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Abstract
Consider the following belief change/merging scenario. A
group of information sources gives a sequence of reports
about the state of the world at various instances (e.g. different
points in time). The true states at these instances are unknown
to us. The sources have varying levels of expertise, also un-
known to us, and may be knowledgeable on some topics but
not others. This may cause sources to report false statements
in areas they lack expertise. What should we believe on the
basis of these reports? We provide a framework in which to
explore this problem, based on an extension of propositional
logic with expertise formulas. This extended language allows
us to express beliefs about the state of the world at each in-
stance, as well as beliefs about the expertise of each source.
We propose several postulates, provide a couple of families of
concrete operators, and analyse these operators with respect
to the postulates.

1 Introduction
Consider the following belief change scenario in a hospi-
tal. We observe the results of a blood test of patient 1, con-
firming condition X. Assuming the test is reliable, the AGM
paradigm (Alchourrón, Gärdenfors, and Makinson 1985)
tells us how to revise our beliefs in light of the new informa-
tion. Dr. A then claims that patient 2 suffers from the same
condition, but Dr. B disagrees. Given that doctors specialise
in different areas and may make mistakes, who should we
trust? Since the Success postulate (α ∈ K ∗ α) assumes
information is reliable, we are outside the realm of AGM re-
vision, and must instead apply some form of non-prioritised
revision (Hansson 1999).

Suppose it now emerges that Dr. A had earlier claimed
patient 1 did not suffer from condition X, contrary to the
test results. We now have reason to suspect Dr. A may lack
expertise on diagnosing X, and may subsequently revise be-
liefs about Dr. A’s domain of expertise and the status of pa-
tient 2 (e.g. by opting to trust Dr. B instead).

While simple, this example illustrates the key features of
the belief change problem we study: we consider multiple
sources, whose expertise is a priori unknown, providing re-
ports on various instances of a problem domain. On the basis
of these reports we form beliefs both about the expertise of
the sources and the state of the world in each instance.

By including a distinguished completely reliable source
(the test results in the example) we extend AGM revision. In

some respects we also extend approaches to non-prioritised
revision (e.g. selective revision (Fermé and Hansson 1999),
credibility-limited revision (Hansson et al. 2001), and trust-
based revision (Booth and Hunter 2018)), which assume in-
formation about the reliability of sources is known up front.
The problem is also related to belief merging (Konieczny
and Pino Pérez 2002) which deals with combining belief
bases from multiple sources; a detailed comparison will be
given in Section 7.

Our work is also connected to trust and belief revision,
if one interprets trust as belief in expertise. As Yasser and
Ismail (2021) note in recent work, trust and belief are in-
exorably linked: we should accept reports from sources we
believe are trustworthy, and we should trust sources whose
reports turn out to be reliable. Trust and belief should also
be revised in tandem, so that we may increase or decrease
trust in a source as more reports are received, and revoke
or reinstate previous reports from a source as its perceived
trustworthiness changes.1

To unify the trust and belief aspects, we enrich a propo-
sitional language with expertise statements Ei(ϕ), read as
“source i has expertise on ϕ”. The output of our belief
change problem is then a collection of belief and knowledge
sets in the extended language, describing what we know and
believe about the expertise of the sources and the state of the
world in each instance. For example, we should know re-
ports from the reliable source are true, whereas reports from
ordinary sources may only be believed.

Following recent work on logical approaches to exper-
tise (Singleton 2021; Booth and Hunter 2018), we formally
model expertise using a partition of propositional valuations
for each source. Equivalently, each source has an indistin-
guishibility equivalence relation over valuations. A source
is an expert on a proposition ϕ exactly when they can dis-
tinguish every ϕ valuation from every ¬ϕ valuation.2 As
in Singleton (2021), we also use soundness formulas Si(ϕ),
which intuitively say that ϕ is true up the expertise of i. For
example, if i has expertise on p but not q, then the conjunc-
tion p ∧ q is sound for i whenever p holds, since we can
effectively ignore q. Formally, ϕ is sound for i if the “ac-
tual” state of the world is indistinguishable from a ϕ valu-

1 This mutual dependence between trust and belief is also the
core idea in truth discovery (Li et al. 2016).



ation. Note that expertise does not depend on the “actual”
state, whereas soundness does. This provides a crucial link
between expertise and truthfulness of information.

We then make the assumption that sources only report
sound propositions. That is, reports are only false due to
sources overstepping the bounds of their expertise. In par-
ticular, we assume sources are honest in their reports, and
that experts are always right.

Note that in our introductory example, the fact that we
had a report from Dr. A on patient 1 (together with reliable
information on patient 1) was essential for determining the
expertise of Dr. A, and subsequently the status of patient 2.
While the patients are independent, reports on one can cause
beliefs about the other to change, as we update our beliefs
about the expertise of the sources.

In general we consider an arbitrary number of cases,
which are seen as labels for instances of the domain. For
example, a crowdsourcing worker may label multiple im-
ages, or a weather forecaster may give predictions for differ-
ent locations. Each report in the input to the problem then
refers to a specific case. Via these cases and the presence
of the completely reliable source, we are able to model sce-
narios where some “ground truth” is available, listing how
often sources have been correct/incorrect on a proposition
(e.g. the report histories of Hunter (2021)). We can also
generalise this scenario, e.g. by having only partial informa-
tion about “previous” cases.

Throughout the paper we make the assumption that ex-
pertise is fixed across cases: the expertise of a source does
not depend on the particular instance of the domain we look
at. For instance, the expertise of Dr. A is the same for pa-
tient 1 as for patient 2. This is a simplifying assumption, and
may rule out certain interpretations of the cases (e.g. if cases
represent different points in time, it would be natural to let
expertise evolve over time).

Contribution. Our contributions are threefold. First, we
develop a logical framework for reasoning about the exper-
tise of multiple sources and the state of the world in multiple
cases. Second, we formulate a belief change problem within
this framework, which allows us to explore how trust and be-
lief should interact and evolve as reports are received from
the various sources. Finally, we put forward several postu-
lates and two concrete classes of operators – with a repre-
sentation result for one class – and analyse these operators
with respect to the postulates.

Paper Outline. In Section 2 we develop the formal frame-
work. Section 3 introduces the problem and lists some core
postulates. We give two constructions and specific example
operators in Section 4. Section 5 introduces some further
postulates concerning belief change on the basis of one new
report. An analogue of selective revision (Fermé and Hans-
son 1999) is presented Section 6. Section 7 discusses related
work, and we conclude in Section 8. Proofs are given in

2 The relationship between this notion of expertise and S5 epis-
temic logic is explored in a modal logic setting in Singleton (2021),
and we revisit this connection in Section 7.

the appendix of the full version of the paper (Singleton and
Booth 2022).

2 The Framework
Let S be a finite set of information sources. For convenience,
we assume there is a completely reliable source in S, which
we denote by ∗. For example, we can treat our first-hand
observations as if they are reported by ∗. Other sources be-
sides ∗ will be termed ordinary sources. Let C be a finite set
of cases, which we interpret as labels for different instances
of the problem domain.

Syntax. There are two levels to our formal language. To
describe properties of the world in each case c ∈ C, we as-
sume a fixed finite set P of propositional variables, and let
L0 denote the set of propositional formulas generated from
P using the usual propositional connectives. We use lower
case Greek letters (ϕ, ψ etc) for formulas in L0. The clas-
sical logical consequence operator will be denoted by Cn0,
and ≡ denotes equivalence of propositional formulas.

The extended language of expertise L additionally de-
scribes the expertise of the sources, and is defined by the
following grammar:

Φ ::= ϕ | Φ ∧ Φ | ¬Φ | Ei(ϕ) | Si(ϕ)

where i ∈ S andϕ ∈ L0. We introduce Boolean connectives
∨,→,↔ and ⊥ as abbreviations. We use upper case Greek
letters (Φ, Ψ etc) for formulas in L. For Γ ⊆ L, we write
[Γ] = Γ ∩ L0 for the propositional formulas in Γ.

The intuitive reading ofEi(ϕ) is source i has expertise on
ϕ, i.e., i is able to correctly identify the truth value of ϕ in
any possible state. The intuitive reading of Si(ϕ) is that ϕ
sound for i to report: that ϕ is true up to the expertise of i.
That is, the parts of ϕ on which i has expertise are true. Note
that both operators are restricted to propositional formulas,
so we will not consider iterated formulas such asEi(Sj(ϕ)).

Semantics. Let V denote the set of propositional valua-
tions over P . For each ϕ ∈ L0, the set of valuations
making ϕ true is denoted by mod0(ϕ). A world W =
〈{vc}c∈C , {Πi}i∈S〉 is a possible complete specification of
the environment we find ourselves in:

• vc ∈ V is the “true” valuation at case c ∈ C;

• Πi is a partition of V for each i ∈ S , representing the
“true” expertise of source i; and

• Π∗ is the unit partition {{v} | v ∈ V}.
Let W denote the set of all worlds. Note that the partition
corresponding to the distinguished source ∗ is fixed in all
worlds as the finest possible partition, reflecting the fact that
∗ is completely reliable.

For any partition Π and valuation v, write Π[v] for the
unique cell in Π containing v. For a set of valuations U ,
write Π[U ] =

⋃
v∈U Π[v]. For brevity, we write Π[ϕ] for

Π[mod0(ϕ)]. Then Π[ϕ] is the set of valuations indistin-
guishable from a ϕ valuation.



For our belief change problem we will be interested in
maintaining a collection of several belief sets, describing be-
liefs about each case c ∈ C. Towards determining when a
world W models such a collection, we define semantics for
L formulas with respect to a world and a case:

W, c |= ϕ ⇐⇒ vc ∈ mod0(ϕ)
W, c |= Ei(ϕ) ⇐⇒ Πi[ϕ] = mod0(ϕ)
W, c |= Si(ϕ) ⇐⇒ vc ∈ Πi[ϕ]

where i ∈ S , ϕ ∈ L0, and the clauses for conjunction and
negation are the expected ones. Since mod0(ϕ) ⊆ Πi[ϕ]
always holds, we have that Ei(ϕ) holds iff there is no ¬ϕ
valuation which is indistinguishable from a ϕ valuation (c.f.
Booth and Hunter (2018)). Note that since each source i
has only a single partition Πi used to interpret the expertise
formulas, the truth value of Ei(ϕ) does not depend on the
case c. On the other hand, Si(ϕ) holds in case c iff the c-
valuation of W is indistinguishable from some model of ϕ.
That is, it is consistent with i’s expertise that ϕ is true.

Also note that if ϕ is a propositional tautology, Ei(ϕ)
holds for every source i. Thus, all sources are experts on
something, even if just the tautologies.
Example 1. Let us extend the hospital example from the in-
troduction. Let S = {∗, a, b} denote the reliable source, Dr.
A and Dr. B, and let C = {c1, c2} denote patients 1 and 2.
Consider propositional variables P = {x, y}, standing for
condition X and Y respectively. Suppose that Dr. A has ex-
pertise on diagnosing condition Y only, whereas Dr. B only
has expertise on X. For the sake of the example, suppose that
patient 1 suffers from both conditions, and patient 2 suffers
only from condition Y. This situation is modelled by the fol-
lowing world W = 〈{vc}c∈{c1,c2}, {Πi}i∈{∗,a,b}〉:

vc1 = xy; vc2 = x̄y;
Πa = xy, x̄y | xȳ, x̄ȳ; Πb = xy, xȳ | x̄y, x̄ȳ.

We have W, c |= Ea(y) ∧ Eb(x) for each c ∈ {c1, c2}. Also
note that W, c1 |= x (patient 1 suffers from X), W, c1 |=
Sa(¬x) (it is sound for Dr. A to report otherwise; this holds
since Πa[¬x] = {xy, x̄y} ∪ {xȳ, x̄ȳ} 3 xy = vc1 ), but
W, c1 |= ¬Sb(¬x) (the same formula is not sound for Dr. B;
we have Πb[¬x] = {x̄y, x̄ȳ} = mod0(¬x) 63 xy = vc1 ).

Say Φ is valid if W, c |= Φ for all W ∈ W and c ∈ C. For
future reference we collect a list of validities.
Proposition 1. For any i ∈ S , c ∈ C and ϕ,ψ ∈ L0, the
following formulas are valid

1. Si(ϕ)↔ Si(ψ) and Ei(ϕ)↔ Ei(ψ), whenever ϕ ≡ ψ
2. Ei(ϕ)↔ Ei(¬ϕ) and Ei(ϕ) ∧ Ei(ψ)→ Ei(ϕ ∧ ψ)

3. Ei(p1)∧· · ·∧Ei(pk)→ Ei(ϕ), where p1, . . . , pk are the
propositional variables appearing in ϕ

4. Ei(ϕ) ∧ Si(ϕ)→ ϕ, and Si(ϕ) ∧ ¬ϕ→ ¬Ei(ϕ)

5. Si(ϕ) ∧ Si(¬ϕ)→ ¬Ei(ϕ)

6. S∗(ϕ)↔ ϕ and E∗(ϕ)

(1) states syntax-irrelevance properties. (2) says that ex-
pertise is symmetric with respect to negation, and closed un-
der conjunctions. Intuitively, symmetry means that i is an
expert on ϕ if they know whether or not ϕ holds. (3) says

that expertise on each propositional variable in ϕ is suffi-
cient for expertise on ϕ itself. (4) says that, in the presence
of expertise, soundness of ϕ is sufficient for ϕ to in fact be
true. (5) says that if both ϕ and ¬ϕ are true up to the exper-
tise of i, then i cannot have expertise on ϕ. Finally, (6) says
that the reliable source ∗ has expertise on all formulas, and
thus ϕ is sound for ∗ iff it is true.

Case-Indexed Collections. In the remainder of the paper
we will be interested in forming beliefs about each case c ∈
C. To do so we use collections of belief sets G = {Γc}c∈C ,
with Γc ⊆ L, indexed by cases. Say a world W is a model
of G iff

W, c |= Φ for all c ∈ C and Φ ∈ Γc,

i.e. iff W satisfies all formulas in G in the relevant case. Let
mod(G) denote the models of G, and say that G is consis-
tent if mod(G) 6= ∅. For c ∈ C, define the c-consequences

Cnc(G) = {Φ ∈ L | ∀W ∈ mod(G),W, c |= Φ}.
We write Cn(G) for the collection {Cnc(G)}c∈C .
Example 2. Suppose C = {c1, c2, c3}, and define G by
Γc1 = {Si(p ∧ q)}, Γc2 = {Ei(p)} and Γc3 = {Ei(q)}.
Then, since expertise holds independently of case, any model
W of G has W, c1 |= Ei(p) ∧ Ei(q). By Proposition 1 part
(3), W, c1 |= Ei(p ∧ q). Since W satisfies Γc1 in case c1,
Proposition 1 part (4) gives W, c1 |= p ∧ q. Since W was
an arbitrary model of G, we have p ∧ q ∈ Cnc1(G), i.e.
p ∧ q is a c1-consequence of G. This illustrates how infor-
mation about distinct cases can be brought together to have
consequences for other cases.

For two collections G = {Γc}c∈C , D = {∆c}c∈C , write
G v D iff Γc ⊆ ∆c for all c, and letGtD denote the collec-
tion {Γc∪∆c}c∈C . With this notation, the case-indexed con-
sequence operator satisfies analogues of the Tarskian conse-
quence properties.3

Say a collection G is closed if Cn(G) = G. Closed col-
lections provide an idealised representation of beliefs, which
will become useful later on. For instance, when G is closed
we have Ei(ϕ) ∈ Γc iff Ei(ϕ) ∈ Γd for all c, d ∈ C; i.e. ex-
pertise statements are either present for all cases or for none.
We also have Cn0 [Γc] = [Γc] , i.e. the propositional parts
of G are (classically) closed.

In propositional logic, mod0 is a 1-to-1 correspondence
between closed sets of formulas and sets of valuations. This
is not so in our setting, since some subsets of W do not
arise as the models of any collection. Instead, we have a
1-to-1 correspondence into a restricted collection of sets of
worlds. Borrowing the terminology of Delgrande, Peppas,
and Woltran (2018), say a set of worlds S ⊆ W is elemen-
tary if S = mod(G) for some collection G = {Γc}c∈C .4

3 That is, (i) G v Cn(G), (ii) G v D implies
Cn(G) v Cn(D), and (iii) Cn(Cn(G)) = Cn(G).

4 Non-elementary sets can also exist for weaker logics (such as
Horn logic (Delgrande, Peppas, and Woltran 2018)) which lack the
syntactic expressivity to identify all sets of models. In our frame-
work, C-indexed collections are not expressive enough to specify
combinations of valuations, since each Γc only says something
about the valuation for c.



Elementariness is characterised by a certain closure con-
dition. Say that two worlds W,W ′ are partition-equivalent
if ΠW

i = ΠW ′

i for all sources i, and say W is a valuation
combination from a set S ⊆ W if for all cases c there is
Wc ∈ S such that vWc = vWc

c . Then a set is elementary
iff it is closed under valuation combinations of partition-
equivalent worlds.
Proposition 2. S ⊆ W is elementary if and only if the fol-
lowing condition holds: for all W ∈ W and W1,W2 ∈ S, if
W is partition-equivalent to both W1,W2 and W is a valu-
ation combination from {W1,W2}, then W ∈ S.

3 The Problem
With the framework set out, we can formally define the prob-
lem. We seek an operator with the following behaviour:

• Input: A sequence of reports σ, where each report is a
triple 〈i, c, ϕ〉 ∈ S × C × L0 and ϕ 6≡ ⊥. Such a report
represents that source i reports ϕ to hold in case c. Note
that we only allow sources to make propositional reports.

• Output: A pair 〈Bσ,Kσ〉, where Bσ = {Bσc }c∈C is a
collection of belief sets Bσc ⊆ L and Kσ = {Kσ

c }c∈C is
a collection of knowledge sets Kσ

c ⊆ L.

3.1 Basic Postulates
We immediately narrow the scope of operators under con-
sideration by introducing some basic postulates which are
expected to hold. In what follows, say a sequence σ is ∗-
consistent if for each c ∈ C the set {ϕ | 〈∗, c, ϕ〉 ∈ σ} ⊆ L0

is classically consistent. Write Gσsnd for the collection with
(Gσsnd)c = {Si(ϕ) | 〈i, c, ϕ〉 ∈ σ}, i.e. the collection of
soundness statements corresponding to the reports in σ.
Closure Bσ = Cn(Bσ) and Kσ = Cn(Kσ)

Containment Kσ v Bσ

Consistency If σ is ∗-consistent, Bσ andKσ are consistent
Soundness If 〈i, c, ϕ〉 ∈ σ, then Si(ϕ) ∈ Kσ

c

K-bound Kσ v Cn(Gσsnd tK∅)
Prior-Extension K∅ v Kσ

Rearrangement If σ is a permutation of ρ, then Bσ = Bρ

and Kσ = Kρ

Equivalence If ϕ ≡ ψ then Bσ·〈i,c,ϕ〉 = Bσ·〈i,c,ψ〉 and
Kσ·〈i,c,ϕ〉 = Kσ·〈i,c,ψ〉

Closure says that the belief and knowledge collections
are closed under logical consequence. In light of earlier re-
marks, this implies that the propositional belief sets [Bσc ] are
closed under (propositional) consequence, and that Ei(ϕ) ∈
Bσc iff Ei(ϕ) ∈ Bσd . Containment says that everything
which is known is also believed. Consistency ensures the
output is always consistent, provided we are not in the de-
generate case where ∗ gives inconsistent reports. Soundness
says we know that all reports are sound in their respective
cases. This formalises our assumption that sources are hon-
est, i.e. that false reports only arise due to lack of expertise.
By Proposition 1 part (4) it also implies experts are always
right: if a source has expertise on their report then it must be

true. While Soundness places a lower bound on knowledge,
K-bound places an upper bound: knowledge cannot go be-
yond the soundness statements corresponding to the reports
in σ together with the prior knowledge K∅. That is, from
the point view of knowledge, a new report of 〈i, c, ϕ〉 only
allows us to learn Si(ϕ) in case c (and to combine this with
other reports and prior knowledge). Note that the analogous
property for belief is not desirable: we want to be more lib-
eral when it comes to beliefs, and allow for defeasible in-
ferences going beyond the mere fact that reports are sound.
Prior-Extension says that knowledge after a sequence σ ex-
tends the prior knowledge on the empty sequence ∅. Rear-
rangement says that the order in which reports are received
is irrelevant. This can be justified on the basis that we are
reasoning about static worlds for each case c, so that there
is no reason to see more “recent” reports as any more or
less important or truthful than earlier ones.5 Consequently,
we can essentially view the input as a multi-set of belief
sets – one for each source – bringing us close to the set-
ting of belief merging. This postulate also appears as the
commutativity postulate (Com) in the work of Schwind and
Konieczny (2020). Finally, Equivalence says that the syn-
tactic form of reports is irrelevant.

Taking all the basic postulates together, the knowledge
component Kσ is fully determined once K∅ is chosen.

Proposition 3. Suppose an operator satisfies the basic pos-
tulates. Then

1. Kσ = Cn(Gσsnd tK∅)
2. K∅ = Cn(∅) iff Kσ = Cn(Gσsnd) for all σ.

The choice of K∅ depends on the scenario one wishes to
model. While Cn(∅) is a sensible choice if the sequence
σ is all we have to go on, we allow K∅ 6= Cn(∅) in case
prior knowledge is available (for example, the expertise of
particular sources may be known ahead of time).

Another important property of knowledge, which follows
from the basic postulates, says that knowledge is monotonic:
knowledge after receiving σ and ρ together is just the case-
wise union of Kσ and Kρ.

K-conjunction Kσ·ρ = Cn(Kσ tKρ)

K-conjunction reflects the idea that one should be cau-
tious when it comes to knowledge: a formula should only
be accepted as known if it won’t be given up in light of new
information.

Proposition 4. Any operator satisfying the basic postulates
satisfies K-conjunction.

The postulates also imply some useful properties linking
trust (seen as belief in expertise) and belief/knowledge.

Proposition 5. Suppose an operator satisfies the basic pos-
tulates. Then

1. If ϕ ∈ Kσ
c and ¬ψ ∈ Cn0(ϕ) then ¬Ei(ψ) ∈ Kσ·〈i,c,ψ〉

c .
2. If 〈i, c, ϕ〉 ∈ σ and Ei(ϕ) ∈ Bσc then ϕ ∈ Bσc .

5This argument is from (Delgrande, Dubois, and Lang 2006).



(1) expresses how knowledge can negatively affect trust:
we should distrust sources who make reports we know to be
false. (2) expresses how trust affects belief: we should be-
lieve reports from trusted sources. It can also be seen as a
form of success for ordinary sources, and implies AGM suc-
cess when i = ∗ (by Proposition 1 part (6) and Closure). We
illustrate the basic postulates by formalising the introductory
hospital example.
Example 3. Set S, C and P as in Example 1, and consider
the sequence

σ = (〈∗, c1, x〉, 〈a, c2, x〉, 〈b, c2,¬x〉, 〈a, c1,¬x〉).

What do we know on the basis of this sequence, assuming
the basic postulates? First note that by Soundness, Propo-
sition 1 part (6) and Closure, the report from ∗ gives x ∈
Kσ
c1 , i.e. reliable reports are known. Soundness also gives

Sa(x)∧Sb(¬x) ∈ Kσ
c2 . Combined with Proposition 1 parts

(2), (4) and Closure, this yields ¬(Ea(x) ∧ Eb(x)) ∈ Kσ
c

for all c, formalising the intuitive idea that Drs. A and
B cannot both be experts on X, since they give conflict-
ing reports. Considering the final report from a, we get
x ∧ Sa(¬x) ∈ Kσ

c1 , and thus ¬Ea(x) ∈ Kσ
c by Closure.

So in fact Dr. A is known to be a non-expert on X.
What about beliefs? The basic postulates do not require

beliefs to go beyond knowledge, so we cannot say much in
general. An “optimistic” operator, however, may opt to be-
lieve that sources are experts unless we know otherwise, and
thus maximise the information that can be (defeasibly) in-
ferred from the sequence (in the next section we will intro-
duce concrete operators obeying this principle). In this case
we may believe that at least one source has expertise on x
(i.e. Ea(x) ∨Eb(x) ∈ Bσc ). Combined with ¬Ea(x) ∈ Kσ

c ,
Closure and Containment, we get Eb(x) ∈ Bσc2 . Symmetry
of expertise together with Proposition 5 part (2) then gives
¬x ∈ Bσc2 , i.e. we trust Dr. B in the example and believe
patient 2 does not suffer from condition X.

3.2 Model-Based Operators
While an operator is a purely syntactic object, it will be con-
venient to specify Kσ and Bσ in semantic terms by select-
ing a set of possible and most plausible worlds for each se-
quence σ. We call such operators model-based.
Definition 1. An operator is model-based if for every σ
there are sets Xσ,Yσ ⊆ W such that (i) Xσ ⊇ Yσ;
(ii) Φ ∈ Kσ

c iff W, c |= Φ for all W ∈ Xσ; and (iii) Φ ∈ Bσc
iff W, c |= Φ for all W ∈ Yσ .

In other words, Kσ
c (resp., Bσc ) contains the formulas

which hold at case c in all worlds in Xσ (resp., Yσ). It fol-
lows from the relevant definitions that Xσ ⊆ mod(Kσ), and
equality holds if and only if Xσ is elementary (similarly for
Yσ and Bσ). Model-based operators are characterised by
our first two basic postulates.
Theorem 1. An operator satisfies Closure and Containment
if and only if it is model-based.

Since we take Closure and Containment to be fundamen-
tal properties, all operators we consider from now on will be
model-based. We introduce our first concrete operator.

Definition 2. Define the model-based operator weak-mb by

Xσ = Yσ = {W |W, c |= Si(ϕ) for all 〈i, c, ϕ〉 ∈ σ}.
That is, the possible worlds Xσ are exactly those satisfy-

ing the soundness constraint for each report in σ, i.e. false
reports are only due to lack of expertise of the corresponding
source. Syntactically, Kσ = Bσ = Cn(Gσsnd).

Clearly weak-mb satisfies Soundness, and one can show
that it satisfies all of the basic postulates of Section 3.1.6In
fact, it is the weakest operator satisfying Closure, Contain-
ment and Soundness, in that for any other operator σ 7→
〈B̂σ, K̂σ〉 with these properties we have Bσ v B̂σ and
Kσ v K̂σ for any σ.
Example 4. Consider weak-mb applied to the sequence
σ = (〈∗, c, p〉, 〈i, c,¬p ∧ q〉). By Soundness, Closure and
the validities from Proposition 1, we have p ∈ Kσ

c and
¬Ei(p) ∈ Kσ

c . In fact, by Closure, we have ¬Ei(p) ∈ Kσ
d

for all cases d. However, we cannot say much about q: nei-
ther q, ¬q, Ei(q) nor ¬Ei(q) are in Bσc = Kσ

c .

4 Constructions
For model-based operators in Definition 1, the sets Xσ and
Yσ – which determine knowledge and belief – can depend
on σ in a completely arbitrary manner. This lack of struc-
ture leads to very wide class of operators, and one cannot say
much about them in general beyond the satisfaction of Clo-
sure and Containment. In this section we specialise model-
based operators by providing two constructions.

4.1 Conditioning Operators
Intuitively, Yσ is supposed to represent the most plausible
worlds among the possible worlds in Xσ . This suggests the
presence of a plausibility ordering on Xσ , which is used
to select Yσ . For our first construction we take this ap-
proach: we condition a fixed plausibility total preorder7 on
the knowledge Xσ , and obtain Yσ by selecting the minimal
(i.e. most plausible) worlds.
Definition 3. An operator is a conditioning operator if there
is a total preorder ≤ on W and a mapping σ 7→ 〈Xσ,Yσ〉
as in Definition 1 such that Yσ = min≤ Xσ for all σ.

Note that ≤ is independent of σ: it is fixed before re-
ceiving any reports. All conditioning operators are model-
based by definition. Clearly Yσ is determined by Xσ and the
plausibility order, so that to define a conditioning operator
it is enough to specify ≤ and the mapping σ 7→ Xσ . Write
W ' W ′ iff both W ≤ W ′ and W ′ ≤ W . We now present
examples of how such an ordering can be defined.
Definition 4. Define the conditioning operator
var-based-cond by setting Xσ in the same way as weak-mb
in Definition 2, and W ≤W ′ iff r(W ) ≤ r(W ′), where

r(W ) = −
∑
i∈S

∣∣{p ∈ P | ΠW
i [p] = mod0(p)

}∣∣ .
6 For Consistency, note that for any ∗-consistent sequence σ

one can form a world W such that vc is a model of all reports from
∗ at case c, and Πi = {V} for all i 6= ∗. This satisfies all the
soundness constraints, so W ∈ Xσ = Yσ .

7 A total preorder is a reflexive, transitive and total relation.



var-based-cond aims to trust each source on as many
propositional variables as possible. One can check that
var-based-cond satisfies the basic postulates.

Example 5. Revisiting the sequence σ =
(〈∗, c, p〉, 〈i, c,¬p ∧ q〉) from Example 4 with
var-based-cond, the knowledge set Kσ

c is the same as
before, but we now have q ∧ Ei(q) ∈ Bσc . This reflects the
“credulous” behaviour of the ranking ≤: while it is not
possible to believe i is an expert on p, we should believe
they are an expert on q so long as this does not conflict with
soundness. For the propositional beliefs generally, we have
[Bσc ] = Cn0(p∧q). That is, var-based-cond takes the q part
of the report from i (on which i is credulously trusted) while
ignoring the ¬p part (which is false due to report from ∗).
Definition 5. Define a conditioning operator
part-based-cond with Xσ as for var-based-cond, and
≤ defined by the ranking function

r(W ) = −
∑
i∈S
|ΠW
i |.

part-based-cond aims to maximise the number of cells
in the sources’ partitions, and thereby maximise the num-
ber of propositions on which they have expertise. Unlike
var-based-cond, the propositional variables play no special
role. As expected, part-based-cond satisfies the basic pos-
tulates.

Example 6. Applying part-based-cond to σ from Exam-
ples 4 and 5, we no longer extract q from the report of i:
q /∈ Bσc and Ei(q) /∈ Bσc . Instead, we have [Bσc ] = Cn0(p),
and Ei(p ∨ q) ∈ Bσc .

Note that both var-based-cond and part-based-cond are
based on the general principle of maximising the expertise
of sources, subject to the constraint that all reports are sound.
This intuition is formalised by the following postulate for
conditioning operators. In what follows, write W � W ′ iff
ΠW
i refines ΠW ′

i for all i ∈ S, i.e. if all sources have broadly
more expertise in W than in W ′.8

Refinement If W �W ′ then W ≤W ′

Since � is only a partial order onW there are many pos-
sible total extensions; var-based-cond and part-based-cond
provide two specific examples.

We now turn to an axiomatic characterisation of condi-
tioning operators. Taken with the basic postulates from
Section 3.1, conditioning operators can be characterised us-
ing an approach similar to that of Delgrande, Peppas, and
Woltran (2018) in their account of generalised AGM be-
lief revision.9 This involves a technical property Delgrande,
Peppas, and Woltran call Acyc, which finds its roots in the
Loop property of Kraus, Lehmann, and Magidor (1990).

Duplicate-removal If ρ1 = σ·〈i, c, ϕ〉 and ρ2 = ρ1·〈i, c, ϕ〉
then Bρ1 = Bρ2 and Kρ1 = Kρ2

Conditional-consistency If Kσ is consistent then so is Bσ

8 Π refines Π′ if ∀A ∈ Π, ∃B ∈ Π′ such that A ⊆ B.
9 Note that while the result is similar, our framework is not an

instance of theirs.

Inclusion-vacuity Bσ·ρ v Cn(Bσ tKρ), with equality if
Bσ tKρ is consistent
Acyc If σ0, . . . , σn are such that Kσj tBσj+1 is consistent
for all 0 ≤ j < n and Kσn tBσ0 is consistent, then Kσ0 t
Bσn is consistent

Inclusion-vacuity is so-named since it is analogous to
the combination of Inclusion and Vacuity from AGM revi-
sion, if one informally views Bσ·ρ as the revision of Bσ by
Kρ. Conditional-consistency is another consistency postu-
late, which follows from Consistency, Closure and Sound-
ness. Acyc is the analogue of the postulate of Delgrande,
Peppas, and Woltran, which rules out cycles in the plausibil-
ity order constructed in the representation result.

As with the result of Delgrande, Peppas, and Woltran,
a technical condition beyond Definition 3 is required to
obtain the characterisation: say that a conditioning opera-
tor is elementary if for each σ the sets of worlds Xσ and
Yσ = min≤ Xσ are elementary.10

Theorem 2. Suppose an operator satisfies the basic pos-
tulates of Section 3.1.11 Then it is an elementary condi-
tioning operator if and only if it satisfies Duplicate-removal,
Conditional-consistency, Inclusion-vacuity and Acyc.

The proof roughly follows the lines of Theorem 4.9 in
(Delgrande, Peppas, and Woltran 2018), although some dif-
ferences arise due to the form of our input as finite sequences
of reports. We note that while the requirement that Xσ and
Yσ are elementary is a technical condition,12 the characteri-
sation in Proposition 2 implies a simple sufficient condition
for elementariness.
Proposition 6. Suppose ≤ is such that W ' W ′ whenever
W and W ′ are partition-equivalent. Then min≤ S is ele-
mentary for any elementary set S ⊆ W .

Proposition 6 implies that var-based-cond and
part-based-cond are elementary. Indeed, for both op-
erators Xσ = mod(Gσsnd) so is elementary by definition.
Since the ranking ≤ for each operator only depends on the
partitions of worlds, Yσ = min≤ Xσ is elementary also.

4.2 Score-Based Operators
The fact that the plausibility order ≤ of a conditioning oper-
ator is fixed may be too limiting. For example, consider

σ = (〈i, c, p〉, 〈j, c,¬p〉, 〈i, d, p〉).
If one sets Xσ to satisfy the soundness constraints (i.e. as
in weak-mb), there is a possible world W1 ∈ Xσ with
W1, d |= ¬Ei(p) ∧ Ej(p) ∧ ¬p (i.e. W1 sides with source
j and p is false at d) and another world W2 ∈ Xσ with
W2, d |= Ei(p) ∧ ¬Ej(p) ∧ p (i.e. W2 sides with source i).
Appealing to symmetry, one may argue that neither world is
a priori more plausible than the other, so any fixed plausibil-
ity order should have W1 ' W2. If these worlds are maxi-
mally plausible (e.g. if taking the “optimistic” view outlined

10 Equivalently, there is a total preorder ≤ such that
mod(Bσ) = min≤mod(Kσ) for all σ.

11 Strictly speaking, we only need Closure, Containment, K-
conjunction, Equivalence and Rearrangement.

12 Inclusion-vacuity may fail for non-elementary conditioning.



in Example 3), conditioning gives p /∈ Bσd and ¬p /∈ Bσd .
However, there is an argument that W2 should be consid-
ered more plausible than W1 given the sequence σ, since
W2 validates the final report 〈i, d, p〉 whereas W1 does not.
Consequently, there is an argument that we should in fact
have p ∈ Bσd .13 This shows that we need the plausibility
order to be responsive to the input sequence for adequate
belief change.14

As a result of this discussion, we look for operators whose
plausibility ordering can depend on σ. One approach to
achieve this in a controlled way is to have a ranking for each
report 〈i, c, ϕ〉, and combine these to construct a ranking for
each sequence σ. We represent these rankings by scoring
functions, and call the resulting operators score-based.
Definition 6. An operator is score-based if there is a map-
ping σ 7→ 〈Xσ,Yσ〉 as in Definition 1 and functions r0 :
W → N∪{∞}, d :W×(S×C×L0)→ N∪{∞} such that
Xσ = {W | rσ(W ) <∞} andYσ = argminW∈Xσ rσ(W ),
where

rσ(W ) = r0(W ) +
∑
〈i,c,ϕ〉∈σ

d(W, 〈i, c, ϕ〉).

Here r0(W ) is the prior implausibility score of W , and
d(W, 〈i, c, ϕ〉) is the disagreement score for world W and
〈i, c, ϕ〉. The set of most plausible worlds Yσ consists of
those W which minimise the sum of the prior implausibility
and the total disagreement with σ. Note that by summing
the scores of each report 〈i, c, ϕ〉 with equal weight, we treat
each report independently. Score-based operators generalise
elementary conditioning operators with K-conjunction.
Proposition 7. Any elementary conditioning operator satis-
fying K-conjunction is score-based.

We now give a concrete example.
Definition 7. Define a score-based operator excess-min by
setting r0(W ) = 0 and

d(W, 〈i, c, ϕ〉) =

{
|ΠW
i [ϕ] \mod0(ϕ)|, W, c |= Si(ϕ)

∞, otherwise.

The set of possible worldsXσ is the same as for the earlier
operators. All worlds are a priori equiplausible according
to r0. The disagreement score d is defined as the number of
propositional valuations in the “excess” of ΠW

i [ϕ] which are
not models of ϕ, i.e. the number of ¬ϕ valuations which are
indistinguishable from some ϕ valuation. The intuition here
is that sources tend to only report formulas on which they
have expertise. The minimum score 0 is attained exactly
when i has expertise on ϕ; other worlds are ordered by how
much they deviate from this ideal.

One can verify that excess-min satisfies the basic pos-
tulates of Section 3.1. It can also be seen that Xσ and
Yσ are elementary, and excess-min fails Duplicate-removal
and Inclusion-vacuity. It follows from Theorem 2 that
excess-min is not a conditioning operator.

13At the very least, the case p ∈ Bσd should not be excluded.
14 In Section 5 we make this argument more precise by providing

an impossibility result which shows conditioning operators with
some basic properties cannot accept p in sequences such as this.

Example 7. To illustrate the differences between excess-min
and conditioning, consider a more elaborate version of the
example given at the start of this section:

σ = (〈i, c, p→ q〉, 〈j, c, p→ ¬q〉, 〈∗, c, p〉, 〈i, d, p〉, 〈i, d, q〉).

Here the reports of i and j in case c are consistent, but in-
consistent when taken with the reliable information p from
∗. Should we believe q or ¬q? Both our conditioning opera-
tors var-based-cond and part-based-cond decline to decide,
and have [Bσc ] = Cn0(p). However, since excess-min takes
into account each report in the sequence, the fact that i re-
ports both p and q in case d leads to Ei(p) ∧ Ei(q) ∈ Bσc .
This gives Ei(p → q) ∈ Bσc by Proposition 1 part (3), so
we can make use of the report from i in case c: we have
[Bσc ] = Cn0(p ∧ q). This example shows that score-based
operators can be more credulous than conditioning opera-
tors (e.g. we can believe Ei(p) when i reports p), and can
consequently hold stronger propositional beliefs.

5 One-Step Revision
The postulates of Section 3.1 only set out very basic re-
quirements for an operator. In this section we introduce
some more demanding postulates which address how beliefs
should change when a sequence σ is extended by a new re-
port 〈i, c, ϕ〉. First, we address how propositional beliefs
should be affected by reliable information.

AGM-∗ For any σ and c ∈ C there is an AGM operator ? for
[Bσc ] such that

[
B
σ·〈∗,c,ϕ〉
c

]
= [Bσc ] ?ϕ whenever ¬ϕ /∈ Kσ

c

AGM-∗ says that receiving information from the reliable
source ∗ acts in accordance with the well-known AGM
postulates (Alchourrón, Gärdenfors, and Makinson 1985)
for propositional belief revision (provided we are not in
the degenerate case where the new report ϕ was already
known to be false). Since AGM revision operators are char-
acterised by total preorders over valuations (Grove 1988;
Katsuno and Mendelzon 1991), it is no surprise that our
order-based constructions are consistent with AGM-∗.
Proposition 8. var-based-cond, part-based-cond and
excess-min satisfy AGM-∗.

Thus, we do indeed extend AGM revision in the case of
reliable information. What about non-reliable information?
First note that the analogue of AGM-∗ for ordinary sources
i 6= ∗ is not desirable. In particular, we should not have the
Success postulate:

ϕ ∈ Bσ·〈i,c,ϕ〉c .

Indeed, the sequence in Example 4 with ϕ = ¬p∧ q already
shows that Success would conflict with the basic postulates.
However, there are weaker modifications of Success which
may be more appropriate. We consider two such postulates.

Cond-success If Ei(ϕ) ∈ Bσc and ¬ϕ /∈ Bσc , then ϕ ∈
B
σ·〈i,c,ϕ〉
c

Strong-cond-success If ¬(Ei(ϕ) ∧ ϕ) /∈ Bσc , then ϕ ∈
B
σ·〈i,c,ϕ〉
c



Cond-success says that if i is deemed an expert on ϕ,
which is consistent with current beliefs, then ϕ is accepted
after i reports it. That is, the acceptance of ϕ is conditional
on prior beliefs about the expertise of i (on ϕ). Strong-
cond-success weakens the antecedent by only requiring that
Ei(ϕ) and ϕ are jointly consistent with current beliefs (i.e.
i need not be considered an expert on ϕ). In other words,
we should believe reports if there is no reason not to. It is
easily shown that Closure and Strong-cond-success implies
Cond-success. We once again revisit our examples.

Proposition 9. var-based-cond, part-based-cond and
excess-min satisfy Cond-success, and excess-min addition-
ally satisfies Strong-cond-success.

By omission, the reader may suppose that the condition-
ing operators fail Strong-cond-success. This is correct, and
we can in fact say even more: no conditioning operator
with a few basic properties – all of which are satisfied by
var-based-cond and part-based-cond – can satisfy Strong-
cond-success. In what follows, for a permutation π : S → S
with π(∗) = ∗, write π(W ) for the world with vπ(W )

c = vWc
and Π

π(W )
i = ΠW

π(i). We have an impossibility result.

Proposition 10. No elementary conditioning operator sat-
isfying the basic postulates can simultaneously satisfy the
following properties:

1. K∅ = Cn(∅)
2. If π is a permutation of S with π(∗) = ∗, W ' π(W )

3. Refinement
4. Strong-cond-success

(1) says that before any reports are received, we only
know tautologies. As remarked earlier, this is not an essen-
tial property, but is reasonable when no prior knowledge is
available. (2) is an anonymity postulate: it says that permut-
ing the “names” of sources does not affect the plausibility of
a world, and is a desirable property in light of (1). Refine-
ment, introduced in Section 4.1, says that worlds in which
all sources have more expertise are preferred.

Proposition 10 highlights an important difference be-
tween conditioning and score-based operators, and hints that
a fixed plausibility order may be too restrictive: we need to
allow the order to be responsive to new reports in order to
satisfy properties such as Strong-cond-success.

6 Selective Change
In the previous section we saw how a single formula ϕ may
be accepted when it is received as an additional report. But
what can we say about propositional beliefs when taking into
account the whole sequence σ? To investigate this we intro-
duce an analogue of selective revision (Fermé and Hansson
1999), in which propositional beliefs are formed by “select-
ing” part of each input report (intuitively, some part con-
sistent with the source’s expertise). In what follows, write
σ � c = {〈i, ϕ〉 | 〈i, c, ϕ〉 ∈ σ} for the c-reports in σ.

Definition 8. A selection scheme is a mapping f assigning
to each ∗-consistent sequence σ a function fσ : S × C ×
L0 → L0 such that fσ(i, c, ϕ) ∈ Cn0(ϕ). An operator is

selective if there is a selection scheme f such that for all
∗-consistent σ and c ∈ C,

[Bσc ] = Cn0({fσ(i, c, ϕ) | 〈i, ϕ〉 ∈ σ � c}).

Thus, an operator is selective if its propositional beliefs
in case c are formed by weakening each c-report and taking
their consequences. Note that for σ = ∅ we get [Bσc ] =
Cn0(∅), so selectivity already rules out non-tautological
prior propositional beliefs. Also note that in the presence
of Closure, Containment and Soundness, selectivity implies
that [Bσc ] = [Bρc ], where ρ is obtained by replacing each
report 〈i, c, ϕ〉 with 〈∗, c, fσ(i, c, ϕ)〉.

Selectivity can be characterised by a natural postulate
placing an upper bound on the propositional part of Bσc . In
what follows, let Γσc = {ϕ ∈ L0 | ∃i ∈ S : 〈i, ϕ〉 ∈ σ � c}.
Boundedness If σ is ∗-consistent, [Bσc ] ⊆ Cn0(Γσc )

Boundedness says that the propositional beliefs in case c
should not go beyond the consequences of the formulas re-
ported in case c. In some sense this can be seen as an iterated
version of Inclusion from AGM revision, in the case where
[Bσc ] = Cn0(∅). We have the following characterisation.
Theorem 3. A model-based operator is selective if and only
if it satisfies Boundedness.

This result allows us to easily analyse when condition-
ing and score-based operators are selective; we show in the
full paper (Singleton and Booth 2022) that var-based-cond,
part-based-cond and excess-min are all selective.

6.1 Case Independence
In the definition of a selection scheme, we allow fσ(i, c, ϕ)
to depend on the case c. If one views fσ(i, c, ϕ) as a weak-
ening of ϕ which accounts for the lack of expertise of i, this
is somewhat at odds with other aspects of the framework,
where expertise is independent of case. For this reason it is
natural to consider case independent selective schemes.
Definition 9. A selection scheme f is case independent if
fσ(i, c, ϕ) ≡ fσ(i, d, ϕ) for all ∗-consistent σ and i ∈ S ,
c, d ∈ C and ϕ ∈ L0.

Say an operator is case-independent-selective if it is se-
lective according to some case independent scheme. This
stronger notion of selectivity can again be characterised by
a postulate which bounds propositional beliefs. For any set
of cases H ⊆ C, sequence σ and c ∈ C, write

Γσ,Hc = {ϕ ∈ L0 | ∃i ∈ S :〈i, ϕ〉 ∈ σ � c

and ∀d ∈ H : 〈i, ϕ〉 /∈ σ � d}.

H-Boundedness For any ∗-consistent σ, H ⊆ C and c ∈ C,

[Bσc ] ⊆ Cn0

(
Γσ,Hc ∪

⋃
d∈H

[Bσd ]

)
Note that Boundedness is obtained as the special case

where H = ∅. We illustrate with an example.
Example 8. Consider case c in the following sequence:

σ = (〈i, c, p〉, 〈j, c, q〉, 〈j, d, q〉, 〈k, d, r〉)



Boundedness requires that [Bσc ] ⊆ Cn0({p, q}). However,
the instance of H-Boundedness with H = {d} makes use of
the fact that j reports q in both cases c and d, and requires
[Bσc ] ⊆ Cn0({p} ∪ [Bσd ]). This also has an interesting im-
plication for case d: if ϕ ∈ [Bσc ], then p → ϕ ∈ [Bσd ]. This
follows since β ∈ Cn0({α} ∪ Γ) iff α → β ∈ Cn0(Γ) for
α, β ∈ L0. Intuitively, this says that if p (from i) and q (from
j) is enough to accept ϕ in case c, then ϕ is accepted in case
d if p is, given that the report of q from j is repeated for d.
Theorem 4. A model-based operator is case-independent-
selective if and only if it satisfies H-Boundedness.

The question of whether our concrete operators sat-
isfy H-Boundedness (equivalently, whether they are case-
independent-selective) is still open.

7 Related Work
Belief Merging. In the framework of Konieczny and
Pino Pérez (2002), a merging operator ∆ maps a multiset of
propositional formulas Φ = {ϕ1, . . . , ϕn} and an integrity
constraint µ to a formula ∆µ(Φ). This can be seen as the
special case of our framework with a single case c: for Φ, µ
we consider the sequence σΦ,µ where ∗ reports µ and each
source i reports ϕi. Any operator then gives rise to a merg-
ing operator ∆µ(Φ) =

∧[
B
σΦ,µ
c

]
.

We go beyond this setting by considering multiple cases
and explicitly modelling expertise (and trust, via beliefs
about expertise). While it may be possible to model exper-
tise implicitly in belief merging (for example, say i is not
trusted on ψ if ∆µ(Φ) 6` ψ when ϕi ` ψ), bringing ex-
pertise to the object level allows us to express more complex
beliefs about expertise, such asEa(x)∨Eb(x) in Example 3.
It also facilitates postulates which refer directly to expertise,
such as the weakenings of Success in Section 5.

However, our problem is more specialised than merging,
since we focus specifically on conflicting information due
to lack of expertise. Belief merging may be applied more
broadly to other types of information fusion, e.g. subjective
beliefs or goals (Grégoire and Konieczny 2006), where no-
tions of objective expertise do not apply. While our frame-
work could be applied in these settings, our postulates may
no longer be desirable.

Epistemic Logic. Our notions of expertise and soundness
are related to S5 knowledge from epistemic logic (van Dit-
marsch et al. 2015). In such logics, an agent knows ϕ at a
state x if ϕ holds at all states y “accessible” from x. Knowl-
edge is thus determined by an epistemic accessibility re-
lation, which describes the distinctions between states the
agent can make. The logic of S5 arises when this relation is
an equivalence relation (or equivalently, a partition).

Our previous work (Singleton 2021) – in which expertise
and soundness were introduced in a modal logic framework
– showed that “expertise models” are in 1-to-1 correspon-
dence with S5 models, such that E(ϕ) holds iff A(ϕ →
Kϕ) holds in the S5 model, whereA is the universal modal-
ity. By symmetry of expertise, we can also replace ϕ with
its negation. Thus, expertise has a precise epistemic inter-
pretation: it is the ability to know whether ϕ holds in any

possible state. Similarly, S(ϕ) translates to ¬K¬ϕ. That is,
ϕ is sound exactly when the source does not know ϕ is false.

In the present framework, if we set W, c |= Ki(ϕ) iff
Πi[vc] ⊆ mod0(ϕ) and W, c |= AΦ iff ∀v : Wc=v, c |=
Φ, where Wc=v is the world obtained from W by setting
v′c = v, then we have Ei(ϕ) ≡ A(ϕ → Ki(ϕ)) and
Si(ϕ) ≡ ¬Ki(¬ϕ). While Ki is not quite an S5 modal-
ity (the 5 axiom requires iterating Ki, which is not possible
in our framework), this shows the fundamental link between
expertise, soundness and knowledge.

8 Conclusion
Summary. In this paper we studied a belief change prob-
lem – extending the classical AGM framework – in which
beliefs about the state of the world in multiple cases, as well
as expertise of multiple sources, must be inferred from a se-
quence of reports. This allowed us to take a fresh look at
the interaction between trust (seen as belief in expertise) and
belief. By inferring the expertise of the sources from the re-
ports, we have generalised some earlier approaches to non-
prioritised revision which assume expertise (or reliability,
credibility, priority etc) is known up-front (e.g. (Fermé and
Hansson 1999; Hansson et al. 2001; Booth and Hunter 2018;
Delgrande, Dubois, and Lang 2006)). We went on to pro-
pose some concrete belief change operators, and explored
their properties through examples and postulates.

We saw that conditioning operators satisfy some de-
sirable properties, and our concrete instances make use-
ful inferences that go beyond weak-mb. However, we
have examples in which intuitively plausible inferences
are blocked, and conditioning is largely incompatible with
Strong-cond-success. Score-based operators, and in partic-
ular excess-min, offer a way around these limitations, but
may come at the expense of some other seemingly reason-
able postulates, such as Duplicate-removal.

Future Work. There are many possibilities for future
work. Firstly, we have a representation result only for con-
ditioning operators. A characterisation of score-based op-
erators – either the class in general or the specific operator
excess-min – remains to be found. This would help to fur-
ther clarify the differences between conditioning and score-
based operators. We have also not considered any compu-
tational issues. Determining the complexity of calculating
the results of our example operators, and the complexity
for conditioning and score-based operators more broadly,
is left to future work. Secondly, there is scope for deeper
postulate-based analysis. For example, there should be pos-
tulates governing how beliefs change in case c in response
to reports in case d. We could also consider more postulates
relating trust and belief, and compare these postulates with
those of Yasser and Ismail (2021). Finally, our framework
only deals with three levels of trust on a proposition: we
can believe Ei(ϕ), believe ¬Ei(ϕ), or neither. Future work
could investigate how to extend our semantics to talk about
graded expertise, and thereby permit more fine-grained
degrees of trust (Hunter 2021; Yasser and Ismail 2021;
Delgrande, Dubois, and Lang 2006).
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