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Abstract—Increasing connectivity and automation in vehicles
leads to a greater potential attack surface. Such vulnerabili-
ties within vehicles can also be used for auto-theft, increasing
the potential for attackers to disable anti-theft mechanisms
implemented by vehicle manufacturers. We utilize patterns
derived from Controller Area Network (CAN) bus traffic
to verify driver “behavior”, as a basis to prevent vehicle
theft. Our proposed model uses semi-supervised learning
that continuously profiles a driver, using features extracted
from CAN bus traffic. We have selected 15 key features and
obtained an accuracy of 99% using a dataset comprising a
total of 51 features across 10 different drivers. We use a
number of data analysis algorithms, such as J48, Random
Forest, JRip and clustering, using 94K records. Our results
show that J48 is the best performing algorithm in terms of
training and testing (1.95 seconds and 0.44 seconds recorded,
respectively). We also analyze the effect of using a sliding
window on algorithm performance, altering the size of the
window to identify the impact on prediction accuracy.

Index Terms—Anti-theft, driver profiling, situational aware-
ness, security, vehicle.

1. Introduction

Profiling a vehicular system can improve situational
awareness, predictive maintenance of a vehicle and as
the basis to prevent theft. Increasing connectivity and
automation in vehicles has led to vehicle-theft being a
significant concern [1],[2],[3]. One of the major reasons
is that these vehicles are exposed to a range of cyber
risks that could be exploited by the attackers [4],[5],[6].
Although an Internet connection enables the availability
of real-time traffic data, intelligent fleet management, car-
sharing and autonomous driving – it also leads to new
theft possibilities [7].

To reduce the number of auto-theft cases, many anti-
theft technologies are being implemented across the world,
but the cases of stolen vehicles are still increasing [8].
According to UK police statistics on auto crime, there
were over 114K auto theft cases in England and Wales in
2018/19, an increase of 8K cases compared to the previ-
ous year [9]. Exploited vulnerabilities include increasing
acceleration remotely, disabling the brakes of a vehicle,
access to air conditioning and door locks and data injec-
tion through the telematics system [10]. The security of
these vehicles will become more critical with the increased

production of these vehicles. For instance, in 2014, thieves
stole 6K+ vehicles using keyless techniques, which make
up to half of all vans and vehicles stolen – with top of the
range vehicles such as BMW and Range Rover making
up 70% of all vehicles stolen in this way [11]. According
to ITS Digest reports that there will be over 470 million
connected vehicles by 2025 [12].

In this direction, the Controller Area Network (CAN)
bus is researched with a range of machine learning algo-
rithms for profiling the drivers and solve problems such
as driver classification/identification, driver performance
assessment, and individual driving style learning. In this
work we use machine learning algorithms to analyze the
driving patterns of each individual driver, to generate an
alert if an unknown person is found to be the driver.
The idea behind this approach is to improve the already
existing models by experimenting with machine learning
and obtain more precise the user driving patterns.

Our contributions are as follows:
1) We have analyzed in-vehicle Controller Area Net-

work (CAN) traffic to authenticate (verify) a driver.
2) We propose “ATVSA”, an approach to identify pat-

terns for profiling the drivers. Our approach ex-
cludes identical and co-related features that reduce
the overall processing time and improve detection
performance.

3) We have validated our model using real driving
data and demonstrated that semi-supervised machine
learning is effective in detecting anti-theft. We used
key features for the classification of drivers based on
their behavioral characteristics.

2. Related Work

Data mining techniques use supervised
learning utilizes labeled data for training purposes
[13],[14],[15],[16],[17]. Table 1 shows work related
to driver identification and profiling using machine
learning algorithms, such as Hidden Markov Model
(HMM), Gaussian Mixture Model (GMM), Support
Vector Machine (SVM), Random Forest (RF), Naive
Bayes (NB) [18], K-Nearest Neighbor (KNN) [19],
Multilayer Perceptrons (MLP), Fuzzy Neural Networks
(FNN) [20] and K-means clustering [21]. Zhang et al.
[22] use HMM to analyze unique driving patterns using
an artificial simulator. They extracted different features
related to steering and the accelerator, and classified
different drivers with 85% accuracy. Meng et al. [23]



TABLE 1: Driver Classification and Profiling

Work Data Set # of
Fea-
ture

Classification
Algorithm

Accuracy

[23] Driving simu-
lation

3 HMM 99%

[27] Sensor data 2 GMM 76.8%
[8] CAN network

data
4 GMM,HMM 25%

[29] CAN network
data

8 SVM, RF,
NB, KNN

87%

[30] Vehicle sen-
sor & video
stream

2 MLP,
statistical,
FNN

99%

[31] CAN network
data

4 Statistical 77%

[32] Driving simu-
lation

2 HMM 85%

[34] Clustering 4 K-means -

studied driving patterns using a game-based simulation,
using HMM for classifying drivers based on features
such as acceleration and wheel data. A simulated driving
environment however does not model variable road
conditions, weather, etc., and is therefore of limited
benefit a real-world context.

Other studies on anti-theft detection use facial recogni-
tion [24], vehicle security systems using IoT devices [25],
and authenticated access control for vehicle systems using
driving license and fingerprinting [26]. However, such
solutions do not utilize artificial intelligence to train the
system model. Nishiwaki et al. [27] collected driving data
with sensors installed on a Toyota Regius, which a number
of drivers drove to support data collection. This real-
world data capture is much more representative of actual
usage. They applied the supervised learning algorithm
Gaussian Mixture Model (GMM), and this model was able
to differentiate between 276 drivers with 76.8% accuracy.
Other work that analyzed data extracted from a CAN bus
can be found in [28]. A single cable is required to extract
CAN data making this a comparatively more economi-
cal method. CAN data from 9 drivers was collected by
Choi et al. [8], and an HMM was subsequently used to
classify drivers based on their unique driving patterns –
although with a very low accuracy of 25%. Enev et al. [29]
used multiple machine learning algorithms to enhance the
driver identification model, using data collected from 15
drivers – with an accuracy of 87%. Wahab et al. [30]
performed modeling of individual driving characteristics.
They extracted features using GMM and wavelet transfor-
mation and showed that accelerator and brake pedal use
are very efficient for profiling drivers. Kedar-Dongarkar
et al. [31] classified drivers based on energy consumption
by a vehicle. The authors categorized drivers into three
types: aggressive, moderate and conservative, by analyz-
ing driving patterns. Zhang et al. [22] (in addition to
HMM), also used deep neural networks to extract unique
driving patterns. They used multiple Convolutional Neural
Networks (CNN) and Recurrent Neural Networks (RNN)
for driver identification. These studies showed that CAN

data could be used for extracting driving patterns with
data mining techniques [35]. All these models are trained
using supervised learning. In this research, we propose a
model based on supervised and semi-supervised training.

A number of shortcomings of supervised algorithms
can be overcome by applying unsupervised learning, as
they do not require the use of labeled data. Constan-
tinescu et al. [33] clustered different driving styles us-
ing the Hierarchical Cluster Algorithm (HCA). Higgs
and Abbas [34] used the K-means clustering algorithm
for the identification of drivers. The suggested models
show that driver identification could be performed using
unsupervised algorithms. These unsupervised algorithms
can create clusters for distinct driving patterns, but these
algorithms cannot identify which cluster is related to a
particular driver (or vehicle owner). If a cluster that can
be associated with a vehicle owner cannot be identified,
the model cannot be used for theft detection.

In previous studies, most of the data used were ex-
tracted from accelerators and brakes. Moreover, previous
studies deployed complex pre-processing on the extracted
features to enhance the performance of these features. To
satisfy auto-theft detection requirements, we propose a
hybrid model ATVSA to detect auto-theft using a semi-
supervised approach.

3. Vehicle Environment and Associated Risks

This section presents the overall system model and
attacks vector for vehicle theft in modern scenarios.

3.1. System Model

We present a system model for deploying security
services to prevent vehicle theft, as shown in Fig 1. Our
system consists of four major entities: vehicle owner,
server, vehicle monitoring company and the vehicle it-
self. Data extracted from an internet-connected vehicle on
driving behavior, using the On-Board Diagnostics (OBD)-
II protocol, can be analyzed on a server located outside
the vehicle, to generate an alarm to a vehicle monitoring
company if an anomaly is detected.

Figure 1: Vehicle security model in auto-theft.

3.2. Attack Vectors

We present a threat modeling with technical and oper-
ational adversarial capabilities against vehicle theft. Using



these methods, attackers can compromise the vehicle’s
system and manipulate or inject malicious data.
Technical Capability: we identify what thieves are likely
to know about the vehicle and their ability to analyze
the vehicle and develop malicious input for different I/O
channels. Moreover, we assume that thieves have access to
vehicle hardware in order to transmit messages (encoding
suitable for any channel). We further assume that thieves
are not capable enough to brute force complex shared
secrets (e.g., symmetric encryption keys). In general, we
assume that thieves can access information obtained di-
rectly by examining vehicle systems, similar to those
targeted by the thieves in the past.
Operational Capability: includes the requirements for
thieves to deliver any malicious input to a vehicles’ input
channel. Modern vehicles provide several physical inter-
faces that thieves can access directly or indirectly for
accessing the vehicles’ internal network. This includes
On-Board Diagnostic-II (OBD-II), an infotainment sys-
tem, and short and long-range wireless access. Our threat
model assumes that thieves cannot have direct access,
but using the OBD-II port, they can access the internal
system and compromise the vehicles’ internal network.
Our research focuses on how driving behavior can be used
to profile the drivers and how we can use the vehicle’s
different mechanical features for effective and accurate
predictions.

4. Proposed Approach

In this section, we propose an anti-theft model, i.e.
ATVSA that characterizes the driving patterns of drivers
and identifies drivers on unique driving patterns using a
semi-supervised learning approach. Figure 2 shows the
proposed driver verification process based on the analysis
of driving patterns. The proposed model of driver identifi-
cation consists of five stages: data collection, data cleans-
ing, feature selection, driver identification, and driver ver-
ification. When the driver starts driving the vehicle on the
road, sensors within the vehicle start recording the data.
Once the data is collected from the vehicles’ sensors, the
data is cleansed from any corrupt or inaccurate records.
In the next stage, the cleansed data is converted into
a new format, which has to be analyzed and different
features selected are used to differentiate the drivers on
unique driving characteristics. After features selection, the
stage is set for applying different machine learning algo-
rithms. For supervised learning, we apply four algorithms
namely J48, Random Forest (RF), JRip, and PART, and
the results obtained are compared with the pool of owner
driver’s data, along with utilizing unsupervised learning
by employing the K-means/Canopy clustering algorithm
to cluster the owner-driver data to create a pool of trusted
driving styles.

The last stage is the verification process when valida-
tion data is provided to the proposed model, the model
classifies the drivers on their unique driving patterns.
When the thief data is introduced, the proposed model in
its first instance of supervised learning deploys the clas-
sifiers for analyzing the accuracy. Note that the accuracy
will be below the threshold value in the presence of the
thief data. For the second instance, the system compares
the data with the pool of owner data (i.e., clusters of owner

Algorithm 1: Proposed Approach for Anti-theft
Detection

Output: Classification of drivers, whether the
vehicle is driven by the owner or thief

Input: Dataset of 51 features extracted from the
vehicle using CAN data

1 Input dataset compromising of 51 features into
the WEKA tool for selecting the features that
can be used for the analysis and classification;

2 After identifying the features that are extraneous
and identical, 15 features have been chosen;

3 GainRatioAttributeEva method is applied to
selected 15 features to derive the rank of the
selected features;

4 Apply supervised learning classification
algorithms and analyze the accuracy of the
algorithms;

5 Apply an unsupervised learning clustering
algorithm (i.e., K-means clustering and Canopy)
clustering the owner-driver data to create a pool
of trusted driving styles;

6 Compare the results of supervised learning with
the results of unsupervised learning;

7 If there will be a significant gap between
supervised learning and unsupervised learning,
then report the case as a Theft Case.

data using unsupervised learning). The driving style of the
thief driver will be not consistent with the pool of trusted
driving data, a difference would be visible between the
validation data of the thief and the selected owner-driver
data. There will be a considerable gap between the data of
both approaches, and with this gap, the proposed model
generates an alarm to the owner-driver and/or vehicle
monitoring company. Algorithm 1 provides an overview
of our approach.

Figure 2: Proposed model - driver verification process.

4.1. Data Collection

Driving data has been extracted from the online KIA
MOTORS Corporation (Seoul, South Korea) dataset [36].
Ten drivers participated in the experiment, and they drove



the vehicle on four paths in Seoul. The driving path
consists of three ways: motorway, city way, and parking
and with a total distance of 23 KM. All experiments
were performed under the same time zone from 8 p.m.
to 11 p.m. on weekdays. Each driver participating in the
experiment completed two round trips for classification.
The driving data was collected from different conditions,
the city way has a speed breaker, traffic lights, etc. and
the motorway has none. In parking space, it is required to
drive slowly and cautiously. The total number of features
that have been extracted is 51. The data that we used has
a total of 94,401 records (recorded every second with a
total size of 16.7 MB).

4.2. Designing Anti-Theft Approach

This subsection presents our anti-theft approach us-
ing machine learning algorithms and classifications. We
highlight how the approach toward identifying anti-theft
is designed. More specifically, the approach is designed
to identify the ever-growing cases of anti-theft.
• Supervised Learning: We have the dataset that is

labeled and have 51 features, each feature is rela-
tive to a class. The class is represented by the 10
drivers taking part in the experiment. All features
belonging to drivers with associated labels represent
the machine learning algorithm’s input responsible
for building the model from the analyzed data.

• Unsupervised Learning: We utilize the clustering al-
gorithm for driver identification to satisfy the pro-
posed requirements for semi-supervised learning. Us-
ing the K-means/Canopy clustering, we train only the
owner data in this learning approach.

Output step: The model’s output is a classification
scheme belonging to either the car owner or the thief. Us-
ing the proposed approach, once the validation data of the
thief is provided, the model in the first instance analyzes
the accuracy of the classifiers (supervised learning). In the
second instance, the thief driver data is compared with the
pool of trusted driving data (unsupervised learning).

4.3. Feature Selection

In this section, we present our approach to process
the features into new information that can be used for
the identification and classification of drivers. To better
understand the features, we have categorized the extracted
features into three main categories: (1) Transmission: all
features related to transmission and wheel, (ii) Fuel: all
features related to fuel efficiency and pressure, and (iii)
Engine: all features related to torque, engine and coolant
temperature. We extracted 51 features from the vehicle’s
dataset.

A large amount of data was extracted from the CAN,
so the selection of features was essential to train algo-
rithms for achieving high accuracy against theft identifi-
cation. In this first instance, we removed the features that
had some correlation between them. Afterwards, we set
up criteria for the removal of features from the dataset
(by applying a set of rules).
• Rule 1: If any of the features contains a null value

throughout the experimental driving.

• Rule 2: If a particular feature value collected from
other drivers is indifferent. It implies no distinct
values of a particular feature among the drivers par-
ticipating in the experiment.

• Rule 3: If the feature’s aggregated value and the stan-
dard deviation are zero for each driver. A zero value
in our context of driver identification is meaningless
as we analyze features that have distinguishing values
among drivers participating in the experiment.

Rule 1 implies that there are errors while extracting
data from the CAN, and a feature having missing or null
values generates an error in the modeling. Rule 2 implies
that there are no distinguishing characteristics of the fea-
ture among the drivers taking part in the experiment. Rule
3 implies that there is some data extraction error. If there
is some kind of an unknown error, it is essential to check if
the OBD-II is consistently recording zero values. Features
satisfying the rules are removed to reduce the noise from
the extracted data.

In our work, the driving data of different drivers are
involved, and we filtered valuable features from the dataset
of a total of 51 features. The hidden patterns can be
used for profiling the drivers. Different data preprocessing
techniques are involved as cleansing of data, integration
of data, transformation, and reduction of data. These
techniques can be used to improve the overall quality of
the data. Preprocessing of data is essential for knowledge
discovery as critical decisions are based on the quality of
data.

Algorithm 2: GainRatioAttriEval Method
Output: A set {SA, RA, Wa}
where SA: selected attributes, RA: ranking of
attributes, and Wa: weight of each attribute
Input: A set {CA, DA}
where CA: condition attribute of the driver’s
dataset and DA: decision attribute of the driver’s
dataset

1 Let ranking of attribute = Finite Ø;
2 Every attribute in the dataset, a ε CA – SA, the

importance of condition attributes a and the
Gain Ratio of (a, SA, DA) are calculated;

3 Choose the attributes from the dataset that
maximizes the Gain Ratio (a, SA, DA), record
the attributes as a, and SA← SA ∪ {a};

4 If the Gain Ratio(a, SA, DA) >0, then SA← SA
∪{a}, go to step 2; else go to Step 5;

5 Selected attributes SA are chosen through the
ranking value of attributes RA, which are based
on the Gain Ratio;

6 Assign a weight to each attribute Wa, for the
selected features SA.

The aim of applying data reduction techniques is to
determine the data attributes that have the probability
distribution of data classes as close as possible to the
original probability distribution obtained using a dataset
with all attributes. We use the GainRatioAttributeEval
method for choosing the significant features within the
dataset. This method evaluates the worth of an attribute
by measuring the gain ratio with respect to a class [37].
The following formula calculates the Gain Ratio:



TABLE 2: Capabilities of different Attack surfaces

Feature Category
of Feature

Rank of
Feature

Intake air pressure Fuel 4
Fuel consumption Fuel 11
Maximum indicated engine
torque

Engine 5

Engine torque Engine 6
Friction torque Engine 3
Calculated load value Engine 7
Engine coolant temperature Engine 10
Transmission oil temperature Transmission 2
Wheel velocity, front right hand Transmission 14
Wheel velocity, front left hand Transmission 12
Wheel velocity, rear left hand Transmission 13
Torque converter speed Transmission 15
Accelerator pedal value Fuel 9
Activation of air compressor Engine 8
Long term fuel trim bank1 Fuel 1

GainR(Class,Attribute) = (H(Class) −
H(Class|Attribute))/H(Attribute)

Where H represents the Entropy. Entropy represents
the randomness in the information being processed within
the dataset. We have selected 15 features from 51 fea-
tures extracted from the CAN dataset. Table 2 shows the
extracted features and a specific rank of each of such
features. This rank is computed by using the GainRatioAt-
tributeEval method, as mentioned in Algorithm 2.

4.4. Feature Distribution

Figure 3 shows the box and whisker plots of features
related to Fuel, Transmission and Engine, In-Take Air
Pressure, Long Trim Fuel Bank 1, Friction of Torque,
Maximum engine Torque and Transmission Oil Temper-
ature. Considering several features, we have not included
the box and whisker plots of all selected features, but
similar consideration can be done for all 15 selected
features. Through the box plot, we analyzed different
values within the dataset that include minimum value,
lower quartile (25%), median (50%), upper quartile (75%),
and maximum value.

Figure 3: Layout of box and whisker plot.

Here, these box and whisker plots of different features
highlight the driving characteristics of different drivers
involved in the experiment. This helps us in setting up a
platform for profiling the drivers. For calculation of values
in box and whisker Plot, the following formulas will be
used:

(a) Fuel consumption. (b) In-take air pressure.

(c) Long trim fuel bank-1. (d) Friction of torque.

(e) Maximum indicated engine
torque.

(f) Transmission oil tempera-
ture.

Figure 4: comparisons of different features; colour nota-
tion (Blue - first quartile, Red - second quartile, Green -
third quartile); the line between Red and Green boxes - a
median of the values.

Box1 = FirstQuartile (1); Box2 = Median − Quartile1;
Box3 = Quartile3 −Median Whisker Top = MaximumV alue −
Quartile3 Whisker Bottom = Quartile1−MinimumV alue

From Figure 4a, it can be seen that the box plot of
feature Fuel consumption has a range of 0-10,000 and it
is measured in cubic millimeters (MCC). All drivers show
similar kinds of box plots except driver A whose box plot
is relatively more prominent as compared to other drivers.
And the feature Fuel consumption can be correlated with
another collected feature, Acceleration Pedal value (not in
the selected list of 15 features) as more pressure on the
acceleration pedal will increase the vehicles’ speed, but on
the other hand, the vehicle will consume more fuel. The
feature of In-take air pressure (Figure 4b) has a range
of 0-255 that is measured in Kilo-pascal (kPA). From the
analysis of the box plot of 10 divers, it can be seen that the
engine for drivers A, E, and J inhale similar air pressure
(45 to 60 kPA). Furthermore, drivers B, C, D, F, G, H, and
I inhale air pressure between the range of 0 to 50 kPA.
The Box plot of the feature Long-Trim Bank (Figure 4c) is
also presented. This feature explains the correction value
being used by the fuel control system, and it is expressed
in percentages. Fuel trims are explained as a change in
fuel over some time. Long trim fuel bank-1 means that the
powertrain control module detects a fuel trim outside the
range of specification set by the vehicle’s manufacturer.
There are two types of fuel trims Short Term Fuel Trim
(STFT) and Long Term Fuel Trim (LTFT). The Box plot
of this feature shows 10 drivers’ distribution, and it can be
seen that driver A has the lowest distribution, and driver



E has the highest distribution. The other drivers show the
distribution between 2 to 6%. The box plot of feature
friction of torque is ranged from 0-100% (Figure 4d).
From the distribution, it can be seen that driver A exhibits
the highest percentage as compared to other drivers. In
contrast, other drivers B, C, D, E, F, G, H, I, and J show a
similar kind of distribution between 10 to 15%. The range
of Maximum Indicated Engine Torque is between 0-100%
(Figure 4e). From the analysis of the distribution of boxes
of different drivers, it can be seen that all the drivers are
having a distribution range of 55 to 75%. Box plot related
to feature Transmission oil temperature is shown in Figure
4f. The feature shows the temperature of oil inside the
transmission. The range of this feature is between -40 to
215 Celsius degree. Driver A has the highest value 100
C, and other drivers have a distribution between ranges of
85-95 C. The only exception in this feature is the value
of driver E, which has the lowest temperature.

5. Results and Evaluation

Our proposed model, ATVSA, has three main steps:
driver identification, driver verification, and driver detec-
tion. For our proposal of the semi-supervised learning-
based driver identification model, we have used a set of
supervised and unsupervised learning algorithms. We have
applied four algorithms mainly J48, Random Forest, JRip
and PART for supervised learning, and K-means/Canopy
clustering for unsupervised learning using the WEKA tool
in order to create a pool of unique driving styles.

5.1. Driver Identification

We have chosen those algorithms for driver identifica-
tion that have shown acceptable performance in previous
works, as far as the accuracy of these algorithms is con-
cerned. Driver identification training is performed every
second, as the unique driving patterns are recorded every
second. 10-fold cross-validation is used for the training
purpose, as this technique divides the data into 10 parts,
trains the model with 9 parts and 1 part is used to evaluate
the model. High accuracy and generalization ability are
the reasons for choosing this technique for validation
purposes. Table 3 shows the accuracy of algorithms in
identifying a thief driver in our experiment. It can be
observed that Kappa Statistics (for inter-rater reliability
for the values in the driving data) is almost the same for all
algorithms. Mean Absolute Error (MAE), to calculate er-
rors between pairs and Root Mean Squared Error (RMSE),
to calculate differences between values, are higher for
the Random Forest algorithm. Relative Absolute Error
(RAE) for calculating the performance of the predictive
model is lower for the PART algorithm, and Root Mean
Squared Error (RMSE) for calculating the error rate of the
regression model is lower for the J48 algorithm.

Figure 5 shows the time taken by each algorithm for
training purposes using 10-fold cross-validation. We can
deduce some useful information about the performance
of these algorithms. We applied different algorithms and
observed training time for all algorithms. We can observe
that the decision tree algorithm J48 took the least training
time whereas the Random Forest, a rule-based algorithm
took the highest training time to train the model [38].

TABLE 3: Accuracy and Statistics of Machine Learning
Algorithms

Algo.Average
Ac-
cu-
racy

Kappa
Statis-
tics

Mean
Ab-
solute
Error

Root
Mean
Squared
Error

Relative
Ab-
solute
Error

Root
Rel-
ative
Squared
Error

J48 99.9725 0.9997 0.0001 0.0073 6.4911 35.9954
RF 99.9629 0.9995 0.0029 0.0178 6.9001 33.9697
JRip 99.964 0.9996 0.0001 0.0081 6.5043 36.0095
PART99.9682 0.9996 0.0001 0.0079 6.4786 36.0095

In the second part of the experiment, we have
applied an unsupervised learning algorithm named K-
means/Canopy clustering. We provided the driving data
to the algorithm (K-means/Canopy) as an input. Using
the K-means/Canopy clustering algorithm, we formed the
clusters of driving data that are considered as the pool of
trusted driving styles.

5.2. Driver Verification - Reconstruction of Vali-
dation Data

Reconstruction is the process for creating testing data
to examine how the validation data is different from the
original driving data of drivers/owners. The first stage
of creating the data is to perform feature selection and
feature engineering. After performing feature selection
and engineering, we get the data nearest to owner data in
both cases of learning. In supervised learning, we get the
data that is nearest to drivers and in unsupervised learning,
we obtain the data nearest to the cluster/pool of driving
patterns of the owner-driver. The central values of each
cluster can represent clusters created on the driving data
of owners. After plotting the validation data into the same
clusters, a single centroid exists in these clusters.

Error Calculation is the gap between the original
driving data and reconstructed validated data. If there is a
considerable gap between these types of data, there will be
an error and drivers will not be classified into predefined
classes.

Supervised Learning – Error Calculation: The testing
is performed to examine the similarity between the orig-
inal data and the validated data. If the new data samples
can be classified into predefined classes, there will be no
errors and drivers will be classified into authorized drivers.

Figure 5: Execution time of algorithms on training dataset.



(a) Original: transmission oil
temperature (X-axis) vs. wheel
velocity rear left hand (Y-axis).

(b) Reconstructed: transmis-
sion oil temperature (X-axis)
vs. wheel velocity rear left
hand (Y-axis).

(c) Original: torque converter
speed (X-axis) vs. wheel ve-
locity rear left hand (Y-axis).

(d) Reconstructed: torque con-
verter speed (X-axis) vs. wheel
velocity rear left hand (Y-axis).

(e) Original: engine idle target
speed (X-axis) vs. wheel ve-
locity rear left hand (Y-axis).

(f) Reconstructed: engine idle
target speed (X-axis) vs. wheel
velocity rear left hand (Y-axis).

(g) Original: torque converter
turbine speed (X-axis) vs.
wheel velocity rear left hand
(Y-axis).

(h) Reconstructed: torque con-
verter turbine speed (X-axis)
vs. wheel velocity rear left
hand (Y-axis).

Figure 6: Detecting driving pattern from clustering: orig-
inal (legitimate) and reconstructed (injected malicious
data).

For this, we need to set up a threshold on the accuracy of
classification performed by the algorithms. The threshold
is the minimum percentage of accuracy attained by the
algorithms. The threshold value for generating an alarm
is set to be 97%.

Unsupervised Learning- Error Calculation: If the
driver is the owner, the nearest driving pattern would be
visible in the owner-driver data clusters created using K-
means/Canopy clustering. When the search takes place for
the nearest driving pattern within the pool of clusters, the
distance between validation data and the nearest cluster
center becomes smaller. As far as the distribution is con-
cerned, the reconstructed data and original data will be
distributed similarly. In case, the driver is a thief driver,

the driving data will not be present in the clusters of the
owner-driver data and the distance between validated data
and the center of clusters becomes large. We set this error
as detection criteria for the auto-theft cases.

We demonstrated the reconstruction error as a use-
ful measure for the auto-theft detection using the K-
means/Canopy clustering. To maximize the performance
for theft detection, we followed the Elbow Method that
estimates the Sum of Squared Errors (SSE) to find the
optimal size of K [39]. In this technique, the distance of
observations from their cluster centroids is known as the
SSE. The SSE starts to decrease with the increase in the
value of K. After clustering the data with optimal value K,
we used the validation data to classify the owner drivers
from the thief driver. We used 300 as the value of K for
getting an accurate performance.

In Figure 6, we have chosen the trips undertaken by
the drivers as the original driving data. To demonstrate
the stolen case, we substituted the original data with
fabricated driving data by repeating the specific values
several times within the features that show the spike
within the data clusters (Figure 6b, 6d, 6f, and 6h). We
selected the features for plotting the graphs on the X and
Y axis and tried to demonstrate the graphs’ reconstruction
error. The reconstructed data is distributed similarly to the
original data. By comparing Figure 6a with 6b, Figure 6c
with 6d, Figure 6e with 6f, and Figure 6g with 6h, it can
be observed that reconstruction errors are increased with
the introduction of new data for transmission oil tempera-
ture, torque converter speed, engine idle target speed, and
torque converter turbine speed. These algorithms are able
to detect when a thief and not the owner drives a vehicle.

5.3. Driver Detection

This part of the work discusses the third step, i.e.,
driver detection. This step aims first to detect the driver.
If a thief drives the vehicle, the proposed model generates
an alarm to the owner-driver that the car has been stolen,
as the applied algorithms can detect high spikes and other
noticeable changes in the dataset.

We evaluated our model by introducing a thief driver
within the original data. The primary aim is to determine
the accuracy by which the algorithms do not classify the
drivers who were not part of the training dataset. We
introduced a thief driver with different driving charac-
teristics. In this experiment, we injected around 5,000
malicious values of 15 selected features of driver A (i.e.,
first driver). Now, using training data, we examined the
instances that were correctly and incorrectly classified by
the algorithms. We found that malicious values are incor-
rectly classified and the accuracy of the classifier is also
dropping below the threshold value of 97%. Surprisingly,
this time, Random Forest performed sightly better than
J48, in terms of correctly classified instances and root
relative squared error. The PART algorithm was better in
relative absolute error, while JRip (Ripper) was found as
the worst performer compared to other algorithms.

We tested the model with a varied dataset size for
training and testing. We have established a concept called
window size in our approach that is used as a notification
time for owners in case of theft. For fast detection, the
window size is kept small, and for reliable accuracy, it



Figure 7: Execution time of algorithms on testing dataset.

should be kept long enough. The sliding window can
also be used as the measure of receiving the optimal
accuracy of classifiers. During the work, we also noted
that the accuracy of algorithms is directly proportional to
the sliding window size. To achieve the high accuracy of
algorithms, we need to increase the sliding window size
to around 80-100 seconds. However, with high accuracy,
there is also a drawback to the proposed model that it will
be notifying the owner about the theft with some delay.
We have also analyzed the time taken by the classifiers
on the testing dataset. Figure 7 shows the time taken by
the classifiers to achieve an accuracy of 99%. It can be
observed that the J48 algorithm took the lowest time for
testing as compared to other algorithms. Note that the
training time for the J48 algorithm was also the lowest.
The efficiency of J48 is also demonstrated by Figure 8 that
shows the execution time on the same accuracy for other
algorithms. However, root relative squared error is low
in the Random Forest algorithm’s execution, but shows
high relative absolute error, as related Kappa statistics are
shown in Figure 9.

Figure 8: Time taken by the classifiers with high accuracy.

5.4. Discussion: Why Semi-supervised Learning
More Suitable?

The purpose of using semi-supervised learning is to
improve the overall accuracy of the approach using su-
pervised and unsupervised algorithms. Now the question
is, why use this approach, as we can still get high accuracy
by using only the supervised or unsupervised learning
approach in the work? Actually, using a semi-supervised
learning approach, we solve a supervised learning ap-
proach using labeled data augmented by unlabeled data.
The number of unlabeled or partially labeled instances is
often larger than the number of labeled instances since the
former is less expensive and easier to obtain. Therefore,
our goal is to overcome one of the problems of supervised
learning, i.e., having not enough labeled data. Adding

Figure 9: Comparison of algorithms’ statistics.

Figure 10: Sum of squared errors for each value of K.

cheap and abundant unlabeled data, we hope to build a
better model than using supervised learning alone. In a
real-world scenario, we receive a mix of data having labels
and no labels attached to it. Having a hybrid approach
can cater to both types of data (label and not labeled) that
is more suitable under our proposed model, ATVSA, for
driver identification.

Figure 10 shows the Sum of Squared Errors (SSE) for
each value of K. The line in the graph looks like an arm
and the elbow on the arm is the value of K. Our aim is to
keep the SSE as small as possible. Our proposed ATVSA
model uses supervised and unsupervised learning algo-
rithms, we have compared the performance of our model
with the existing works. Figure 11 shows a comparison
of the accuracy of supervised learning algorithms. The
accuracy of supervised learning algorithms used in exist-
ing works Zhang et al. [32], Meng et al. [23], Nishiwaki
et al. [27], Choi et al. [8], Enev et al. [29], Wahab et
al. [30], Kedar-Dongarkar et al. [31], and Our ATVSA is
85%, 99%, 76.80%, 25%, 87%, 99%, 77%, and 99.90%,
respectively.

6. Conclusion

In this work, we proposed a vehicle driving profiling
model for theft detection, i.e., ATVSA, with comparative
results of supervised learning with the pool of owner
driver’s data. We use statistics to better understand the
accuracy and performance of these algorithms by classi-
fying drivers on their unique driving patterns. In this work,
CAN data extraction and feature preprocessing are used as



Figure 11: Comparing existing works - supervised algo-
rithms.

a form of data analysis and augmentation. To identify the
user on the basis of his driving habits, algorithms like the
Decision Tree, Random Forest and K-nearest neighbors
have been applied. Multiple models were laid out and
trained and the best results were obtained. Also, more
precise identification of drivers’ profiles is established.
Some of the driver’s profiles were stored in the system as
authentic users, and if the driving pattern deviates from
the ones recognized, an alert is sent to the owner of the
vehicle. The alert notifies the owner about the presence of
an unknown driver.

We have shown that semi-supervised learning can be
used to detect auto-theft cases. Furthermore, we have used
both, supervised and unsupervised learning algorithms to
show how successful and accurate our ATVSA model
approach is in detecting the auto-theft cases. It can be
observed from the results that the J48 algorithm out-
performed in both, training and testing time. Moreover,
under unsupervised learning, a clustering algorithm (K-
means/Canopy) is used to cluster the driving data into a
pool of trusted driving styles. We have also demonstrated
the optimal use of window size that plays a vital role in
increasing the classifiers’ accuracy. We fixed the sliding
window size to 50 seconds for trading the time with
accuracy.
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