tracking embedded markers [13], [14], [15], [16].

One of the biggest impediments to the widespread use
of touch sensing in robotic manipulation is the limitation
of sensors that meet all the requirements or criteria of
resolution, sensitivity, reliability, robustness, portability, and
affordability. In this work, we propose introducing a new
improved design for the above vision-based optical tactile
sensors to meet these objectives better by using a latex
membrane surface, providing a versatile composite contact
surface based on the proposed optical camera tactile tech-
nology. Figure 1 shows the sensor mounted on a Kuka robot
grasping an object with a rough surface, where the latex layer
increases the mechanical robustness of the sensor.

The rest of this article is structured as follows: Section
II introduces related work on an optical-based tactile sensor
and a general design strategy. Section III discusses the design
and production of customised optical tactile sensors and
the mechanical properties of silicone elastomer. Section IV
introduces the force-displacement experiments to validate the
sensor robustness. In section IV-C, we further validate sensor
performance in terms of its spatial resolution, where we
use the VGG-19, a Convolutional Neural Network (CNN)
to classify touch patterns captured by the sensor. Finally, we
summarise the paper’s contribution and discuss its potential
applications.

II. BACKGROUND

Vision-based optical tactile sensors make use of cameras
to capture touch information. These cameras are placed
at the core of an enclosed shell, pointing to an opaque
window made of a soft material. Such characteristics en-
sure that variations in external illumination do not affect
the captured image. Several working principles have been
proposed to extract the elastomer deformations from the cap-
tured tactile images. There are two main kinds of methods:
raw image analysis and marker tracking. One example of
marker tracking-based tactile sensors is the TacTip Family
of sensors [15] and [17], including the TacTip, TacTip-GR2,
TacTip-M2, and TacCylinder. Each TacTip sensor introduces
novel manufacturing advancements or surface geometries;
however, the same working principle is shared: white pins are
imprinted onto a black membrane that can be tracked using
computer vision methods. In [18], an optical tactile sensor,
FingerVision is proposed to use a transparent membrane
with the advantage of gaining proximity sensing. However,
the use of the transparent membrane makes the sensor lack
the robustness to external illumination variance associated
with touch sensing. Therefore, semi-opaque grids of magenta
and yellow markers painted on the top and bottom surfaces
of a transparent membrane are proposed in [19], in which
a mixture of the two colours is used to detect horizontal
displacements of the elastomer.

On the other end of the spectrum, the GelSight sensors,
originally proposed in [10], use the full resolution of the

tactile images captured by the sensor camera rather than
just tracking the markers. Due to the soft opaque tactile
membrane, the captured images are robust to external light
fluctuations and capture information about the surface’s
geometry structure, unlike most traditional tactile sensors
that measure the touch force. Using the high resolution
of the captured tactile images, highly accurate geometry
reconstructions are created in [20], [21]. The sensor is
integrated on a robotic gripper for the task of inserting a
USB plug into the port. The sensor measures the surface
texture information to determine the orientation of the USB
plug toward the grasp closure. Markers were likewise added
to the membrane of the GelSight sensor, applying a similar
arrangement of techniques investigated in the TacTip sensors.
There are some other sensor designs and adaptations for
robotic fingers in [22], [23], [24]. In [22], matte aluminium
powder is used for improved surface reconstruction, with the
LEDs being put close to the elastomer and the elastomer
being slightly curved on the top/outside. In [23], a flat
and inclined mirror is proposed for a slimmer design. The
camera is put on the side of the tactile membrane such
that it captures the tactile image reflected in the mirror.
In [24], the mechanical characteristics of the DIGIT sensor
was tested against elastomer provided by Yuan et al. [11]. In
these previous works of camera-based optical tactile sensors,
multiple designs and two distinct working principles have
been exploited. However, a critical problem is the wear
of these vision-based tactile sensors that are susceptible to
friction and damage of the soft material [17], [1], [18], [11].

To improve the robustness of the sensor touch surface,
researchers investigated using skin like plastic and producing
replaceable silicone elastomer by using a 3D printed mould
or mechanical characteristics carried out on an abbrevia-
tion device against the GelSight elastomer and found that
degradation of the gel [18], [17]. The article highlights
that the image transfer layers used are thick and robust
but would result in loss of spatial resolution in tactile
sensing outputs [24]. None of the introduced sensors has
the capability of mechanical characterisation of average load
with coating and without coating and robust contact surface
and the sensor’s response to the hard surface being touched.
As a result, these sensors are highly constrained in object
manipulation tasks. Contacts are only assessed when the
manipulated object is within the grasp closure [20], [22],
[11].

Over the last decade, there has been substantial studies
into camera sensors to predict contact location and force
distribution [25]. Researchers used image processing and
computer vision techniques to assess the force and movement
of markers [26]. Low-level image processing methods and
support vector machines are used to examine the distorted
materials’ patterns [27]. Some investigations detected 3D
displacement in tactile skins due to the availability of small
circuit technology and high spatial resolution vision sys-
tems [28]. Several additional studies attempted to insert
numerous camera sensors into the tactile sensor to ob-
tain the greatest possible internal tactile force fields [29].



On the other hand, there has been a surge of interest
and enthusiasm for learning-based systems that use deep
learning to estimate tactile information [30]. Traditional
image processing/computer vision-based and learning-based
methods are both used for processing vision-based tactile
sensors. In addition, various low-level image manipulation
techniques are used in basic image processing/computer
vision approaches to improve the images retrieved from the
deformation source [31]. Tactile material and object classifi-
cation is another interest to researchers for processing tactile
sensor data [32]. Convolutional Neural Networks (CNN)
have been used to produce several cutting-edge results on
computer vision challenges and have been effectively used
for texture recognition. Cimpoi et al. [33] suggested the FV-
CNN architecture, which merged CNN with Fisher Vectors
(FV) to extract localised characteristics more effectively.
The convolutional layers of FV-CNN are from the VGG
model [34], which was pre-trained on ImageNet and em-
ployed as filter banks; the FV was utilised to generate
the orderless representation. The CNN models created for
computer vision were also successful in processing tactile
information: [35], [1] employed the CNNs on GelSight data
to estimate material hardness or fabric qualities, whereas the
networks were pre-trained on standard images.

To address the gap of poor durability and robustness, we
propose an improved tactile sensor design in terms of the
robustness/repeatability of silicone elastomer by introducing
a latex layer on top of the silicone to better manipulate hard
surface objects without damaging the internal sensing part.
Robustness is the key of the tactile sensor for the piratical ap-
plication, such as manipulating rough/sharp surface objects.
However, none of the cited works above provides the force-
displacement experiment to validate the sensor robustness.
We further validate the sensor performance using the VGG-
19, by fine-tuning the pre-trained CNN, to classify images
captured by the sensor to validate the performance in terms
of spatial resolution.

III. DESIGN AND FABRICATION OF OPTICAL TACTILE
SENSOR

This section summarises the design of the proposed tactile
sensor and the procedure of fabrication in detail.As shown
in Figure 2, the key components of the sensors include the
elastomer, the acrylic sheet, latex membrane, a camera, LEDs
for illumination, and so on.

A. Fabrication of the sensor silicone elastomer

The sensing elastomer is made of two parts: A transparent
silicone elastomer base and the latex membrane. The silicone
elastomer sheet can be made from different kinds of silicone,
as long as it is transparent and has good deformability.
The latex membrane is essential for increased robustness
and flexibility for handling a slightly sharp object without
damaging the sensing material. The membrane must be uni-
form, thin, smooth, firm, and light-blocking for good signal
quality. The thickness of the membrane will influence the
resolution sensor. If the membrane is not uniform or smooth,
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Fig. 2: The exploded view of the proposed optical tactile sen-
sor. (a) Exploded view optical tactile sensor, (b) Assembled
sensor, (c) USB web camera, (d) 3 LEDs for illumination.

(a) (b)

Fig. 3: Silicone elastomer (a) without coating (b) with
coating

the tactile images will contain noise from the irregularities
on the surface. Finally, we must attach the elastomer to the
sensor to the supporting plate to reduce residue force during
the contact.

The silicone elastomer is the central part of the sensor.
Fabricating the sensing silicone elastomer requires two parts:
making the transparent elastomer base and adding the latex
membrane top as shown in Figure 3, where Figure 3 (a)
shows the elastomer block without coating and (b) is with the
coating. The transparent elastomer base is the central sensing
part of the sensor. We chose a commercialised polymer
to make the silicone elastomer in the fluid phase. For the
elastomer base, the elastomer we use is the SMOOTH-
ON® silicone product, Solaris, which is a low-viscosity,
clear and colourless liquid platinum-cured silicone rubber
compound (Part A and Part B). It comes in two liquid parts
after dispensing the required amount of Part A and B into
the mixing container (1A:1B by volume or weight), mixed
thoroughly for 3 minutes. For getting transparent silicone
elastomer, vacuum degassing is necessary to help to eliminate
any entrapped air while mixing. For getting transparent
silicone elastomer, vacuum degassing is necessary to help to
eliminate any entrapped air while mixing. Vacuum degassing
before pouring, subject to 14.21 psi in the suitable vacuum
chamber for 2–3 minutes or until mixture rises, breaks,
and falls. We pour this mixture in a single spot at the
lowest point of the mould, which is made by a 3d printed
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Fig. 4: Silicone Elastomer (a) Mould cavity, (b) Vacuum
pump with vacuum chamber
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Fig. 5: Normal Load testing sample (a) Prepared silicone
sample. (b) silicone sample after testing.

hexagonal container, and it solidifies within 24 hours at room
temperature (see Figure 4). The hardness of the elastomer
can be changed by adjusting the mixture portion of parts A
and B. Then, we put latex on top with the help of glue. The
main component of our tactile sensor, including the acrylic
sheet and outer support structure, is 3D printed with non-
transparent material, which holds the camera and the acrylic
guiding plate and provides the mounting structure to the
robot gripper. Then, a laser cutter cuts the transparent acrylic
plates.

B. Camera and lighting system

Around the silicone, there is provision for the LED arrays
at three points in three colours, Red, Green, and Blue,
respectively. The LEDs (Osram Opto® Semiconductor LEDs
SMD, Sunnyvale, CA, USA) are manually soldered into the
compact array, as shown in Figure 2 (d), and glued to the top
side of the support just in front of the silicone mould. The
embedded camera is a USB webcam (C310 from Logitech®)
placed horizontally at the bottom and parallel to the silicone
elastomer. The camera can capture images at 30hz with a
resolution of 1920 × 1080. The camera cover is removed,
and only the central part of its circuit is used, as shown in
Figure 2 (c).

IV. EXPERIMENTAL SETUP

A. Mechanical characteristics of coating materials

To evaluate the mechanical characteristics of the sili-
cone elastomer, we first evaluate the performance of the

silicone elastomer with three coating conditions, namely
latex membrane, metallic coating, and no coating, as shown
in Figure 5(a). We used a ZwickRoell® material testing
machine to apply a uniform load on the silicone elastomer to
perform this test. The force-displacement characteristic plot
(Figure 6) was constructed to analyze the effect of force on
the silicone elastomer, i.e., the surface deformation of the
material.

Figure 6 shows that, with the increase of the force, the pure
silicone was easily deformed, losing its linearity in terms of
elastic deformation, i.e. pure silicone is elastically deformed
and regains its shape without damage on the surface. On
the other hand, the force with the latex membrane (the red
curve) can reach higher than with pure silicone above for
more travel distance. Also, the silicone with metallic coating
is also deformed with improved maximum force applied, but
unfortunately cannot regain its shape, due to the damage on
the surface, as shown in Figure 5 (b). Therefore, we consider
that the latex membrane-based coating is more preferred
considering both its optimal elastic deformation stability and
its durability on the surface, which has no damage on the
surface.

The force-displacement curves for spherical indentations
are quantified in nonlinear large-deformation indentations,
and the relationship between applied force and displacement
are as follows [36][37]:

δ − δcontact =
a2

R
−
√

2π (1 − ν2) a∆γ

E
(1)

F =
4Ea3

3 (1 − ν2)R
− 2

√
2πE∆γa3

1 − ν2
(2)

where ∆γ = − 2Fadh

3πR , δ the probe displacement, δcontact de-
notes the displacement at the contact point in loading stage,
a the contact radius between the probe and the underlaying
sample, R the probe radius, F the applied indentation force,
∆γ is the corresponding adhesion energy density, Fadh is
the pull-off force, E and ν denote the Young’s modulus and
Poisson’s ratio of the soft silicone material, respectively. In
the current data analysis, we plot the silicone deformation
over the force, indicating the silicone elastomer’s mechanical
strength, as illustrated in Figure 6.

B. Robustness validation of sensor surface

In this section, we introduce another further force-
displacement experiment to quantitatively validate the sen-
sor’s surface robustness. We exert force in the normal direc-
tion of the sensor surface, as shown in Figure 7, where we
push the modified optical tactile sensor with the help of an
indenter.

There are two phases of this experiment, namely data
collection and validation of sensor robustness. The Kuka
robot arm end effector mounted with the indenter is pushed
against the sensor up to 10mm in distance and 50N in force.
The Kuka iiwa robot is used because it provides intrinsic
force feedback directly, making it convenient to measure
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Fig. 6: Force displacement characteristic different silicone
material.

Fig. 7: Validation of robustness of sensor surface on Kuka
robot arm

the performance. The robot gradually increases the travel
distance at a predefined contact point on the sensor surface,
and simultaneously measure the force. In this experiment,
the end effector travel 10mm perpendicular to the sensor’s
surface, as shown in Figure 8. The sensor testing makes
it possible to sustain 50N force at 10mm deformation at a
single location, as shown in Figure 8.

To the best knowledge of the authors no other research
works have performed such a test. Since every application
has a different type of load required, for this reason, we exert
a 50N load with 10mm deformation to test the behaviour of
the membrane. We conducted this experiment to investigate
how the sensor membrane responds to strain, motion, and
pressure. For this reason, we applied 50N force to check
the robustness sensor. This test was conducted to check the
robustness of the sensor. On the other hand, when the object
is touched and pressed against the sensor with a relatively
high force (higher than 30N), it gives imprints to where the
object touches, but it regains its original shape after some
time.

C. Evaluating spatial resolution on a grasping system

Despite the improved robustness with the introduced latex
membrane surface, it is also important to make sure the sen-
sor is performing equally well on perceiving high-resolution

Fig. 8: Force measured by incremental deformation.

texture information. Since we are evaluating different objects,
including many objects with rough surfaces, it is difficult to
directly compare the sensor with existing sensors, such as
Gelsight. Therefore, in our work, we carry out texture clas-
sification experiments using a state-of-the-art deep learning
algorithm and aim to demonstrate that our proposed sensor’s
performance is not sacrificed in terms of its spatial resolution
for object perception.

In our work, we mounted the sensor on one fingertip
of a ROBOTIQ® gripper 2F-140, as shown in Figure 1.
This gripper has two articulated fingers with two joints on
each one of them. The gripper is connected using a serial
communication protocol to a PC and controlled with Python.
The gripper’s position, velocity and force can be controlled.
Different objects produce different shapes during contact.

As said above, we validate sensor performance in terms of
its spatial resolution using a classification task via a Neural
Network (NN), a VGG-19 in particular to classify images
captured by the sensor. We used Keras to implement our
system.

Data collection: Nine rough and slightly sharp objects are
used for data collection, as shown in Figure 9. We included
objects of different sizes, shapes and materials. An object is
pressed against the sensor surface by a human hand during
the data collection process, and then the forces are applied
to objects to generate target images for a certain period. The
labelling of specific data is determined by object category.
The dataset comprises nine classes, and every class has 2000
samples. In our work, the relatively small size of the dataset
is first manually collected, and further data augmentation is
performed. The total dataset contains 3636 images in each
class. After that, we split the data for training and testing.
All the experimentation is done in Python 3.7.2, Keras 2.4.0
and Tensorflow 2.4.1. We used (Intel Core i5-8400 CPU @
2.8Ghz) with a Nvidia RTX 2080 GPU.

Result: The training history is plotted in Figure 10. Our
classification accuracy on the testing dataset rises by over
93%. The validation curve aligns with the training curve
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Fig. 9: Example of modified sensor dataset. Carbide Burr Set JESTUOUS 1/4 Inch Shank Diameter Double Cut Edge
Rotary files Metal Grinding Polishing Carving Tool for die Grinder. (a) SD Ball shape, (b) SF-3 Tree radius at end, (c)
SA-3 Cylindrical shape, (d) SF-3 Tree radius at end, (e) SC3 Cylindrical radius at end, (f) Carbide burr set, (g) Roughfile,
(h) Wirebrush, (i) Grindingwheel (j) Woodenbrush, (k) Mechanicaltool set

closely. Specifically, the difference between training and
validation loss is nearly equal, indicating no strong sign of
overfitting. Furthermore, training and validation losses are
minimised, as shown in Figure 10.
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Fig. 10: The CNN network model training process

V. CONCLUSIONS AND FUTURE WORK

In this work, we present a modified optical tactile sensor.
We introduced a latex layer on top of the silicone elastomer
to improve the mechanical robustness of the sensor. To eval-
uate the performance, we carried out a series of experiments.
First, we evaluated the mechanical characteristics of the
silicone elastomer with three types of coating, namely latex
membrane, metallic coating, and no coating. The proposed
latex membrane clearly outperformed the other two in terms

of robustness. Second, we carried out the force-displacement
experiments quantitatively to further study the sensitivity and
robustness. Lastly, we validated the sensor performance in
terms of its spatial resolution by applying the VGG-19 neural
network for classifying touch patterns captured by the sensor.
Overall, the proposed sensor achieved the desired robustness,
sensitivity, and spatial resolution performance.

The sensor output images of tactile imprints encode the
object’s shape and pattern at contact, as shown in Figure 9.
For example, contact patterns in the pixel space could be used
for classification. These quantities, as well as the sensor’s
calibrated image output, can be used directly in model-
based or learning-based approaches to robot grasping and
manipulation. For example, this information could be used
to track object pose, inform a data-driven classifier to predict
grasp stability, or as real-time observations in a closed-loop
grasp policy.

We anticipate that our modified optical tactile sensor is
suitable for hard surface object manipulation. These facilitate
the use of the sensor in various applications, especially in the
scenario where visual feedback is lacking and where access
is limited or difficult to handle rough/sharp surface objects.
We are especially interested in contact texture information
for classification. In future, this information can be used for
hand dexterity and reactivity, such as picking a mechanical
tool for functional grasp and using it. Ultimately, grasping
tasks can be performed with robust sensing integrated in the
control loop.
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