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Abstract 38 

 Mild cognitive impairment (MCI) is usually considered the early stage of Alzheimer’s disease 39 

(AD). Therefore, the accurate identification of MCI individuals with high risk in converting to AD is 40 

essential for the potential prevention and treatment of AD. Recently, the great success of deep 41 

learning has sparked interest in applying deep learning to neuroimaging field. However, deep 42 

learning techniques are prone to overfitting since available neuroimaging datasets are not 43 

sufficiently large. Therefore, we proposed a deep learning model fusing cortical features to address 44 

the issue of fusion and classification blocks. To validate the effectiveness of the proposed model, 45 

we compared seven different models on the same dataset in the literature. The results show that 46 

our proposed model outperformed the competing models in the prediction of MCI conversion with 47 

an accuracy of 83.3% in the testing dataset. Subsequently, we used deep learning to characterize 48 

the contribution of brain regions and different cortical features to MCI progression. The results 49 

revealed that the caudal anterior cingulate and pars orbitalis contributed most to the classification 50 

task, and our model pays more attention to volume features and cortical thickness features. 51 

Keywords: Mild cognitive impairment, Magnetic resonance imaging, Deep learning, Transformer 52 

1 Introduction 53 

 Alzheimer’s disease (AD) is a common degenerative disease in aging populations. Cognitive 54 
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impairment and progressive memory loss are the fundamental characteristics of AD [1]. More than 55 

30 million people worldwide are suffering from AD cause of the extending life expectancy, and this 56 

number is estimated to be tripled by 2050 [2]. Despite the dramatic increase in the prevalence of 57 

AD, no treatment can completely cure it currently. Thus, early diagnosis is crucial to developing 58 

treatments for AD [3, 4]. Mild cognitive impairment (MCI) is generally considered a transitional 59 

stage between normal aging and AD [5]. Studies have shown that approximately 5% to 15% of 60 

persons with MCI will progress to AD each year [6, 7]. MCI can be divided into two subtypes, 61 

progressive mild cognitive impairment (pMCI) and stable mild cognitive impairment (sMCI). 62 

Subjects classified as pMCI were those with a higher risk of conversion to AD in a short period, 63 

while subjects in the sMCI group remained stable for a certain period and had a lower risk of 64 

progression to AD than the former [8]. Therefore, classifying the two different types of MCI can 65 

predict the conversion from MCI to AD as early as possible, which is beneficial for AD prevention 66 

and therapy. 67 

Neuroimaging is widely used to understand the pathology of MCI and AD [9]. In previous 68 

studies on the mechanism of AD, structural magnetic resonance imaging (MRI) is one of the most 69 

extensively utilized imaging modalities in AD detection and prediction for its wide practicality, non-70 

invasion, high resolution, and moderate cost [10]. Applying machine learning techniques to 71 

neuroimaging diagnosis is a developing field. In terms of MCI conversion prediction, numerous 72 

studies are using different methods, including network features constructed based on graph theory 73 

[11, 12],voxel-based morphometry (VBM) based on the segmentation of grey matter [13, 14], 74 

multiple methods of hippocampal segmentation [15], etc. However, research using traditional 75 

machine learning methods still suffers from inadequacies. The performance of traditional machine 76 

learning methods largely depends on data representation [16], and it is challenging to learn high-77 

level information from poorly hand-picked features. 78 

Recently, with the development of deep learning technology, many researchers have achieved 79 

outstanding achievements in neuroscience [17-19]. Deep learning network models also progressed 80 

in predicting AD conversion in advance from MCI [20-23]. Nevertheless, most of these studies used 81 

3D subject‑level features as input to deep learning network models, which suffer from overfitting 82 

issues, since the sample size of available neuroimaging data sets is not significant compared with 83 

millions of features in each image [24, 25]. Freesurfer is a powerful tool to reliably extract cortical 84 
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features such as volume, surface area, cortical thickness, and curvature index [26-33] through an 85 

automated pipeline without any user interaction. The dimension of cortical features is significantly 86 

lower than the original neuroimage but contains rich ROI-level brain morphological information, 87 

which can effectively alleviate the overfitting problem. In 2017, the transformer was first proposed 88 

by Vaswani et al. [34] and successfully applied to natural language processing (NLP) tasks. 89 

Researchers have recently extended it to other tasks such as computer vision (CV) with great 90 

success [35]. Its strong global perception capability makes it possible to find differences in brain 91 

morphology of the cortex between pMCI and sMCI from fused cortical features for classification. 92 

Based on the above considerations, in this work, we proposed a transformer-based multi-93 

features fusion model to predict conversion in MCI by using MRI. Specifically, our architecture was 94 

designed to fuse the multiple cortical features and automatically learn high-level information from 95 

the fused features. To validate the proposed model, we perform the classification on the MRI 96 

datasets from the Alzheimer’s Disease Neuroimaging Initiative (ADNI, http://adni.loni.usc.edu/) 97 

[36], and achieved better performance over other models. Furthermore, with occlusion analysis, 98 

we investigated the contribution of different brain regions and different cortical features to the 99 

classifying progression and stability of MCI. 100 

The rest of the paper has been organized as follows. In Section 2, we mainly introduce the 101 

architecture of the proposed model and the details of its construction and validation and the 102 

implementation of occlusion analysis. Section 3 gives the analysis of the results followed by further 103 

discussion in Section 4. Finally, Section 5 summarizes the full text. 104 

2 Materials and methods  105 

2.1 Experimental Data 106 

 Data used in our study were obtained from the ADNI database. The ADNI is an ongoing and 107 

multicenter study that aims to develop imaging, clinical, genetic, and biochemical biomarkers for 108 

AD's early detection and tracking [37]. 249 MCI participants with baseline T1-weighted structural 109 

MRI were selected from ADNI in this work. All MCI subjects were divided into two groups: (1) stable 110 

mild cognitive impairment (sMCI) who did not convert to AD within three years. In addition, the 111 

http://adni.loni.usc.edu/
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subjects who were diagnosed as MCI at least twice, but reverse to a standard control, at last, are 112 

also considered as sMCI [23]; (2) progressive mild cognitive impairment (pMCI) who were 113 

diagnosed as MCI at the first visit, but converted to AD at longitudinal visits within three years. The 114 

detailed demographic information is given in Table 1. 115 

TABLE 1 The demographic information.  116 

 sMCI pMCI 

Subjects’ number 104 145 

Age range 55-88 55-88 

Males/Females 67/37 90/55 

Abbreviations: pMCI = progressive mild cognitive impairment, sMCI = stable mild cognitive 117 

impairment. 118 

2.2 Image Pre-processing 119 

 T1-weighted structural images were processed using the Freesurfer software (v6.0; 120 

http://surfer.nmr.mgh.harvard.edu/) [38]. The preprocessing steps are described below. Firstly, the 121 

correction for non-uniformity artifacts was performed on the images [39], followed by the 122 

coordinate transformation [40] and the brain tissue segmentation (including gray matter, white 123 

matter, cerebrospinal fluid, and other background categories). Subsequently, the surface of 124 

white/gray matter boundaries was reconstructed [40]. After completing the construction of 125 

boundary models, surface expansion and registration were performed [30, 38]. Finally, we 126 

extracted multiple cortical measurements including volume (VOL), cortical thickness (CT), 127 

curvature index (CD), folding index (FD), and surface area (SA) for 62 brain regions (31 regions in 128 

each hemisphere of the brain) using the Desikan-Killiany-Tourville (DKT) atlas [41]. 129 

2.3 The Transformer-based Multi-features Fusion Model 130 

Here we proposed a multi-features fusion model to predict conversion in MCI, which is based 131 

on the transformer model [34]. Our model was designed to input a cortical feature matrix 132 

(extracted from the preprocessed image) and output the classification result. The model consists 133 

of a fusion block and a classification block. For an overview, refer to Fig.1.  134 

http://surfer.nmr.mgh.harvard.edu/
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 135 

Fig. 1. Illustration of proposed deep learning model. Abbreviations: VOL = volume, CT = cortical 136 

thickness, CD = curvature index, FD = folding index, SA = surface area, MSA = multi-head self-137 

attention, FFN = feed-forward network, Concat = concatenate, BN = Batch Normalization, FC62 = 138 

62-units fully connected layer, FC8 = 8-units fully connected layer, FC2 = 2-units fully connected 139 

layer.  140 

 The fusion block consists of five different sub-layers. Firstly, the Z-score method was applied 141 

to the input features to remove the effect of different feature sizes (Eq. (1)). The second is a multi-142 

head self-attention (MSA) [34] and the third is a feed-forward network (FFN), the residual 143 

connections [42] were employed after the MSA and FFN, followed by layer normalization (LN) [43] 144 

(Eqs. (2) and (3)). To improve the model's efficiency, we set the number of heads in the MSA to 2, 145 

which could reduce the number of model parameters. The dimension of outputs for MSA and FFN 146 

is 62, which matches the model's input and enables these residual connections. The fourth is a 147 

concatenate (Concat) layer (Eq. (4)), which reshapes the input data (cortical feature matrix, 5×62) 148 

to a tensor of 1×310 for later classification. Finally, the Batch Normalization (BN) layers were 149 

applied to accelerate convergence. The output of fusion block 𝑓 is calculated using Eq. (5) (𝑥 is 150 

the input of the model). Then, took 𝑓 as the input to the classification block. 151 

𝑙1 = 𝑍 − 𝑠𝑐𝑜𝑟𝑒(𝑥) (1) 152 

𝑙2 = 𝐿𝑁(𝑙1 + 𝑀𝑆𝐴(𝑙1)) (2) 153 

𝑙3 = 𝐿𝑁(𝑙2 + 𝐹𝑁𝑁(𝑙2)) (3) 154 
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𝑙4 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑙3) (4) 155 

𝑓 = 𝐵𝑁(𝑙4) (5) 156 

The classification block consists of three fully connected (FC) layers with 62, 8, and 2 units 157 

respectively. Later, the softmax activation function was used to predict the results. 158 

2.4 Implementation 159 

We implemented our model with Pytorch 1.8.0. Model training and testing were performed 160 

on the Ubuntu 18.04 operating system. During training, we used the Binary Cross-Entropy (BCE) 161 

loss function and set the number of epochs to 15, with a mini-batch size of 32. The optimizer was 162 

Adam [44] with a learning rate of 1e-4 and weight decay of 1e-8. 163 

2.5 Validation Framework 164 

To validate the efficacy of the proposed model, we split our 249 subjects randomly into three 165 

groups, including the training dataset (n=200), the validation dataset (n=25), and the testing 166 

dataset (n=24). The training dataset was used for training models, while the validation dataset was 167 

used for parameter tuning and the testing dataset for evaluating model performance. 168 

2.6 Model Comparison 169 

The proposed model was compared with four traditional machine learning methods: support 170 

vector machine [45], decision tree [46], random forest [47], and logistic regression [48]. Compared 171 

to traditional machine learning methods with feature engineering, deep learning models aim to 172 

extract features automatically. Therefore, deep learning methods including Recurrent Neural 173 

Network (RNN) [49], Long Short-Term Memory (LSTM) [50], and Gated Recurrent Unit (GRU) [51] 174 

were also employed in this study for comparison with the proposed model. 175 

To verify the performance of the above models, we randomly divide the entire dataset into a 176 

training dataset, a validation dataset, and a testing dataset in a ratio of 8:1:1 (the division of the 177 

dataset is the same as our proposed model). All the traditional machine learning models were 178 

implemented using sklearn (https://scikit-learn.org/stable/) library in python3 (used the default 179 

settings) and were trained on the training dataset then tested on the testing dataset. In addition, 180 

all deep learning models were implemented with Pytorch 1.8.0, and for these deep learning 181 
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models, we defined the optimal hyperparameters of the classifiers by using the training and 182 

validating datasets. Subsequently, when the model achieved the best performance (the optimized 183 

hyperparameters were listed in Supplementary Materials Table S1) in the validation dataset, the 184 

model was validated using the testing dataset. We also performed 10-fold cross-validation on the 185 

entire dataset to compare the performance between our proposed and other models to ensure 186 

generalizability. 187 

Furthermore, to validate the performance of all the models, we employed four 188 

measurements including classification accuracy (ACC), sensitivity (SEN), specificity (SPE) (shown 189 

in Eq. (6) to Eq. (8)), and the area under the receiver operating characteristic (ROC) curve (AUC). 190 

For these measurements, higher values demonstrate better performance. 191 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(6) 192 

𝑆𝐸𝑁 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(7) 193 

𝑆𝑃𝐸 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
(8) 194 

Where TP, TN, FP, and FN are abbreviations for True Positive, True Negative, False Positive, and 195 

False Negative, respectively. 196 

2.7 Implementation of Occlusion Analysis 197 

Occlusion analysis was employed to investigate the contribution of each brain region and each 198 

cortical feature to the performance of the proposed model. First, we set the value of five cortical 199 

features of each brain region (both left and right) to 0 from the cortical feature matrix of the test 200 

stage and retested the trained proposed model. The input corresponding to brain region m is 𝑥𝑚  : 201 

𝐵𝑟𝑎𝑖𝑛𝑅𝑒𝑔𝑖𝑜𝑛𝑂𝑐𝑐𝑛 = {
0 if m=n

𝑥𝑚 otherwise
(9) 202 

Where 𝐵𝑟𝑎𝑖𝑛𝑅𝑒𝑔𝑖𝑜𝑛𝑂𝑐𝑐𝑛 represents the occlusion of brain region 𝑛. If the 𝑚 is equal to 𝑛, 203 

the value of 𝑥𝑚  is set to 0. Then, we masked different features to explore their impact on the 204 

model. See Eq. (10) for details (the 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑂𝑐𝑐𝑖  means the occlusion of i-th feature and 𝑥𝑗 205 

means the input corresponding j-th feature). 206 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑂𝑐𝑐𝑖 = {
0 if j=i
𝑥𝑗 otherwise

(10) 207 
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3 Results  208 

3.1 Classification Performance 209 

We test the trained model on the testing dataset to verify the proposed model. The 210 

proposed model achieved 83.3% accuracy and an AUC of 0.888 (Fig.2), with a sensitivity of 0.727 211 

and a specificity of 0.923(Fig.3). 212 

 213 

Fig. 2. ROC curve for classifying pMCI versus sMCI. Abbreviations: pMCI = progressive mild cognitive 214 

impairment, sMCI = stable mild cognitive impairment, ROC = receiver operating characteristic, AUC 215 

= area under the curve. 216 
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 217 

Fig. 3. Confusion matrix, evaluating the SEN and SPE obtained in pMCI versus sMCI. The matrix 218 

values were rescaled to the scope of [0,1]. Abbreviations: pMCI = progressive mild cognitive 219 

impairment, sMCI = stable mild cognitive impairment. 220 

In addition, we compared our proposed method with three different deep learning methods 221 

(RNN, LSTM, GRU) and four different machine learning methods (random forest, decision tree, 222 

logistic regression, and support vector machine). As shown in Table 2, our proposed model 223 

showed better performance than the other models. The results show that GRU (AUC = 0.853) 224 

performs better than LSTM (AUC = 0.839) and RNN (AUC = 0.790) among the three deep learning 225 

models. Furthermore, the random forest has the best performance (AUC=0.678) among four 226 

machine learning models. See Table 2 for more detailed information. The results of 10-fold cross-227 

validation also showed that our model can predict MCI conversion more accurately (see 228 

Supplementary Materials Table S2). 229 

TABLE 2 The performance of different models.  230 

Model ACC SEN SPE AUC 

Proposed model 83.3% 0.727 0.923 0.888 

RNN 66.7% 0. 818 0.538 0.790 

LSTM 70.8% 0. 727 0.692 0.839 

GRU 70.8% 0. 727 0.692 0.853 
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Random Forest 66.7% 0.818 0.538 0.678 

Decision Tree 54.2% 0.545 0.538 0.542 

Logistic Regression 66.7% 0.727 0.615 0.671 

Support vector machine 54.2% 0.818 0.308 0.563 

The best results for each column are shown in boldface. Abbreviations: RNN = Recurrent Neural 231 

Network, LSTM = Long Short-Term Memory, GRU = Gated Recurrent Unit, ACC = accuracy, SEN = 232 

sensitivity, SPE = specificity, AUC = area under the receiver operating characteristic (ROC) curve. 233 

3.2 Occlusion Analysis 234 

After extracting five features based on the DKT template for each subject, the relevant 235 

contribution of different brain regions and different features to the classification performance 236 

was evaluated using computer vision's commonly used occlusion analysis method [52]. 237 

As shown from Fig.4, the masking of most brain regions causes a decrease in model 238 

accuracy, and the masking of a small number of brain regions does not affect model accuracy 239 

(Fig.5). Notably, masking of the caudal anterior cingulate and the pars orbitalis (Fig.6) resulted in 240 

a dramatic decrease in model performance. Then, we performed occlusion analysis for different 241 

features. It can be seen from Fig.7 that the occlusion of different features all caused a significant 242 

decrease in model accuracy. 243 

 244 

Fig. 4. The reduced accuracies with each brain region occluded compared to the original intact 245 

model. 246 
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 247 
Fig. 5. The location of brain regions that do not affect classification accuracy.  248 

 249 

  250 

Fig. 6. The location of the brain regions that contributed most to the classification task.  251 
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Fig. 7. Results for each feature occlusion (the first column is the model's accuracy with all 254 

features input). Abbreviations: CD = curvature index, FD = folding index, SA = surface area, VOL = 255 

volume, CT = cortical thickness. 256 

4 Discussion 257 

Patients with MCI show a strong variable trajectory of symptoms, with some individuals finally 258 

diagnosed with AD, while others show a more stable cognitive ability pattern for a certain period. 259 

Identifying these two different types of MCI is crucial and essential to preventing and treating AD. 260 

Therefore, many researchers are committed to developing computer-aided systems to diagnose 261 

AD early. To solve the overfitting problem of most previous methods, we proposed a transformer-262 

based model that predicts conversion in MCI using multiple ROI-level cortical features and achieved 263 

an accuracy of 83.3% on the testing dataset.  264 

The model comparison results demonstrated that the proposed model performs better than 265 

other traditional machine learning models (random forest, decision tree, logistic regression, and 266 

support vector machine) and deep learning models (RNN, LSTM, and GRU). The traditional machine 267 

learning methods rely on the manual selection of features. For features that have not been 268 

carefully selected, the traditional machine learning methods are challenging to thoroughly learn 269 

sufficient information in cortical features. In addition, compared with other deep learning methods, 270 

the proposed model includes a fusion block with MSA, which takes into account the features 271 

themselves and fully considers the correlation between different cortical features to achieve better 272 

performance. Furthermore, the classification performance of the proposed model also 273 

outperformed previously developed deep learning models for classifying pMCI versus sMCI based 274 

on MRI data [22, 53-55], which ranged from 73.95% to 78.79%. 275 

The occlusion analysis results both extend and support prior reports by describing the 276 

contribution of different brain regions and different cortical features to the progression of MCI. On 277 

the one hand, the results revealed significant differences between the brain regions differentiating 278 

pMCI from sMCI. Notably, the results have shown that the caudal anterior cingulate and pars 279 

orbitalis (Fig.6) were most important for the classification task than any other brain region. 280 

Previous studies have shown that neuronal loss in the caudal anterior cingulate begins in the early 281 

stage of AD [56], and this timing may need to be advanced. This brain region contributed the most 282 
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to the model, possibly indicating that some neurons have been lost in pMCI. Given that the caudal 283 

anterior cingulate is important to cognitive control of behavior [57], it suggests that pMCI may 284 

show more severe cognitive impairment than sMCI. In addition, a previous study found that the 285 

pars orbitalis, as well as some other brain regions, contributed to good classification performance 286 

in this task [58], but the central role of the pars orbitalis should be highlighted. On the other hand, 287 

the occlusion of different features all caused a significant decrease in model accuracy, this finding 288 

demonstrates the existence of important complementary information in all five features. 289 

Furthermore, the occlusion analysis on different features showed that VOL and CT had the 290 

strongest impact on model performance, this may be related to the different volumes and atrophy 291 

rates between sMCI and pMCI [59] and the significantly thinner cortical thicknesses in many brain 292 

regions in pMCI [60]. The results also indicated that VOL and CT were more distinct in sMCI and 293 

pMCI brains than CD, FD, and SA and were more reliable biomarkers in the progression of MCI. 294 

Our study has some limitations. Firstly, our work only used MRI images, while researchers 295 

have continuously disclosed the strength of multimodal features in computer-aided diagnosis 296 

models [61-63]. Therefore, the model performance is expected to be improved by incorporating 297 

data from multiple modalities, such as functional MRI. In addition, the cross-sectional nature is 298 

another limitation of our study. Therefore, longitudinal data should be employed in our future 299 

research. 300 

5 Conclusion  301 

This study proposed a transformer-based multi-features fusion model to predict the MCI-to-302 

AD conversion only using MRI data. Results show that our model can fuse the cortical features 303 

extracted by Freesurfer. Compared with other models in the literature, our proposed model 304 

achieves higher accuracy and AUC. In addition, our study reveals the contribution of brain regions 305 

in differentiating between pMCI and sMCI, highlighting the central role of the caudal anterior 306 

cingulate and pars orbitalis. Finally, the occlusion analysis results demonstrate that VOL and CT 307 

may be more reliable biomarkers in MCI progression. 308 
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TABLE S1 The hyperparameters of GRU, LSTM, and GRU. 473 

Hyperparameter RNN LSTM GRU 

Epoch 100 50 50 

Batch size 64 32 64 

Optimizer Adam Adam Adam 

Learning rate 1e-3 1e-3 1e-3 

Weight decay 1e-8 1e-8 1e-8 

Abbreviations: RNN = Recurrent Neural Network, LSTM = Long Short-Term Memory, GRU = Gated 474 

Recurrent Unit. 475 

TABLE S2 Results of the 10-fold cross-validation. All metrics are reported as mean ± SD across folds. 476 

Model ACC  SEN SPE AUC 

Proposed model 0.719 ± 0.084 0.797 ± 0.109 0.545 ± 0.214 0.668 ± 0.092 

RNN 0.603 ± 0.108 0.866 ± 0.095 0.272 ± 0.182 0.600 ± 0.105 

LSTM 0.615 ± 0.105 0.928 ± 0.101 0.203 ± 0.139 0.624 ± 0.072 

GRU 0.611 ± 0.106 0.898 ± 0.110 0.264 ± 0.207 0.603 ± 0.100 

Random Forest 0.562 ± 0.063 0.638 ± 0.150 0.478 ± 0.128 0.621 ± 0.108 

Decision Tree 0.618 ± 0.119 0.693 ± 0.143 0.533 ± 0.157 0.613 ± 0.122 

Logistic Regression 0.619 ± 0.062 0.682 ± 0.126 0.529 ± 0.164 0.619 ± 0.071 

Support vector machine 0.518 ± 0.117 0.583 ± 0.159 0.449 ± 0.227 0.516 ± 0.109 

The best results for each column are shown in boldface. Abbreviations: SD = standard deviation, 477 

RNN = Recurrent Neural Network, LSTM = Long Short-Term Memory, GRU = Gated Recurrent Unit, 478 

ACC = accuracy, SEN = sensitivity, SPE = specificity, AUC = area under the receiver operating 479 

characteristic (ROC) curve. 480 


