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ABSTRACT

Context. Anisotropies of the cosmic microwave background are thought to be due to perturbations of the primordial medium, which,
post recombination, lead to the formation of galaxy clusters and galaxies
Aims. The perturbation wave modes of the primordial medium at and before recombination, consisting of a fully ionised baryonic
plasma, a strong black body radiation field, and cold dark matter, are analysed.
Methods. We use the linear perturbation theory of the relativistic equations of motion, utilising a strict thermodynamic equilibrium
model that relates the radiation energy density to the plasma temperature.
Results. It is shown that a wave mode corresponding to the postulated baryon acoustic waves exists with a phase velocity close to the
speed of light, but the participation of the dark matter in this mode is very small. Instead, the dark matter has its own dominant mode
in the form of gravitational collapse, with very little participation by the baryonic plasma.
Conclusions. In view of this very weak coupling between baryons and dark matter, the initial conditions postulated for computer
simulations of large-scale structure and galaxy formation – which assume that after recombination, when galaxy formation is getting
underway, baryon and dark matter density perturbations are spatially coincident and are equal in terms of fractional amplitude – may
be unjustified. Additionally, the possible non-coincidence of baryon and dark matter perturbations at the last scattering surface has
implications for the analysis of cosmic microwave background anisotropies.
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1. Introduction

The accepted orthodoxy in cosmology is that the Universe prior
to a redshift of 1500 consisted partly of fully ionised baryonic
plasma at a temperature above 4000◦ K in thermal equilibrium,
a consequent black body radiation field with a radiation pressure
far exceeding the thermal pressure of the plasma, and a dark
matter component with a mass an order of magnitude greater
than that of the baryons. Due to the radiation pressure acting on
the baryons, the fluctuations in baryon density, inferred from the
anisotropies in the cosmic microwave background (CMB) radi-
ation, would be unable to collapse to form galaxies and galaxy
clusters, since the pressure was such that the Jeans length (i.e.
the minimum scale for a density enhancement to collapse under
gravity) would be greater than the scale of the Universe.

Subsequent to redshift 1500, the temperature of the expand-
ing plasma would fall to below the temperature needed for
hydrogen recombination to occur in thermal equilibrium, and
baryonic matter would then decouple from the radiation field
after this era of recombination. Consequently, radiation pressure
would no longer prevent the baryon density perturbations from
collapsing under gravity, and the era of galaxy and cluster for-
mation would begin.

Large-scale cosmological computer simulations start their
initial conditions after the era of full recombination at redshift
∼100 and assume that there is coincidence between dark mat-
ter and the baryonic perturbations that are revealed by the CMB
anisotropies; in other words, they assume that the positions and
amplitudes of peaks and troughs of density perturbations in

terms of a percentage of the ambient density are identical for
baryonic and dark matter (Vogelsberger et al. 2014; Schaye et al.
2015; Kaviraj et al. 2017). However, there is a serious issue with
this assumption: though we do not know the specific nature of
dark matter, it seems certain that it does not absorb or emit elec-
tromagnetic radiation and hence cannot be affected at all by the
radiation pressure. This means that prior to the era of recombina-
tion, perturbations of dark matter cannot be supported by radi-
ation pressure, while baryonic perturbations will be supported.
Furthermore, standard cosmology postulates cold dark matter
(ΛCDM), so there is also no internal kinetic energy that would
be able to prevent the collapse. Therefore, dark matter should be
subject to gravitational collapse on all scales. This would leave
any assumption of coincidence at recombination between bary-
onic matter perturbations, as evidenced by the electron density
perturbations deduced from the CMB, and dark matter perturba-
tions open to question.

To quantify this idea, it is useful to carry out a simple plane
wave analysis of the perturbation of a system consisting of bary-
onic plasma, black body radiation, and dark matter. This analysis
considers the period between horizon crossing of the perturba-
tion wavelength and recombination. A similar analysis has been
the basis of the baryon acoustic model for the interpretation of
the CMB, as exemplified by Dodelson (2003). In this paper we
follow a similar physical model for the baryons and the dark
matter but use a different physical paradigm for the radiation.
Dodelson uses a kinetic theory model for the photons of the
radiation field, in the form of the Einstein Boltzmann equations,
leading to a hierarchy of moment equations for the radiation
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temperature perturbation. We assume strict thermodynamic
equilibrium, with the radiation having a black body spectrum and
the energy density given by the Stefan–Boltzmann law based on
the baryon temperature.

It should be noted that the fully ionised baryon plasma does
not support simple acoustic waves, but, in common with con-
temporary plasmas, it supports a variety of waves, such as Lang-
muir waves (also known as plasma waves, where the electrons
oscillate rapidly, independent of the ions), ion-acoustic waves
(Boyd & Sanderson 1969), and, if a magnetic field is present in
the primordial plasma (Ruis-Granados et al. 2016), a variety of
magnetohydrodynamic waves. However, ion acoustic waves are
the nearest mode to a simple acoustic wave, and the plasma fre-
quency at recombination is many magnitudes higher than the fre-
quency of ion acoustic waves at the relevant wavelengths, so the
electrostatic binding of electrons and ions is very strong. There-
fore, in common with Dodelson’s analysis, we assume that a
simple acoustic-like wave is the origin of the CMB anisotropies
and follow a similar set of equations for baryons and dark matter
as that on page 111 of Dodelson (2003).

In this paper we perform an eigenmode analysis of the plane
waves supported by this model. This analysis highlights the very
weak coupling between the baryon and dark matter perturbations
and calls into question the assumptions behind the initial condi-
tions for simulations starting at redshift ∼100, and indeed the
analysis of the CMB anisotropies in terms of coincident baryon
and dark matter perturbations.

2. Basic equations with black body radiation
pressure

Our assumption that the radiation is in strict thermodynamic
equilibrium with the baryonic plasma is based on the fact that we
considered only scales much greater than the mean free path of
a photon, meaning that the radiation and plasma move together;
in other words, we used the tight coupling approximation. This
neglects the effect of Silk damping at short wavelengths (Silk
1967) but yields a simple, but plausible, physical model that
identifies the different baryon and dark matter wave modes. The
energy density of the radiation is then given by the Stefan–
Boltzmann law, leading to the associated isotropic, but spatially
varying, radiation pressure.

We note that under the tight coupling approximation, dis-
cussed by Dodelson (2003) on page 226, the radiation dipole
term in the equation of motion of the baryons in his formalism,
proportional to Θ1, can be shown, using the equation of motion
for Θ1, to reduce to a gradient of the monopole term (i.e. ikΘ0)
when the frequency of a wave is much lower than the photon
collision frequency. Consequently, under these assumptions, the
two radiation formalisms are equivalent.

The total thermal energy density is then

U = UR + UB,

where

UB =
3
2

nB KT = 3
ρB

mp
KT.

Here, ρB is the density of baryons, mp is the proton mass, T is
the baryonic temperature, and K is Boltzmann’s constant, while

UR = 4
σT 4

c
,

where σ is Stefan’s constant, and c is the speed of light.

With T = 4000◦ K, and ρB ∼ 10−17 kg m−3 at z = 1500 we
have UR � UB.

Hence, we deemed the work done by radiation pressure
on baryonic compressions to go wholly into UR since when T
increases radiation will be emitted, increasing UR. We therefore
used a conservation equation for the UR effectively carried by
the baryons, with the addition of a source term that represents
adiabatic compressional heating together with a relativistic grav-
itational correction term.

The perturbed, expanding flat Universe metric in the Newto-
nian conformal gauge is given by

g00 ( x, t) = −1 − 2ψ (x, t)
g0i ( x, t) = 0

gi j ( x, t) = a (t)2 δi j (1 + 2φ (x, t)) ,

where a (t) is the cosmological scale factor, ψ is the Newto-
nian potential, and φ is the perturbation of the spatial curva-
ture. We ignored any neutrino contribution since such a weakly
interacting component will have little effect on the relationship
between baryons and dark matter, and, since the radiation field
is isotropic, we have (see Eq. (5.33) of Dodelson 2003)

φ = −ψ.

Hence, the set of equations governing a combined baryonic
and dark matter fluid accompanied by a black body radiation
field with dominant radiation pressure, replacing Eqs. (4.100) to
(4.106) of Dodelson, is

∂ρB

∂t
+ O · (ρBvB) = −

3
c2 ρB

∂φ

∂t
(1)

ρB

(
∂

∂t
+ vB · O

)
vB + Op +

da/dt
a

ρBvB = −ρBOφ (2)

∂ρD

∂t
+ O · (ρDvD) = −

3
c2 ρD

∂φ

∂t
(3)

ρD

(
∂

∂t
+ vD · O

)
vD +

da/dt
a

ρDvD = −ρDOφ (4)

∂UR

∂t
+ O · (URvB) + pO · vB = −

3
c2 UR

∂φ

∂t
(5)

and finally

O2φ −
3
c2

da
dt

a

∂φ∂t
+

da
dt

a
φ

 = 4πG
(
ρD + ρB +

UR

c2

)
· (6)

Here, v is velocity and

p =
4
3
σT 4

c
� nB KT.

3. Plane wave perturbation solutions with
frequency� da/dt

a

We firstly ignore the rate of change of the cosmological scale
factor terms, under the assumption that we are considering only
perturbations with timescales much smaller than the expansion
time, so the expansion rate is negligible compared to the rate of
change of the perturbations. The terms proportional to ∂φ

∂t on the
right-hand side of the conservation equations, Eqs. (1), (3), and
(5), are the only relativistic correction terms required under this
assumption and will only be non-negligible in the case of a wave
mode where the phase velocity is comparable to c.
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Linearising with respect to the small perturbations of the
principal physical quantities (i.e. ρB, vB, ρD, vD, φ, and
T ) and then assuming longitudinal plane waves propagating
in the x direction (i.e. all perturbations ∝ exp (iωt − ikx) with
vB,D =

(
vB,D, o, o

)
), we have from Eqs. (1) to (6)

iω ρB − ikρBvB = −
3
c2 ρBiωφ (7)

iωρBvB − ik
16σT 3

3c
T = ρBikφ (8)

iω ρD − ikρDvD = −
3
c2 ρDiωφ (9)

iωρDvD = ρDikφ (10)

iω
16σT 3

c
T − ik

16σT 4

3c
vB = −

12σT 4

c3 iωφ (11)

k2φ = −4πG
(
ρD + ρB +

16σT 3

c3 T
)
. (12)

We need to now reduce these equations to a single equation
for one of the six physical quantities in which the multiplying
expression will yield a dispersion relation for frequency, ω, as a
function of wavenumber, k .

From Eq. (10),

φ =
ω

k
vD , (13)

and from Eq. (7),

vB =
ω

k
ρB

ρB
+

3
c2

ω

k
φ, (14)

while from Eq. (11)

T =
k

3ω
T vB −

3
4c2 Tφ.

Using Eq. (14), this becomes

T =
T
3
ρB

ρB
+

1
4c2 Tφ. (15)

Therefore, substituting for T in Eq. (8) we have

ωρBvB − k
16σT 4

9c
ρB

ρB
− k

4σT 4

3c3 φ = ρBkφ,

and using Eq. (14) we have(
ω2

k2 − αc2
)
ρB = −

(
3
c2

ω2

k2 − 1 −
3
4
α

)
ρBφ, (16)

where

α =
16σT 4

9ρBc3 ·

From Eq. (9),

ρD =
k
ω
ρDvD −

3
c2 ρDφ (17)

and, using Eq. (13),

ρD =

(
k2

ω2 −
3
c2

)
ρDφ. (18)

From Eq. (15), Eq. (12) becomes

k2φ = −4πG
(
ρD + ρB (1 + 3α) +

4σT 4

c5 φ

)
.

Therefore, substituting for ρB and ρD from Eqs. (16) and (18),
respectively, we obtaink2 + 4πG

(
k2

ω2 −
3
c2

)
ρD − 4πG (1 + 3α)

(
3
c2
ω2

k2 − 1 − 3α
4

)(
ω2

k2 − αc2
) ρB

+
9πGαρB

c2

 φ = 0.

The expression inside the curly brackets must therefore be
zero and represents the dispersion relation for the perturbations.
Multiplying it by ω2

(
ω2

k2 − αc2
)

and defining the characteristic
frequencies (which are actually inverse timescales),

ω2
D = 4πGρD and ω2

B = 4πGρB.

We then obtain the following quadratic equation for ω2:1 − 3ω2
D

k2c2 − 3
(
1 +

9α
4

)
ω2

B

k2c2

ω4

−

[
αk2c2 − (1 + 3α)ω2

D −

(
1 +

15α
4

)
ω2

B

]
ω2 − αk2c2ω2

D = 0.

This has the solutions

ω2 =


[
1 − (1 + 3α) ω2

D
αk2c2 −

(
1 + 15α

4

)
ω2

B
αk2c2

]
±
√

A + B

2
[
1 − 3ω2

D
k2c2 − 3

(
1 + 9α

4

)
ω2

B
k2c2

]
αk2c2,

(19)

where

A =

1 − (1 + 3α)
ω2

D

αk2c2 −

(
1 +

15α
4

)
ω2

B

αk2c2

2

and

B =
4ω2

D

αk2c2

1 − 3ω2
D

k2c2 − 3
(
1 +

9α
4

)
ω2

B

k2c2

 ·
Now at z = 1500, ρB ∼ 10−17 kg m−3 and ρD ∼ 10−16 kg m−3;

therefore, ω2
B ∼ 10−26 and ω2

D ∼ 10−24. For wavelengths
∼10 Kpc at recombination (and therefore within the horizon),
k2c2 ∼ 10−22.

Therefore, both ω2
D

k2c2 and ω2
B

k2c2 � 1, and, to first order in these
small quantities, the argument of the square root here becomes

A + B = 1 + 2 (1 − 3α)
ω2

D

αk2c2 − 2
(
1 +

15α
4

)
ω2

B

αk2c2 ,

and the top line of the fraction becomes

1 − (1 + 3α)
ω2

D

αk2c2 −

(
1 +

15α
4

)
ω2

B

αk2c2

±

1 + (1 − 3α)
ω2

D

αk2c2 −

(
1 +

15α
4

)
ω2

B

αk2c2

 ·
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For the minus sign, this reduces to −2 ω2
D

αk2c2 , meaning the solution
for ω2 is

ω2 = −ω2
D.

Therefore, the time dependence of all perturbations is
exp (±ωDt) (i.e. there is one decaying mode and one unstable
mode). For both these modes, Eqs. (16) and (18) implyω2

D

k2 + αc2
 ρB = −

 3ω2
D

c2k2 + 1 +
3
4
α

 ρB φ

and

ρD = −

 k2

ω2
D

+
3
c2

 ρDφ.

Therefore,

ρD

ρB
=

1 + αk2c2

ω2
D

+
3ω2

D
c2k2 + 3α

1 +
3ω2

D
c2k2 + 3α

4

ρD

ρB
·

The dominant term here is the second one on the top line, and
hence

ρD

ρB
≈

αk2c2

ω2
D

(
1 + 3α

4

) ρD

ρB
� 1,

that is, the dark matter and baryonic matter density perturbations
are in phase but with the dark matter perturbation very much
greater than the baryonic perturbation. Although the baryonic
matter reacts to the potential well created by the dark matter,
radiation pressure prevents the baryonic matter from falling sig-
nificantly into that well. Now from Eq. (17), and substituting for
φ from Eq. (18), we obtain

vD =
k

ω
(

k2

ω2 −
3
c2

) ρD

ρD
,

which for these two modes yields

vD = ±
ik

ωD

(
k2

ω2
D

+ 3
c2

) ρD

ρD
,

meaning the velocity perturbation is 90◦ out of phase with the
density perturbation and, for the decaying mode (shown with
the plus sign), involves expansion of the dark matter away from
the density peak. On the other hand, the unstable mode (minus
sign) involves gravitational collapse into the density peak. Any
initial dark matter perturbation will potentially involve both of
these modes; for instance, an initial density perturbation at rest
involves equal amplitude contributions for both modes – one
mode decays away, while the other mode grows exponentially
in amplitude. The cold dark matter is therefore unconditionally
unstable to gravitational collapse on all scales.

For the plus sign the solution (19) for ω2 to first order in ω2
D

k2c2

and ω2
B

k2c2 is

ω2 = αk2c2 +

(
27
4
α2 −

3
4
α − 1

)
ω2

B ≈ αk2c2.

Again, for these modes, Eqs. (16) and (18) imply(
27
4
α2 −

3
4
α − 1

)
ω2

B

k2 ρB

=

1 − 9
4
α − 3

(
27
4
α2 −

3
4
α − 1

)
ω2

B

k2c2

 ρBφ

and

ρD =

 k2

αk2c2 +
(

27
4 α

2 − 3
4α − 1

)
ω2

B

−
3
c2

 ρDφ.

That is, to first order,

ρD

ρB
=

(1 − 3α)
(

27
4 α

2 − 3
4α − 1

)
α
(
1 − 9

4α
) ω2

B

k2c2

ρD

ρB
� 1

at the era of recombination α ≈ 0.098, and hence

ρD

ρB
≈ 9.29

ω2
B

k2c2

ρD

ρB
,

meaning ρD is in phase with ρB but is very small in comparison.
This mode is the postulated baryon acoustic oscillations, with
a phase velocity close to 0.3c due to being driven by radiation
pressure rather than baryonic thermal pressure.

For the dark matter gravitational collapse mode, the assump-
tion that ω �

da/dt
a turns out to be untenable, and hence

neglecting the scale factor terms is not justifiable – prior to
recombination there would only be a few e-folding times for the
gravitational collapse to proceed. However, for the baryon
acoustic oscillations, for wavelengths ∼10 Kpc at recombination
(and therefore within the horizon),

ω ∼ kc �
da/dt

a
,

so the analysis holds for baryon acoustic oscillations.

4. Analysis including the scale factor terms for the
dark matter collapse perturbations

We sought a solution of Eqs. (1)–(6) where the perturbations of
ρB, vB, and UR are negligible, but we retained the scale factor
terms in Eq. (4). We can still ignore the scale factor terms in

Eq. (6) since k2c2 �
da/dt

a ωD and
(

da
dt
a

)2
. We can also drop the

∂φ
∂t term on the right-hand side of Eq. (3) since we expect the
characteristic timescale to be� 1/kc.

Equations (3), (4), and (6) for the Fourier component
exp (−ikx) then become

dρD

dt
= ikρDvD, (20)

dvD

dt
+

da/dt
a

vD = ikφ, (21)

and

k2φ = −4πGρD. (22)

Combining Eqs. (21) and (22) and multiplying both sides by a,
we have

d (avD)
dt

= −i
4πGa

k
ρD.
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This yields the set of equations

dρD

dt
=

kρD

a
uD

and

duD

dt
=

4πGa
k

ρD,

where iavD = uD.
Solving these numerically, starting with ρD

ρD
= 10−6 and

uD = 0 at a = 10−5, ρD increases almost linearly by a factor
of just under 3 at a = 10−3, corresponding to recombination.
This solution has a potential field given by

φ = −
4πG
k2 ρD.

This can be used to estimate the response of the baryons driven
by this dark matter potential by equating the radiation pressure,
which will oppose the collapse of the baryons to the gravitational
pull of the potential well, yielding

16σT 3

3c
T = −ρBφ,

meaning

16σT 3

3c
T =

ω2
B

k2 ρD. (23)

Now, dropping the relativistic ∂φ
∂t term, Eq. (1) is

dρB

dt
+ ρBO · vB = 0 (24)

and Eq. (5) is

dUR

dt
+ (UR + p)O · vB = 0. (25)

Substituting for O · vB from Eqs. (24) to (25) yields

1
T

dT
dt

=
4

3ρB

dρB

dt
,

and therefore

T
T

=
4
3
ρB

ρB
·

And from Eq. (23),

48σT 4

9c
ρB

ρB
=
ω2

B

k2 ρD.

Therefore,

ρB =
1

4α
ω2

B

k2c2 ρD,

that is,

ρB � ρD.

The baryons would be virtually unaffected by the collapse of the
dark matter.

5. Conclusions

The eigenmode analysis here demonstrates the distinction
between the baryon acoustic oscillation mode and the dark mat-
ter perturbation mode in the epoch between horizon crossing
and recombination. Baryon acoustic waves are fast moving, with
a high frequency oscillating potential to which the dark mat-
ter barely reacts; on the other hand, the dark matter perturba-
tion mode is a static, relatively slow gravitational instability. The
two modes are uncorrelated, and the distinction between them is
ignored in modern analyses, where a constraint that couples the
two modes is universally applied.

Naoz & Barkana (2005), for instance, couple the two wave
modes together by applying a constraint that the baryon and
dark matter perturbations have the same spatial structure (i.e.
a Fourier component with the same wavenumber and phase).
They then developed and numerically solved the resulting set of
time-dependent differential equations for the perturbations. This
dictates that the result will be a standing wave. This technique
is used by many papers – another example, using the Einstein-
Boltzmann equations for photons, is Pan et al. (2016), where
their Eq. (8) explicitly shows the standing wave.

Figure 3 of Naoz & Barkana indicates that under this con-
straint the fractional perturbations of the baryons and dark mat-
ter tend to equality after recombination due to the baryons
falling into the coincident dark matter potential wells. This jus-
tifies the initial conditions assumed by large-scale cosmological
simulations.

However, the analysis here shows that the baryon element
of a dark matter perturbation wave is very small, and not oscil-
latory. Hence, the standing wave in these calculations actually
involves the coincidence of three separate waves – a dark mat-
ter perturbation wave and two baryon acoustic waves of equal
magnitude travelling in opposite directions to create an oscil-
latory standing wave in phase with the dark matter wave. This
situation would arise if the quantum fluctuations present in the
inflationary epoch, which are surmised to be responsible for the
perturbations considered here, consisted solely of gravitational
potential perturbations. The effect of these gravitational pertur-
bations would be to induce equal velocity perturbations in both
the dark matter and baryons, leading to exactly this scenario.
However, while the density perturbation in baryons and dark
matter would be initially coincident, before recombination the
density of the baryons would oscillate but that of the dark mat-
ter would not, so coincidence would occur only periodically.
Authors often make a statement to the effect that the potential
generated by a dark matter density perturbation drives the oscil-
lations in the baryons (Li et al. 2008 and Eq. (8.18) of Dodelson
2003), but in fact an oscillatory baryon acoustic standing wave in
phase with a dark matter perturbation would be a consequence
of initial conditions set up by gravitational fluctuations during
inflation.

If the quantum fluctuations during inflation actually consist
of density perturbations, rather than pure gravitational pertur-
bations, then there is no reason why perturbations in the dark
matter and baryons would be related. Indeed, the differences
highlighted here in the respective wave modes would make that
highly unlikely.

On the assumption that all galaxies, and indeed galactic clus-
ters, have their dark matter haloes, it could be argued that this
justifies the assumption that dark matter and baryons should
have coincident initial conditions for simulations. However, this
would have difficulty accounting for the steeply falling rota-
tion curve galaxies observed at z >∼ 1 (Lang et al. 2017;
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Genzel et al. 2017). These early galaxies seem to lack dark mat-
ter haloes. There are, however, very few, if any, steeply falling
rotation curve galaxies in the local Universe – though recent stel-
lar observations of a satellite galaxy of NGC 1052 indicate that it
may contain no dark matter (van Dokkum et al. 2018). If steeply
falling rotation curves turn out to be present in all early galax-
ies, and observations by the James Webb telescope may soon
shed light on this, there would remain the requirement to explain
how flat rotation curves develop as galaxies age (see for instance
Nelson 1988). Initial conditions for simulations should at least
consider the possibility of dark matter and baryons not being
coincident at z ∼ 100. The possibility of propagating baryon
acoustic oscillation (BAO) waves such as those that are deemed
to create the ∼150 Mpc signature at z = 0 should also be con-
sidered. Tseliakhovich & Hirata (2010) propose that a relative
velocity between dark matter and baryons due to the decrease in
the sound velocity at recombination, going from radiation pres-
sure to gas pressure, will have a significant effect on the subse-
quent development of structure. This effect is, however, second
order in the perturbation amplitudes; the velocity and structural
differences that would arise from the different evolution of dark
matter perturbations and baryonic waves would be first order in
the amplitudes.

Lastly, although the peaks in the power spectrum of the CMB
anisotropies can be interpreted as standing waves in the finite
length scale given by the sound horizon at the last scattering sur-
face, for wavelengths much smaller than the sound horizon the
evidence that there are standing waves is not so clear. Indeed, the
idea that BAO waves propagate away from any initial inflation-
induced perturbation is backed up by the BAO signature at z = 0
in the distribution of galaxies (Eisenstein et al. 2005). Purely
standing waves at smaller scales are not consistent with this.

This, and the analysis here, calls into question the assumption of
standing baryonic waves in phase with dark matter in the analy-
sis of the CMB anisotropies, as seen in Fig. 4 of Hu & Dodelson
(2002), where fluctuations in the baryons are assumed to be
driven by a potential created by perturbations in the dark matter.
It could be argued that the success of this model in reproducing
the peaks in the power spectrum justifies this assumption, but
Lopez-Corredoira (2017) points out that matching the peaks can
be achieved in a variety of ways not related to ΛCDM.

Acknowledgements. I thank Simon White for comments on the first draft of this
paper.
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