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Abstract

Singular spectrum analysis (SSA) is the popular tool for analysing and forecasting

time series. SSA can be used for parametric estimation, forecasting and gap

filling amongst many other tasks. SSA was used for the extraction of seasonality,

simultaneous extraction of cycles with small and large periods and finding structure

in short time series. This thesis aims to study the application of singular spectrum

analysis which is supported by empirical evidence to further promote the value,

effectiveness and applicability of strengthening SSA’s quality in the field of time

series analysis and forecasting.

We investigate the hourly, daily and monthly temperature and humidity time

series collected at meteorological stations in Oman from 2009 to 2018. This data

is provided by the Directorate General of Meteorology of Oman. Our investigation

cover missing value imputation, splitting the hourly time series in the sum of

several components corresponding to different frequencies and detection of trends.

We investigated three methods of imputation: SSA-based iterative approach,

regression methods and regression with lagging. We found that imputation by

regression with lagging is a more reliable and reasonable method and provides

natural results for filling gaps for any length of time series. We applied SSA to

hourly time series for extracting the annual oscillations and the daily periodicities.

SSA was able to extract these components very effectively. Moreover, we may use

SSA for obtaining more refined decompositions with larger number of components

and also for forecasting. We applied three commonly used tests for detecting
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trends in time series: the Mann-Kendall test, Spearman’s rho test and the Sen’s

innovative trend method test. We found that there are no monotonic trends in

the annual oscillations and the daily periodicities over the period of ten years.

Also we did not find trends in the monthly variability of daily periodicities.

We provide a statistical framework on studying which SSA forecasting algorithm is

best on the example of real data representing monthly temperature and humidity

in Oman. We demonstrated that the sensitivity of the root mean squared errors

(RMSE) for retrospective forecasts is rather small to parameters the window

length L and the number of singular values r. We shown that the efficiency of

SSA forecasts with the automatic choice of parameters is rather high. We also

found that SSA-R and SSA-V forecasts are more similar to each other with a

slight dominance of SSA-V forecasts.

Last part of thesis focuses on the performance of the application of SSA to daily

time series of humidity and temperature in Oman. We apply SSA forecasting

algorithms: recurrent SSA (SSA-R) forecasting, recurrent SSA original (SSA-R

(original)) forecasting and vector SSA (SSA-V) forecasting algorithms based on

SSA with double projection and SSA without projection. We have also studied

the effect of series length and choice of parameters on the performance of the

aforementioned algorithms. The findings show that SSA with double projection

improve the accuracy of short term forecast using smaller set of observations.
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Chapter 1

Introduction

1.1 Time series analysis and forecasting

Time series analysis is a statistical technique that deals with data collected over

time that covers essential information about a physical, biological, meteorological

or economic system. The purpose of time series analysis is to know how the

time series behaved in the past. This is helpful for predicting the system’s future

behaviors [31]. The univariate or multivariate time series can be analysed for

different purposes such as gap filling and forecasting.

In recent years, several new advanced techniques have been used to analyse

time series in order to predict future trends. One of these techniques is singular

spectrum analysis (SSA), a powerful technique that can be used for smoothing,

extracting trends, extracting periodicities, forecasting, filling in missing values,

estimating signal parameters and detecting points of change. SSA is a non-

parametric approach, there are no statistical assumptions about issues such as

the stationarity of the series or the normality of the residuals [40, 48, 60, 89].

Many researches have conducted on a wide range of classical and advanced time

series analysis techniques including the autoregressive integrated moving average

2
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(ARIMA) model, exponential smoothing (ETS) and recurrent neural networks

(RNN). Each technique has advantages and disadvantages. Parametric models

are restricted by assumptions of stationarity and normality that are unlikely to

hold in a real-world scenario, especially following recessions that make time series

non-stationary [121].

Analysis of a time series provides an overview of the nature of data that can then

be used in statistical forecasting methods to predict future values. Therefore,

researchers constantly endeavor to provide a high level of accuracy in forecasting

by using more efficient techniques.

Several literature reviews have reported an increase in the use of SSA to analyse

climatic, meteorological and geophysical time series [10, 91, 113].

Meteorological time series is an exciting and complex challenge that can include

non-normal forms of distribution, serial dependency, irregular spacing [94]. Vari-

ables such as temperature, relative humidity and precipitation are important

factors that can be used to forecast yearly, monthly, daily and hourly meteoro-

logical conditions and play an important role in decision making. For example,

increasing temperatures can reduce crop yields, while precipitation can increase

yields to a level that roughly matches crop’s rate of evapotranspiration [69]. These

changes make a meteorological time series non-stationary. It is very important to

develop a methodology that is dynamic enough to account for these changes, in

order to produce accurate predictions. There have been several recent theoretical

developments in SSA and related applications [24].

A Google Scholar search for studies that used SSA for the period from 2007 to

2021 shows that its use has increased. There are also publications about further

improving SSA as an effective tool for modelling and forecasting. This research
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study adds to the rich literature on the use of SSA supported with empirical

evidence.

The structure of Chapter 1 is as follows. In Section 1.1.1, we state the research

objectives of the thesis. In Section 1.2, we consider reasons for choosing SSA and

outline the research objectives. In Section 1.3, we describe the structure of the

thesis and its Chapters. In Section 1.4, we outline the novel contributions of the

thesis.

1.1.1 Research objectives

This research aims to study application of SSA in the field of meteorological time

series. This thesis leads to achieve several research objectives. These objectives

represent the contributions to SSA and the field of time series analysis and

forecasting.

1. Apply singular spectrum analysis.

2. Determine different ways of imputing missing values in a time series.

3. Extract annual oscillations and daily periodicities for time series of humidity

and temperature.

4. Study of automatic choice of parameters for forecasting monthly time series

of temperature and humidity.

5. Forecasting daily time series of temperature and humidity using SSA with

double projection and SSA without projection at 1, 2, . . . , 14 and 1, 2, 3 days

ahead forecasts across the SSA forecasting algorithms.
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We can achieve these objectives using empirical evidence from time series of

temperature and humidity in Oman.

1.2 Motivation

1.2.1 Why Singular Spectrum Analysis?

This section considers the reasons for selecting SSA and introduces the topic of

forecasting meteorological time series.

SSA is a non parametric method that is powerful for time series analysis. SSA

can be used for parametric estimation, forecasting and filling gaps among many

other tasks [40, 42, 60, 103]. SSA is also a very useful tool for extracting various

signals from noisy observations [52]. SSA can be used to extract data about

seasonality and to simultaneously extract both long and short cycles. It can

identify structure in short time series. The core of SSA is its ability to decompose

the original time series data into a small number of components by using singular

value decomposition (SVD) of a trajectory matrix [45, 150].

In addition, SSA enables researchers to decompose time series to obtain a richer

understanding of the underlying dynamics. Moreover, once the signal is extracted,

SSA enables users to forecast a particular signal. For example, if we are only

interested in the trend component, we have the option of extracting the trend from

the data and then, forecasting the trend [65]. SSA seeks to filter the noise from

a time series and reconstruct a less noisy signal, which is then, used to forecast

future data points using the window length L and the number of singular values

r [59, 66].
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SSA uses non-parametric techniques to decompose time series into main compo-

nents and reconstruct the series by leaving behind the random (noise) component

[54]. SSA is an effective method for forecasting based on time series that are

polluted with different types of noise [107].

SSA is a powerful method for analysis of both stationary and nonstationary time

series. To assess the performance of SSA when applied to a nonstationary time

series, we consider a real life example of US male unemployment from 1950 to 1980

(using example from [42]). The length N of the time series is 400, and we take L=

200,150,100,70,40 and 20 as window lengths. Figure 1.1 displays the first leading

principal components and the corresponding contribution obtained from analysis.

We observe that the reproduced trend changes from detailed to smooth with

increasing window length, and the corresponding contribution percentages (trend

line) are gradually decreased. With different window lengths, some statistical

quantitative verification measures of forecasts can be calculated to evaluate their

performance according to RMSE.

1.2.2 Why These Objectives?

The first objective seeks to apply and analyse time series and using that analysis

as a basis for forecasting. The second objective is determining ways to impute

any missing values in time series. We used SSA to find forecasts corresponding to

missing values and then, combine the forecasted values to estimate missing values

[88].

There are different types of missing data, including the temporary absence of

observers, damaged monitoring equipment, or lack of financial resources [128].

The important pre processing procedure of data refinement should be performed
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Figure 1.1: Non-stationarity time series and and 1st leading components with

SSA.

and gap values are tackled either by eliminating the vectors containing missing

samples or by simply using some mean [126].

Imputations of missing values are computationally intensive and some algorithms

must be run multiple times to get satisfactory results and the run duration that is

necessary increases as the volume of missing data increases [125]. Imputation using

SSA-based iterative approach, multiple regression and regression with lagging

have been considered and Chapter 3 discusses the various issues associated with

imputing missing values.
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The third objective is to extract annual oscillations and daily periodicities of

temperature and humidity. I have focused on trend analysis by using the Mann-

Kendall (MK) test, the Spearman’s rho test (SR) and the Sen’s innovative trend

method (ITM) test by extracting annual oscillations and daily periodicities using

SSA.

Researchers, government organizations, practitioners and forecasters publish annu-

ally, monthly, quarterly, daily, or hourly forecasts for a variety of variables. Such

forecasts are generated using SSA which can produce more accurate results than

some classical time series methods.

The fourth objective of this research is to study the automatic choice of parameters

for forecasting using singular spectrum analysis. We study the sensitivity of the

RMSE and investigate the reliability of the automatic choice of parameters for

forecasting monthly temperature and humidity recorded at three meteorological

stations in Oman.

SSA uses the window length to decompose data and the number of singular values

to reconstruct and forecast. The number of singular values can determine the

accuracy of its predictions; it is important to choose the right number. Selecting

the window length is also important because a poorly chosen window length

would lead to an inferior decomposition [87]. The RMSE is used to measure the

accuracy and quality of SSA forecasts [57]. To achieve the fourth objective, we

have compared SSA with classic forecasting methods such as ARIMA, ETS and

RNN [59, 66].

The final objective of this research focuses on analysing how SSA with projection

works for daily time series of humidity and temperature in Oman. We have used

recurrent SSA (SSA-R), SSA-RO (original) and vector SSA (SSA-V) forecasting
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algorithms based on SSA with double projections and SSA without projections.

1.3 Structure of the thesis

This thesis contains seven Chapters. A summary of each Chapter is given below.

• Chapter 2 describes SSA in detail, including SSA parameters, SSA algorithms

for imputing missing data, SSA with projection and SSA forecasting. The

Chapter also provides benchmarking forecast models and the RMSE.

• Chapter 3 presents the imputation techniques for filling gaps using SSA-

based iterative approach, multiple regression and regression with lagging.

The Chapter concludes with an investigation of the best method for imputing

missing values for the time series of the temperature and humidity data.

• Chapter 4 describes three methods of trend analysis: the MK test, the

SR test and the ITM test. In addition, it focuses on extracting annual

oscillations and daily periodicities.

• Chapter 5 explores the automatic choice of parameters for forecasting in

SSA. The SSA algorithm has two parameters: the window length L and the

number of singular values r. Choice of parameters L and r is depending on

both the structure of the time series and the forecasting aims. The Chapter

also discusses the SSA forecasting algorithms.

• Chapter 6 explores daily time series of temperature and humidity data using

SSA with double projection and SSA without projection. The RMSE of

1,2,. . . ,14 day ahead forecasts and the RMSE of 1,2,3 days ahead forecasts
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across several truncation points depending on the window length L and the

number of singular values r.

• Chapter 7 summarizes the research presented in the thesis and establishes

avenues for further work.

1.4 Novel contributions of the thesis

This section lists the novel contributions of each Chapter with a concise description

of the research problem, the literature related to the problem and how this thesis

addresses the problem.

Chapter 3 addresses the issue of how to deal with missing values using different

approaches. It uses three methods to impute missing values: imputation by the

SSA-based iterative approach, imputation by multiple regression and imputation

by regression with lagging. Imputation by regression with lagging produces more

reliable and reasonable method and provides natural results for filling gaps for

any length.

Chapter 4 presents annual oscillations and daily periodicities of several variables

of an hourly time series. It considers three trend tests which are the MK test,

the SR test and the ITM test. Theses tests provide information for planners and

policymakers who must take into account future changes in meteorological time

series.

Chapters 5 and 6 make two major contributions to forecasting using the SSA

forecasting algorithms. These two Chapters use the SSA forecasting algorithms

for monthly and daily time series for temperature and humidity. Chapter 5

provides a statistical framework for studying the SSA forecasting algorithm and
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demonstrates the sensitivity of the RMSE for retrospective forecasts to optimize

the SSA parameters. Chapter 6 considers daily time series of temperature and

humidity using SSA with double projection and SSA without projection and three

forecasting algorithms: SSA-R, SSA-R (original) and SSA-V.





Chapter 2

Methodology

2.1 Introduction

In this Chapter, we are explaining the methodology of singular spectrum analysis

(SSA) and introduce the details of the SSA algorithms.

This Chapter is structured as follows.

• In Section 2.2, we provide a general overview of SSA.

• In Section 2.3, we address the methodology of SSA and present the

algorithms.

• In Section 2.4, we explore SSA with projection.

• In Section 2.5, we discuss how to choose certain parameters of the SSA

algorithm.

• In Section 2.6, we discuss methods for forecasting.

• In Section 2.7, we present the algorithm of gap filling.

• In Section 2.9, we present the benchmark forecasting models.

12
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• In Section 2.10, we focus on metrics used for assessing accuracy of

forecasts.

• In Section 2.11, we provide a summary of this Chapter.

2.2 Singular spectrum analysis

SSA is a non-parametric, powerful method for time series analysis. It can be

applied to many areas including parametric estimation, forecasting and gap-filling,

see [40, 42, 60, 103].

SSA has become a popular time series analysis since its introduction in [15]. Note

that the ideas of SSA were also independently developed in Russia (St.Petersburg,

Moscow) [53] and in several groups in different areas in the world. Several papers

discussing the methodological aspects and applications of SSA can be found in

[7, 24, 32, 40, 42, 55, 59, 60, 65, 137, 150]. The first formal description of SSA

can be attributed to [42, 43, 48].

SSA is a very useful tool for extracting various signals from noisy observations [52].

It has been used for the extraction of seasonality and simultaneous extraction of

cycles of small and long periods, finding structure in a short time series [45]. SSA

provides meaningful results in many research areas without imposing any restrictive

assumptions on the data. The algorithm of SSA relies on the decomposition of

the original time series data into the sum of a small number of components using

a singular value decomposition (SVD) of a trajectory matrix [150]. SSA is able to

filter a time series and then, reconstruct a less noisy series which can be used for

forecasting [42, 64, 112].

SSA is also a non-parametric method that can be used without making any
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assumptions on processed data [112]. SSA aims to decompose the trajectory

matrix into a sum of elementary matrices of rank 1 and assume that the initial

object is a sum of identifiable components such as seasonality or signal and noise.

Then, the aim of SSA is to reconstruct these components. The possibility to

reconstruct the components is called separability of the components. [41, 42, 48].

Basic SSA is a core version of SSA that consists of embedding a time series into

the space of Hankel matrices and the subsequent decomposition into rank-one

matrices through use of conventional singular value decomposition. By inverting

the embedding procedure, SSA yields a decomposition of the original time series

into the sum of components such as a trend, oscillatory components and noise

[42, 60].

Many variations of SSA are available in the literature including: multivariate SSA

[43, 97, 110], complex valued SSA [43] and non-linear laplacian spectral analysis

(NLSA) [36].

Multivariate SSA, or MSSA, is a natural extension of SSA for analysing multi-

variate time series. MSSA, similarly to SSA, has many applications such as trend

extraction, causality and forecasting. MSSA is especially popular to analyse and to

forecast economic and financial time series with short and long series length [110].

In the MSSA module of the hybrid model the time series of energy consumption

and meteorological factors are decomposed into independent components such as

additive, trend, harmonic, and random components [97].

Any real-valued SSA variation can be transferred to the complex-valued case.

Complex-valued SSA forecasting and parameter estimation are straightforward

extensions of the corresponding techniques for the real-valued time series [42].

In [36], the authors discuss about NLSA for time series with intermittency and
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low-frequency variability. Many processes in science develop multiscale temporal

and spatial patterns, with complex underlying dynamics and time-dependent

external forcings. Because of the importance in understanding and predicting

these phenomena, extracting the salient modes of variability empirically from

incomplete observations is a problem of wide contemporary interest. NLSA is a

technique for analyzing high-dimensional, complex time series that exploits the

geometrical relationships between the observed data points to recover features

characteristic of strongly nonlinear dynamics which are not accessible to classical

SSA.

NLSA is a technique for spatiotemporal data analysis which generalizes SSA to

take into account the nonlinear manifold structure of complex datasets. Through

such basis functions, determined efficiently via graph-theoretic algorithms, NLSA

captures intermittency, rare events, and other nonlinear dynamical features which

are not accessible through linear approaches such as SSA [35]. The key principle

underlying NLSA is that the functions used to represent temporal patterns should

exhibit a degree of smoothness on the nonlinear data manifold a constraint absent

from classical SSA [37].

Applications of SSA range from physics, mathematics, economics, finance, me-

teorology and oceanography as well as social science and market research. In

many applications, the components extracted by SSA can be identified as trends,

periodic components or noise. Many scientific papers in the last two decades have

used SSA as an effective tool for analysing and forecasting time series [5]. SSA

can be applied in forecasting the time series that approximately satisfy the linear

recurrent relation (LRR) [43, 48, 53, 67].

Let x1, x2, . . . , xN be a time series. For a given window length L (1 < L < N),

we construct the L-lagged vectors X(i) = (xi, . . . , xi+L−1)T, i = 1, 2, . . . , K, where
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K = N − L+ 1, and compose these vectors into the matrix

X = (xi+j−1)L,Ki,j=1 =
[
X(1), . . . , X(K)

]
.

This matrix has size L×K and is often called ’trajectory matrix’. It is a Hankel

matrix, which means that all the elements along the diagonal i+j =const are

equal. The singular value decomposition of the matrix XXT yields a collection

of L eigenvalues and eigenvectors. For a given integer r when 1 ≤ r < L we

create a group using r largest eigenvalues and corresponding eigenvectors of XXT.

The chosen eigenvectors determine an r-dimensional subspace in RL which is

denoted as Sr. The L-dimensional data X(1), . . . , X(K) is then projected onto this

r-dimensional subspace Sr and the subsequent averaging over the diagonals give

us some Hankel matrix X̃, which we consider as an SSA approximation to X.

With a proper choice of r and L, the time series corresponding to X̃ is often used

as an estimator of a signal or a trend. The main guideline for selecting r and

L is to take sufficiently large, say L ≈ N
2 and, if we want to extract a periodic

component with known period, to take the window length to be divisible by the

period, while r is chosen on the base of relations between eigenvalues and the

spectral properties of eigenvectors considered as time series, see [42, 5]. We discuss

in more details how to choose the parameters of SSA in Section 2.5.

Figure 2.1 explains the generic scheme of the SSA family and the main concepts.

SSA has four stages namely: embedding, SVD, eigentriple grouping, and diagonal

averaging.
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2.3 Basic SSA

Basic SSA is a variant of SSA that can be used for the analysis of one dimensional

time series, where the decomposition into rank-one matrices can be performed

into four steps. The theory of Basic SSA is detailed and explained in [42].

SSA decomposes the original time series into the sum of a small number of

interpretable components, such as a slowly varying trend, oscillatory components

and noise. SSA consists of two complementary stages: (1) the decomposition which

includes embedding and singular value decomposition, and (2) the reconstruction

which includes grouping and diagonal averaging [60].

Let us consider a noisy time series XN with any time series length N as explained

in Figure 2.1 such that XN = (x1, . . . , xN); the input X, an ordered collection of

N numbers

XN = SN + εN =



x1

x2
...

xN


=



s1

s2
...

sN


+



ε1

ε2
...

εN


, (2.1)

where SN represents the signal of data and εN represents noise. In general, time

series methods consider both the signal and noise while SSA has a different

concept to separate the signal from noise. Thereafter, time series is the filtered,

approximated signal component that is used to forecast future points, leaving

aside the approximated εN . Note that the term "approximated" is used as in

practice one is unable to extract the proper signal [120].
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2.3.1 Method

This section explains the process of SSA in detail.

Stage 1: Decomposition

The decomposition stage is the first stage at SSA. We need to specify the window

length L which is an integer (1 < L < N), where N is the length of the time

series.

1st step: Embedding

The embedding process is the first step in the decomposition stage. It is a mapping

operation that transforms a one dimensional time series XN = (x1, x2, . . . , xN) to

transfer into a matrix, where N is the series length. We construct the L-lagged

vectors

X(i) = (xi, . . . , xi+L−1)T, (2.2)

when i = 1, 2, . . . , K, K = N −L+ 1, T denotes transposition and compose these

vectors into the matrix

X = (xi+j−1)L,Ki,j=1 =
[
X(1), . . . , X(K)

]
. (2.3)

The series X is mapped to a sequence of L-lagged vector of size L, which form

the trajectory matrix X = (xi+j−1)L,Ki,j=1= TSSA(XN), where T is a linear map

transforming X into an L×K matrix of certain structure. The trajectory matrix

is the output from the embedding step which is called a Hankel matrix, where all

the elements along the diagonal i+ j = const are constant. In one-dimensional

real-valued time series, X =
[
X(1), . . . , X(K)

]
and T = TSSA(XN) maps RN to the

space of Hankel matrices of size L×K, with equal values on the anti-diagonals
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X =
[
X(1), . . . , X(K)

]
= (xij)L,Ki,j=1 =



x1 x2 x3 . . . xK

x2 x3 x4 . . . xK+1

x3 x4 x5 . . . xK+2
... ... ... . . . ...

xL xL+1 xL+2 . . . xN


. (2.4)

2nd step: Singular value decomposition

The second step of the decomposition stage is determining to get the singular

values of the trajectory matrix X. These singular values or eigenvalues contain

a lot of information about the time series XN . Set S=XXT and denote by

(λ1,. . .,λd) the positive eigenvalues of S taken in the decreasing order of magnitude

λ1 ≥ . . . ≥ λd ≥ 0 and Ui,. . ., Ud an orthonormal system of the eigenvectors of

the matrix S corresponding to these eigenvalues; Vi = XTUi/
√
λi are called factor

vectors. At this step, we performe the SVD of the trajectory matrix:

X = Σd
i=1

√
λiUiV

T
i = X1 + . . .+ Xd. (2.5)

The matrices Xi =
√
λiUiV

T
i in Equation (2.5) have rank 1; such matrices are

called elementary matrices. The collection
√
λiUiV

T
i consisting of the singular

value
√
λi, the left singular vector Ui and the right singular vector Vi can be

called i-th eigentriple. Note that λi = ‖Xi‖2
F and ‖X‖2

F = ‖X1‖2
F + . . .+ ‖Xd‖2

F .

The contribution of i-th component Xi can thus be measured by λi/
∑
j λj. For

real-world time series, d = rankX is typically equal to min(L,K); that is, the

trajectory matrix is of full rank.
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Stage 2: Reconstruction

The second stage of SSA is the reconstruction which has only one parameter, the

number of eigenvalues r. The reconstruction stage can be divided into two steps:

grouping and diagonal averaging.

1st step: Grouping

Grouping is the first step in the reconstruction stage which involves splitting each

element in matrices Xi into several groups (signal and noise) and reconstruct by

summing the matrices within each group. Let I = {i1, . . . , ip} ⊂ {1, . . . , d} be

a set of indices. Then, the resultant matrix XI corresponding to the group I is

defined as XI = Xi1 + . . .+ Xip .

Assume that a partition of the set of indices {1, . . . , d } into m disjoint subsets

I 1, . . . , Im is specified. Then, the expansion (2.5) leads to the decomposition

X = XI 1 + . . .+ XIm . (2.6)

The procedure of choosing the sets I 1, . . . , Im is called the eigentriple grouping.

If m = d and I j = {j} , j = 1, . . . , d, then, the corresponding grouping is called

elementary. For a given group I , the contribution of the component XI in (2.6) is

measured by the share of the corresponding eigenvalues: ∑i∈I λi/
∑d
i=1 λi. If the

original series contains signal and noise, one then, considers two groups of indices,

I 1 = {1, . . . , r } and I 2 = {r + 1, . . . , L } and associate the group I = I 1 with

the signal component and the group I 2 with noise.

The grouping is performed by analyzing the eigentriples, each group corresponds

to an identifiable series component. The choice of several leading eigentriples

corresponds to an optimal approximation of the time series, in accordance with

the well-known optimality property of the SVD.
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2nd step: Diagonal averaging

Diagonal averaging is the process of transferring a matrix to the form of a Hankel

matrix which can be converted to a time series. Hankel matrices are an important

family of matrices that play a fundamental role in diverse fields of study, such as

computer science, engineering, mathematics and statistics. The Hankel matrix is

a matrix with the same entries along the anti-diagonals [90]. This step is a linear

operation which translates the original series’ trajectory matrix onto the initial

series itself to obtain the series’ decomposition into several additive components

[43, 66]. Diagonal averaging converts a matrix to the form of a Hankel matrix

which can be subsequently transformed to a time series. If zij stands for an

element of a matrix Z, then, the k-th term of the resulting time series is obtained

by averaging zij and i + j = k + 1. This procedure is known as Hankelization

of the matrix Z. The output of the Hankelization of a matrix Z is the Hankel

matrix HZ, which is the trajectory matrix corresponding to the series obtained as

a result of the diagonal averaging. In its turn, the Hankel matrix HZ individually

defines the series by relating the value in the diagonals to the values in the series.

In [42], the operator T = TSSA : RN → M
(H)
L,K makes a correspondence between

time series (collections of N numbers) and M
(H)
L,K the set of Hankel matrices of

size L × K. Since the correspondence defined by T is one-to-one, there exists

the inverse T−1, which transfers any Hankel matrix of size L×K to a series of

length N . Let us also introduce the projector ΠH : RL×K →M
(H)
L,K into the space

of Hankel matrices as the operator of hankelization.

(ΠHY)ij =
∑

(l,k)∈As
ylk/ws, (2.7)

where s = i + j − 1, As = {(l, k) : l + k = s+ 1, 1 ≤ l ≤ L, 1 ≤ k ≤ K} and
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ws = |As| denotes the number of elements in the set As. This corresponds to

averaging the matrix elements over the ’anti-diagonals’. The weights ws are

equal to the number of series elements xs in the trajectory matrix (2.4) and has

a trapezoidal shape, decreasing towards both ends of the series. Any matrix

Y ∈ RL×K can be transferred to a series of length N by applying T−1 ◦ ΠH.

The diagonal averaging (2.7) applied to a resultant matrix Xlk produces recon-

structed series X̃(k) = (x̃(k)
1 , . . . , x̃

(k)
N )= T−1

SSA ◦ ΠH(X(k)). In this way, the initial

series (x1, x2, . . . , xN) is decomposed into a sum of m reconstructed series:

xn =
m∑
k=1

x̃(k)
n , n = 1, . . . , N. (2.8)

The elementary grouping’s reconstructed series are referred as an elementary

reconstructed series. If the grouping is appropriate, we can decompose the data

into identifiable series components. Signal plus noise or trend plus seasonality

plus noise are mainly the two resulting decompositions as explained in [42, 43].

In this step, a suitable grouping leads to the decomposition in the expansion (2.6).

This indicates that pairwise scalar products of distinct matrices are small, which

corresponds to approximate separability. It should be noted that if L is large

enough, the eigenvectors in a sense imitate the behavior of the corresponding time

series components. In SSA the eigenvectors produced by slowly-varying series

components are slowly-varying, the eigenvectors produced by a sine wave are sine

waves with the same frequencies [41].

Separability measure

The so-called w-correlation matrix contains very helpful information that can be

used for detection of separability and identification of groups. This matrix consists

of weighted cosines of angles between the reconstructed time series components.
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Let wn(n = 1, 2, . . . , N) be the weights defined in Section 2.7: wn is equal to the

number of times the series element xn appears in the trajectory matrix. Define

the w-scalar product of time series of length N as (YN ,ZN)w = ∑N
n=1wnynzn =

〈Y,Z〉F , where Y and Z are the L-trajectory matrices of the series YN and ZN)

respectively. Define the so-called w-correlation between YN and ZN) as

ρw(YN ,ZN) = (YN ,ZN)w/(‖YN‖w ‖ZN‖w) (2.9)

Well separated components in 2.8 have weak (or zero) correlation whereas poorly

separated components typically have high correlation. Therefore, looking at the

matrix of w-correlations between elementary reconstructed series X̃(i)
N and X̃(j)

N

one can find groups of correlated series components and use this information

for the subsequent grouping. One of the main rules is: ‘do not include highly

correlated components into different groups’. The w-correlations can also be used

for checking the grouped decomposition [42].
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2.3.2 Trajectory spaces and signal subspaces

In [42], the authors discussed trajectory spaces and signal subspaces in details.

Let X be the trajectory matrix corresponding to some object X. The column

(row) trajectory space of X is the linear subspace spanned by the columns (cor-

respondingly, rows) of X. The term ‘trajectory space’ usually means ‘column

trajectory space’. The column trajectory space is a subspace of RL, while the

row trajectory space is a subspace of RK . In general, for real-world data the

trajectory spaces coincide with the corresponding Euclidean spaces, since they

are produced by a noisy data. However, in the ‘signal plus noise’ model, when

the signal has rank-deficient trajectory matrix, the signal trajectory space can be

called ‘signal subspace’. Both column and row signal subspaces can be considered;

note that the dimensions of the row and column subspaces coincide.

2.3.3 Algorithm

This section explains that the algorithms of Basic SSA have presented by writing

down the algorithms at the original form as shown in [42, 43, Section 2.3]. Let

us have a time series XN = (x1, . . . , xN) with the window length L (L ≤ N
2 ) and

K = N − L+ 1.

For the decomposition stage, input data for the whole algorithm of SSA are the

window length L and the way of grouping of the elementary components Xi.

However, the rule for grouping is made after the decomposition step. Therefore,

the grouping becomes the input data for the reconstruction stage. For this reason,

we split the algorithm into two parts.
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Algorithm 1 Basic SSA: decomposition [42]
Input: Time series X of length N , window length L.

Output: Decomposition of the trajectory matrix on elementary matrices X =

X1 + . . .+ Xd, where d = rankX and Xi =
√
λiUiV

T
i (i = 1, . . . , d).

1: Construct the trajectory matrix X = TSSA(X).

2: Compute the SVD X = X1 + . . .+ Xd, Xi =
√
λiUiV

T
i .

For the reconstruction stage, inputs have a decomposition of the trajectory matrix

into a sum of rank-one matrices and the split of the rank-one components into

groups.

Algorithm 2 Reconstruction [42]

Input: Decomposition X = X1 + . . . + Xd, where Xi = σiUiV
T
i and

∥∥∥∥Ui∥∥∥∥ =∥∥∥∥Vi∥∥∥∥ = 1; partition of indices: {1, . . . , d} = ⊔m
j=1 I j.

Output: Decomposition of the time series X into identifiable components X =

X1 + . . .+ Xm.

1: Construct the grouped matrix decomposition X = XI 1 + . . . + XIm , where

XI = ∑
i∈I Xi.

2: Compute X = X1 + . . .+ Xm, where Xi = T−1
SSA ◦ ΠH(XI i).
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2.4 SSA with projection

This section explains how SSA with projection works. If one of the series elements,

such as the trend of a one-dimensional series, has a parametric model (linear in

parameters), a projection on a suitable subspace is performed. The purpose of

using SSA with projection is to make efficient use of available data or information

about a series of components. One special case of SSA with projection is SSA

with centering and SSA with double centering for extraction of both constant and

linear trend [42].

SSA with projection is used to create a subspace from a supporting series and

project the main series onto it for an arbitrary polynomial trend. SSA with

projection involves preliminary projections of the series trajectory matrix’s rows

and columns to given subspaces, and it can extract polynomial trends much better

than Basic SSA, particularly for linear trends.

2.4.1 Method

Let X is a time series of length N and L is the window length, K = N − L+ 1

and X is the trajectory matrix. The general form of centering can be expressed in

[42, Section 2.3].

1. Calculation of a special matrix C(center) = C(X) based on a priori informa-

tion.

2. Computation of X? = X−C(center).

3. Construction of the SVD = X? = ∑d∗

i=1
√
λ?iU

?
i (V ?

i )T.
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After calculation, we obtain the decomposition X = C(center) +∑d∗

i=1
√
λ?iU

?
i (V ?

i )T.

Denote EM = (1, . . . , 1)T ∈ RM the M -vector of ones. There are three types of

centering that have been considered in [42, 43]:

• Single row centering C(center)
row (X) = (XEK/K)ET

K corresponds to averaging

by rows; that is each element of a row of C(center)
row consists of the average of

the corresponding row of the trajectory matrix.

• Single column centering when C(center)
col (X) = EL(XTEL/L)T corresponds to

averaging by columns.

• Double centering when C(center)
both = C(center)

row + C(center)
col (X−C(center)

col (X)).

The single centering can be thought as a projection of rows or columns of X

on span (EK) or span (EL) respectively, since EKET
K and ELET

L are exactly the

matrices of the projection operators. As a result, in SSA, centering can be thought

of as initial projection of the trajectory matrix on a particular subspace; the

residual matrix can then, be expanded using the SVD or another decomposition.

By generalization to projections to arbitrary spaces as shown in [46], Πcol : RL →

Lcol and Πrow : RK → Lrow be orthogonal projectors, where Lcol ∈ RL is called

the column projection space and Lrow ∈ RK is called the row projection space.

For any Y ∈ RL×t, denote Πcol(Y) is the matrix consisting of the columns which

result from projections of the columns of Y. For any Y ∈ Rt×K , denote Πrow(Y)

is the matrix consisting of the rows which result from projections of the rows of

Y.

In SSA with projection, the scheme of SSA with centering is extended to arbitrary

projections; that C = Πcol(X) for the column projection, C = Πrow(X) for the

row projection and C = Πboth(X) for the double projection, where
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Πboth(X) = Πrow(X) + Πcol(X− Πrow(X))

= Πcol(X)− Πrow(X− Πcol(X))

= Πrow(X) + Πrow(X)− (Πcol ◦ Πrow)X.

(2.10)

If either the column or row basis is absent (that is the space for column or row

projection consists of zero) then, we formally set the corresponding projector to

be zero operator implying C = Πboth(X) in any mode.

The decomposition form which has provided by SSA with projection is

X = C +
d∗∑
i=1

√
λ?iU

?
i (V ?

i )T, (2.11)

where C = Πboth(X) and ∑d∗

i=1
√
λ?iU

?
i (V ?

i )T is the SVD of X∗ = X−C.

Without loss of generality, we assume that {Pi = 1, . . . , p} and {Qi = 1, . . . , q}

are orthonormal bases of Lcol and Lrow. It is shown in [46, 42] that the expansion

(2.11) can be represented as a sum of elementary matrices of rank 1. The matrix

C can be considered as a sum of q + p elementary matrices of the forms σ(r)
i P̃iQ

T
i ,

i = 1, . . . , q and σ
(c)
i PiQ̃

T
i , i = 1, . . . , p. The triples σ(r)

i P̃iQ
T
i and σ

(c)
i PiQ̃

T
i

have the same meaning as eigentriples. For double projection, its representation

depends on the order of projections; this can be processed by the application of

the row projector first. The decomposition equation can be transformed into a

decomposition of X into a sum of q + p+ d∗ elementary rank-one matrices, which

are orthogonal with respect to the Frobenius norm ‖.‖ by construction. As a

consequence, the contribution of the projection term C into the decomposition is

measured by ‖C‖2 / ‖X‖2. The reconstruction stage is exactly the same as in the

Basic SSA method. Furthermore, before using SSA with projection, we must first
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understand the behaviour of the time series.

For SSA with projection, a known series variable with a trajectory matrix Y must

comply with projections that ΠcolY = Y for column projections, ΠrowY = Y for

row projections, and ΠbothY = Y for double projections. For column and row

projections, this is true if the corresponding projection is performed on the column

or row trajectory space of the known series component.

2.4.2 Algorithm

This sections considers the algorithm of SSA with projection. The difference with

the reconstruction by Basic SSA is that the matrices Xi, i = 1, . . . , q + p, which

produced by projections, should be included to the same group (number q of

row-projection components, number p of column-projection components, grouping

{1, . . . , d} = ⊔m
j=1 I j, which does not split the first q + p projection components

which should be at the same group).
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Algorithm 3 SSA with projection: decomposition [42]
Input: Time series X of length N , window length L, orthonormal basis of the

column projection space {Pi = 1, . . . , p} and orthonormal basis of the row

projection space {Qi = 1, . . . , q} . Either p or q can be zero.

Output: Decomposition of the trajectory matrix on elementary matrices X =

X1 + . . .+ Xd, Xi = σiUiV
T
i are either zero or rank-one matrices.

1: Construct the trajectory matrix Xi = TSSA(X).

2: Subtract the row projection: X′ = X−Crow, where

Crow = Πrow(X) = ∑q
i=1 σ

(r)
i P̃iQ

T
i , σ

(r)
i = ‖XQi‖ P̃i = XQi/σ

(r)
i if σ(r)

i > 0

otherwise, P̃i is the zero vector.

3: Subtract the column projection X? = X′ −Ccol, where Ccol = Πcol(X′) =∑P
i=1 σ

(c)
i PiQ̃

T
i , σ

(c)
i =

∥∥∥X′TPi∥∥∥ , Q̃i = X′TPi/σ(c)
i if σ(c)

i > 0; otherwise, Q̃i is

the zero vector.

4: Construct an SVD of the matrix X? : X? = ∑d?

i=1 X?
i , where X?

i =∑d∗

i=1
√
λ?iU

?
i (V ?

i )T.

5: As a result, X = ∑d
i=1 Xi, where d = q + p + d?, Xi = σ

(r)
i P̃iQ

T
i for

i = 1, . . . , q, Xi+q = σ
(c)
i PiQ̃

T
i for i = 1, . . . , p, and Xi+q = ∑d∗

i=1
√
λ?iU

?
i (V ?

i )T

for i = 1, . . . , d?.

Algorithm 4 SSA with projection: reconstruction [42]
Input: Decomposition X = X1 + . . . + Xd, Xi = σiUiV

T
i , number q of row-

projection components, number p of column-projection components, grouping

{1, . . . , d} = ⊔m
j=1 I j , which does not split the first q+p projection components.

Output: Decomposition of the time series X into identifiable components X =

X1 + . . .+ Xm.

1: Construct the grouped matrix decomposition X = XI 1 + . . . + XIm , where

XI = ∑
i∈I Xi.

2: Compute X = X1 + . . .+ Xm, where Xi = T−1
SSA ◦ ΠH(XI i).
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2.5 Choice of parameters

The SSA algorithm has two parameters: the window length L and the number of

singular values r. The choice of parameters L and r depends on both the structure

of the time series and the forecasting aims [42, 59, 66]. The window length L

defines the number of columns of the Hankel matrix and an inappropriate choice

of L leads to a poor decomposition, incomplete reconstruction, and non-accurate

forecasting [39, 141, 87]. The parameter r should correspond to the rank of the

signal [112].

The window length L and the number of singular values r determining the subspace

L (for extraction of either trend or periodic components) is chosen automatically

in [39]. Moreover in [62] the authors evaluate the theory of separability between

the modulated signal and the noise components that lead to determine the optimal

value of the window length in SSA.

The conditions of separability provide guidelines for selecting the window length

L: it should be sufficiently large (L ∼ N
2 ) and if we want to extract a periodic

component with known period, then, the window lengths, which are divisible by

the period, provide better separability. There are two parameters to choose: the

window length L and the group of I indices which determine the subspace L.

Optimal choice of these parameters should depend on the task we are using SSA

for [150].

The window length L has a great importance to the reconstruction of the trajec-

tory (Hankel) matrix of the measured time series with a limited length N , the

improper choice of L would imply an inferior the decomposition and incomplete the

reconstruction and misleading results in forecasting [87, 141]. Moreover, setting
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the L parameter too large could leads to the noise mixing up with the signal, and

choosing L too small opens up the risk of losing some parts of the signal to the

noise it that should be precise on selecting L [42]. In [78] the authors discuss that

L could be half of the time series length 1
2 ,

1
4 or 3

4 depending on the length of time

series and setting L much shorter to achieve optimal signal-noise separation and

provides better SSA forecasts. By setting L = N+1
2 where N is the length of the

series we attain the minimum value for the weighted correlation (w-correlation)

statistic [62]. However, there are no specific rules of selecting L because it depends

on the structure of time series and the purpose of analyzing the data [70].

The second parameter r is used in the reconstruction stage [30, 56]. In [59] the

authors note that the value of r is used to increase the noise in the reconstructed

series. Moreover, it is to consider parts of the signal that could be ignored by

choosing r smaller than what is needed. In [30] the authors discuss the relationship

between L and r and how they interact with one another to affect performance.

As a result, it is important to make sure that the methods used to choose the

two parameters result in sufficient signal-to-noise separation. The parameter r

should correspond to the rank of the signal. As noted in [39, 59] the authors

argue that the value of r needs to be greater than the true value since parts

of the signal can be missed but the increase of noise in the reconstructed series

can be small. Expert analysis of the singular values of the trajectory matrix,

weighted correlation among the components of the time series and errors of the

reconstruction and forecasting are the main tools for the choosing the optimal

choice of r.

The first step of the SSA algorithm provides a Hankel trajectory matrix, which

plays an important role in the SSA, as the other steps depend on its structure

and the extracted eigenvalues obtained from Hankel matrix. This matrix also
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depends on the window length L. Certainly, the choice of parameters depends on

the available data and the analysis we have to perform [87]. In [47] and [87], the

authors discuss that optimal window lengths for analysis and forecast can differ

and parameters for reconstruction and forecasting are not the same generally.

Using different window lengths in reconstruction and forecasting increases the

precision of forecasting. Moreover, window length close to N/2 for a series with

length N provides maximum separability and gives better reconstruction with a

minimum RMSE. However, the optimal window length for forecasting depends

on the model and whether noise is white or red. This means that the forecasting

procedure in SSA needs some modifications to consider these issues.

For this point, we are discussing what exactly do if the length of time series is very

large or very small. Large time series have a more complex structure than that of

shorter ones. When considering Basic SSA and time series of small length, the

selection of a large window length would mix the trend and periodic components of

the series. On the other hand, the selection of a small window length would result

in periodic components that are not separated from each other, and therefore these

lengths are not suitable. For a relatively long series, approximate separability of

the components is often achieved due to the theoretical concept of asymptotic

separability which holds for a rather wide class of components. It is recommended

that the window length be chosen as large as possible. Nevertheless, even in the

case of long series it is recommended that L be chosen such that L/N is an integer.

For short time series, other forms of SSA can outperform the basic version. When

selecting the window length, it is preferable to take into account the conditions for

pure (nonasymptotic) separability, if one knows that the time series has a periodic

component with an integer period N (for example, if this component is a seasonal

component). Better to take the window length L proportional to that period [43].
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2.5.1 Rank of the trajectory matrix

In [60], the authors have discussed the rank of trajectory matrix. Considering the

trajectory matrix X of dimension L×K, whose entities are defined by Equation

2.4, we can say that the maximum number of components that we can obtain in

decomposing the corresponding time series is equal to L×K. This number is the

maximum rank of the trajectory matrix and it is easy to see that the maximum

rank is attainable when L = Lmax, where

Lmax =


N+1

2 if N is odd,

N
2 + 1 if N is even.

(2.12)

Note that Lmax is the median of 1, . . . , N and Lmax is the closet integer to the

half of time series.

2.6 Forecasting

SSA can be used to forecast a time series. One of the main advantages of SSA is

that may provide forecasts for each individual component of the time series or the

deterministic/trending component without taking into consideration variability

after the reconstruction [68]. In Chapter 5 and 6, we are considering application

of SSA for forecasting.

The main parametric model of SSA is the linear recurrence relation (LRR) which

the time series under consideration should approximately satisfy [42, Section

3.1.1.1]. SSA can approximately handle functions that are governed by the LRR

[138] and satisfies LRR [112]:
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xi+d =
d∑

k=1
akxi+d−k, 1 ≤ i ≤ N − d, (2.13)

of some dimension d with the coefficients a1, . . . , ad. In SSA The recurrent

coefficients ak = (ad−1, ad−2, . . . , ak) and k = 1, . . . , d. In the SSA decomposition,

if the original time series XN satisfies a LRR, then, for any N and L there are

at most d nonzero singular values in the SVD of the trajectory matrix X; hence,

even if the window length L and K = N − L+ 1 are larger than d, we only need

at most d matrices Xi to reconstruct the series.

The two SSA forecasting algorithms SSA-R and SSA-V are described in detail

in [43, Sec 2.1.1]. If the number of terms r in the SVD of the trajectory matrix

X is smaller than the window length L, then, the series satisfies some LRR of

some dimension d < r. Let us formally describe the forecasting algorithm under

consideration.

Algorithm input:

(a). Time series YN = (y1, . . . , yN).

(b). Window length L, 1 < L,N .

(c). Linear space Lr ⊂ RL of dimension r < L. It is assumed that eL /∈ Lr, where

eL = (0, 0, . . . , 1) ∈ RL.

(d). Number M of points to forecast for.

Notations

(a). X = [X1, . . . , XK ] is the trajectory matrix of the time series YN .
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(b). P1, . . . , Pr is an orthonormal basis in Lr.

(c). X̂ = [X̂1 : . . . : X̂K ] = ∑r
i=1 PiP

T
i X. The vector X̂i is the orthogonal

projection of Xi onto the space Lr.

(d). X̃ = HX̂ = [X̃1 : . . . : X̃K ] is the result of the Hankellization of the matrix X̂.

The matrix X̃ is the trajectory matrix of some time series ỸN = (ỹ1, . . . , ỹN ).

(e). For any vector Y ∈ RL we denote by Y∆ ∈ RL−1 the vector consisting of

the last L− 1 components of the vector Y , while Y ∆ ∈ RL−1 is the vector

consisting of the first L− 1 components of the vector Y .

(f). We set v2 = π2
1 + . . . + π2

r , where πi is the last component of the vector Pi
(i = 1, . . . , r).

(g). Assume that eL /∈ Lr. This implies that Lr is not a vertical space. Then,

v2 < 1. It can be proved that the last component yL of any vector Y =

(y1, . . . , yL)T /∈ Lr is a linear combination of the first components y1, . . . , yL−1

yL = a1yL−1 + . . .+ aL−1y1.

The SSA-R forecasting algorithm can be presented as shown in [42, 43, 112].

For a chosen the window length L, the signal subspace S ∈ RL and therefore, the

min-norm LRR has order L− 1. For each column vector Pi of Pr, denote πi the

last coordinate of Pi,Pi ∈ RL−1 the vector Pi with the last coordinate removed,

and v2 = ∑r
i=1 π

2
i . Then, the elements of the vector

R = (aL−1, . . . , a1) = 1
1− v2

r∑
i=1

πiPi (2.14)
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provide the coefficients of the min− norm governing LRR as shown in [42, Sec

3.1.1.1]

sn =
L−1∑
i=1

aisn−i. (2.15)

2.6.1 Recurrent forecasting

The recurrent SSA forecasting is performed by means of the min-norm LRR

defined in (2.14). The SSA-R algorithm as formulated in [42, Section 3.2.1.2] is as

follows.

1. The time series YN+M = (y1, . . . , yN+M) is defined by

yi =


x̃i for i = 1, . . . , N,∑L−1
j=1 ajyi−j for i = 1 +N, . . . , N +M,

(2.16)

where x̃i is the reconstructed value of xi and a1, . . . , ad is the coefficients.

2. The numbers (yN+1, . . . , yN+M ) form the M terms of the recurrent forecast.

Thus, SSA-R is performed by the direct use of the forecasting LRR with coefficients

taken from R = (aL−1, . . . , a1).

We define the linear operator PRec : RL 7→ RL by the formula

PRecZ =

 Z̄

RTZ̄

 , (2.17)

where Z̄ consists of the last L− 1 coordinates of Z. Set
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Yi =


X̃i for i = 1, . . . , K,

PRecYi−1 for i = K + 1, . . . , K +M,

. (2.18)

where X̃i is the reconstructed columns of the trajectory matrix after grouping and

filtering the noise components. The matrix Y = [Y1 : . . . : YK+M ] is the trajectory

matrix of the series YN+M .

In recurrent forecasting, the original series can be taken instead of the reconstructed

series as the initial data for the forecasting LRR. This may be sensible only if

the leading components are chosen for forecasting. This option can reduce the

bias caused by the reconstruction inaccuracy but the volatility of forecasts may

increase [42].

The algorithm steps for the recurrent SSA forecasting can be found in [42, Section

3.2.2].

Algorithm 5 Recurrent SSA forecasting [42]
Input: Time series X of length N , window length L, orthonomal system of vectors

(Pi)ri=1, forecast horizon M .

Output: Forecast values (x̃N+1, . . . , x̃N+M).

1: Construct the vector R = (aL−1, . . . , a1)T of the minimal sum of squared

coefficients (the so-called min-norm LRR) to {Pi, i ∈ I}.

2: Construct the reconstructed matrix X̂ = PPTX, where P = [P1 : . . . : Pr],

and the reconstructed series X̃ = (x̃1, . . . , x̃N) by X̃ = T−1
SSA ◦ ΠH(X̂).

3: Calculate the forecast values by applying the min-norm LRR: x̃n =∑L−1
i=1 aix̃n−i, n = N + 1, . . . , N +M .
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2.6.2 Recurrent (original) forecasting

SSA-R (original) forecasting is a modified version of recurrent forecasting. By using

recurrent forecasting, the aim is to create a new series that should continue the

current series based on a given decomposition. To extract the missing (last) values

of vectors, the algorithm sequentially projects the incomplete embedding vectors

(from either the original or the reconstructed series) onto the subspace spanned

by the selected eigentriples of the decomposition. The forecasting elements are

created one by one in this way.

SSA-R (original) forecasting corresponds to application of the LRR formula to

initial data taken from the original series [42].

This approach works as that the m-th step of the forecast is calculated by means

of the LRR yn+m = ∑L−1
k=1 akyn+m−k, where the starting points yn−(L−2), . . . , yn are

taken from the initial (base="initial") time series.

2.6.3 Vector forecasting

Let Lr = span(Pi, i ∈ I ) and X̂i be the projection of the lagged vector Xi on Lr.

Consider the following matrix

Π = P
¯
P
¯

T + (1− v2)RRT, (2.19)

where P =
[
P1 : . . . : Pr

]
and R is defined in Equation (2.14). The matrix Π

defines the linear operator that performs the orthogonal projection RL−1 7→ Lr,

where Lr = span(Pi, i ∈ I ). Then, define linear operator PVec : RL 7→ Lr by the
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formula

PVecZ =

Π Z̄

RTZ̄

 , (2.20)

where Z̄ consists of the last L− 1 coordinates of Z.

The vector forecasting method can be formulated as follows.

1. Define the vectors

Yi =


X̂i for i = 1, . . . , K,

PVecYi−1 for i = K + 1, . . . , K +M + L− 1.
(2.21)

2. By constructing the matrix Y = [Y1 : . . . : YK+M+L−1] and making its diag-

onal averaging we obtain the series y1, . . . , yN+M+L−1.

3. The numbers yN+1, . . . , yN+M form the M terms of the vector forecast.

In recurrent forecasting, we perform diagonal averaging to obtain the reconstructed

series and then apply the LRR. In the vector forecasting algorithm, these steps

are applied in the reverse order. The current fast implementation of the vector

forecasting makes the vector forecasting comparable with recurrent forecasting it

terms of the computational cost, see [42, Section 3.2.2].
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Algorithm 6 Vector SSA forecasting [42]
Input: Time series X of length N , window length L, orthonomal system of vectors

(Pi)ri=1, forecast horizon M .

Output: Forecast values (x̃N+1, . . . , x̃N+M).

1: Obtain the vector R = (aL−1, . . . , a1)T of coefficients of the min-norm LRR to

{Pi, i ∈ I}.

2: Calculate the matrix Π of projection.

3: Construct the reconstructed matrix X̂ = PPTX, where P = [P1 : . . . : Pr].

4: Extend the reconstructed matrix X̂ = (X̂1, . . . , X̂K) by column vectors: X̂n =

PVecX̂n−1 for n = K + 1, . . . , K +M +L− 1, where PVec is given in Equation

(2.20) and uses Π and R. Denote the extended matrix X̂ext ∈ RL×(K+M+L−1).

5: Obtain the extended reconstructed series X̃ext = (x̃1, . . . , x̃N+M+L−1) as

X̃ext = T−1
SSA ◦ ΠH(X̂ext).

6: Return the forecast values (x̃N+1, . . . , x̃N+M).

2.6.4 Theoretical comparison of SSA-R and SSA-V

In [60], the authors explain a theoretical comparison of SSA-R and SSA-V. We

refer to the following lemma.

Lemma 1: Considering the notations in SSA-R and SSA-V, the coefficient vector

A and projection matrix Π satisfy the following equalities:

A = (U∇U∇∗T )−U∇UT
∆, (2.22)

Π = U∇∗T (U∇U∇∗T )−U∇, (2.23)

where U∇ =
[
U∇1 , . . . , U

∇
r

]
, UT

∆ = [π1, . . . , πr] and Z̄ denotes the generalized

inverse of matrix Z.



43

According to the Lemma 1, it can be concluded that both SSA-R and SSA-V use

the same projection. Note that in SSA-R, we first perform diagonal averaging and

then continue the series by LRR to obtain forecasts. However, in SSA-V, we first

continue the columns by the projection matrix and then use diagonal averaging

to obtain forecasts. Therefore, SSA-R allows the use of more previous data than

SSA-V. In SSA-R, all entities under the main off-diagonal (the off-diagonal of a

matrix running from the upper right entry) are used to obtain forecasts. There

are L(L−1)
2 entities under the main off-diagonal.

In contrast, SSA-V uses only the last column which has L observations. This might

be a reason why SSA-V is more robust than SSA-R. In general, the difference

between SSA-R and SSA-V consists in the difference between the last column of

the approximated trajectory matrix before and after diagonal averaging. If these

are close to each other, then SSA-R and SSA-V perform equivalently; but if there

is a significant difference one should not expect equivalent results.
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2.7 Gap filling method

This section is devoted to the extension of the SSA forecasting algorithms for the

analysis of time series with missing data.

2.7.1 Iterative approach

The SSA iterative gap filling algorithm were proposed in [42, 81]. The ideas of

the iterative gap filling algorithm in [140] are as follows.

1. An inner-loop iteration is started by computing the leading empirical or-

thogonal function (EOF) of the centered, zero-padded data.

2. The inner-loop iteration is performed again on the new time series.

3. The principal component corresponding to that in EOF alone is used to

obtain non-zero values in place of the missing points.

4. Correct the mean of the new time series.

5. Inner iteration has converged (proven mathematically in [12]).

6. An outer-loop iteration is performed by adding a second EOF for the

reconstruction, and then, the inner iteration is repeated.

7. The embedding dimension (window width) and the number of the selected

principal component are optimized by the cross-validation method.
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2.7.2 Algorithm

For a collection Y and a set of indices P we denote by Y
∣∣∣∣
p
the part of the collection

with the indices from P . Set N = {1, . . . , N}.

Algorithm 7 Iterative gap filling [42]
Input: Time series X of length N containing gaps, set of indices of missing values

P , window length L, version of SSA, series G of length N as the source of

initial values for gaps, rank for the reconstruction r, stop criterion STOP.

Output: Reconstructed series component X̃ with no gaps.

1: k ← 0, G̃(k) |p = G|p , I = {1, . . . , r}.

2: Set X̃(k+1) such that X̃(k+1)
∣∣∣N\p = X

∣∣∣
N\p

and that X̃(k+1)
∣∣∣p = G(k)

∣∣∣
p
.

3: Apply the selected version of SSA with the chosen L and I to X̃(k+1) and

obtain the reconstructed series G(k+1).

4: k ← k + 1.

5: If not STOP, go to Step 2; else X̃ = G(k).
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2.8 Comparing SSA and PCA

In this Section, we are considering the similarity and dissimilarity between SSA

and principal component analysis (PCA).

The details of differences between SSA and PCA in [60]. Consider a data matrix

as below

X =



x11 x12 . . . x1p

x21 x22 . . . x2p
... ... . . . ...

xn1 xn2 . . . xnp,


. (2.24)

where each of the n rows represents a sample, and each of the p columns gives

a particular kind of feature. In order to use PCA, there are no restrictions on

observations xij . But, n and p are fixed and p must be greater than 2. In contrast,

univariate SSA start with a univariate vector XN = (x1, x2, . . . , xN) and produce

data matrix

X =



x1 x2 . . . xK

x2 x3 . . . xK+1
... ... . . . ...

xL xL+1 . . . xN ,


. (2.25)

where k = N − L + 1. This matrix is a Hankel matrix, means that there are

restriction on the elements of the matrix. Unlike PCA where the number of rows

and columns are fixed, the rows number in SSA, L, can be adjusted between 2 and

N/2. This means that the subspaces in PCA is limited, whereas the subspaces in
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SSA can be adjusted by varying the window length L. However, both SSA and

PCA use SVD in their algorithms. PCA takes a data matrix as input, perform an

operation and then output a resulting matrix. In contrast, SSA take a univariate

vector, construct a trajectory matrix and then use a PCA process on this matrix

and finally transform the results to a univariate vector.

2.9 Benchmark forecasting models

In Section 2.9, we provide a brief idea for the forecasting algorithms of autore-

gressive integrated moving average (ARIMA), exponential smoothing (ETS) and

recurrent neural networks (RNN). Many studies are applied different models

of forecasting [38]. Details on the selected benchmark models are presented in

[34, 122, 14] and the algorithms of forecasting methods in [72].

2.9.1 Literature review

Section 2.9.1 provides a literature review of forecasting techniques used within

the field of meteorology. Many authors emphasize the importance of forecasting

in different fields of meteorological research and economics research. After an

extensive review of current literature found that no single forecasting model

outperforms all of them in all scenarios.

In [8], the authors examine forecasts by using meteorological variables. They

compare the performance of non-causal methods: an ARIMA and RNN. They

found that incorporating meteorological variables can increase predictive power.

Furthermore, in [92], the authors discuss how SSA is used to reduce noise and
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extract trend information from the original wind speed data, and how some models

are utilized a comparison model to examine the proposed model’s prediction

performance. The application of SSA forecasting had superior performance in

comparison to other methods. The authors discussed the two forecasting variations

of SSA which are SSA-V and SSA-R, and recommend that SSA-V is more robust

and provides better forecasts than SSA-R [33].

The importance of forecasting meteorological data, for example daily rainfall

time series was demonstrated in [133]. The components such as non-linear trend,

periodic components, noise and cyclic components were extracted from daily

rainfall data. In addition, the authors forecasted the daily air temperature

and precipitation time series in different sites from different climatic zones. In

their forecasting methods, the authors used the autoregressive integrated moving

average and the time series regression, including trend and seasonality components

methodology with R software. After forecasting, models can capture the dynamics

of the time series data and produce sensible forecasts [96]. In [99], the authors used

automatic univariate time series forecasting methods to explore the predictability

of monthly temperature and precipitation. Different forecasting methods are used

including as Auto-Regressive Fractionally Integrated Moving Average (ARFIMA),

ETS, ARMA, and Theta and Prophet methods. These methods are used for

testing the performance of multi-step ahead forecasts.

In [75], the authors argue that forecasting of temperature is an important aspect

of meteorology study and is very important in helping promote sustainable

development. In [98], the authors use different models such as ARIMA combined

with non-linear models like NN for getting accurate forecasting results. In [134],

ARIMA is used to separate stationary and non stationary components from the

climate data and forecasting the daily time series with reliability and accuracy.
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In [11], the authors study the forecasting time series data by using various types

of forecasting techniques such as ARIMA and NN, all of these methods are used

for obtaining reliable forecasting results.

In [18, 118], the authors take a simple time series approach for modeling and

forecasting daily average temperature and wind speed. Different models have

been used such as ARIMA and RNN. However, they do not necessarily generate

better forecasting results for all the forecasting time horizons studied. In [73, 91],

SSA is used for forecasting hydrological time series. The authors also compare

the performance of SSA forecasts with results from ARIMA, ETS and RNN.

2.9.2 Autoregressive integrated moving average

ARIMA is one of the most popular benchmark forecasting techniques which can

be provided through the forecast package for R by using auto.arima function. A

detailed description of the algorithm can be found in [70].

Autoregressive models are based on the idea that the current value of the series,

xt, can be explained as a function of p past values, xt−1, xt−2, . . . , xt−p, where p

determines the number of steps into the past needed to forecast the current value

[119].

According to [71] a non-seasonal ARIMA (p, d, q) process is given by

φ(B)(1−Bd)yt = c+ θ(B)εt, (2.26)

where εt is a white noise process with mean zero and variance σ2, B is the backshift

operator and φ(z) and θ(z) are polynomials of order p and q respectively. If c 6= 0,

there is an implied polynomial of order d in the forecast function.
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The seasonal ARIMA (p, d, q) (P,D,Q)m process is given by

Φ(Bm)φ(B)(1−Bm)D(1−B)dyt = c+ Θ(Bm)θ(B)εt, (2.27)

where m is the seasonal frequency, Φ(z) and Θ(z) are the polynomials of orders

P and Q respectively, each containing no roots inside the unit circle, and εt is

white noise. If c 6= 0, there is an implied polynomial of order d+D in the forecast

function.

Not that , We use uppercase notation for the seasonal parts of the model (P,D,Q),

and lowercase notation for the non-seasonal parts of the model (p, d, q).

In Chapter 5, we have used Auto Arima with order (3,0,3) for 12 month. Good

models are obtained by minimizing the RMSE .

2.9.3 Exponential smoothing

ETS method is an automated forecast model that incorporates the exponential

smoothing foundations and is given through the forecast package for R.

In ETS, the forecasts are made by considering weighted averages of past observa-

tions [76, 131]. A detailed description of ETS and ets() function by using forecast

package can be found in [70]. In brief, ETS model combines three components

which are the error, trend and seasonal along with several possible options for

selecting the best exponential smoothing model.

Figure 2.2 summarises the several ETS formulae that are evaluated in the forecast

package to select the best model to fit the data. lt represents the level of the

series at time t, bt denotes the slope, st denotes the seasonal component of the
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series, and m is the length of seasonality; α, β, γ, φ are smoothing parameters.

Figure 2.2 provides the different ETS formulas that have been evaluated in the

forecast package to select the best possible model to fit time series.
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Figure 2.2: State space equations for each of the models in ETS framework [70].
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2.9.4 Recurrent Neural networks

Recurrent neural networks (RNN) is a class of artificial neural networks that can

represent temporal dynamic behavior through feedback loops in neurons, have

been utilized to model nonlin- ear dynamic systems and have been incorporated

in the design of model predictive controllers (MPC) that optimize process per-

formance based on RNN prediction result [145]. RNN are powerful models for time

series are powerful models for sequential data (time series) [31], and they use the

previous output to predict and they use the previous output to predict the next

output. In this case, the networks themselves have repetitive loops. These loops,

which are in the hidden neurons, allow the storing of previous input information

for a while so that the system can predict future outputs. The hidden layer output

is retransmitted t times to the hidden layer. The output of a recursive neuron is

only sent to the next layer when the number of iterations is completed. In this

case, the output is more comprehensive, and the previous information is kept for

longer. Finally, the errors are returned backward to update the weights [9].

A simple RNN is essentially a collection of common neural networks arranged

together, each of them transmitting a message to another. In other words, these

networks have a memory that stores knowledge about the data seen, but their

memory is short term and cannot maintain long-term time series. A simple

recurrent network has only one internal memory—ht—which is computed from:

ht = g(Wxt + Ufht−1 + b), (2.28)

where g() denotes an activation function, U and W are flexible weight matrices of

the h layer, b is a bias, and X is an input vector.
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2.9.5 Long short-term memory

Long short-term memory (LSTM) is a kind of model or structure for time series

that uses a special combination of hidden units, elementwise products, and sums

between units to implement gates that control “memory cells” [9]. These cells are

designed to retain information without modification for long periods. To predict

the next step, the weight values on the network have to be updated, which requires

the maintenance of information from the initial steps. A simple RNN can only

learn a limited number of short-term relationships and it cannot learn long-term

series. However, LSTM can learn these long-term dependencies properly, and

LSTM has three gates: input, forget, and output. The forget gate is embedded

to indicate how much the previous memory remembers and how much it has

forgotten. For LSTM, the hidden state ht is computed as follows

it = σ(WiXt + Uiht−1 + bi), (2.29)

ft = σ(WfXt + Ufht−1 + bf ), (2.30)

Ot = σ(WOXt + UOht−1 + bO), (2.31)

C̃t = tanh(WcXt + Ucht−1 + bc), (2.32)

Ct = ft ∗ Ct−1 + it ∗ C̃t, (2.33)

ht = tanh(Ct) ∗Ot, (2.34)

where it, ft and Ot are the input, forget, and output gates at time t, respectively;

Wi, Wf , Wo and Wc are weights that map the hidden layer input to the three

gates of input, forget, and output while Ui, Uf , Uo and Uc weights matrices map

the hidden layer output to gates; bi, bf , bo and bc are vectors. Moreover, Ct and

ht are the outcome of the cell and the outcome of the layer, respectively.
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2.10 Metrics

This section considers the various metrics which are used to compare the forecasting

results. The predictive performance of different models is estimated by comparing

the observation and prediction [143]. The RMSE, the normalized root mean square

error (NRMSE), the mean absolute percentage error (MAPE), the mean absolute

error (MAE) are different metrics which are used to estimate the accuracy of

forecasting models.

2.10.1 Root mean squared error

The RMSE is the most popular criterion to measure the error of forecasts [42, 59,

89, 142].

The RMSE of the 1, 2, . . . , h-step ahead forecasts with several truncation points

is given by

RMSET2
T1 =

 1
(T2 − T1 + 1)h

T2∑
T=T1

h∑
j=1

(ỹT,j − yT+j)2

1/2

, (2.35)

where ỹT,j is the j-step ahead forecast of the truncated time series y1, . . . , yT , the

value yT+j is the true value of the given time series at time T + j, T1 and T2 are

the first and last truncation points, respectively.

For the task of forecasting a given time series, the automatic choice of parameters

L and r relies on finding values of parameters minimising the RMSE of forecasts

with desired forecasting horizonts, see [42, Sec 3.5.7] and [60, 33, 66, 105]. Further,

the forecasting algorithm with automatically chosen parameters is applied to

obtain future forecasts.
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2.11 Chapter summary

This chapter provides a review of the SSA algorithm, the existing literature and

discusses parameter selection. Then, Chapter 2 explains the algorithms for SSA

with projection and SSA-based iterative approach. Three forecasting algorithms

namely SSA-R, SSA-R (original) and SSA-V are introduced.

Benchmark forecasting models allow the comparison of SSA forecasting with

some classic forecasting models ARIMA, ETS, and RNN. Finally, the RMSE is

introduced as a measure of the accuracy of forecasting.





Chapter 3

Imputation of missing values

3.1 Introduction

This Chapter analyses different methods for addressing missing values in time

series. To extract important information from a time series, the data samples

must have no interruptions [17, 127].

Gaps in time series are compromise the quality of the information extracted from

the original data. There are several reasons for these gaps, such as failures in

measurement equipment, human failure, or technical problems such as failures in

the hardware and software that store and manipulate this information. Extreme

climates and economic problems can also cause gaps in time series [135].

Information without any missing values causes good results for decision makers

and meets the needs of scientific researchers. However, an incomplete record leads

to biased statistical results and significantly affects the quality of estimations

[100].

In this study, meteorological time series contain missing data and we were faced

with the problem of imputing missing values before running statistical procedures

57
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on them. Missing data is one of the problems that frequently occurs in the

data observation or data recording process [106]. Imputing missing value is a

solution that gives reasonable results and several techniques for solving missing

data problems are available. Choosing the wrong method can severely affect the

forecasting process [77].

There are different methods for imputing missing values, such as mean, median,

and mode imputation. However, simple methods are not good enough for handling

missing values and could create biased results. Some argue that choosing the

method for handling missing observations and damaged data can be more impor-

tant than the choice of forecasting methods [77]. Advanced methods of imputing

missing values fall into two categories. These methods are reconstruction and

forecasting based techniques that have used to replace missing values with SSA

filtering and forecast values [88, 109].

Three methods for filling gaps in time series are applied in this Chapter: the

iterative approach using singular spectrum analysis (SSA) [42], the multiple

regression method, and regression with lagging. The concept of filling in missing

data is to a great extent similar to the concept of forecasting. The approach we

consider consists of extending the structure of the extracted component to the

gaps caused by missing data. In the particular situation where missing values

are situated toward the end of a series, filling in gaps coincides with forecasting.

Thus, the techniques created are capable of both filling in the missing values and

forecasting [44]. Time series often have missing data that makes data analysis

difficult and reduces the precision of the results. SSA-based methods are available

for filling in the missing data [53].

When SSA is modified to permit missing data, it eliminates the need to screen, fill,

and subdivide time series before using SSA and makes it possible to analyse longer
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data lengths that are incomplete [114]. Model-based and parameter-dependent

gap-filling methods can be used instead of relying entirely on raw data and using

non parametric statistical methods. In models involving numerical boundary

conditions or spectral estimation, missing data creates various problems [82].

This Chapter illustrates a variety of advanced methods for handling missing data

and filling in gaps. Choosing the proper imputing techniques depends on the

structure of the time series concerned. In addition, some variables have been

imputed using simple methods such as imputation by zero. Imputing missing

values can remove the obstacle of missing data and can often produce reasonable

results.

The structure of this Chapter is as follows.

• In Section 3.1.1, we introduce the method of imputation that uses the

SSA-based iterative approach.

• In Section 3.1.2, we discuss imputation using the multiple regression ap-

proach.

• In Section 3.1.3, we present the imputation by regression with lagging

approach.

• In Section 3.2, we present the meteorological data of Oman.

• In Section 3.3, we discuss the results of imputation methods and analysis.

• In Section 3.4, we summarize Chapter 3.
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3.1.1 Imputation using SSA-based iterative approach

One of the effective applications of SSA is imputation in time series. Several

methods for imputation based on SSA have been designed for time series. The SSA

iterative method can extract reliable information from some data observations

with limitations such as noise and can begin to establish a prediction model based

on obtained information that leads to good prospects of recovering missing data

[42, 44, 77, 140].

Missing values are replaced with beginning values that are subsequently recon-

structed until convergence is achieved, after which the most recently reconstructed

values are considered to be imputed values [82].

Iterative SSA is a new method for filling in gaps in a wide range of geophysical

records as example. These series could have gaps that are randomly distributed

in time or they could contain patches of missing information. The accuracy and

reliability of the method are determined by the pattern of missing data, the length

of gaps in relation to the length of the dataset, and the percentage of variance

captured by robust, oscillatory modes [82].

In [140], the authors discuss the main ideas of the SSA iterative interpolation

process are: the leading empirical orthogonal function (EOF) of the centred,

zero-padded data is computed to begin an inner-loop iteration. The algorithm

is performed again on the new time series in which the principal component

corresponding to that in EOF alone is used to obtain non-zero values in place

of the missing points and correct the mean of the new time series. When inner

iteration has converged mathematically, an outer-loop iteration is performed by

adding a second EOF for reconstruction and the inner iteration is repeated. The

process of the SSA iterative interpolation algorithm is available in [140, 40].
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The SSA-based iterative approach to imputation in time series was proposed in

[81]. This approach fills in missing values using some initial values and iteratively

improves these values using SSA approximations. At each iteration, the recently

computed values from the SSA approximation are inserted in place of missing

entries. This approach works well when the missing entries are initially filled in

using some reasonable values [12, 42, 82]. This approach is implemented in the

function igapfill in the R package Rssa [83]. We applied this function with the

window length L = 120 and the number of components r which minimizes the

RMSE of retrospective forecasts [42, Sect. 3.5.7].

3.1.2 Imputation by multiple regression

The multiple regression method is used to replace incomplete values with possible

solutions and create a complete dataset using multiple imputation methods [108].

In [22], the authors explain that the multiple regression method is an extension

of the single imputation regression replacement method that support in order

to reduce any bias. The multiple regression involves three steps: the first step

is determining the imputation of missing data, the second step is running of an

independent statistical analysis on the resulting individual datasets and the third

step is the pooling the results of imputations.

In the regression imputation method, a linear relationship is assumed between

different variables and the value of one variable changes in a linear way with the

other variables. In this case, missing values are replaced by a linear regression

function instead of replacing all missing data if the relationships are linear;

otherwise the imputation values can be biased [19, 101]. Multiple regression

imputation is applied to the data in the form of a matrix in which columns
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correspond to variables and rows correspond to observations. Several subsets of

complete observations are created using several regression models for variables

with missing values. These models yield several predicted values and pooling

those values gives a value for imputation [22]. In our research, we used multiple

regression imputation by applying SPSS software and pooling five predicted values.

The first step of imputations is using values correlated to the target variable that

used in a regression model to predict the values of the missing data. The second

step is analyzing the imputed data and running the analysis simultaneously across

each imputed dataset by specifying the data. The final step is pooling the results.

Pooling generates a single output that incorporates the potential uncertainty that

is inherited in the imputation process into the standard errors. In [22], the authors

suggest three to ten imputations that are important to produce results and that

incorporate enough variation in the prediction process.

In this study, we performed five imputations to produce suitable results. SPSS

software can specify which data is imputed, automatically performs the simul-

taneous estimation. SPSS enables us to choose a theory-based model to make

predictions across each of the imputed datasets. Because the software used five

rounds of imputation to generate values for the missing data, it created five

distinct datasets and estimated a theory-based model for five times. After SPSS

executes the analysis, it pools the results and presents a report of the pooled

output. The pooling process incorporates the uncertainty from imputed data into

the estimates of the standard errors. The results can be interpreted as they would

be for data that does not include imputed values. The algorithm depends on the

linear regression as shown in [95, 129, 136].

The multiple linear regression model for pairs (xj, Yj), j = 1, . . . , n, with intercept
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β0 and slope β1 is as follows

Yj = β0 + β1x1 + β2x1 + . . .+ βjxj + εj. (3.1)

Data gaps in time series may occur in two ways: all variables may have missing

values, including the dependent variable, or at least one variable may have complete

data.

In equation (3.1), assume that the dependent variable y has no missing values

X = {Xi : i = 1, . . . , n} is the set of all predicted values, XMiss is a set of variables

that have missing values,
{
XMiss : XMiss ⊂ X

}
and XComp is a set of variables

without any missing values,
{
XComp : XComp ⊂ X

}
. The variable from XMiss

that can be chosen as the dependent variable in the first regression iteration is

selected under specific conditions: it is highly correlated with the variable y and

the number of all observations that contain missing values in both the candidate

variable and the y variable is predetermined.

This variable is the dependent variable; y and XComp can be independent in the

regression equation. If the model is designed to impute missing values in that

variable, then, the imputed variable XImp can be inserted as an independent

variable and the independent variables became: y: XComp and XMiss
Imp . Another

variable from XMiss can be chosen to be dependent variable, and the model

can be designed again to impute missing values in the variable of interest. This

procedure has been repeated until all missing values have been imputed [95]. For

imputation purposes, independent variables that are highly correlated with a

dependent variable with missing observations can be modelled to obtain highly

plausible imputations [1].



64

3.1.3 Imputation by regression with lagging

In this subsection, we describe an imputation procedure using regression with

lagging and in [5], the authors describe imputation by regression with lagging.

Recall that our data in the next section is several time series observed at six

locations of Oman and it is natural that these time series are correlated. Since

the distances between some locations are quite big, changes in meteorological

characteristics may occur with some lag. Also, time series may have specific

periodic patterns which are related to the locations of meteorological stations.

Thus, we consider the following model for a time series at the i-th location

yi(t) = β0 + βiP (t− btc) +
K∑
j 6=i

βjyj(t− Lj) + ε(t), (3.2)

where P (t) is the annual pattern calculated by taking the average across several

years, btc stands for the integer part operation, and β0, β1 . . . , βK , L1, . . . , LK are

parameters to be estimated, j = 1, 2, 3, . . . , K and K is a number of other time

series without missing values.

We assume that the model (3.2) holds for short time intervals [t1, t2] and parameters

may depend on time. Since time series are correlated, there exists a problem of

collinearity and therefore, we estimate the parameters such that the parameters

β1 . . . , βK are positive. The positive constraint is needed to avoid overfitting

in the presence of multicollinearity.To avoid the computational burden in the

global estimation problem, we estimate parameters L1, . . . , LK independently.

Specifically, we choose Lj to maximize the cross-correlation between yi(t) and

yj(t).

There are some observations at time t that are likely to be correlated with

observations at times (t − 1), (t − 2), and so on. Lagged variables have been
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generated and included as predictors to capture the relationship between past and

current values. Regardless of the number of predictors that were used, including

lagged variables from time (t−L) improves the algorithm’s performance. However,

including more lagged variables (t − L − 1) and (t − L + 1) shows minimal

improvements in accuracy [20].

3.2 Meteorological data from Oman

Climate data are typically processed and analyzed at different low-resolution

levels such as hourly, daily, weekly, monthly, and yearly. However, the analysis of

high-resolution data offers a greater ability to understand the behavior of data

variability and trends in nature and to detect small changes. Climate studies

require complete time series data. When data is missing in climate time series,

imputation must be undertaken [1].

Finding changes in climate characteristics is attracting many researchers but not

much is known about climate change in Oman. The authors of [3] provide a good

picture about the past climate in Oman since 1961 and simulate future climate

projections that have harmful consequences such as the increase of the minimum

temperature and the decrease of rainfall. In [4], the authors found trends in

temperature and rainfall records at the Saiq meteorological station in Oman over

the period 1979–2012. In [16], the authors discuss that the climate trends in

mountain oases of northern Oman over the last three decades are reported.

Oman is a country with an arid and semi-arid climate, where nature and agriculture

are very sensitive to climate changes and water is an important limiting resource

[3, 117, 130]. Meteorological trends serve as indicators of climate change and



66

should be used by policymakers to maintain the ecosystem in the wealthy state.

We investigate the hourly temperature and humidity time series collected at six

meteorological stations in Oman from 2009 to 2018. This data is provided by

the Directorate General of Meteorology of Oman and has not been studied in the

literature.

We consider hourly temperature (measured in centigrade), humidity (measured in

%), and precipitation (measured in mm) collected at six meteorological stations

in the Sultanate of Oman from 2009 to 2018. These stations are located in

Khasab Airport (K), Masirah (MA), Muscat International airport (MU), Saiq

(SQ), Salalah (SA), and Thumrait (TH) and are shown in Figure 3.1. We use

hourly time series for imputing any missing values (24 hours in a day ) for 10 years,

which are 86400 sample of data. Since we have some missing values, working with

hourly time series is preferred.
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Figure 3.1: Locations of meteorological stations in Sultanate of Oman.
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Let us briefly highlight the major climate and geographic specifics of Oman, see

[3] for a more precise climatic description. Oman is located on the southeastern

corner of the Arabian Peninsula in southwest Asia. The climate in Oman is hot

and dry from May to the end of October and has mild winters, except for the

south of the country. Also, the south of Oman is affected by a monsoon climate

from June to September.

The individual specifics of six meteorological stations are as follows.

• Khasab (K) is located in Musandam Governorate which is a mountainous

Omani peninsula and has wet summers and rainy, cold winters.

• Masirah Island (MA) is the largest island in Oman and has hot summers

and warm winters.

• Muscat (MU) is a capital of Sultanate of Oman. The city lies on the Arabian

Sea along the Gulf of Oman. It has very hot summers and warm winters.

• Saiq (SQ) is located in the mountain of Al Jabal Al Akhdar city. It is one of

the highest points in Oman and eastern Arabia. Temperature drops during

winter to below zero Celsius, with snow falling, and rises in the summer to

typically 22 degrees Celsius.

• Salalah (SA) is the capital and largest city of the southern Oman governorate

of Dhofar. It is very cloudy and foggy from July to August with little rain

fall.

• Thumrait (TH) is a town of the Dhofar Governorate in southern Oman.

It has mild summers and warm winters. Rainfall occurs from February to

April, as well as June to August due to the monsoon.
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3.2.1 Data cleaning

Data cleaning refers to review data for finding possible errors, incomplete informa-

tion, and outliers and then, to fix the errors or problems identified. Cleaning the

dataset before beginning to fill in gaps is the first step before starting any analysis.

Data cleaning also involves detecting and removing errors and inconsistencies from

collected data. Previous research has used cleaned data primarily for the purpose

of analysing structured data [25]. There are several different ways to clean dataset

such as replacing missing values and remove any error in original data.

We began by removing errors in the variable that tracked relative humidity. We

replaced values of less than 5% for relative humidity with 5% and values that

were greater than 100% with 100%.

Table 3.1: Descriptive statistics of the time series for precipitation, humidity and

temperature meteorological stations in Oman, 2009–2018.

Series Precipitation Humidity Temperature

Station Min Max Missing Min Max Missing Min Max Missing

K 0 38.60 1965 11 93 1961 11.1 49.9 1957

MA 0 33.20 2557 11 100 2552 11.80 46.40 2544

MU 0 37 30037 11 100 2942 12.70 48.40 29407

SQ1 0 38 21684 11 98 24267 1.30 35.70 22163

SQ2 0 28.60 54813 11 100 53505 0.10 34.20 53569

SA 0 25.60 30508 11 98 29761 11 94 1544

TH 0 11 1531 11 94 1544 5 45.50 1530
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Table 3.1 presents a summary of the original time series dataset, which includes

the maximum and minimum values and number of missing values for precipitation,

humidity and temperature from each station in Oman for a period of ten years.

3.2.2 Hourly time series

In this part, we have illustrated the time series of temperature, humidity and

precipitation which collected from six different stations in Oman.

Figure 3.2: Hourly temperature at six meteorological stations.

We show hourly time series of temperature in Figure 3.2. We can see that the

lowest temperature is observed at the station SQ and the highest temperature

is recorded at the station K. The annual temperature pattern has a sinusoidal
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shape in stations K, MU, SQ and TH and a two-mode shape in stations MA and

SA. We depict hourly time series of humidity in Figure 3.3, we can observe that

humidity is very volatile. The annual pattern is clearly visible for the station SA

and slightly visible for stations MA and MU. The high humidity is more often

observed at the station MA since this place is close to sea area.

Figure 3.3: Hourly humidity at six meteorological stations.

Precipitation in Oman occurs very rarely and therefore, graphs of hourly time

series of precipitation would not be appropriate. As a result, in Figure 3.4, we

show the cumulative precipitation for each year to have a cyclic trend over few

years. We can see that precipitation usually occurs in winter months and the larger

precipitation was observed in stations SQ and K, while the lower precipitation is

recorded in stations TH and SA. The station TH is remarkable due to very long

periods with no precipitation.
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Figure 3.4: Cumulative precipitation at six meteorological stations.

3.2.3 Imputation by zero

Precipitation (mm) series have huge gaps and most of the missing values represent

zero. In this case, we prefer to replace the missing data with zero because the

most frequent and most common values in precipitation are zero, is as explained

in detail in [86, 26]. In the zero-imputation strategy, we replace missing values

with zero [84].

The following graphs are examples of imputation values by zero for three locations.



73

Figure 3.5: Imputation by zero for precipitation at stations K, MA and MU.

Figure 3.5 illustrates that for all stations, most values of precipitation are zero for

the period 2009 to 2018. We can conclude from our time series that more than

95% of precipitation is zero for all stations.
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3.3 Result of imputation methods

This section considers applications of three different imputation methods for

hourly time series from 2009 to 2018.

Meteorological data in our study contain instrumental errors and missing values

which are shown in Figures 3.6–3.13. To run traditional algorithms of time series

analysis, we have to perform imputation. The simplest methods such as mean,

median and mode imputation are not reasonable because with have data in form

of time series. In this section, we study three methods of replacing missing

values: (i) the SSA-based iterative approach, (ii) the regression method, and (iii)

regression with lagging. Note that, the imputed values are shown in the red line

and non-missing values are shown in the black line.

We can see that the SSA-based iterative approach works well for imputing short

gaps, up to a couple of days, see, e.g., Figure 3.7. If missing values create a long

gap then, the imputed values look almost like a clear periodic wave with a linear

trend. For example, in Figure 3.6 a periodic wave has the form of sinusoid which

is an aggregation of neighbour daily cycles. In contrast, imputation by regression

with lagging yields more realistic values than the SSA-based iterative approach

and imputation with multiple regression.
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Figure 3.6: Temperature at the station K with non-missing (black) and imputed

(red) values in May 2011. Top: The SSA-based iterative approach.Middle: Multiple

regression imputation. Bottom: Imputation by regression with lagging.
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Figure 3.7: Temperature at the station K with non-missing (black) and imputed

(red) values in March 2017. Top: The SSA-based iterative approach. Middle:

Multiple regression imputation. Bottom: Imputation by regression with lagging.
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In Figure 3.8, we observe that the missing values imputed by the SSA-based

iterative approach do not contain the day-to-day variations in the temperature

amplitude and thus, this method cannot be recommended for filling in long gaps

into time series with unstable structure. We can observe that the imputation with

multiple regression and regression with lagging are more realistic than SSA-based

iterative approach.
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Figure 3.8: Temperature at the station K with non-missing (black) and imputed

(red) values around New Year 2018. Top: The SSA-based iterative approach.

Middle: Multiple regression imputation. Bottom: Imputation by regression with

lagging.
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Figure 3.9: Humidity at the station K with non-missing (black) and imputed (red)

values in May 2011. Top: The SSA-based iterative approach. Middle: Multiple

regression imputation. Bottom: Imputation by regression with lagging.

In Figure 3.9, we see that humidity is almost constant during two days before a

gap with missing values and has non-regular fluctuations after the gap. Multiple

regression imputation fills the gap by daily oscillations of very small magnitude.

Imputation by multiple regression and regression with lagging fill by a non-regular

daily oscillation of small amplitude at the top part and large amplitude at the

bottom part of the gap. Thus, imputation by multiple regression and regression

with lagging looks more natural in the station K.
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Figure 3.10: Humidity at the station K with non-missing (black) and imputed

(red) values around New Year 2018. Top: The SSA-based iterative approach.

Middle: Multiple regression imputation. Bottom: Imputation by regression with

lagging.

In Figure 3.10, we observe that humidity has non-regular oscillations around a

gap with missing values. The SSA-based iterative approach fills by values with

disturbed daily oscillations. But imputation by multiple regression and regression

with lagging produce imputed values with clear daily oscillations. The former

methods are more reliable.
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Figure 3.11: Humidity at the station MA with non-missing (black) and imputed

(red) values around New Year 2012. Top: The SSA-based iterative approach.

Middle: Multiple regression imputation. Bottom: Imputation by regression with

lagging.

In Figure 3.11, we depict humidity time series with a big gap of missing values.

Here both the SSA-based iterative approach, multiple regression imputation and

imputation by regression with lagging yield reasonable results.
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Figure 3.12: Temperature at the station MA with non-missing (black) and imputed

(red) values around New Year 2012. Top: The SSA-based iterative approach.

Middle: Multiple regression imputation. Bottom: Imputation by regression with

lagging.

In Figure 3.12, we depict temperature time series around the same big gap as

shown in Figure 3.11. The SSA-based iterative approach and multiple regression

imputation produce daily oscillations with rather large trend. But imputation by

regression with lagging gives imputed values with a reasonable trend.
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Figure 3.13: Temperature at the station MU with non-missing (black) and imputed

(red) values around June 2012. Top: The SSA-based iterative approach. Middle:

Multiple regression imputation. Bottom: Imputation by regression with lagging.

Figure 3.13 shows temperature time series at the station MU.The SSA-based

iterative approach gives rather non-regular missing values. However, imputation

by multiple regression yields more sensible daily oscillations. For short gaps of

missing values, both multiple regression imputation and imputation by regression

with lagging give similar results, which are not shown here due to lack of space.
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Finally in Figure 3.14, we compare imputation methods using temperature time

series with artificial gaps. We can observe that imputation by regression with

lagging is more accurate than imputation by the SSA-based iterative approach.
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Figure 3.14: Temperature at the station K with non-missing values (black curve).

The blue curve corresponds to the observed values which are artificially missed.

The green curve corresponds to values obtain by the SSA-based iterative approach.

The red curve corresponds to values obtained by imputation by regression with

lagging.

Imputation missing values are not limited to methods which we discuss in this

Chapter; there are different ways and other techniques that are used for imputation.

One of these methods is imputation-based forecasting algorithms. The impute
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based forecasting algorithm works by decomposing the input time series with

missing values into a matrix as a preliminary step to quantify the characteristics

of missing observations. This matrix is defined as the ‘missing profile matrix’

and includes relevant information for the impute algorithm. The missing profile

matrix includes three parameters for each patch, where a patch is defined as a

continuous block of missing observations with a potential minimum size of one.

The first parameter is the starting index of each missing patch in the time series;

the second parameter is the ending index, and the third parameter is the over-all

patch size. The parameters in the matrix are used as reference points for fast

indexing of the missing patches, as in [13].
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3.4 Chapter summary

We analyzed hourly time series of temperature and humidity from six meteoro-

logical stations in Oman from 2009 to 2018. Dealing with imputation missing

values in the dataset is an important step in the data analysis and improve the

quality of the data by exploiting all variables. We have described and evaluated

an imputation procedure that can be used to impute missing values in a variety

of complex data structures involving many types of variables. We investigated

three methods of imputation: SSA-based iterative approach, regression methods

and regression with lagging. We found that imputation by regression with lagging

is a more reliable and reasonable method and provides natural results for filling

gaps for any length in meteorological time series for this study. Choosing an

appropriate imputation method is dependent on characteristics of the dataset to

evaluate. We can use an imputation by forecasting in a further study.





Chapter 4

Extracting annual oscillations and

daily periodicities

4.1 Introduction

This Chapter explores ways to extract annual oscillations and daily periodicities

with SSA for meteorological time series from 2009 to 2018.There are many methods

for analysing trends and we are focusing on three trend tests based on many

propitiates. These tests are the Mann-Kendall (MK) test, the Spearman’s rho

test (SR) and the Sen’s innovative trend method (ITM) test. The main reason

for choosing these tests is because of they do not require the time series to be

normally distributed; they are robust to missing values, easy to calculate, are easy

to analysis large data. Section 4.3 discusses trend tests in details.

We also used SSA to extract components such as the annual and daily oscillations

in the hourly time series.

The pattern of oscillations and the periodicities of time series becomes are impor-

tant for studying the influences of time series. In [133], the authors discuss how

they used SSA to extract the components of rainfall such as time period, trends,

85
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and cycles and then, used that data to forecast daily time series [149].

The authors of [31] used SSA for extracting the oscillations and the periodicities.

Extraction oscillations have also been used with annual precipitation series to

extract the trend and period components of annual, monthly, and hourly time

series [91].

Trend analysis is used to detect trend, if the data trend increases, decreases, or

exhibits no trend over time, detecting the trend is a complex process that has

different characteristics [79]. The descriptive statistics of our meteorological time

series that we provided in Chapter 3 show variability over time that can be cyclical

in terms of seasons, trends, or other variations.

In Chapter 4, we have applied trend tests by using the time series of the tempera-

ture and humidity. We have analysis trends for individual years using the MK

test and have extracted daily trends using SSA [132].

The structure of this Chapter is as follows.

• In Section 4.2, we discuss the annual oscillations for hourly time series of

temperature and humidity.

• In Section 4.3, we apply the trend analysis.

• In Section 4.4, we explore the variability of daily periodicity.

• In Section 4.5, we present the summary and conclusion of the Chapter.
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4.2 Annual oscillations of temperature and hu-

midity

The annual oscillations for hourly time series can be viewed as a trend (a slowly

changing component) and therefore, can be extracted as the first component of

the SSA decomposition with a small window length [42]. We selected the window

of length L = 5× 24 = 120 which corresponds to the number of hours in five days.

In Figure 4.1, we depict the hourly time series of the annual oscillations of

temperature for six stations. We can see a small variation in temperature from

year to year and random fluctuations from week to week. We also see that the

annual oscillation has a sinusoidal pattern at stations K, MU, and SQ and two-saw

shape pattern at stations MA, SA and TH.
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Figure 4.1: Annual oscillations of temperature at six stations.

In Figure 4.2, we depict annual oscillations in humidity. We can see very large

random variations in humidity from one week to another except summer months

at stations MA and SA. The lowest humidity is observed at the station SQ during

almost all year, and the highest humidity occurs in July–August at the station

SA.
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Figure 4.2: Annual oscillations in humidity at six stations.

4.3 Trend tests

Trend tests are used to investigate whether a trend in data points moves upward,

downward, or is static [29]. The main purpose of trend analysis is to understand

present and past climatic changes so that future forecasts can be more useful for

decision makers. There are several methods for investigating trends. In this study,
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we have used different methods for detecting a trend, see [80, 123].

To detect trends in temperature and humidity, we used the MK test, the SR

test and the ITM test [115, 116, 117, 147]. The ITM is less restrictive than the

others and is already widely applied to various meteorological time series. For

example, the ITM test showed trends in monthly stream flows in northern regions

of Turkey during 1964–2007, see [80], trends in monthly rainfall in a region of

Ethiopia during 1980–2016 see [29], and trends in annual temperature in China

during 1960–2015, see [21].

These tests are widely used to identify monotonic patterns in weather, climate,

and hydrology and to measure the importance of hydrometeorological time series

patterns [21, 23, 29, 80, 123]. We apply three tests individually to sequences of

length 10 generated for each hour of year across 10 years. The first two tests

should be applied under assumptions of independence and normality which can be

assumed to be satisfied for our data. Also, the power of the tests largely depends

on the length of sequences which is rather short in our study.

4.3.1 The Mann-Kendall trend test

The non parametric MK test is widely used to identify monotonic patterns in

weather, climate, or hydrological data sequences and to measure the importance

of hydrometeorological time series patterns [23, 49, 124].

The MK test has been applied to different kinds of data such as annual, monthly,

and seasonal time series in climate time series. It is suitable for situations where

the trend may be assumed to be a monotonic and normal distribution or where

there is no trend. The significance of the MK test is that it can be used for
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non-normal data such as seasonal data or where values are missing or have been

censored. It also is an asymptotically efficient estimator [28, 93]. The MK test is

calculated as shown in [6, 149].

The MK test is based on the statistic

SMK =
N−1∑
i=1

N∑
j=i+1

sgn(xj − xi), (4.1)

where

sgn(xj − xi) =



+1 if (xj − xi) > 0,

0 if (xj − xi) = 0,

−1 if (xj − xi) < 0,

(4.2)

N is the length of a time series x1, . . . , xN and sgn(·) is the sign function.

The variance of SMK is estimated as

V ar(SMK) = N(N − 1)(2N + 5)− ΣP
i=1ti(ti − 1)(2ti + 5)

18 , (4.3)

where P is the number of tied groups, the summary sign Σ indicates the summation

over all tied groups, and ti is the number of data values in tied group. A tied

group is a set of total of time series having the same value.

The standardized test statistic Z for the MK test can be computed by
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ZMK =



S−1√
V ar(S)

if S>0,

0 if S=0,

S+1√
V ar(S)

if S<0.

(4.4)

Positive values for ZMK indicate increasing trends while negative valued for ZMK

indicate decreasing trends. Testing trends is done at the specified significance

level. When |ZMK | > Z1−α/2, the null hypothesis was rejected and a significant

trend existed in the time series. Z1−α/2 was obtained from the standard normal

distribution table. In this study, we used a significance levels of α = 0.05. Our

null hypothesis H0 was that there was no monotonic trend in the series. The

alternate hypothesis Ha was that a trend exists and this trend can that could be

positive, negative, or non-null. We used a program developed in R to generate

the algorithm of the non parametric MK test.

We performed the MK test for each year of temperature and humidity series at

six stations at a confidence level of 95%. We obtained the MK test statistic −Z

for each month of the year for the period 2009–2018. The result shows that no

months had a significant trend at a confidence level of 95%.

To investigate for the presence of trends in the annual oscillations we use the MK

test. We apply this test individually to sequences of length 10 generated for each

hour of year across 10 years. Since the presence of a trend for one particular hour

is not important, we combine several 24 p-values within each day to one p-value

by taking the maximum.

We show the combined p-values of the annual oscillation of temperature and

humidity in Figures 4.3 and 4.4 respectively for six stations. Also there are many
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missing values in Nov-Dec for locations MU and SA and therefore, p-values for

this period were not computed. These figures show that it could be just few

days in year with p-values smaller than 0.1. Thus we conclude that there is no

monotonic changes in temperature and humidity over the period 2009-2018.

Figure 4.3: The combined p-values of the MK test for the annual oscillation of

temperature in 6 locations.
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Figure 4.4: The combined p-values of the MK test for the annual oscillation of

humidity in 6 locations.
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4.3.2 Innovative trend method

The ITM test is fundamental for understanding how the relationship between

ecosystem dynamics and climate change directly affects temperature and humidity,

especially in arid and semi-arid environments, where water is an important limiting

resource not just because it is scarce but also because its presence is intermittent

and unpredictable [85, 117].

We used the ITM test to detect the trend in our long-term time series, a method

that was proposed in [115]. This method splits the time series into two equivalent

portions and sorts each portion in ascending order. The first portion of the time

series is placed on the X− axis and the second is placed on the Y− axis [80].

The two halves are placed on a coordinate system. The first segment (Xi :

i = 1, 2, 3, . . . , n/2) is presented in the horizontal axis while the second segment

(Xj : j = n/2 + 1, n/2 + 2, . . . , n) is presented in vertical axis in the Cartesian

coordinate system [29].

If a scatter plot of the time series shows a straight line at a 45◦, that indicates

that there is no trend. When the data points accumulate about the 45◦ line, that

indicates an increasing trend and when they accumulate below that line, that

indicates a decreasing trend. The difference in mean values between Xi and Xj

provides the trend magnitude of the data series. This method can show the trend

in plots of sub series data [124].

The ITM test provides a clear picture of the preliminary analysis of any trend

detection study. In [116], the authors described the application of trend analysis

in detail. Figure 4.5 illustrates the ITM test.

For the estimation of the trend, the SITM statistic is computed [6] as follows
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Figure 4.5: Illustration of innovative trend analysis.

SITM = 2(X̄i − X̄j)
N

, (4.5)

where SITM is the base of the slope that results from the ITM test, N is is the

length of a time series and X̄i and X̄j are the mean value of the first and second

halves of the series, respectively.

The null hypothesis H0 of no significant trend cannot be rejected if the calculated

slope value s, remains below a critical value, ssci, s < ssci. The alternative

hypothesis Ha of the presence of a significant trend in time series is accept if

s > ssci.

The trend indicator is given in [29] as follows and the trend indicator of ITM test

is multiplied by 10 to make the scale similar with the other two tests

Φ = 1
N

N∑
i=1

10(Xj −Xi)
u

, (4.6)

where Φ is the trend indicator, n is is the length of a time series in the subseries,
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Xi is the data series in the first half of the subseries class, Xj is the data series in

the second half of the subseries class, and u is the mean of the data series in the

first half of the subseries class. A positive value of Φ indicates an increasing trend

while a negative value of Φ indicates a decreasing trend. However, when the scatter

points closest cluster around the 1...1 straight line, it implies the non-existence of

significant trend.

For monthly temperature and humidity time series of a length of 120, we depict

the ITM diagnostic shows in Figures 4.6 and 4.7. Figures 4.6 and 4.7 compare the

empirical distributions of the first and second halves of time series, (10 years in

12 months) which are equally divided into two segments, one from 2009 to 2013

and the other from 2014 to 2018.

In Figures 4.6 and 4.7, the trends are inconsistent which are showing both

increasing and decreasing trends across stations K, MA and TH and data falling

between 5% and 10% with a significance levels. The first half of the series is

plotted on the horizontal axis and the second half on the vertical axis leading to

the graph with a 1 : 1 (45◦) straight-line on it. If scatter points are above (or

under) the 1 : 1 line then there is a monotonic increasing (or decreasing) trend on

the parent time series.

The ITM test is applied to the annual mean temperature and humidity series,

which are shown in Figures 4.6 and 4.7 from 2009 to 2018. The results are for

three stations: K, MA and TH; while other stations in this study have gaps and

huge missing values; the ITM does not work with missing values. The results in

Figure 4.6 represent the ITM test for annual mean temperature at the stations

K, MA and TH from 2009 to 2018. At the station K, the Sen’s slope is 0.0016

and 99% confidence interval of (−0.0018, 0.0018) which indicates that there is no
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significant trend with respect to 10% relative band. Similarly, the ITM test has

shown that there has not significant trend with respect to 10% relative band at

the station MA with Sen’s slope 0.0047 at confidence interval (−0.0009, 0.0009).

The station TH indicates that there has not significant trend with respect to 10%

relative band with Sen’s slope −0.0024 at confidence interval (−0.00242, 0.00242).

Figure 4.7 shows the ITM test for annual mean humidity at the stations K, MA

and TH from 2009 to 2018. Figure 4.7 presents a very small positive trend at the

station K with medium and high (> 55) values that shows monotonic increasing

trend but very close to 10% limit with the slope of 0.007 at confidence interval

(−0.0048, 0.0048). The ITM test shows that there is no significant trend with

respect to 10% relative band at the the station MA, where the slope is −0.0018

at confidence interval (−0.0028, 0.0028). The station TH exhibits a small positive

trend, the slope was 0.0136 at 99% confidence interval.

For monthly temperature and humidity time series of length 120 (12 month in

10 years), we depict the ITM test diagnostic in Figure 4.8 which compares the

empirical distributions of the first and second halves of time series [116]. In Figure

4.8, the trends are small increasing at the K station for the time series of humidity

and at the MA station for the time series of temperature. While other stations are

between the range of 10% level of significance and fall within the 10% range from

the 1 : 1 line. We can observe that the ITM test diagnostic shows the absence

of the trend in annual oscillations of monthly temperature and humidity at all

stations.
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Figure 4.6: Results of the ITM test for annual mean temperature at the stations

K, MA and TH from 2009 to 2018.
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Figure 4.7: Results of the ITM test for annual mean humidity at the stations K,

MA and TH from 2009 to 2018.
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Figure 4.8: The ITM test diagnostic of monthly time series of temperature (left)

and humidity (right) in 6 locations.
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4.3.3 Spearman’s rho test

The SR test is one of the rank-based non parametric statistical tests that can be

used to detect a monotonic trend in time series [147]. It is also a simple method

that has uniform power for both linear and non-linear trends [117, 130].

In the SR test, the null hypothesis H0 is that all the data in the time series are

independent and that there is no monotonic trend and the alternative hypothesis

H1 is that increasing or decreasing trends exist. The Spearman’s rank correlation

coefficient statistic SSR and the standardized test statistic ZSR are expressed in

[117, 130].

The SR test is based on the Pearson correlation coefficient between ranks and can

be computed by

SSR = 1− 6
N(N2 − 1)

N∑
i=1

(Ri − i)2. (4.7)

The standardized statistics ZSR are defined as

ZSR = SSR

√
N − 2

1− (SSR)2 , (4.8)

where Ri is the rank of ith element of a time series and N is the length of a time

series x1, . . . , xN . Positive values of ZSR indicate upward trends, while negative

values of ZSR indicate downward trends in the time series. When |ZSR| > tN−1,1−α2 ,

the null hypothesis is rejected and a significant trend exists in the time series.

tN−1,1−α2 is the critical value at 5% significance level.

We have applied the SR test for the temperature and humidity data series for six

stations using time-series data with a length L = 120 months for 2009 to 2018.

The trend tests revealed no statistically significant trends at stations K, MU, and
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TH with respective p-values of 0.508, 0.776 and 0.612 for the temperature series

and 0.4540, 0.501 and 0.492 for the humidity series. Stations MA, SQ, and SA

have missing values for more than one year, which created a short time series.

These stations had a small positive trend at 5% significance level.

4.3.4 Comparison of the trend tests

Trend tests have been used to detect monotonic trends in time series. Using

these three methods, we can conclude that there were no monotonic changes in

temperature and humidity in Oman over the period 2009–2018. The MK test is

not suitable for data with periodicities such as seasonal effects and is not preferred

for short time series. In contrast, the SR test is suitable for work with short

time series. The ITM test does not depend on any particular assumption about

distribution, serial correlation, or seasonal cycles and is a simple test to understand

and calculate. In addition, it is a method that can provide critical information

and predictions to decision makers and can be used in different climate change

scenarios [2, 6, 21].

Note that we performed multiple tests, and therefore, some p-values can be below

than 0.05 by chance. We found that the empirical distribution of 8760 p-values for

each test is rather uniform for all three tests. Since the presence of a significant p-

value for one particular hour is not important, we study the allocation of significant

p-value along days in a year. Specifically, in Figures 4.9 and 4.10, we show the

cumulative number of significant p-value for six stations. Since there are many

missing values in Nov-Dec for locations MU and SA, p-values for this period were

not computed. These figures show several jumps, meaning that there are few days

in year with many significant p-values.
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Since the height of these jumps is not sufficiently large, we concluded that there

are no monotonic trend in the annual oscillations of temperature and humidity

over the period 2009–2018 in Oman.

Figure 4.9: The cumulative numbers of significant p-values of the MK test (black),

the SR test (blue), the ITM test (red) for the annual oscillation of temperature in

6 locations.

Figure 4.10: The cumulative numbers of significant p-values of the MK test (black),

the SR test (blue), the ITM test (red) for the annual oscillation of humidity in 6

locations.
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4.4 Daily periodicities

Detection of periodicities components of natural processes is critical because it

can help in understanding the different processes [139, 146]. Furthermore, the

presence of periodicity complicates the efficient modeling of time series using

stochastic modeling techniques [151]. Sometimes, the presence of noise in the data

makes it extremely difficult to detect periodicity components in time series [27].

SSA is an efficient way for detecting periodicities in the time series compared to

other time series techniques [144].

If we want to extract a periodic component with known period, then, the window

lengths, which are divisible by the period, provide better separability. If we choose

a few leading eigentriples, then SSA with small L performs smoothing of the

series as a filter of order 2L − 1, the choice of the window length is important.

Therefore, the result is usually stable with respect to small changes in the values

of L. If the time series has a complex structure, then the so-called Sequential SSA

is recommended. Sequential SSA consists of two stages; at the first stage, trend is

extracted with a small window length and then, periodic components are detected

and extracted from the residual with L = N/2 [48]. Additionally, the periodic

components are chosen by the choice of eigenvectors with desired frequencies.

For extracting the daily oscillation, we apply SSA with L = 24. Specifically, we

obtain the daily oscillation by substraction of the leading component of the SSA

decomposition from the analysed time series. We show the daily oscillation of

temperature for several locations in July in 4.11. We can see that the the daily

periodicities is very similar from year to other year and from day to day and

depends on month except for the station MU. However, the shape of periodicities

depends on the stations. Also, we applied the MK test, the SR test and the ITM
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test to values of the daily periodicities with one year increment and can conclude

that there is no monotonic trend in the daily periodicities of temperature.

Figure 4.11: The daily periodicities of temperature in July at six stations.

In Figure 4.12, we depict the daily periodicities of humidity in July for six stations.

We can see that the daily periodicities of humidity has a very small amplitude at

the station SA, sharply replicates from year to year and from day to day within

July at the stations MA and TH and very volatile at stations K, MU and SQ.
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Figure 4.12: The daily periodic of humidity in July at six stations.

For studying variability of the daily periodicities along year, we consider the

standard deviation of hourly time series of each month, specifically, we compute

sm =

√√√√√ h2(m)∑
t=h1(m)

x2
t ,

where h1(m) is the first hour of the m-th month, h2(m) is the last hour of the

m-th month.
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Figure 4.13: The monthly standard deviation of the daily periodicities of temper-

ature.

In Figure 4.13, we can see that variability of the daily periodicities of temperature

does not depend on the month at stations K, SQ and TH but it strongly depends

on month at stations MA, MU and SA. The MK test does not detect monotonous

trends in monthly variability of the daily periodicities of temperature from year

to year.
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Figure 4.14: The monthly standard deviation of the daily periodicities of humidity.

In Figure 4.14, we can see that variability of the daily periodicities of the humidity

is almost independent of the month for stations K and TH but it strongly depends

on the month at stations MA and SA. Trends in monthly variability of the daily

periodicities of humidity from year to year were not found by the MK test, the

SR test and the ITM test.
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4.5 Chapter summary

We applied SSA to hourly time series for extracting the annual oscillations and

the daily periodicities. SSA was able to extract these components very efficiently.

Moreover, we may use SSA for obtaining more refined decompositions with a

larger number of components and also for forecasting.

We applied three commonly used tests for detecting trends in time series: the MK

test, the SR test and the ITM test. We found that there are no monotonic trends

in the annual oscillations and the daily periodicities over ten years. Also, we did

not find trends in the monthly variability of daily periodicities.

The developments of this Chapter have been started to respond to an inquiry

from different scientific institutes in Oman and can contribute to the field of

meteorological research.





Chapter 5

Forecasting monthly temperature

and humidity

5.1 Introduction

Forecasting the time series of temperature and humidity are critical elements

of climate analysis and they can have significant economic and climatic impact.

Chapter 5 demonstrates the accuracy of forecasting time series of temperature

and humidity by using SSA forecasting algorithms. SSA provides accurate results

compared to other methods in many practical problems [53]. Additionally, SSA

forecasting algorithms have been successfully applied in fields like meteorology and

economics among others [74, 152]. SSA is a very useful tool for extracting various

signals from noisy observations [52, 63]. A modification of SSA was used in [45] to

find structures in short time series by extracting seasonality and simultaneously

extracting cycles of small and long periods.

Many time series forecasting methods are based on the analysis of historical

data [96]. They assume that past patterns in the data can be used to forecast

future events [96]. Chapter 5 considers the monthly time series of humidity and

111
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temperature from 2009 to 2018. A full description of the practical aspect of SSA

and forecasting algorithms along with some criteria for selecting SSA parameters

are described in Chapter 2. We used the stationary seasonal ARIMA model, ETS

and RNN for fitting and forecasting our monthly time series. The SSA algorithm

has two parameters: the window length L and the number of singular values r. In

Chapter 2, we provide a description of choosing SSA parameters. For Basic SSA,

see Chapter 1 and [43, Sec 2.1], the general guideline for selecting r and L is to

take sufficiently large, say L ≈ N
2 see [42]. There are two main SSA forecasting

algorithms: SSA-R forecasting and SSA-V forecasting, which both depend on

two parameters L and r as shown in [42, Sec 3.2.1.2] and [42, Sec 3.2.1.3]. These

parameters can be chosen by an expert looking at the signal structure or using the

automatic choice based on the RMSE of retrospective forecasts [42]. For assessing

the quality of the automatic choice, we firstly analyze the sensitivity of the RMSE

on parameters and then, perform a study of reliability of the automatic choice for

forecasting monthly temperature and humidity recorded at three meteorological

stations in Oman.

Chapter 5 is structured as follows.

• In Section 5.2, we describe the features of the time series of temperature and

humidity at three meteorological stations in Oman and some application of

Basic SSA.

• In Section 5.3, we report the dependence of the RMSE on parameters.

• In Section 5.4, we study the automatic choice of parameters.

• In Section 5.5, we discuss the choice of parameters for SSA-V and SSA-R

forecasting algorithms.

• In Section 5.6, we offer concluding remarks.



113

5.2 Monthly time series

In Section 5.2, we demonstrate the accuracy of forecasting algorithms for monthly

time series of temperature (measured in Centigrade) and humidity (measured in

%), which were provided by the Directorate General of Meteorology of Oman.

The data was collected from Jan 2009 to Dec 2018 at three meteorological stations

in the Sultanate of Oman: the Khasab Airport (K), the Masirah (MA) and the

Thumrait (TH) stations.
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Figure 5.1: Monthly humidity (left) and temperature (right) at the stations K,

MA and TH from 2009 to 2018.
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Table 5.1: Descriptive statistics for the monthly time series of humidity and

temperature from 2009-2018.

Series Station Mean Median

Humidity K 43.56 44.36

MA 69.87 70.09

TH 42.64 41.40

Temperature K 30.54 31.81

MA 26.77 26.98

TH 26.59 27.93

Figure 5.1 demonstrate the monthly time series of humidity and temperature at

the stations K, MA and TH from 2009 to 2018. In Figure 5.1, we depict all time

series which do not exhibit trends as shown in Chapter 3. We can observe that

the annual pattern of temperature is rather stable from year to year. However,

the temperature at the station K has a simple sinusoidal shape but the annual

pattern of the temperature at the stations MA and TH is more complicated. We

can also see that humidity is very volatile and the annual pattern is more visible

only at the station MA. Therefore, the humidity at the station MA is much larger

than humidity at the stations K and TH.

Table 5.1 presents the brief descriptive statistics of the time series of humidity

and temperature for three stations. It provides values of mean and median of time

series. The range of average values for the time series of humidity is between 40

and 70 and the average for the time series of temperature is between 25 and 31.
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5.2.1 Temperature time series at the station TH

Section 5.2.1 demonstrates the use of Basic SSA when applied to the time series

of temperature at the station TH over the period 2009 to 2018 as shown in Figure

5.2. This illustrates the capability of SSA at removing various components from a

time series such as trend, oscillation, noise and forecasting.

Figure 5.2: Monthly the time series of the temperature at the station TH from

2009 to 2018.

In the decomposition stage, the window length L is the only parameter that

requires specification. The window length L should be large enough but not

greater than N
2 [43, 53]. If the time series (of length N = 120 months in this

case) has a periodic or seasonal component, then it is beneficial in terms of SSA

separability to take a window length proportional to that period. For this example,

the window length has been set to L = 60. Figure 5.3 contains the result of the

decomposition which is used for the extraction of the trend and seasonality.
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Figure 5.3: Decomposition for the time series of the temperature at the station

TH.

Figure 5.4 displays the plots the reconstructed components. It describe eight most

significant intial reconstructed components of the orginal time series. After taking

a quick look, the first reconstructed component is relate to slow motion component

( the trend behaviour) while the remainder of reconstructed component are

connected to fluctuating components. Figure 5.4 shows that the first eigenvector

is slowly varying and on the basis of recommendations of [42], we include ET1

into the trend group. The components of eigenvectors represent the structure of a

sub-series of the original series.
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Figure 5.4: 1D graphs of eigenvectors for the time series of the temperature at

the station TH.

Figure 5.5 shows 2D-scatterplots of eigenvectors for the time series of the temper-

ature at the station TH and the eigenvector pairs 2− 3, 4− 5, 5− 6, 6− 7, 8− 9

are produced by modulated sine waves since the corresponding 2D-scatterplots

of eigenvectors resemble regular polygons. We make this observation based on

the following properties: a sine wave has rank 2 and produces two eigentriples,

which are sine waves with the same frequency and have a phase shift exactly or
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approximately equal to π
2 , due to the orthogonality of eigenvectors. By counting

the numbers of polygon vertices in Figure 5.5, the periods of the sine-waves can

be determined as 12, 4, 6, 2.4, 3. Figure 5.5 indicates the number of vertices for

the five pairs listed. There is no significant trends and high noise in the monthly

time series of the temperature at the station TH.

Figure 5.5: 2D scatterplots of eigenvectors for the time series of the temperature

at the station TH.

The matrix of absolute values of w-correlations is depicted in grayscale in Figure 5.6
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(white color corresponds to zero and the black color corresponds to the absolute

values equal to 1). Large w-correlations between reconstructed components

suggested that the components should be grouped and lead to the same component

in the SSA decomposition. It confirms that the indicated pairs are separated

between themselves and from the trend component since the w-correlations between

the pairs are small, while w-correlations between the components from the same

pair are very large. From Figure 5.6, we reconstruct the series using eigenvalues

1− 10 and classify that the remaining eigenvalues correspond to noise components.

Figure 5.6: Weighted correlations for the time series of the temperature at the

station TH.

Figure 5.6 provides helpful information for detection of separability and identifica-

tion of groups. It indicates that well-separated components have weak correlation

while poorly separated components have high correlation. If the correlations are

high, these components are well separated from a block of the remaining compo-
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nents; otherwise, if the correlations are messy, these reconstructed components

are possibly considered noise components.

Reconstruction is the second stage of SSA which includes two separate steps:

grouping and diagonal averaging. The grouping step is for identifying signal com-

ponent and noise and the diagonal averaging step is for using grouped eigentriples

to reconstruct the new series without noise. Figure 5.7 displays four reconstructed

modulated sine waves and shows that several sine waves have harmonic amplitudes.

Figure 5.7: Reconstructed sine waves for the time series of the temperature at the

station TH.
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In the grouping step, trend is a component that does not contain any oscillatory

components. Practically, in this case it shows that the annual oscillations for

hourly time series can be viewed as a trend (a slowly changing component) and

hourly time series of the annual oscillations of temperature, as mentioned in

previous Chapters. A small variation of temperature from year to year and

random fluctuations from week to week can be seen and the annual oscillation

has the two-saw shape in the station TH.

The second component is the harmonic component and is difficult to identify and

separate from other oscillatory components of the time seires. The last one is

noise and grouping of the eigentriples do not appear to contain elements of trend

and oscillations is a natural way of extracting noise. Diagonal averaging is the last

step of SSA technique. Three components as groups are considered: the trend,

harmonic component and noise.
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5.3 Dependence of the RMSE on parameters

Let us study how the RMSE of 1,2,. . . ,12-step ahead forecasts across several

truncation points depends on the parameters L and r. We take Jan 2017 as the

first truncation point and Dec 2017 as the last truncation point.

The functions SSA-V.Forecasting and SSA-R.Forecasting are provided for im-

plementing vector forecasting and recurrent forecasting, respectively, in R [42,

Section 3.5.7].

Retrospective forecasts, as shown in [102], are performed as follows. Retrospective

forecasting is accomplished by truncating the series and forecasting values at the

points that have been temporarily removed. These forecasts can be used to assess

the forecasts’ quality by comparing them to the observed values of the time series.

Choice of L. In Section 5.2, we study the characteristics of the time series of

temperature and humidity. If the structure of the sequence is consistent, large

values of L can be used, of the order L ∼= 60, small values should be avoided, of

the order L ∼= 12. However, we do not make any assumption that the structure of

the series is stable or not. In this case, selecting large values of L would make SSA

lack flexibility and on the other hand, using very small of L leads to noise and

high sensitivity. The value of L should be somewhere in between 16 ≤ L ≤ 48.

Choice of r. we have to decide what the proper grouping is and how to find the

proper groups for For low frequency sinusoid and a high frequency sinusoid in SSA

parameters of the eigentriples. In other words, we need to identify an eigentriple

corresponding to the related time series component. Since each eigentriple consists

of an eigenvector (left singular vector), a factor vector (right singular vector) and
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a singular value, this is to be achieved using only the information contained in

these vectors (considered as time series) and the singular values [43].

The value of r should be determined by the type of forecast we want to make

[103]. Our choice is 4 ≤ r ≤ 15 and whatever the rule for selecting r, we must be

cautious that some r values are too small, implying that some of the signal has

been lost, whereas other r values are too high, implying noise [103, 102].

To summarise, we select parameters 16 ≤ L ≤ 48 and 4 ≤ r ≤ 15 for all series.

We made a decision regardless of the series’ structure as described in Section 5.2.

The parameter r should correspond to the rank of the signal. As noted in [39, 59]

the authors argue that the value of r needs to be greater than what it should be

since parts of the signal can be missed but the increase of noise in the reconstructed

series can be small.

The optimal L and r for obtaining forecasts for our time series are the parameters

L and r that correspond to the lowest value of RMSE. As a result, we search for

the best combination of L and r, which represents the best decomposition and

reconstruction options for model [8].

In Tables 5.2–5.7, we show the RMSE for six time series using two SSA forecasting

algorithms with the wide range of parameters L and r. The lowest values for

the RMSE for each forecasting algorithm are highlighted. We can see that the

RMSE does not monotonically depends on parameters but tendencies are rather

clear. Specifically, the RMSE is larger for very small r because such small values

of r are smaller than the signal rank. The RMSE also become larger for large r

especially for noisy time series because large r is greater than the signal rank and

forecasting becomes unstable. We can observe that the RMSE for small L = 16

is larger because the structure of time series is not captured well. For fixed L
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and r, the RMSE of two forecasting algorithms are close each other with a slight

dominance of SSA-V forecasting.

In Table 5.2, we show the RMSE for humidity at the station K. We see that the

lowest RMSE is 5.343 for SSA-R forecasting and 5.365 for SSA-V forecasting and

it is attained at L = 36 and r = 5 for both algorithms. However, for other values

of L and r SSA-V forecasting is usually slightly better. Overall, the RMSE is

weakly depending on L and r when L ≥ 24.

Table 5.2: The RMSE of 1, 2, . . . , 12-month ahead forecasts using SSA-R and

SSA-V forecasting algorithms for humidity at the station K.

L = 16 L = 24 L = 36 L = 48

r SSA-R SSA-V SSA-R SSA-V SSA-R SSA-V SSA-R SSA-V

4 6.382 7.013 6.808 6.780 6.132 5.950 6.354 6.177

5 6.395 7.071 6.210 6.284 5.343 5.365 5.590 5.386

6 9.346 9.819 7.800 8.003 6.859 6.415 5.861 5.898

7 10.057 7.987 6.026 5.831 6.642 6.652 6.651 6.334

8 11.924 9.461 5.890 5.934 5.629 6.032 6.986 6.460

9 12.086 10.538 6.145 6.396 6.683 6.142 6.687 6.276

10 11.874 10.375 7.532 6.313 6.996 6.126 6.662 6.098

11 15.015 11.339 6.503 5.980 7.115 6.153 6.622 6.092

12 14.935 10.494 6.888 6.085 6.987 6.114 6.721 6.019

13 12.106 10.279 7.293 5.920 6.641 6.142 6.741 5.983

14 37.023 20.195 7.753 6.390 6.762 6.822 6.772 6.631

15 8.228 6.324 6.671 6.722 6.669 6.549
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In Table 5.3, we display the RMSE for temperature at the station K and we see

that the lowest RMSE is 0.853 attained at L = 48 and r = 5 for both SSA-R and

SSA-V forecasting algorithms. We observe that the RMSE is quite small for r = 5

and any L because temperature at the station K has a simple sinusoidal shape.

The RMSE for r = 4 is larger than the RMSE for r = 6 indicating the acurracy

of forecasting is dropping faster when taking r to be smaller than the signal rank.

Table 5.3: The RMSE of 1, 2, . . . , 12-month ahead forecasts using SSA-R and

SSA-V forecasting algorithms for temperature at the station K.

L = 16 L = 24 L = 36 L = 48

r SSA-R SSA-V SSA-R SSA-V SSA-R SSA-V SSA-R SSA-V

4 1.026 1.240 1.250 1.273 1.206 1.297 1.170 1.243

5 0.882 0.972 0.948 0.991 0.867 0.963 0.853 0.853

6 1.064 1.082 0.931 1.016 0.875 0.939 0.864 0.950

7 1.198 1.131 1.263 1.079 1.145 1.126 1.069 1.076

8 1.378 1.154 1.373 1.066 1.179 1.142 1.103 1.069

9 2.095 1.206 1.337 1.136 1.240 1.154 1.028 1.065

10 2.869 1.161 1.399 1.132 1.315 1.159 1.037 1.066

11 3.225 1.449 1.482 1.214 1.359 1.151 1.024 1.000

12 4.106 1.564 1.500 1.225 1.416 1.154 1.024 1.003

13 4.916 1.998 1.544 1.221 1.434 1.150 1.077 1.042

14 7.291 10.167 1.722 1.144 1.477 1.175 1.104 1.029

15 1.804 1.218 1.557 1.190 1.133 1.009
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Table 5.4 contains the RMSE for humidity at the station MA, the smallest RMSE

is 2.917 attained at L = 36 and r = 4 for SSA-R forecasting and 3.145 attained at

L = 48 and r = 6 for SSA-V forecasting. Overall, the RMSE is quite small for

r = 4 or L = 48 indicating that the signal rank is 4.

Table 5.4: The RMSE of 1, 2, . . . , 12-month ahead forecasts using SSA-R and

SSA-V forecasting algorithms for humidity at the station MA.

L = 16 L = 24 L = 36 L = 48

r SSA-R SSA-V SSA-R SSA-V SSA-R SSA-V SSA-R SSA-V

4 3.121 3.828 3.398 3.417 2.917 3.351 2.962 3.337

5 3.636 3.837 3.213 3.332 5.343 5.365 3.171 3.205

6 3.895 3.872 3.548 3.234 6.859 6.415 3.258 3.145

7 4.648 4.464 4.110 4.016 6.642 6.652 3.620 3.286

8 4.687 4.343 4.089 3.849 5.629 6.032 3.560 3.192

9 5.105 4.840 4.195 3.907 6.683 6.142 3.564 3.265

10 5.200 4.774 4.130 3.908 6.996 6.126 3.654 3.269

11 5.611 4.326 4.541 3.748 7.115 6.153 3.809 3.217

12 8.314 5.810 5.636 4.237 6.987 6.114 4.078 3.201

13 9.686 5.576 7.154 4.300 6.641 6.142 4.256 3.189

14 11.565 6.998 7.725 4.355 6.762 6.822 4.415 3.237

15 8.331 4.452 6.671 6.722 4.678 3.372
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In Table 5.5, we present the RMSE for the temperature at the station MA and

we see that the lowest RMSE is 0.561 attained at L = 24 and r = 5 for SSA-R

forecasting and 0.564 attained at L = 36 and r = 9 for SSA-V forecasting. In

general, the RMSE is quite small for r = 5 and any L showing the signal rank is

likely to be 5.

Table 5.5: The RMSE of 1, 2, . . . , 12-month ahead forecasts using SSA-R and

SSA-V forecasting algorithms for temperature at the station MA.

L = 16 L = 24 L = 36 L = 48

r SSA-R SSA-V SSA-R SSA-V SSA-R SSA-V SSA-R SSA-V

4 1.039 1.953 1.512 1.599 1.412 1.608 1.402 1.643

5 0.632 0.732 0.561 0.614 0.564 0.595 0.592 0.572

6 0.811 0.886 0.567 0.644 0.609 0.596 0.731 0.731

7 0.821 0.828 0.957 0.992 0.578 0.584 0.841 0.741

8 0.827 0.925 0.915 0.910 0.563 0.584 0.814 0.722

9 1.037 0.961 0.888 1.007 0.570 0.564 0.821 0.713

10 0.980 0.921 0.770 0.788 0.643 0.763 0.853 0.747

11 0.905 0.874 0.796 0.751 0.885 0.725 0.882 0.759

12 0.935 0.859 0.864 0.850 1.122 0.724 0.913 0.797

13 1.013 0.893 0.892 0.851 1.129 0.712 1.013 0.839

14 1.055 0.910 0.922 0.916 1.108 0.672 1.042 0.866

15 1.517 1.327 1.175 0.862 1.123 0.665 1.062 0.886
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In Table 5.6, we show the RMSE for humidity at the station TH and we observe

that the lowest RMSE is 4.441 attained at L = 36 and r = 15 for SSA-R forecasting

and 4.445 attained at L = 36 and r = 11 for SSA-V forecasting. We see that the

RMSE is quite small for any r ≥ 5 and L ∈ {24, 36}. Note that humidity at the

station TH is the most volatile in our study.

Table 5.6: The RMSE of 1, 2, . . . , 12-month ahead forecasts using SSA-R and

SSA-V forecasting algorithms for humidity at the station TH.

L = 16 L = 24 L = 36 L = 48

r SSA-R SSA-V SSA-R SSA-V SSA-R SSA-V SSA-R SSA-V

4 6.979 9.040 6.383 8.319 6.744 8.214 7.077 8.217

5 6.099 6.671 4.529 4.871 4.582 4.486 4.979 5.009

6 6.223 6.490 4.871 4.937 4.875 4.583 5.638 5.256

7 5.972 6.715 4.897 4.854 4.767 4.531 5.383 5.365

8 5.996 6.236 4.943 5.203 4.818 4.888 5.372 5.415

9 5.799 6.247 4.881 5.091 4.810 4.715 5.422 5.278

10 5.873 6.527 4.742 4.886 4.537 4.442 5.256 5.165

11 6.244 6.323 4.769 4.863 4.553 4.441 5.215 5.123

12 6.680 7.439 4.797 4.791 4.603 4.498 5.301 5.265

13 8.299 6.245 4.869 4.792 4.495 4.555 5.331 5.318

14 8.953 8.393 5.189 4.842 4.484 4.562 5.357 5.344

15 5.216 4.891 4.445 4.529 5.333 5.255
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In Table 5.7, we present the RMSE for the temperature at the station TH and

we observe that the lowest RMSE is 1.149 attained at L = 36 and r = 7 for

the SSA-R forecasting and 1.092 attained at L = 48 and r = 9 for the SSA-V

forecasting. Overall, the RMSE is small for r = 9 and L ≥ 48.

Table 5.7: The RMSE of 1, 2, . . . , 12-month ahead forecasts using SSA-R and

SSA-V forecasting algorithms for temperature at the station TH.

L = 16 L = 24 L = 36 L = 48

r SSA-R SSA-V SSA-R SSA-V SSA-R SSA-V SSA-R SSA-V

4 1.494 2.110 1.813 2.059 1.777 2.018 1.777 2.018

5 1.206 1.278 1.193 1.233 1.206 1.236 1.258 1.182

6 1.315 1.285 1.266 1.234 1.175 1.245 1.235 1.191

7 1.373 1.403 1.247 1.292 1.149 1.212 1.190 1.114

8 1.422 1.377 1.341 1.277 1.180 1.205 1.207 1.107

9 1.517 1.409 1.533 1.272 1.277 1.190 1.295 1.092

10 1.597 1.388 1.575 1.271 1.353 1.202 1.325 1.104

11 1.885 1.435 1.639 1.422 1.448 1.288 1.312 1.148

12 1.862 1.765 1.612 1.414 1.479 1.339 1.372 1.225

13 5.358 1.799 1.713 1.419 1.392 1.297 1.473 1.354

14 4.076 1.901 1.988 1.542 1.434 1.297 1.465 1.311

15 3.416 3.413 2.025 1.455 1.490 1.284 1.468 1.292
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In Figures 5.8 and 5.9, we depict humidity and temperature at three stations

together with 1, 2, . . . , 12-month ahead SSA-R and SSA-V forecasts from 12

truncations points. We can observe that SSA-R and SSA-V forecasts are very

stable and close each other. Note that humidity is quite volatile and therefore,

forecasts are not close to the observed values. In contrast, temperature has the

clear annual pattern and consequently SSA forecasts are much more accurate.
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Figure 5.8: Humidity (black) at the stations K, MA and TH with 1, 2, . . . , 12-

month ahead SSA-R and SSA-V forecasts (colored) with parameters L and r

providing the smallest RMSE.
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Figure 5.9: Temperature (black) at the stations K, MA and TH with 1, 2, . . . , 12-

month ahead SSA-R and SSA-V forecasts (colored) with parameters L and r

providing the smallest RMSE.
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5.4 Study of the automatic choice of parameters

For proper assessing the accuracy of forecasts with the automatic choice of

parameters, we consider the time series from Jan 2018 to Dec 2018 as future values

and perform the automatic choice of parameters for time series from Jan 2009

to Dec 2017. This automatic choice is based on minimizing the RMSEDec2016
Jan2016 for

1, 2, . . . , 12-month ahead forecasts with truncation points from Jan 2016 to Dec

2016 and reported in Table 5.8. Also we compute the accuracy of future forecasts

by means of the RMSEDec2017
Jan2017 with chosen parameters and the efficiency of future

forecasts as the ratio of the smallest RMSEDec2017
Jan2017 across different parameters to

the RMSEDec2017
Jan2017 with chosen parameters.

We can see that the efficiency of forecasting with the automatic choice is around

90% which is rather high. Overall, SSA-V forecasts are little more accurate than

SSA-R forecasts with the automatic choice. We can observe that the RMSEDec2017
Jan2017

is close to the RMSEDec2016
Jan2016 confirming that the structure of time series has not

changed much.

By comparing SSA with other forecasting methods as in Figure 5.8, we can observe

that SSA is producing forecasting results when compared to ARIMA, ETS and

NN for 1, 2, . . . , 12-month ahead forecasts with truncation points from Jan 2017

to Dec 2017.

In Table 5.8, we also present the RMSE for ARIMA forecasting with automatic pa-

rameters implemented in the function auto.arima from the R package forecast.

Specifically, we used the stationary seasonal ARIMA model for fitting and fore-

casting our monthly data. In addition, we also add ETS and RNN forecasting as

presented in the functions ets and nnetar respectively. We can see that SSA-R
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and SSA-V forecasting is better than ARIMA forecasting of humidity at the

station TH and temperature at all three stations. Again that SSA-R and SSA-V

forecasting is better than ETS and RNN forecasting of humidity and temperature

at all three stations.
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5.5 Discussion

We apply the RMSE to study the accuracy of automatic and dependence of the

RMSE on parameters for SSA-V and SSA-R forecasts. To make the forecasts

we use parameters that are L = 16, 24, 36 and 48 and r = 4 to r = 15. The

selection of parameters yield the optimal pair (L, r) for SSA-R and SSA-V with

retrospective 12-month ahead forecasts. For automated SSA-R and SSA-V, we

use the R program’s functions to perform forecasting of automatic algorithms to

get optimal pair (L, r) which correspond to the minimal RMSE.

5.5.1 Parameters effects

The window length L and the number of leading components r are needed for

SSA signal forecasting. For a given time series, there are many methods for

determining L and r. The selection of parameter the window length L in SSA is

significant because it is dependent on the time series structure and the forecasting

analysis target [59, 66]. Some previous studies suggested selecting L = N
4 ; the

window length L should not be larger than N
2 , [42]. In [43], the authors suggested

L should not exceed half of the length given time series. The first part of choosing

the parameter is selecting a value of L appropriate to seasonal fluctuations, for

example, by analysing the periodogram to check if there are any strong signals.

Then, an analysis of paired eigenvectors enables the differentiation of signal from

noise. Depending on the length of the time series, one can pick the required

number of eigenvalues r and during the reconstruction stage, we consider the

difference to be noise.

In Section 5.3, we discussed the RMSE of 1, 2, . . . , 12-month ahead forecasts using
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SSA-R and SSA-V forecasting algorithms for monthly time series of the humidity

and temperature at the stations K, MA and TH. The length N of the monthly

time series is 120, and we take 5N/2 = 48, 3N/10 = 36, N/5 = 24 and N/7.5 = 16

as window lengths. With consideration of these selected window lengths and the

SVD of the trajectory matrix, several bunch components are obtained and ordered

according to their contributions to the decomposition. It can be found that the

window length of L = 36 can achieve a good result and that can be used for

forecasting.

In [59], the authors explain that choosing a r greater than what is actually required

results in noise being included in the reconstructed signal. In [62, 63, 78], the

authors present two other approaches to the selection of L and r. We applied

different parameter values for L and r until we got optimal values for pair (L, r) by

checking the lowest RMSE. Our automated approach focuses on the minimization

of forecasting errors (RMSE) during the validation (training) phase by considering

all possibilities of L and r as optimal SSA choices for forecasting. The selection

of L and r are optimised to obtain the best possible forecast from a statistical

perspective.

We also find that the automatic choice of parameters for SSA-V and SSA-R

forecasting algorithms is depending on the window length L and the number of

singular values r. In [72], the authors explain how automatic time series forecasting

works with the R package forecast.

We believe it is important to briefly discuss the computational complexity of the

two approaches to parameter selection. Both depends on SSA choices of L and r

at the decomposition and reconstruction stages, which makes them very similar

in terms of computation. There is no significant difference in computational

complexity; both methods would take the same amount of time to produce
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forecasts [33]. When dealing with outliers or large shocks in the series, the vector

forecast is usually more reliable than the recurrent one [61].

5.5.2 Comparison of SSA, ARIMA, ETS and RNN

A real time series dose not satisfy any model [42]. Seasonal ARIMA, ETS and

RNN methods correspond to concrete model families and the frequency of the

periodic component should be specified. In [42, Sec 3.5.8], the authors discussed

the idea of criteria of using ARIMA, ETS and RNN methods that can be used in

some measure of correspondence between the model and the time series and then,

adjust it by the number of parameters in the model. In Section 5.4, the study of

automatic choice of parameters discussed in detail and the RMSE is calculated.

To compare accuracy of the methods, we compute the accuracy of future forecasts

by means of the RMSEDec2017
Jan2017 with chosen parameters and the efficiency of future

forecasts as the ratio of the smallest RMSEDec2017
Jan2017 across different parameters

to the RMSEDec2017
Jan2017 with chosen parameters. We used the stationary seasonal

ARIMA , ETS and RNN models for fitting and forecasting monthly time series.

Comparing SSA forecasting with ARIMA, ETS, and RNN, in general, we can

observe that SSA-V and SSA-R forecasts have the best result for forecasting for

the temperature and humidity at three stations. We conclude SSA works well

with different series and outperforms other forecasting techniques.

In Table 5.8, we can observe that SSA forecasting has the lowest value of the

RMSE compare to ARIMA, ETS, and RNN which indicate a good model for

forecasting based on monthly time series.
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5.5.3 Future Forecast

We create 12-month ahead forecasts employing the 5 methods. Since the last

observation available is in December 2018, then the forecasts must start in January

2019 and end in December 2019. These 12-month ahead forecasts for stations K,

MA and TH can be seen in Figure 5.10, each method represented by their own

distinct colour.
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Figure 5.10: Future forecast of 1, 2,. . . , 12-month ahead forecasts using five

forecasting algorithms for humidity (left) and temperature (right) at stations K,

MA and TH.

We can see that the methods mostly produce diverse forecasts for humidity and
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temperature, where all five forecasts agree. As discussed, the simple structure

ensures that any forecasts generated have very minimal fluctuation. We can be

confident for the 12-month ahead forecasts of monthly time series are accurate and

similar to the true future observations for all methods used. From the information

retrieved from analysing the retrospective forecasts, it is reasonable to assume

that the 12-month ahead forecast for the time series of humidity is very volatile.

It is more likely to follow the forecasts that created by SSA-R and SSA-V than

any of the other methods, although there are considerable differences between the

forecasts generated.

5.6 Chapter summary

In Chapter 5, by using real data representing monthly temperature and humidity

in Oman, we have provided a statistical framework for studying which SSA

forecasting algorithm is best. We demonstrated that the sensitivity of the RMSE

for retrospective forecasts is rather small to the parameters L and r. We have

shown that the efficiency of SSA forecasts with the automatic choice of parameters

is rather high. We also found that SSA-R and SSA-V forecasts are similar to each

other with a slight dominance of SSA-V forecasts.

Comparing SSA forecasting with ARIMA, ETS and RNN has been performed.

The evidence from monthly time series shows that SSA can provide a powerful tool

for forecasting the monthly temperature and humidity and that it outperforms the

competing models. We believe that the findings presented in Chapter 5 help to

increase the confidence of researchers to recognise and apply the SSA forecasting

algorithms with the automatic choice of parameters.





Chapter 6

Forecasting daily temperature and

humidity

In Chapter 6, we focus on the performance of various SSA forecasting algorithms

when applied to daily time series of humidity and temperature in Oman. We apply

recurrent SSA (SSA-R), SSA-R (original), and vector SSA (SSA-V) forecasting

algorithms based on SSA with double projection and SSA without projection. We

also study the effect of series length and the choice of SSA parameters on the

performance of the aforementioned algorithms.

6.1 Introduction

Forecasts of daily temperature and humidity can help to support long term

planning and decision making. Forecasting temperature and humidity may help

deal with incidences of drought owing to global warming [51]. Consequently,

scientific efforts to develop forecasting algorithms has intensified. A thorough

review on the applications of SSA show that there are no general rules for finding

the best algorithms. This means that, we have to look for the best model

among a variety of models using some criteria. We note also that forecasts of

140
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daily temperature and humidity depend not only on the method but also on the

parameters, data and the lengths of time series.

The structure of Chapter 6 is as follows.

• In Section 6.2, we discuss several past studies on daily forecasting.

• In Section 6.3, we apply three forecasting algorithms by using SSA-R, SSA-R

(original) and SSA-V in two variants: SSA with double projection and SSA

without projection.

– In Section 6.3.1, we introduce daily time series of temperature and

humidity at three meteorological stations in Oman.

– In Section 6.3.2, we present the optimal tuple (method, N, L, r) and

the RMSE of 1, 2, . . . , 14-day ahead forecasts and 1, 2, 3-days ahead

forecasts using SSA-R, SSA-R (original) and SSA-V forecasting al-

gorithms by applying SSA with double projection and SSA without

projection.

– In Section 6.3.3, we discuss the numerical study of the optimal tuple.

• In Section 6.4, we provide a summary of Chapter 6.

6.2 Literature review

Daily time series analysis and forecasting are of utmost importance in industry

and manufacturing for the principal reason that forecasting models have the

potential to improve planning and decision-making. The precise methodology of

the forecasting technique, the accuracy of these predictions, and the ability to

correctly predict the course of future changes play a central role [58].
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Researchers have studied the problem of forecasting daily temperature and hu-

midity especially in Oman, a country characterised by an arid semi-arid climate.

In Oman, the daily forecasts facilitate planning the allocation of agricultural and

the associated agrarian economy [91]. It follows the forecasting of meteorological

time series with a high degree accuracy is highly important [148].

In [104], the authors discuss the forecasting performance for several methods

which are affected by the increase of the intermittence of the data, as well as by

the coefficient of variation. Their analysis shows that, as the values of these two

factors increase, the respective accuracy of all methods decreases. It was also found

that some forecasting methods performed better for longer forecasting horizons.

The study aims to identify the main determinants of forecasting accuracy, by

investigating several popular forecasting methods and seven time series features

(seasonality, trend, cycle, randomness, number of observations, inter demand

interval and coefficient of variation) and as well as one strategic decision (the

forecasting horizon).

In a similar vein, in [111], the authors observe that resorting to a large window

length has the potential to produce a good model fit, yet the approach is unlikely

to produce a parsimonious forecasting model.

6.3 Applications

This section considers applications for daily time series by using SSA-R, SSA-R

(original) and SSA-V in two forms which are SSA with double projection and SSA

without projection. The RMSE of the retrospective forecast used to assess the

accuracy.
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6.3.1 Daily time series

This section consider the accuracy of the forecasting algorithms for daily time

series of temperature (measured in deg C) and humidity (measured in %), with the

data provided by the Directorate General of Meteorology of Oman. The data was

collected from January 2009 to December 2018 at three meteorological stations

in the Sultanate of Oman: the Khasab Airport (K), the Masirah (MA) and the

Thumrait (TH).

In Figure 6.1, the graphs depict all time series which do not exhibit trends as

explained in [5] and Chapter 4. We can observe that the pattern of temperature

has found to be rather stable. In particular, temperature at the station K has

a simple sinusoidal shape, while the pattern of temperature at stations MA and

TH is more complicated. We can also see that humidity is highly volatile and the

pattern is visible at the station MA. Note that humidity at the station MA is

much larger than humidity at stations K and TH.
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Figure 6.1: Daily humidity (left) and temperature (right) at stations K, MA and

TH from 2009 to 2018.

In our daily time series of temperature and humidity, we prefer to forecast 14 and

3 days ahead since the uncertainty of weather forecasts increases in proportion

to the length of the forecasting horizon. We chose two different horizons: short

and medium horizons. The short range of forecasting is 3 days ahead and the

medium range is 14 day ahead [50]. For this reason, we work to demonstrate the

optimal tuple for 1,2,. . . ,14 day ahead forecasts and 1,2,3 days ahead forecasts.

The optimal values of L and r which are used in this chapter, it is the best values

based on the lowest value of RMSE.
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6.3.2 The optimal tuple for 14 day and 3 days ahead fore-

casts

In this section, we compare three SSA forecasting algorithms: SSA-R, SSA-R

(original) and SSA-V by using two methods which are SSA with double projection

and SSA without projection. Section 6.3.2 studies how the RMSE of 1,2,. . . ,14

day ahead forecasts and examines the RMSE of 1,2,3 days ahead forecasts across

several truncation points depends on the following parameters: the window length

L and the number of singular values r.

This section presents the optimal tuple (method, N, L, r). It has been selected

by getting the optimal pairs (L, r) with the lowest RMSE on retrospective 14-day

and 3-days ahead forecasts for stations K, MA and TH using the three forecasting

algorithms. The optimal tuple contains as the method element either SSA with

double projection or SSA without projection. It further contains the number of

time series length, the window length L and the number of singular values r.

For analysing and diagnostic of the forecasting accuracy, we have used different N .

For SSA with double projection and SSA without projection, we use the following

range for the parameters in Table 6.1.

Table 6.1: Range of the parameters.

T0 N L r

2892 30 {2, 3, . . . , 16} {2, 3, . . . , 15}

90 {16, 20, 24, 30} {4, 5, . . . , 15}

180 {16, 20, 24, 30} {4, 5, . . . , 15}

360 {100, 101, . . . , 150} {1, 2, . . . , 18}

All {90, 180, 360, 500} {4, 5, . . . , 18}
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Then, we consider the optimal pair (L, r) based on the lowest RMSE.

Expert analysis of the singular values of the trajectory matrix, weighted correlation

among the components of the time series and errors of the reconstruction and

forecasting are the main tools for choosing the optimal parameters. Here, we

consider the last one and use the RMSE by the following description.

The RMSE is the most popular criterion to measure the error of forecasts, see e.g.

[42, 59, 89, 142]. The RMSE of the 1, 2, . . . , h-step ahead forecasts with several

truncation is given by

RMSE =
 1
h(m+ 1)

m∑
i=0

h∑
j=1

(ỹTi,j − yTi+j)2

1/2

, (6.1)

where Ti = T0 + ih; i = 0, 1, . . . ,m and m is the largest integer satisfy in condition

T0 + (m + 1)h ≤ Tmax (Tmax denote the index of last observation) and ỹTi,j is

the j-step ahead forecast using the truncated time series {yTi−N+1, . . . , yTi} for

N ≤ Ti. However, in this study, we consider two approaches: (1) N is a fixed

number like as 30 and (2) N is vary by going ahead and particularly N = Ti. We

call the second approach by N = all. The first approach uses less observations

than the second approach and it is worth to see if it is enough for modelling. Table

6.2 describes the discrepancy between two approaches. We note that the notations

in columns 3 and 4 are the same but they are not the same as the models come

from different sources.
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Table 6.2: Description of modelling and forecasting.

Approach Observation for modelling h-steps ahead forecasts MSE

Recent observation yT0−N+1, . . . , yT0
ỹT0,1, . . . , ỹT0,h

1
h

∑h

j=1

(
ỹT0,j − yT0+j

)2

All observation y1, y2, . . . , yT0

Recent observation yT0−N+1+h, . . . , yT0+h
ỹT0+h,1, . . . , ỹT0+h,h

1
h

∑h

j=1

(
ỹT0+h,j − yT0+h+j

)2

All observation y1, y2, . . . , yT0+h

...
...

...
...

Recent observation yT0−N+1+mh, . . . , yT0+mh
ỹT0+mh,1, . . . , ỹT0+mh,h

1
h

∑h

j=1

(
ỹT0+mh,j − yT0+mh+j

)2

All observation y1, y2, . . . , yT0+mh

6.3.3 Numerical study of the optimal tuple

The optimal tuple for 14 day and 3 days ahead forecasts are presented in Section

6.3.3.

Table 6.3 and Table 6.4 exhibit the RMSE of 1, 2, . . . , 14-day ahead forecasts and

the RMSE of 1, 2, 3-days ahead forecasts using SSA-R, SSA-R (original) and SSA-

V forecasting algorithms by applying SSA with double projection and SSA without

projection for humidity and temperature at stations K, MA and TH. Bold values

in Tables 6.3 and 6.4 are the lowest RMSE in terms of the factors: method, h, the

algorithms and the station. This means that we find the lowest RMSE in terms of

N . For instance, if we employ SSA with double projection on the observations of

time series of humidity at the station K to produce 3 steps ahead forecasting, we

found the lowest five values of the RMSE {12.806, 13.178, 12.769, 12.822, 12.639}

which give the lowest RMSE equal to 12.639 (see Table 6.3).
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Table 6.3: The RMSE of 1, 2, . . . , 14-day ahead forecasts and the RMSE of

1, 2, 3-days ahead forecasts using SSA-R, SSA-R (original) and SSA-V forecasting

algorithms by applying SSA with double projection and SSA without projection

for humidity at stations K, MA and TH.

Method N h
SSA-R SSA-R (original) SSA-V

K MA TH K MA TH K MA TH

SSA with double

projection

30
3 12.806 8.717 14.736 12.739 8.252 14.518 12.687 8.627 14.644

14 16.57 10.639 17.795 15.799 10.639 18.164 16.225 10.562 17.614

90
3 13.178 9.544 14.825 12.505 9.129 14.286 12.769 9.642 14.301

14 14.685 10.007 16.442 14.584 9.903 16.100 14.017 9.694 15.223

180
3 12.769 9.004 14.361 12.463 8.665 13.838 12.809 9.386 13.929

14 13.681 10.007 14.416 13.943 9.903 14.540 14.136 9.694 14.724

360
3 12.822 9.16 14.752 12.534 9.125 14.234 13.234 9.079 14.279

14 13.567 8.778 14.840 13.024 8.515 14.759 13.159 8.529 14.514

ALL
3 12.639 8.331 14.570 12.464 8.314 14.693 12.465 8.306 14.791

14 12.347 8.182 13.236 12.199 8.211 13.225 12.336 8.342 13.217

SSA without

projection

30
3 14.192 8.697 14.757 13.796 8.253 14.482 13.483 8.609 14.754

14 21.035 21.57 24.218 20.992 21.137 21.526 20.899 21.476 41.632

90
3 13.369 10.371 15.524 12.818 9.626 15.017 12.993 10.119 15.285

14 15.001 11.022 16.423 14.901 11.609 15.984 14.025 11.784 15.231

180
3 12.884 8.916 14.101 12.863 8.490 13.949 13.297 8.848 14.5001

14 13.657 9.857 14.551 12.599 10.166 14.960 13.417 10.140 14.872

360
3 13.173 8.333 14.786 12.599 8.270 14.008 13.417 8.265 14.5001

14 14.065 8.778 15.980 13.746 8.515 15.085 14.237 8.529 16.203

ALL
3 12.465 8.321 13.87 12.923 8.343 13.840 12.727 8.342 13.850

14 12.055 8.166 13.216 12.054 8.210 13.248 12.039 8.180 13.215
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Table 6.4: The RMSE of 1, 2, . . . , 14-day ahead forecasts and the RMSE of

1, 2, 3-days ahead forecasts using SSA-R, SSA-R (original) and SSA-V forecasting

algorithms by applying SSA with double projection and SSA without projection

for temperature at stations K, MA and TH.

Method N h
SSA-R SSA-R (original) SSA-V

K MA TH K MA TH K MA TH

SSA with double

projection

30
3 2.049 1.077 1.989 2.022 1.032 1.924 2.043 1.071 1.983

14 2.34 1.287 2.807 2.307 1.322 2.661 2.300 1.273 2.779

90
3 2.163 1.223 2.226 2.069 1.149 2.115 2.199 1.189 2.259

14 2.572 1.535 2.790 2.550 1.565 2.758 2.560 1.537 2.924

180
3 2.156 1.171 2.112 2.106 1.083 2.049 2.157 1.153 2.178

14 2.555 1.420 2.357 2.603 1.468 2.363 2.786 1.463 2.454

360
3 2.306 1.245 2.550 2.1134 1.113 2.222 2.1037 1.090 2.2258

14 2.654 1.405 3.017 2.429 1.342 2.760 2.426 1.363 2.821

ALL
3 2.160 1.059 2.1045 2.1134 1.038 2.048 2.1037 1.037 2.0815

14 1.965 1.069 2.115 1.9305 1.044 2.144 1.927 1.057 2.123

SSA without

projection

30
3 2.330 1.077 1.990 2.205 1.033 1.926 2.286 1.071 1.981

14 4.634 2.329 3.053 4.700 2.304 2.806 7.188 4.390 4.073

90
3 2.178 1.266 2.164 2.084 1.193 2.109 2.233 1.192 2.221

14 4.630 1.561 2.824 2.684 1.591 2.815 2.610 1.552 2.930

180
3 2.199 1.218 2.125 2.107 1.156 2.101 2.825 1.154 2.182

14 2.608 1.425 2.365 2.669 1.471 2.367 2.825 1.466 2.486

360
3 2.254 1.214 2.300 2.0588 1.321 2.116 2.825 1.252 2.16

14 2.672 1.204 3.003 2.426 1.255 2.722 2.635 1.252 3.054

ALL
3 2.131 1.068 2.054 2.120 1.051 2.006 2.120 1.058 2.014

14 1.956 1.069 2.114 1.925 1.044 2.146 1.923 1.043 2.125

In order to find the best combination of the factors N , method and algorithm, we

specified combinations that provided the lowest RMSE for forecasting as shown

in Tables 6.3 and 6.4. The optimal tuple of the SSA forecasting algorithms by

applying SSA with double projection and SSA without projection for humidity

and temperature at stations K, MA and TH are summarised in Table 6.5 and 6.6.

Tables 6.5 and 6.6 present that the optimal tuple of short term forecasting using

smaller observations could be fine when we apply SSA with double projection. It
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shows also that SSA-R (original) for short term forecasting is superior to SSA-R

and SSA-V. Nevertheless, conclusions for h = 14 are completely different; we

observe that the set of all observations provide more accurate medium term

forecasts than the truncated set. In addition, SSA with double projection does not

improve the accuracy of long term forecasts and SSA-V and SSA-R are superior

to SSA-R (original).

Table 6.5: The optimal tuple for making 1, 2, . . . , 14-day ahead forecasts of

humidity and temperature at stations K, MA and TH.

The optimal tuple

Series Station Method N L r

Humidity K SSA-V forecasting without projection All 360 8

MA SSA-R forecasting without projection All 360 8

TH SSA-V forecasting without projection All 360 8

Temperature K SSA-V forecasting without projection All 360 8

MA SSA-V forecasting without projection All 360 6

TH SSA-R forecasting without projection All 360 8

Table 6.6: The optimal tuple for making 1, 2, 3-days ahead forecasts of humidity

and temperature at stations K, MA and TH.

The optimal tuple

Series Station Method N L r

Humidity K SSA-R (original) forecasting with double projection 180 30 4

MA SSA-R (original) forecasting with double projection 30 3 2

TH SSA-R (original) forecasting with double projection 180 24 4

Temperature K SSA-R (original) forecasting with double projection 30 3 2

MA SSA-R (original) forecasting with double projection 30 3 2

TH SSA-R (original) forecasting with double projection 30 3 2
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Figure 6.2: Humidity (left) and temperature (right) at stations K, MA and TH

with 1, 2, . . . , 14-day ahead SSA-R and SSA-V forecasts (colored) with parameters

L and r providing the smallest RMSE.

In Figure 6.2, we depict humidity and temperature at all three stations with

1, 2, . . . , 14-day ahead SSA-R and SSA-V forecasts obtained across several trun-

cation points. We can see that SSA-R and SSA-V forecasts for SSA without

projection are very stable and close to each other. Note that humidity is quite

volatile and therefore, forecasts are not close to the observed values. By con-

trast, temperature has a clear daily pattern and consequently SSA forecasts for

temperature are far more accurate.

In Figure 6.3, we jointly represent humidity and temperature at all three stations
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Figure 6.3: Humidity (left) and temperature (right) at stations K, MA and TH

with 1,2,3-days ahead SSA-R (original) forecasts (colored) with parameters L and

r providing the smallest RMSE.
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together with 1, 2, 3 days ahead for SSA-R (original) forecasts across several

truncation points. We can see that SSA-R (original) forecast with projection is

very stable. Note that humidity and temperature form clear daily patterns and

consequently SSA forecasts are much more accurate.

6.4 Chapter summary

The accuracy of three forecasting algorithms (SSA-R, SSA-R (original) and SSA-V)

has been analysed when forecasting daily temperature and humidity in Oman.

SSA with double projection and without projection have been considered.

In general, SSA-R (original) with projection outperform SSA-R and SSA-V for

1, 2, 3 days ahead forecasts. The performance of forecasting by using SSA with

double projection and SSA without projection for daily time series depends on

the forecast horizon, the window length L and the number of singular values r.

For the time series of humidity, notice that SSA-V forecasts have a negligibly

smaller value of the RMSE than SSA-V and SSA-R (original) forecasts at stations

K and TH while SSA-R forecasts have smaller values of the RMSE than SSA-V

and SSA-R (original) forecasts at station MA by using forecasting SSA without

projection for all period series with 1, 2, . . . , 14-day ahead forecasts. At the same

time, by using 1, 2, 3 days ahead forecasts, SSA-R (original) forecasts have the

lowest RMSE with SSA projection at stations K, MA and TH when N = 30 and

N = 180 days.

For the time series of temperature, SSA-V forecasts have a marginally smaller

value of the RMSE than SSA-R and SSA-R (original) forecasts at the station K

while SSA-R forecasts have the lowest RMSE compared to SSA-V and SSA-R
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(original) forecasts at stations MA and TH by using forecasting SSA without

projection for all period series. By using 1, 2, 3 days ahead forecasts, SSA-R

(original) forecasts provide the lowest RMSE with SSA projection at stations K,

MA and TH when N = 30 days.

The accuracy of forecasting algorithms and the sensitivity of the RMSE to pa-

rameters L and r for retrospective forecasts is rather small. SSA-R and SSA-V

forecasts have greater similarity to each other with a slight dominance of SSA-V

forecasts.

By studying the accuracy of forecasting algorithms for two different forecast

horizons, we hope to provide important empirical tools to allow decision-makers

to make informed decisions based on better analysis of daily time series.





Chapter 7

Conclusion

This chapter has summarised and reflected on the work reported in this thesis.

The summary here is brief since each chapter concludes with a detailed summary.

7.1 Research summary

Chapter 1 described the importance of time series and forecasting and then, out-

lined the research objectives. It introduced five research objectives and discussed

the reasons for using SSA. It also described the structure of the thesis and the

novel contribution.

Chapter 2 presented SSA methodology, including details about using SSA and

choice of parameters. It also covers the SSA algorithms that uses for imputing

missing values, SSA with projection and the use of SSA for forecasting. It described

three benchmarking forecast models (ARIMA, EST and NN). The chapter also

considered using the RMSE to measure the error of forecasts.

Chapter 3 studied hourly time series of temperature and humidity from six

meteorological stations in Oman for the period from 2009 to 2018. The chapter

covers three methods for imputing missing values: imputation using the SSA-based

155



156

iterative approach, imputation by multiple regression and imputation with lagging.

We argued that regression with lagging produces more reliable imputations and

provides a natural result for filling in gaps of any length.

Chapter 4 described an hourly time series for extracting annual oscillations and

daily periodicities. It presented three tests for detecting trends in time series:

the MK test, the SR test and the ITM test. We concluded that there are no

monotonic trends in annual oscillations and daily periodicities over the ten year

period from 2009 to 2018. In addition, we did not find any trends in the monthly

variability of daily periodicities.

Chapter 5 provided a statistical framework for studying SSA forecasting algo-

rithms. These algorithms have two parameters that should be chosen either by

the researcher or by using automatic choice based on the RMSE of retrospective

forecasts. We demonstrated the sensitivity of the RMSE for retrospective forecasts.

We used recurrent SSA and vector SSA forecasts for monthly temperature and

humidity in Oman from 2009 to 2018.

Chapter 6 investigated forecasting accuracy using daily time series of humidity

and temperature by using SSA-R, SSA-R (original) and SSA-V in two forms which

are SSA with double projection and SSA without projection. We studied how

the RMSE of 1,2,. . . ,14 and 1,2,3 days ahead forecasts across several truncation

points depend on the window length L and the number of singular values r.

7.2 Contributions

This thesis has made novel contributions in each of its five research topics: the

SSA algorithms, imputing missing values, extracting annual oscillations and daily
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periodicities, monthly forecasting and daily forecasting. This section summarizes

these contributions.

Chapter 3 discussed three methods for imputing missing values: SSA-based

iterative approach, multiple imputation by regression and regression with lagging.

We demonstrated methods of imputation using meteorological data of Oman from

2009 to 2018. We argued that regression with lagging is the best method for

imputing missing values because it provides a natural method of filling gaps of

any length and produces more reliable results than other methods.

Chapter 4 used three tests for detecting a trend in the time series. Extracting the

annual oscillations and the daily periodicities over ten years contributes to the

meteorological research.

Chapters 5 and 6 investigated automatic choice of SSA parameters for forecasting.

Chapters 5 and 6 provide data that help researchers understand which method of

selecting SSA parameters is more suitable, the researcher’s experience or automatic

choice based on the RMSEs of retrospective forecasts. Chapters 5 and 6 considered

the SSA algorithms to forecast monthly and daily temperature and humidity and

considered different factors that contribute to decisions about SSA parameters,

such as the structure of a time series and the length of a forecast.

The thesis supports the Directorate General of Meteorology in Oman by providing

updated analysis of meteorological time series for the period 2010-2019.

Temperature, relative humidity and precipitation are the main types of meteoro-

logical data that impact economic capital and human populations in Oman. We

have developed an understandable, innovative approach that uses statistical com-

putation methods and meteorological time series. SSA is a faster and more precise

model for forecasting time series. Development of this research can contribute
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to the national capacities of Oman in the field of meteorological research and

could raise awareness of the issues and challenges of climate change. Oman must

focus on factors such as sustaining the ecosystem, building eco house projects

and developing water resources as it contends with climate change. Research on

various indicators of climate change can provide scientific facts for decision-makers

that, in turn, can help them plan and formulate regulations and policies.

7.3 Future research directions

Each part of this thesis has given rise to interesting questions and research

directions that would complement this study. One of the most important challenges

is how the results of this research can be translated into practical recommendations

for decision makers.

future work, we can explore two extensions of SSA which are complex SSA and

multivariate SSA (MSSA) when performing tasks such as smoothing, change point

detection and forecasting of complex values. In addition, MSSA may be very

useful for analyzing several series with common structure. MSSA may also be

used for establishing a causality between two series, for example the time series of

humidity and temperature.

Analysing the association with meteorological factors might be helpful in under-

standing the behaviour of temperature and humidity. We can apply long time

series for a period of 50 years and we can apply non-linear laplacian spectral

analysis (NLSA) for time series with intermittency and low-frequency variability.





Appendix A

The optimal tuple for 14 day ahead

forecast

Table A.1: The RMSE of 1, 2, . . . , 14-day ahead forecasts using SSA-R, SSA-

R (original) and SSA-V forecasting algorithms by applying SSA with double

projection and SSA without projection for humidity at the station K.

N SSA-R SSA-R (original) SSA-V

SSA with double

projection

90 14.685(L=20,r=5) 14.584(L=20,r=4) 14.017(L=30,r=5)

180 13.681(L=24,r=4) 13.943(L=30,r=4) 14.136(L=20,r=4)

SSA without

projection

90 15.001(L=30,r=4) 14.901(L=20,r=4) 14.025(L=30,r=4)

180 13.657(L=24,r=4) 14.069(L=20,r=4) 14.503(L=24,r=4)

All 12.055(L=360,r=10) 12.054(L=360,r=8) 12.039(L=360,r=8)

The lowest RMSE 12.039(L=360,r=8)

Table A.1 shows the RMSE for humidity at the station K. We observe that the

lowest RMSE is 12.039 for SSA-V forecasting without projection and it is attained

at L = 360 and r = 8 when using a period of all-time series. We notice that

SSA-V forecasts have a slightly smaller RMSE than SSA-R and SSA-R (original)
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forecasts by 0.13% and 0.12% respectively. Overall, the RMSE is dependent on

the L and r parameters.
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Table A.2: The RMSE of 1, 2, . . . , 14-day ahead forecasts using SSA-R, SSA-

R (original) and SSA-V forecasting algorithms by applying SSA with double

projection and SSA without projection for temperature at the station K.

N SSA-R SSA-R (original) SSA-V

SSA with double

projection

90 2.572(L=20,r=5) 2.550(L=30,r=4) 2.560(L=20,r=5)

180 2.555(L=24,r=5) 2.603(L=16,r=4) 2.786(L=24,r=5)

SSA without

projection

90 2.630(L=30,r=4) 2.684(L=20,r=4) 2.610(L=20,r=4)

180 2.608(L=24,r=4) 2.669(L=20,r=4) 2.825(L=24,r=4)

All 1.956(L=360,r=8) 1.925(L=360,r=8) 1.923(L=360,r=8)

The lowest RMSE 1.923(L=360,r=8)

Table A.2 presents the RMSE for temperature at the station K. We observe that

the lowest RMSE is 1.923 attained at L = 360 and r = 8 for SSA-V forecasting

without projection. We can see that SSA-V forecasts have a negligibly smaller

RMSE than SSA-R and SSA-R (original) forecasts by 0.1% and 1.68% respectively

when N= all time series. Overall, the RMSE is significantly smaller for r = 8 and

L = 360 indicating that the signal rank is 8.
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Table A.3: The RMSE of 1, 2, . . . , 14-day ahead forecasts using SSA-R, SSA-

R (original) and SSA-V forecasting algorithms by applying SSA with double

projection and SSA without projection for humidity at the station MA.

N SSA-R SSA-R (original) SSA-V

SSA with double

projection

90 10.007(L=16,r=4) 9.903(L=30,r=4) 9.694(L=30,r=4)

180 9.4491(L=16,r=4) 9.5238(L=16,r=4) 10.147(L=24,r=9)

SSA without

projection

90 11.022(L=20,r=5) 11.609(L=20,r=5) 11.784(L=20,r=7)

180 9.857(L=16,r=6) 10.166(L=16,r=4) 10.140(L=24,r=8)

All 8.166(L=360,r=8) 8.210(L=360,r=8) 8.180(L=360,r=6)

The lowest RMSE 8.166(L=360,r=8)

Table A.3 exhibits the RMSE for humidity at the station MA. We note that the

lowest RMSE is 8.166 attained at L = 360 and r = 8 for SSA-R forecasting without

projection. We observe that SSA-R forecasts have a slightly smaller RMSE than

SSA-V and SSA-R (original) forecasts by 0.17% and 0.53% respectively when N=

all time series. In general, the RMSE is significantly smaller for r = 8 and L is

larger for using all the period series compared to using the other times.
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Table A.4: The RMSE of 1, 2, . . . , 14-day ahead forecasts using SSA-R, SSA-

R (original) and SSA-V forecasting algorithms by applying SSA with double

projection and SSA without projection for temperature at the station MA.

N SSA-R SSA-R (original) SSA-V

SSA with double

projection

90 11.535(L=20,r=5) 1.565(L=20,r=5) 1.537(L=20,r=5)

180 1.420(L=16,r=7) 1.468(L=16,r=7) 1.463(L=16,r=7)

SSA without

projection

90 1.561(L=20,r=4) 1.591(L=20,r=4) 1.552(L=20,r=4)

180 1.425(L=16,r=6) 1.471(L=16,r=6) 1.466(L=16,r=6)

All 1.069(L=360,r=8) 1.044(L=360,r=6) 1.043(L=360,r=6)

The lowest RMSE 1.043(L=360,r=6)

In Table A.4 presents the RMSE for temperature at the station MA. We observe

that the lowest RMSE is 1.043 attained at L = 360 and r = 6 for SSA-V forecasting

without projection. We observe that SSA-R forecasts have a marginally smaller

the RMSE than SSA-V and SSA-R (original) forecasts by 2.43% and 0.09%

respectively when N= all time series. We see that the RMSE is quite small for

r = 6 and L = 360 for SSA-V and SSA-R (original). Note that temperature at

the station MA has two mode shapes.
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Table A.5: The RMSE of 1, 2, . . . , 14-day ahead forecasts using SSA-R, SSA-

R (original) and SSA-V forecasting algorithms by applying SSA with double

projection and SSA without projection for humidity at the station TH.

N SSA-R SSA-R (original) SSA-V

SSA with double

projection

90 16.442(L=30,r=5) 16.100(L=30,r=5) 15.223(L=30,r=5)

180 14.416(L=20,r=5) 14.540(L=20,r=4) 14.724(L=20,r=4)

SSA without

projection

90 16.423(L=30,r=4) 15.984(L=30,r=4) 15.231(L=30,r=4)

180 14.551(L=20,r=4) 14.960(L=20,r=4) 14.872(L=20,r=4)

All 13.237(L=360,r=6) 13.248(L=360,r=4) 13.215(L=360,r=6)

The lowest RMSE 13.215(L=360,r=6)

Table A.5 exhibits the RMSE for humidity at the station TH. We observe that

the lowest RMSE is 13.215 attained at L = 360 and r = 6 for SSA-V forecasting

without projection. Note that SSA-V forecasts have a negligibly smaller RMSE

than SSA-V and SSA-R (original) forecasts by 0.17% and 0.25% respectively when

N= all time series. Overall, the RMSE is small for r = 6 and L = 360 for SSA-V.
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Table A.6: The RMSE of 1, 2, . . . , 14-day ahead forecasts using SSA-R, SSA-

R (original) and SSA-V forecasting algorithms by applying SSA with double

projection and SSA without projection for temperature at the station TH.

N SSA-R SSA-R (original) SSA-V

SSA with double

projection

90 2.790(L=16,r=7) 2.758(L=30,r=4) 2.924(L=20,r=5)

180 2.357(L=20,r=9) 2.363(L=20,r=9) 2.454(L=16,r=11)

SSA without

projection

90 2.824(L=30,r=4) 2.815(L=30,r=4) 2.930(L=30,r=4)

180 2.365(L=20,r=8) 2.367(L=20,r=8) 2.486(L=20,r=8)

All 2.114(L=360,r=6) 2.146(L=360,r=4) 2.125(L=360,r=6)

The lowest RMSE 2.114(L=360,r=6)

Table A.6 shows the RMSE for temperature at the station TH. We can see that

the lowest RMSE is 2.1144 attained at L = 360 and r = 6 for SSA-R forecasting

without projection. We observe that SSA-R forecasts have a marginally smaller

RMSE than SSA-V and SSA-R (original) forecasts by 0.5% and 1.49% respectively

when N= all time series.



Appendix B

The optimal tuple for 3 days ahead

forecast

Table B.1: The RMSE of 1, 2, 3 days ahead forecasts using SSA-R, SSA-R (original)

and SSA-V forecasting algorithms by applying SSA with double projection and

SSA without projection for humidity at the station K.

N SSA-R SSA-R (original) SSA-V

SSA with double

projection

10 14.792(L=3,r=2) 14.623(L=3,r=2) 14.899(L=3,r=2)

30 12.806(L=5,r=2) 12.739(L=7,r=2) 12.687(L=6,r=2)

90 13.178(L=16,r=4) 12.505(L=30,r=4) 12.769(L=30,r=4)

180 12.769(L=16,r=8) 12.463(L=30,r=4) 12.809(L=30,r=4)

SSA without

projection

10 14.885(L=3,r=1) 14.796(L=3,r=1) 14.982(L=3,r=1)

30 14.192(L=11,r=2) 13.796(L=9,r=2) 13.483(L=12,r=2)

90 13.369(L=24,r=4) 12.818(L=30,r=4) 12.993(L=24,r=4)

180 12.884(L=16,r=6) 12.863(L=24,r=4) 13.297(L=24,r=4)

The lowest RMSE 12.463(L=30,r=4)
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Table B.1 shows the RMSE for humidity at the station K. We can see that the

lowest RMSE is 12.463 for SSA-R (original) forecasting with projection and is

attained at L = 30 and r = 4 when N = 180 days. We notice that SSA-R

(original) forecasts have a slightly smaller RMSE than SSA-R and SSA-V forecasts.

Overall, the RMSE is dependent on L and r.

Table B.2: The RMSE of 1, 2, 3 days ahead forecasts using SSA-R, SSA-R (original)

and SSA-V forecasting algorithms by applying SSA with double projection and

SSA without projection for temperature at the station K.

N SSA-R SSA-R (original) SSA-V

SSA with double

projection

10 2.299(L=3,r=2) 2.242(L=3,r=2) 2.305(L=3,r=2)

30 2.049(L=3,r=2) 2.022(L=3,r=2) 2.043(L=3,r=2)

90 2.163(L=16,r=6) 2.069(L=20,r=4) 2.199(L=30,r=4)

180 2.156(L=16,r=4) 2.106(L=20,r=4) 2.157(L=16,r=4)

SSA without

projection

10 2.035(L=3,r=1) 2.253(L=3,r=1) 2.314(L=3,r=1)

30 2.330(L=9,r=2) 2.205(L=9,r=2) 2.286(L=9,r=2)

90 2.178(L=16,r=6) 2.084(L=24,r=4) 2.233(L=24,r=4)

180 2.199(L=20,r=6) 2.107(L=20,r=4) 2.198(L=20,r=4)

The lowest RMSE 2.022(L=3,r=2)

Table B.2 displays the RMSE for temperature at the station K. We observe that

the lowest RMSE is 2.022 attained at L = 3 and r = 2 for SSA-R (original)

forecasting with projection. We can see that SSA-R (original) forecasts have a

negligibly smaller RMSE than SSA-R and SSA-V forecasts at N = 30 days series.

Overall, the RMSE is quite small indicating that the signal rank is 2.
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Table B.3: The RMSE of 1, 2, 3 days ahead forecasts using SSA-R, SSA-R (original)

and SSA-V forecasting algorithms by applying SSA with double projection and

SSA without projection for humidity at the station MA.

N SSA-R SSA-R (original) SSA-V

SSA with double

projection

10 10.331(L=3,r=2) 9.627(L=3,r=2) 10.268(L=3,r=2)

30 8.717(L=3,r=2) 8.252(L=3,r=2) 8.627(L=3,r=2)

90 9.544(L=16,r=4) 9.129(L=20,r=4) 9.462(L=16,r=4)

180 9.044(L=20,r=6) 8.665(L=24,r=4) 9.286(L=16,r=4)

SSA without

projection

10 10.384(L=3,r=1) 9.686(L=3,r=1) 10.321(L=3,r=1)

30 8.697(L=3,r=1) 8.253(L=3,r=1) 8.609(L=3,r=1)

90 10.371(L=16,r=4) 9.626(L=16,r=4) 10.119(L=16,r=4)

180 8.619(L=24,r=6) 8.490(L=16,r=4) 8.848(L=24,r=6)

The lowest RMSE 8.252(L=3,r=2)

Table B.3 represents the RMSE for humidity at the station MA. We note that the

lowest RMSE is 8.252 attained at L = 3 and r = 2 for SSA-R (original) forecasting

with projection. We observe that SSA-R forecasts have a slightly smaller RMSE

than SSA-R and SSA-V forecasts at N = 30 days. In general, the RMSE is smaller

for r = 3 and L = 3.
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Table B.4: The RMSE of 1, 2, 3 days ahead forecasts using SSA-R, SSA-R (original)

and SSA-V forecasting algorithms by applying SSA with double projection and

SSA without projection for temperature at the station MA.

N SSA-R SSA-R (original) SSA-V

SSA with double

projection

10 1.232(L=3,r=2) 1.166(L=3,r=2) 1.228(L=3,r=2)

30 1.077(L=3,r=2) 1.032(L=3,r=2) 1.071(L=3,r=2)

90 1.223(L=16,r=4) 1.149(L=16,r=4) 1.184(L=16,r=4)

180 1.171(L=16,r=4) 1.083(L=16,r=4) 1.153(L=16,r=4)

SSA without

projection

10 1.232(L=3,r=1) 1.196(L=3,r=1) 1.229(L=3,r=1)

30 1.077(L=3,r=1) 1.033(L=3,r=1) 1.071(L=3,r=1)

90 1.266(L=24,r=4) 1.193(L=24,r=4) 1.182(L=24,r=4)

180 1.218(L=16,r=4) 1.156(L=30,r=4) 1.154(L=20,r=4)

The lowest RMSE 1.032(L=3,r=2)

Table B.4 displays the RMSE for temperature at the station MA. We observe

that the lowest RMSE is 1.032 attained at L = 3 and r = 2 for SSA-R (original)

forecasting with projection at N = 30 days. We observe that the RMSE is fairly

small for r = 2 and L = 3 by contrast with other methods of forecasting.
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Table B.5: The RMSE of 1, 2, 3 days ahead forecasts using SSA-R, SSA-R (original)

and SSA-V forecasting algorithms by applying SSA with double projection and

SSA without projection for humidity at the station TH.

N SSA-R SSA-R (original) SSA-V

SSA with double

projection

10 17.809(L=3,r=2) 16.838(L=3,r=2) 17.829(L=3,r=2)

30 14.736(L=4,r=2) 14.518(L=3,r=2) 14.644(L=4,r=2)

90 14.825(L=24,r=4) 14.286(L=24,r=4) 14.301(L=24,r=4)

180 14.361(L=30,r=6) 13.838(L=24,r=4) 13.929(L=24,r=4)

SSA without

projection

10 18.210(L=3,r=1) 17.155(L=3,r=1) 18.473(L=3,r=1)

30 14.757(L=3,r=1) 14.482(L=3,r=1) 14.754(L=4,r=1)

90 15.524(L=16,r=4) 15.017(L=30,r=4) 15.285(L=30,r=4)

180 14.101(L=16,r=4) 13.949(L=30,r=4) 14.190(L=30,r=4)

The lowest RMSE 13.838(L=24,r=4)

Table B.5 presents the RMSE for humidity at the station TH. We can observe

that the lowest RMSE is 13.838 attained at L = 24 and r = 4 for SSA-R (original)

forecasting with projection. It is worth noting that SSA-V forecasts have a

negligibly smaller RMSE than SSA-V forecasts at N = 180. Overall, the RMSE

is small for SSA-R (original) when r = 4 and L = 24.
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Table B.6: The RMSE of 1, 2, 3 days ahead forecasts using SSA-R, SSA-R (original)

and SSA-V forecasting algorithms by applying SSA with double projection and

SSA without projection for temperature at the station TH.

N SSA-R SSA-R (original) SSA-V

SSA with double

projection

10 2.372(L=3,r=2) 2.237(L=3,r=2) 2.370(L=3,r=2)

30 1.989(L=3,r=2) 1.924(L=3,r=2) 1.983(L=4,r=2)

90 2.226(L=16,r=4) 2.115(L=16,r=4) 2.259(L=16,r=4)

180 2.112(L=16,r=8) 2.049(L=16,r=4) 2.178(L=24,r=4)

SSA without

projection

10 2.399(L=3,r=1) 2.262(L=3,r=1) 2.387(L=3,r=1)

30 1.990(L=3,r=1) 1.926(L=3,r=1) 1.981(L=4,r=1)

90 2.164(L=16,r=4) 2.109(L=24,r=4) 2.221(L=16,r=4)

180 2.125(L=16,r=4) 2.101(L=30,r=4) 2.182(L=24,r=6)

The lowest RMSE 1.924(L=3,r=2)

Table B.6 shows the RMSE for temperature at the station TH. We can see that

the lowest RMSE is 1.924 attained at L = 3 and r = 2 for SSA-R (original)

forecasting with projection at N = 30.
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