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ABSTRACT
Biomedical natural language processing often involves the inter-
pretation of patient descriptions, for instance for diagnosis or for
recommending treatments. Current methods, based on biomedi-
cal language models, have been found to struggle with such tasks.
Moreover, retrieval augmented strategies have only had limited
success, as it is rare to find sentences which express the exact type
of knowledge that is needed for interpreting a given patient de-
scription. For this reason, rather than attempting to retrieve explicit
medical knowledge, we instead propose to rely on a nearest neigh-
bour strategy. First, we retrieve text passages that are similar to the
given patient description, and are thus likely to describe patients
in similar situations, while also mentioning some hypothesis (e.g.
a possible diagnosis of the patient). We then judge the likelihood
of the hypothesis based on the similarity of the retrieved passages.
Identifying similar cases is challenging, however, as descriptions of
similar patients may superficially look rather different, among oth-
ers because they often contain an abundance of irrelevant details.
To address this challenge, we propose a strategy that relies on a dis-
tantly supervised cross-encoder. Despite its conceptual simplicity,
we find this strategy to be effective in practice.

CCS CONCEPTS
• Applied computing→ Life and medical sciences; • Informa-
tion systems → Information retrieval; • Computing method-
ologies → Natural language processing.
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1 INTRODUCTION
An important challenge for biomedical natural language process-
ing (NLP) is to make inferences about patient descriptions. For
instance, given a description of the symptoms displayed by a pa-
tient, possibly in combination with other relevant factors such as
age, gender or medical history, we may want to infer a diagnosis or
identify recommended medication. Table 1 shows an example from
a multiple-choice QA evaluation dataset to illustrate this setting. To
support biomedical NLP, several versions of BERT [17] that were
adapted to the biomedical domain have been introduced, including
ClinicalBERT [3], SciBERT [9], BioBERT [35] and PubMedBERT
[21]. As standard language models (LMs) are able to make various
factual and commonsense inferences [16, 49, 76], one might expect
these biomedical LMs to be similarly capable of tasks such as infer-
ring diagnoses from symptoms. Prior work, however, has shown
that existing biomedical LMs often struggle with such tasks. For
instance, Alghanmi et al. [2] found that the standard BERT model
was remarkably competitive with specialised biomedical LMs for
inferring diagnoses from patient descriptions. Meng et al. [44] fur-
thermore introduced a probing task for evaluating the knowledge
captured by biomedical LMs, which also revealed significant issues.

To alleviate the limitations of biomedical LMs, a natural strat-
egy would be to augment patient descriptions with sentences ex-
pressing relevant knowledge, which are retrieved from some text
corpus. Similar strategies have already proven useful for factual
and commonsense question answering [29, 45, 60]. When it comes
to interpreting patient descriptions, however, the potential of such
strategies is less clear. For instance, Sushil et al. [62] used an infor-
mation retrieval engine to find relevant sentences in biomedical
corpora, which were then added to the premise of Natural Lan-
guage Inference (NLI) instances. In experiments on MedNLI [55],
they found no statistically significant improvements as a result

Table 1: Example of a question from MedQA, along with the
answer candidates.

Question: A 31-year-old woman comes to the physician because of a 5-
month history of intermittent flank pain. Over the past 2 years, she has had
five urinary tract infections. Her blood pressure is 150/88 mm Hg. Physical ex-
amination shows bilateral, nontender upper abdominal masses. Serum studies
show a urea nitrogen concentration of 29 mg/dL and a creatinine concentra-
tion of 1.4 mg/dL. Renal ultrasonography shows bilaterally enlarged kidneys
with multiple parenchymal anechoic masses. Which of the following is the
most likely diagnosis?

(A) Medullary sponge kidney
(B) Simple renal cysts
(C) Autosomal dominant polycystic kidney disease
(D) Autosomal recessive polycystic kidney disease
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of this augmentation strategy. While retrieved sentences can be
helpful to clarify the meaning of an unusual term, or to provide
specific knowledge, it is unlikely that we would find a sentence
that captures the specific knowledge that is needed to infer a diag-
nosis, or recommend a particular treatment, from a given patient
description. Indeed, such inferences are often a matter of clinical
judgement, more than the application of rule-like knowledge that
could be expressed in a sentence [56, 68].

Rather than searching for sentences that directly express medical
knowledge, we aim to find passages that are similar to the given
patient description itself. The underlying intuition is that such
passages are likely to describe patients in similar situations, and
that whatever is true for these patients is likely to be true for the
patient from the given description as well. We specifically focus
on passages that also mention some hypothesis of interest, e.g.
an answer candidate in the context of question answering (QA).
We then estimate the likelihood that this hypothesis holds based
on the similarity between the given patient description and the
retrieved passages. The use of similar cases plays an important role
in clinical decision making [6, 8, 46, 63], hence the use of a nearest
neighbour strategy is natural and conceptually straightforward.
Moreover, the idea of retrieving similar cases is also appealing from
an application perspective, as these cases can be used as supporting
evidence for a given prediction. This is particularly important for
the biomedical domain, where explainability and transparency are
clearly paramount.

However, the success of such a nearest neighbour strategy criti-
cally hinges on our ability to identify the commonalities between
different patient descriptions in a suitable way, which is in itself a
challenging problem. For instance, even if two patients experienced
a similar situation, the details of their cases are likely to differ in
many respects, some of which may or may not matter. Moreover,
the patient descriptions may differ in the level of detail they provide,
as well as their overall writing style. To illustrate these issues, Table
2 shows the top passage that was retrieved by our model for a given
question from the MedQA benchmark [27]. As can be seen, both
patient descriptions refer to the sudden development of unusual
behaviour shortly after experiencing bereavement. Beyond this cen-
tral correspondence, however, the details of the two descriptions
differ substantially. Identifying relevant patient descriptions is thus
a non-trivial problem, which requires specialised clinical knowl-
edge. Given these challenges, off-the-shelf models for estimating
textual similarity are clearly insufficient for identifying relevant
patient descriptions. Moreover, to the best of our knowledge, there
are no labelled datasets that can be used for training a supervised
model. This makes the problem of interpreting patient descrip-
tions inherently different from settings such as open-domain QA,
where gold annotations of relevant passages are often available and
systems can rely on transfer learning from closely related tasks.

In this paper, we propose a distant supervision strategy to ad-
dress these challenges. We start from the intuition that interpreting
patient descriptions is easier than open-domain QA in one impor-
tant aspect: the presence of a hypothesis (or answer candidate) in a
context passage makes it highly likely that this passage is at least
somewhat relevant, which is related to the fact that we are looking
for similar cases rather than for specific knowledge. For instance,
most patient descriptions mentioning brief psychotic disorder would

Table 2: Example of a question from MedQA, along with the
top-retrieved passage by our model for the answer candidate
brief psychotic disorder.

Question: A 20-year-old woman is brought in for a psychiatric consultation
by her mother who is concerned because of her daughter’s recent bizarre
behavior. The patient’s father died from lung cancer 1 week ago. Though this
has been stressful for the whole family, the daughter has been hearing voices
and having intrusive thoughts ever since. These voices have conversations
about her and how she should have been the one to die and they encourage
her to kill herself. She has not been able to concentrate at work or at school.
She has no other history of medical or psychiatric illness. She denies recent
use of any medication. Today, her heart rate is 90/min, respiratory rate is
17/min, blood pressure is 110/65 mm Hg, and temperature is 36.9°C (98.4°F).
On physical exam, she appears gaunt and anxious. Her heart has a regular
rate and rhythm and her lungs are clear to auscultation bilaterally. CMP, CBC,
and TSH are normal. A urine toxicology test is negative. What is the patient’s
most likely diagnosis?

Answer candidate: Brief psychotic disorder

Retrieved passage: Brief psychotic disorder associated with bereavement in
a patient with terminal-stage uterine cervical cancer: a case report and review
of the literature. We report here a terminally ill patient with uterine cervical
cancer who developed a brief psychotic disorder after bereavement following
the loss of three close friends also suffering from gynecological cancer. A
49-year-old housewife, who was diagnosed as having uterine cervical cancer
and was receiving palliative care was referred for psychiatric consultation
because of an abrupt onset of delusions, bizarre behavior, disorganized speech,
and catatonic behavior. On psychiatric examination, she showed delusional
thought and catatonic behavior. Laboratory data were unremarkable, as was
brain MRI. She had no history of psychiatric illness or drug or alcohol abuse.
After receiving haloperidol, psychiatric symptoms disappeared, and she re-
turned to the previous level of functioning after 3 days. The patient explained
that the death of three of her friend due to gynecological cancer was shock-
ing event for her. She focused her attention on her own fears of dying from
the same disease. Brief psychotic disorder in cancer patients is rare in the
literature. However, our report of brief psychotic disorder associated with
bereavement may highlight possible precipitating factors, which have not
been adequately emphasized in the literature to date.

tell us something about the likelihood that this is the correct diagno-
sis for the question in Table 2. In contrast, passagesmentioning Paris
may be completely irrelevant to a question asking about the capital
of France. Our central hypothesis is that this aspect of patient de-
scriptions can compensate for the lack of relevant supervision data
for learning to identify similar cases. In particular, we propose a
strategy to train a cross-encoder for comparing patient descriptions,
i.e. a fine-tuned language model which takes two patient descrip-
tions as input and estimates their degree of similarity. To this end,
we generate a distantly supervised training set, by using a baseline
model to rank candidate passages and relying on the assumption
that such a passage is relevant if it mentions a hypothesis that can
be inferred from the target patient description. Conceptually, this is
similar in spirit to distant supervision strategies for open-domain
QA (see Section 2). A key difference, however, lies in the fact that
we cannot use standard retrieval models for ranking the candidate
passages. Our solution relies on the following two steps:

• We train an unsupervised text encoder on a set of patient
descriptions. This encoder is used to select an initial set of
candidate passages. It has two primary advantages: (i) it
allows for efficient dense retrieval of a small set of candidate
passages and (ii) it can rely on some clinical knowledge of
patient descriptions because it was trained in this domain.

• The initial set of candidate passages is then ranked using a
pre-trained cross-encoder. We initialise this cross-encoder



from a biomedical LM and pre-train it on a standard textual
similarity dataset. Despite not being trained on patient de-
scriptions, we show that this re-ranking step improves the
effectiveness of our approach. Intuitively, an out-of-domain
cross-encoder can be effective because all of the candidate
passages are (at least somewhat) relevant. The model can
thus focus on identifying more particular commonalities,
which may not require as much clinical knowledge.

Our experimental results show that our overall approach is highly
effective, improving the state-of-the-art for question answering
about patient descriptions [27]. 1

2 RELATEDWORK
Distant Supervision in IR. . The application of distant supervi-

sion strategies has seen considerable success in scenarios where
gold-annotated data is scarce, e.g., in open question answering or
dense retrieval. Most relevant to our paper, several retrieval mod-
els that combine distant supervision with BERT-based encodings
have been proposed in recent years. For instance, Karpukhin et al.
[30] trained a dual encoder (i.e. separate passage and question en-
coders) for open question answering, which uses distantly labelled
question-passage pairs for those datasets where gold annotations
are not available. To obtain positive examples, for a given ques-
tion, they then select those passages which contain the answer
and are ranked highest using BM25 [54]. They use several strate-
gies for selecting negative passages, e.g. taking the top retrieved
passages that do not mention the answer. Our model similarly ob-
tains positive examples from top-ranked passages, but given the
challenging nature of patient descriptions, we found that relying
on BM25 for generating pseudo-labels was not sufficient and that
the use of a cross-encoder for the final model was essential. The
use of cross-encoders for open-domain QA has also been exten-
sively explored. However, different from our setting, most works
rely on gold annotations of passage relevance [50, 71]. These gold
labels are used to train the cross-encoder, which is used to generate
pseudo-labels. These pseudo-labels are then in turn used for train-
ing an improved dual encoder model. In other words, these works
are using a supervised cross-encoder to generate pseudo-labels,
whereas our focus is on generating pseudo-labels for training the
cross-encoder itself. Rather than using a cross-encoder, Khattab
et al. [32] start from a pre-trained ColBERT model [33] to get an
initial ranking of passages that are similar to the question. Col-
BERT separately encodes the passages and question, but rather
than representing these text fragments as single vectors, they are
represented as sequences of token-level vectors, which enables a
finer-grained interaction than standard dual encoders. Given the
ColBERT ranking, they assume that the top-𝑘 passages are posi-
tive examples if they contain the answer candidate and negative
examples otherwise. Based on these pseudo-labels, the ColBERT
model is then fine-tuned. This process is repeated a few times to
iteratively improve the model. The ability to pre-train ColBERT
on a relevant supervised task is crucial to this approach, however,
hence a similar strategy cannot straightforwardly be applied to the
setting of patient descriptions. The aforementioned methods rely

1Source code to replicate our experiments is available at: https://github.com/israa-
alghanmi/PD-SimilarCase

on a baseline retrieval model to generate pseudo-labels, which is
also the approach we follow in this paper. As an alternative, some
authors have also proposed models in which the retrieval model
is jointly optimised with the rest of the QA model [22, 36]. How-
ever, these approaches involve computationally intensive language
model pre-training tasks, which makes them difficult to implement
and analyse. More widely, distant supervision is also commonly
used for span selection in open-domain QA [25] and for ad-hoc
document retrieval [42], among many others.

Knowledge-Enhanced LMs. Various strategies have been pro-
posed for improving the amount of knowledge that is captured
by transformer-based language models. One common approach
is to rely on some kind of knowledge infusion while training the
model [75] or during the fine-tuning phase [19, 38]. For the biomed-
ical domain, He et al. [23] proposed a pre-training objective that
aims to infuse disease knowledge by exploiting the structure of
Wikipedia pages about diseases. Yuan et al. [73] pre-trained a lan-
guage model with entity extraction and linking objectives based on
UMLS [11], while Zhang et al. [74] also used structured knowledge
about entities and their relations for pre-training. Meng et al. [43]
introduced a method for infusing knowledge from large biomedi-
cal knowledge graphs. Instead of improving the language model
itself, some authors have also explored the possibility of combining
contextualised embeddings with static vector representations of
biomedical concepts, e.g. obtained from UMLS knowledge graph
embeddings [59]. Most relevant to our work, some approaches
augment questions with knowledge expressed in textual form. For
instance, Lu et al. [40] used definitions of UMLS concepts for this
purpose.While this improved the results, their evaluationwas based
on static general-purpose word vectors and an LSTM based model.
The usefulness of their strategy in combination with biomedical
LMs has not been extensively explored. More generally, however,
there is some evidence that the effectiveness of augmenting ques-
tions with textual knowledge is limited in the biomedical domain.
For instance, Sushil et al. [62] evaluated the effect of such augmen-
tation strategies and failed to obtain any statistically significant
improvements for MedNLI [55], a well-known benchmark for Nat-
ural Language Inference (NLI) in the biomedical domain. These
findings were also corroborated by our own initial analysis.

Similar Case Retrieval. Within NLP, similar case retrieval has
primary been applied to the analysis of legal cases. For instance,
Westermann et al. [69] proposed a strategy for finding legal cases
that are similar to a given one, which involved an initial filtering
step to eliminate cases that are unlikely to be related, followed by
the use of an SVM model for making the final prediction. Shao et al.
[58] introduced BERT-PLI. Given a query case, they first retrieve
potentially relevant cases from a corpus of legal cases using BM25.
Subsequently, they use a BERT model that was fine-tuned on a legal
entailment dataset. This model is applied to individual paragraphs
from the query and candidate cases, with the final score being ob-
tained by aggregating the paragraph-level interactions. Shao et al.
[57] combine the features extracted from BERT-PLI with traditional
bag-of-words features, and then use RankSVM to rank the consid-
ered cases. Summarizing the retrieved cases before ranking them
has been investigated as well, as a strategy to deal with documents
that are longer than the language model can handle [5].
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Beyond the legal domain, the idea of exploiting similar cases
has recently been used for question answering [51], semantic pars-
ing [72], text generation [64] and language modelling [31] among
many others. Within the biomedical domain, one relevant line of
research aims to capture the similarity between different patients
to predict, for example, a diagnosis or treatment [24, 26, 47], usually
by learning a dense vector representation of each patient. Another
related line of research has focused on linking patient records to
relevant articles from the biomedical literature [52, 53].

3 PROPOSED METHOD
We are interested in the problem of interpreting patient descriptions.
More specifically, given a patient descriptionD and a hypothesis𝐻 ,
we are interested in determining whether 𝐻 can be inferred from
D, i.e. whetherD entails𝐻 . For instance,𝐻 could be a diagnosis or
a recommended treatment, diagnostic test or procedure. In the ex-
ample displayed in Table 2, the question corresponds to the patient
description D while the given answer candidate (i.e. brief psychotic
disorder) corresponds to the hypothesis 𝐻 .

To determine whetherD entails𝐻 , we search for a text fragment
C𝐻 , from a given corpus, which (i) mentions 𝐻 and (ii) is as similar
as possible to D. We then use the similarity between D and C𝐻
to assess the likelihood that 𝐻 is entailed by D. The underlying
intuition is that C𝐻 and D are both presumed to be patient descrip-
tions, and moreover, that the fact that 𝐻 is mentioned in C𝐻 means
that 𝐻 can be inferred from that patient description.

Our central aim is to demonstrate the strong potential of nearest
neighbour strategies for interpreting patient descriptions, and to
show how the main technical obstacles can be overcome, in par-
ticular the lack of training data for learning to recognise similar
patient descriptions. To focus the empirical analysis on these key
aims, we keep our overall model as simple as possible. To this end,
we rely on the following simplifying assumptions:

• We assume that there will exist relevant text fragments that
literally mention the hypothesis 𝐻 .

• We assume that text fragments which are similar to the
patient description D will themselves also be patient de-
scriptions.

• We take the fact that 𝐻 is mentioned in the text fragment
C𝐻 as evidence that 𝐻 applies to the patient being described.

In principle, it is possible to weaken some of these assumptions. For
instance, rather than looking for literal mentions of 𝐻 , we could
use a medical concept normalisation method such as MetaMap [7]
or QuickUMLS [61] to identify phrases with the same meaning.
Similarly, rather than simply looking for passages that mention
𝐻 , we could use a baseline NLI model to check whether 𝐻 can
be entailed from C𝐻 . However, such solutions may themselves
introduce errors. Furthermore, as we will see, sometimes passages
are retrieved that are not patient descriptions but which nonetheless
help the model to make the correct prediction.We can often think of
such passages as being generic patient descriptions, e.g. discussing
how a given illness in general presents itself, hence specifically
restricting the retrieved passages to actual patient descriptions
may not always be helpful. We leave a detailed study of these
considerations for future work.

We next present a more detailed overview of our approach. In
Section 3.2 we then describe our strategy for generating a distantly
supervised training set, which will allow us to train the cross-
encoder that sits at the heart of our model. Finally, Section 3.3
describes how the cross-encoder is used as part of our overall model.
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Figure 1: Overview of the application of our proposed model
for answering multiple-choice questions.

3.1 Overview of the Nearest Neighbour Strategy
Let D be a patient description and let C𝐻 be a text fragment men-
tioning some hypothesis of interest 𝐻 . We want to train a model
that allows us to predict whether C𝐻 is sufficiently similar to D
to plausibly infer that 𝐻 can be entailed from D. We use a cross-
encoder to this end, i.e. we fine-tune a language model to predict
similarity scores, where the concatenation of D and C𝐻 (separated
by the special <sep> token) is used as the input. Cross-encoders are
able to measure similarity in a more intricate way than strategies
that rely on comparing sentence embeddings, but the latter are
more scalable. For this reason, in line with the standard usage of
cross-encoders as re-rankers in information retrieval [15, 37, 48],
we first use sentence embeddings to identify the 50most similar text
fragments containing 𝐻 and then use the fine-tuned cross-encoder
for identifying the most similar text fragment among these. Figure 1
illustrates how the overall process can be applied to multiple-choice
question answering. In this case, for each of the answer candidates
𝐴, 𝐵,𝐶, 𝐷 we retrieve an initial set of 50 text fragments and then use
the cross-encoder to find the single most similar document from
each set. Let us call these documents C𝐴 , C𝐵 , C𝐶 and C𝐷 . For in-
stance, C𝐴 is assumed to be the text fragment which is most similar
to D, among all those mentioning 𝐴. The model would then, for
instance, predict answer candidate 𝐴 if C𝐴 is estimated to be more
similar to D than C𝐵 , C𝐶 and C𝐷 .

3.2 Obtaining Similarity Labels
We assume that we are given a set of positive examples E+ of the
form (D, 𝐻 ), where D is a patient description and 𝐻 is a hypoth-
esis that can be inferred from D. Similarly, we assume we have a
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Figure 2: Overview of how the distantly supervised examples
for training the cross-encoder are obtained (shown for 𝑘 = 5).

set of negative examples E− of the form (D, 𝐻 ), where 𝐻 cannot
be inferred from D. For instance, in the setting of multiple-choice
question answering, E+ would be constructed from the correct
answer candidates whereas E− would be constructed from the in-
correct answer candidates. Similarly, the sets E+ and E− can be
straightforwardly obtained from NLI training data.

To allow us to train the cross-encoder, we derive a synthetic
training set S+ ∪ S− from E+ and E−. This training set consists of
pairs (D, C𝐻 ), where C𝐻 is a passage that was retrieved, by an
unsupervised retrieval model, as one of the top-𝑘 most similar text
fragments to D containing the hypothesis 𝐻 . In particular, the set
of positive examples S+ contains those pairs (D, C𝐻 ) for which
(D, 𝐻 ) ∈ E+, whereas S− contains those pairs for which (D, 𝐻 ) ∈
E−. Note how this overall strategy is somewhat reminiscent of
pseudo-relevance feedback [12, 13, 34, 70], in the sense that we rely
on the assumption that the top-𝑘 retrieved passages are relevant.
However, rather than trying to improve a ranked list of passages,
our aim is to train a cross-encoder to distinguish between passages
that contain valid hypotheses and those that do not. In principle,
this could be done without a retrieval model, by simply assuming
that passages C𝐻 are similar to D if and only if the hypothesis 𝐻
they contain can be inferred fromD. Our purpose in restricting the
training data S+ ∪ S− to the top-𝑘 retrieved passages is to denoise
the supervision labels as much as possible.

The quality of the training set S+ ∪ S− crucially relies on the
retrieval model that is used to select the top-𝑘 passages. To obtain
these passages, we rely on a two-step process. First, an unsupervised
sentence embedding model is used to select the top-50 most similar
passages. Subsequently, we use a pre-trained cross-encoder to select
the 𝑘 most similar passages among these 50 (with 𝑘 < 50). We now
describe these two steps in more detail. The overall process for
generating the training set S+ ∪ S− is illustrated in Figure 2 .

3.2.1 Initial Retrieval Step. Given a pair (D, 𝐻 ) we first use Elastic-
search [20] to retrieve all text passages mentioning𝐻 . For efficiency
reasons, in our experiments we retrieve a maximum of 1000 pas-
sages. We then use an unsupervised sentence embedding model to
encode each of the selected passages, as well as the patient descrip-
tion D itself. We use these embeddings to select the 50 passages
that are most similar toD in terms of cosine similarity. Specifically,
we use the Tranformer-based Denoising AutoEncoder (TSDAE)
approach [67] to train a sentence embedding model for the clinical
domain.

We initialize this model from ClinicalBERT and use MIMIC-III
[28] discharge summaries as input fragments for training. Due to
the noisy nature of these summaries, rather than working at the
sentence level, we split the documents in passages of up to 250
words, while respecting sentence boundaries.

3.2.2 Reranking with a Pre-Trained Cross-Encoder. We rely on a
pre-trained cross-encoder to identify the most relevant passages,
among the 50 that were selected based on their TSDAE embeddings.
We experiment with cross-encoders that are trained on one of the
following tasks:

• Semantic Textual Similarity Benchmark (STS-B) [14]:
An open-domain benchmark where the goal is to determine
the semantic relatedness between two sentences as a score
from 1 to 5.

• Recognizing Question Entailment (RQE) [1]: Given a
pair of health-related questions, this binary classification
dataset aims to identify whether the answer to the second
question is also a complete or partial answer to the first. The
question pairs were retrieved from Frequently Asked Ques-
tions on the National Institutes of Health (NIH) websites, as
well as consumer health questions collected by the National
Library of Medicine.

• HealthQA [77]: A set of question and answer pairs anno-
tated with relevance labels. The answers were collected from
the Patient website2 and questions were provided by human
annotators.

STS-B and RQE have already been found useful for improving
semantic similarity tasks, including in the clinical domain [41].
We also include HealthQA because of its structural similarity with
our considered setting. Note that none of these pre-training tasks
involve patient descriptions, while STS-B is not even focused on
the biomedical domain.

3.3 Training and Using the Cross-Encoder
We use the training set S+ ∪ S− to fine-tune our cross-encoder. We
initialise the model with the pre-trained cross-encoder that was
used for the reranking step in Section 3.2.2. To use the resulting
model, e.g. for QA or NLI, we again use the TSDAE sentence encoder
to select the top-50 most similar passages for each hypothesis of
interest. We then use the fine-tuned cross-encoder to select the most
similar passage. For instance, to answer a multiple-choice question,
where D is the question and 𝐻1, ..., 𝐻𝑚 are the possible answers,
we use the fine-tuned cross-encoder to select for each candidate 𝐻𝑖

the most relevant passage C𝐻𝑖
. We predict the answer candidate 𝐻𝑖

2https://patient.info/



for which the similarity between D and C𝐻𝑖
, as estimated by the

fine-tuned cross-encoder, is maximal. In cases where a hypothesis
𝐻𝑖 does not appear in the corpus at all, we simply set C𝐻𝑖

= 𝐻𝑖 , i.e.
we compute the similarity between D and 𝐻𝑖 instead.

4 EXPERIMENTAL RESULTS
In this section, we present our experimental analysis. Apart from
assessing the overall effectiveness of our proposed strategy, we are
interested in the following research questions:

• Is the use of an unsupervised sentence embedding model (i.e.
TSDAE) viable as the primary retrieval strategy? Can such an
approach overcome the limitations of BM25 for identifying
potentially relevant cases?

• Can the use of a cross-encoder that is pre-trained on an
out-of-domain task (e.g. STS-B) lead to meaningful improve-
ments?

• How sensitive is the model to the value of 𝑘 and to the
chosen pre-training task for the cross-encoder? Are there
any differences across different biomedical LMs and datasets?

4.1 Evaluation Datasets
We evaluate our method on the following datasets.

MedQA. [27]: A multiple-choice question answering dataset that
is derived from medical exams. We use the USMLE variant, which is
the English version of the dataset. This dataset allows for the most
direct evaluation of our proposed strategy, as it specifically focuses
on the problem of interpreting patient descriptions. An example of
a question from this dataset can be found in Table 1.

DisKnE. [2]: A binary classification task, where instances consist
of a patient description and a disease name, and the aim is to decide
whether it can be inferred that the patient has the disease. This
dataset was derived fromMedNLI [55]. We use DisKnE in our evalu-
ation, rather than the original MedNLI dataset, for twomain reasons.
First, it prevents the model from learning medical knowledge about
a given disease during training, by avoiding overlap between the
disease covered by the test data and the diseases covered by the
training data. Specifically, it considers a separate training-test split
for each disease. Reported results are averaged across these differ-
ent splits. Second, DisKnE specifically focuses on those MedNLI
instances that require interpreting patient descriptions, whereas
MedNLI also covers instances that require terminological infer-
ences, among others (e.g. expanding acronyms used in the patient
description). We use the medical-similar version of the benchmark,
where negative examples were obtained from positive examples by
replacing the disease by a similar one.

Head-QA. [66]: A multiple-choice question answering dataset
that covers questions about different areas within the healthcare
domain, such as medicine, psychology and biology. We use the
English version of the dataset. Some questions correspond to patient
descriptions, but the majority are about recalling specific factual
knowledge. An example of a question from this dataset is as follows:

Question: The fibrocartilage is located in:
Answer: Intervertebral discs

Some of the questions in this dataset require multi-modal reasoning,
combining information from the question with an associate image.
As this goes beyond the scope of our paper, in our experiments we
have excluded all questions which have an associated image. The
main reason for including this dataset is because it allows us to
explore to what extent the proposed methodology can be effective
in a broader setting than for interpreting patient descriptions.

4.2 Corpora
The choice of the external corpus, from which the text passages are
retrieved, is an important factor for the effectiveness of our method.
Given the aims of this paper, we focus on corpora that contain
patient descriptions. We have, in particular, used the following two
corpora, both of which are widely used in biomedical NLP.

WikiMed and PubMedDS (Wiki-PubMed) [65]. This dataset con-
tains 393,618 Wikipedia articles (being those that mention some
UMLS concept) as well as 13,197,430 PubMed abstracts. We split
the documents into text passages of up to 250 words, respecting
sentence boundaries. This resulted in a total of 14,582,089 pas-
sages. While this corpus covers a wide variety of documents, many
PubMed abstracts correspond to patient descriptions (i.e. the ab-
stracts of medical case reports). This corpus thus allows us to anal-
yse towhat extent ourmethod is able to identify patient descriptions
and to what extent it is able to exploit generic descriptions.

MIMIC-III [28]. We use the discharge summaries from MIMIC-
III, which is a database of records about patients that were admitted
to the critical care unit of a large hospital. To split the discharge
summaries into text passages, we first split them according to the
section headers and then split the resulting sections into passages
of up to 250 words. This allows us to go beyond the sentence level,
while keeping in mind that the concatenation of the question and a
retrieved passage can be at most 512 tokens, given the limitations
of the considered transformer-based language models. We obtained
a total of 3,623,209 passages from 59,652 discharge summaries, al-
though it should be noted that many of these passages are short
and uninformative (e.g. the passage obtained from the admission
date section). MIMIC-III has the advantage that it consists entirely
of patient descriptions. The main drawbacks are that summaries are
often noisy (e.g. not always containing well-structured sentences)
and that they are limited to descriptions of critical care patients.
Given this latter point, MIMIC-III is particularly suitable for DisKnE,
whose patient descriptions are also taken from the MIMIC-III cor-
pus. This allows us to experiment with a setting where the corpus
contains patient descriptions that are written in a similar style as
the target description. Note, however, that the patient descriptions
from DisKnE themselves are never retrieved by our method, as the
corresponding hypotheses are not mentioned in the original notes.

4.3 Pre-trained Language Models
We experiment with four pre-trained LMs to initialize the cross-
encoder: the cased version of BERTbase [18]; the version of Clin-
icalBERT [4] that was initialized from BioBERT [35] and further
pre-trained on MIMIC-III; the cased version of SciBERT [10], which



was trained from scratch on scientific articles; the version of Pub-
MedBERT [21] that was trained from scratch on PubMed abstracts
and full-length medical articles.

4.4 Baselines
We consider the following baselines.

Standard Fine-tuning (FT). We fine-tune a pre-trained language
model to predict whether a given hypothesis can be entailed from
a patient description, as in standard NLI models. Specifically, we
concatenate the patient description and the hypothesis, separated
by a [SEP] token, and fine-tune this model using binary cross-
entropy. We refer to this model as BERT-FT in the case BERT is
used, and similar for the other LMs.

Definitions. We use QuickUMLS [61] to identify the UMLS CUI
codes of the medical concepts mentioned in the hypothesis. We
then use these CUI codes to retrieve the definition(s) of the cor-
responding concepts from UMLS. These definitions, if they exist,
are concatenated to the hypothesis. We then fine-tune a language
model on the augmented input. This follows the strategy proposed
by [59] for improving LSTM-based models. We refer to this strategy
as BERT-Def, and similar for the other LMs.

Unsupervised Retrieval. Finally, we also report results for un-
supervised retrieval models. In this case, we simply compute the
similarity degree between the patient description and the most
similar passage, for each hypothesis. We test this strategy with two
retrieval models: (i) BM25 and (ii) dense retrieval with the TSDAE
embeddings that are also used for our main model.

4.5 Evaluation Metrics
For MedQA and HeadQA, we solve the standard multiple-choice
QA task as explained in Section 3.3, reporting results in terms of
accuracy. In addition, we have included experiments where MedQA
andHeadQA are treated as ranking tasks.We then rank all (question,
answer candidate) pairs, across all questions and answer candidates,
and report the results in terms of average precision (AP). This
essentially allows us to assess to what extent our model is able
to recognise valid hypotheses in isolation, instead of selecting the
most plausible answer candidate among a small set of choices.
We similarly treat DisKnE as a ranking task, rather than a binary
classification task. In this case, we obtain the average precision
score for each training-test split (i.e. for each of the considered
diseases). The AP scores for each split are then averaged to get the
overall Mean Average Precision (MAP).

4.6 Training Details
Across all datasets and language models, we use the same settings
and hyper-parameters. For the baselines, and when pre-training
and fine-tuning the cross-encoders, we set the batch size to 8, the
number of epochs to 4 and the learning rate set to 2e-5. The cross-
encoders are pre-trained and fine-tuned using binary cross-entropy
(where similarity scores are normalised between 0 and 1 for STS-B).
We use the standard training/validation/test splits, with the excep-
tion of HeadQA, where we have removed all questions involving
images.

Table 3: Results for DisKnE in terms of Mean Average Pre-
cision (MAP). The best results for each language model are
shown in bold.

STS-B RQE HealthQA

MIM WPM MIM WPM MIM WPM

BERT
CE-1 47.5 36.6 46.6 34.1 45.6 37.4
CE-5 66.0 48.7 65.4 43.2 59.5 44.1
CE-10 67.1 55.4 70.4 54.9 61.7 48.0

ClinicalBERT
CE-1 51.4 50.9 53.4 50.7 52.0 53.4
CE-5 63.9 59.7 66.0 57.4 65.4 53.9
CE-10 62.1 59.7 67.7 63.7 67.8 58.5

SciBERT
CE-1 60.7 45.4 54.4 46.8 58.0 50.4
CE-5 69.6 59.6 65.4 56.4 65.6 54.2
CE-10 73.2 65.1 67.3 59.5 72.8 61.9

PubMedBERT
CE-1 63.3 60.0 63.6 54.1 57.4 52.3
CE-5 71.6 64.6 69.1 59.0 64.6 58.3
CE-10 69.0 67.1 70.3 61.7 67.6 63.7

Table 4: Baselines results for all datasets. We report DisKnE
in terms of Mean Average Precision (MAP), MedQA and
HeadQA in terms of Average Precision (AP) and Accuracy
(Acc). The best results are shown in bold.

MedQA HeadQA DisKnE

AP Acc AP Acc MAP

BERT-FT 26.8 27.8 28.1 28.8 57.0
ClinicalBERT-FT 27.7 29.1 28.5 29.3 67.5
SciBERT-FT 28.6 29.2 29.5 32.8 69.2
PubMedBERT-FT 32.8 35.5 35.4 39.5 69.7

BERT-Def 27.8 27.7 27.9 30.4 50.5
ClinicalBERT-Def 28.2 29.5 27.8 30.2 59.3
SciBERT-Def 29.7 30.8 30.3 34.5 56.2
PubMedBERT-Def 30.1 32.9 35.2 38.3 65.2

TSDAE Wiki-PubMed 26.2 29.3 26.7 31.1 27.8
TSDAE MIMIC-III 25.0 25.1 26.0 28.3 32.7
BM25 Wiki-PubMed 25.3 26.8 25.6 25.9 22.3
BM25 MIMIC-III 25.0 23.8 25.0 23.8 22.5

4.7 Results
The experimental results are summarized in Table 5 for MedQA,
Table 3 for DisKnE and Table 6 for HeadQA. We write CE-𝑘 for our
method, where the cross-encoder is fine-tuned using 𝑘 passages
per (D, 𝐻 ) pair. The baseline results are reported in Table 4.

For MedQA (Table 5), the results for Wiki-PubMed (abbreviated
as Wiki-PM) clearly outperform those for MIMIC-III (abbreviated
as MIM-III), which is as expected given the aforementioned limita-
tions of MIMIC-III. Focusing on the results for Wiki-PubMed, we
can see that for each of the language models, the results in Table
5 consistently outperform the baseline results (for these language
models) in Table 4, across all choices of 𝑘 and each of the three pre-
training tasks. The results also clearly outperform the unsupervised
retrieval baselines. Comparing the different language models, Pub-
MedBERT achieves the best results. With regards to the choice of 𝑘 ,
we find that 𝑘 = 5 is generally the best choice, with the exception
of PubMedBERT where 𝑘 = 1 performs much better. This appears
to be related to the fact that PubMedBERT itself performs better
than the other LMs. In general, larger values of 𝑘 leads to more,
but noisier training data. Since PubMedBERT is better at selecting



Table 5: Results for MedQA in terms of Average Precision (AP) and Accuracy (Acc). The best results for each language model
are shown in bold.

STS-B RQE HealthQA

MIM-III Wiki-PM MIM-III Wiki-PM MIM-III Wiki-PM

AP Acc AP Acc AP Acc AP Acc AP Acc AP Acc

BERT
CE-1 26.7 26.8 29.9 32.4 25.3 24.1 28.5 31.5 25.8 25.3 28.9 32.2
CE-5 25.1 25.0 31.7 35.5 25.0 26.3 31.5 33.6 28.8 27.8 27.9 29.8
CE-10 25.3 23.4 30.5 34.0 25.1 26.9 30.8 32.9 25.5 24.6 25.2 26.7

ClinicalBERT
CE-1 25.9 25.3 33.2 35.4 27.6 28.2 30.4 32.2 25.6 25.6 31.3 34.0
CE-5 27.8 28.8 33.4 35.4 27.9 29.4 35.1 38.0 24.9 24.7 32.9 35.5
CE-10 25.3 26.8 31.5 33.6 26.7 27.0 31.5 36.2 25.7 23.4 32.1 37.4

SciBERT
CE-1 25.2 24.3 32.4 34.5 27.2 28.9 32.7 33.8 25.2 24.7 32.3 34.5
CE-5 25.8 25.7 30.5 35.1 27.6 28.7 31.0 33.8 28.1 29.2 33.0 37.6
CE-10 24.7 24.0 30.1 34.5 25.4 25.3 31.2 32.7 23.9 22.2 32.3 35.3

PubMedBERT
CE-1 30.5 32.3 36.0 39.3 24.9 26.6 32.8 35.8 27.4 28.6 34.0 39.3
CE-5 29.1 30.5 33.1 35.8 26.1 26.7 31.6 37.2 26.8 26.6 34.4 36.4
CE-10 31.2 34.8 33.8 37.7 30.8 32.6 32.8 38.0 29.5 31.3 33.4 37.3

Table 6: Results for HeadQA in terms of Average Precision (AP) and Accuracy (Acc). The best results for each language model
are shown in bold.

STS-B RQE HealthQA

MIM-III Wiki-PM MIM-III Wiki-PM MIM-III Wiki-PM

AP Acc AP Acc AP Acc AP Acc AP Acc AP Acc

BERT
CE-1 27.2 28.2 32.6 33.4 27.4 29.3 30.0 32.6 27.2 29.2 32.3 33.3
CE-5 27.4 29.0 34.2 36.1 27.6 30.2 34.9 38.0 26.4 28.2 32.4 34.8
CE-10 26.8 28.2 33.7 36.6 27.1 29.1 33.5 37.1 26.8 28.6 31.3 34.4

ClinicalBERT
CE-1 28.7 29.4 33.8 34.8 26.5 27.0 31.3 32.8 27.8 30.8 33.0 33.1
CE-5 27.3 29.6 33.8 36.4 27.4 28.1 32.8 36.9 27.9 29.6 33.7 35.7
CE-10 27.4 30.5 33.6 36.7 27.8 29.6 32.5 35.9 27.1 29.3 32.0 35.8

SciBERT
CE-1 29.9 32.2 33.9 35.7 30.3 34.2 32.8 33.0 29.0 32.9 34.4 35.0
CE-5 29.2 29.5 35.3 39.8 28.8 32.1 33.2 37.0 28.5 31.9 33.3 35.8
CE-10 29.3 32.4 33.1 35.6 28.5 33.2 33.4 37.6 28.8 31.5 32.4 34.9

PubMedBERT
CE-1 34.5 37.1 38.2 39.3 33.9 37.9 38.8 41.2 33.0 36.9 36.6 40.3
CE-5 32.7 36.4 38.4 41.2 33.7 37.0 38.7 42.3 32.1 33.0 35.9 39.8
CE-10 33.9 37.9 37.4 40.3 33.4 38.4 37.5 40.0 32.4 37.2 35.1 40.5

the most relevant paragraphs, even when using the pre-trained
encoder, this problem of training data becomes noisier for larger
values of 𝑘 is more pronounced.

Regarding the pre-training tasks, STS-B andHealthQA lead to the
best results in most cases, with the exception of ClinicalBERT. To
the best of our knowledge, the best reported results in the literature
for MedQA are those from Meng et al. [43], where an accuracy of
38.02 was obtained for their best-performing configuration, using a
large biomedical knowledge graph to augment the PubMedBERT
model. This contrasts to an accuracy of 39.3 for the best-performing
model in Table 5.

For HeadQA (Table 6), as expected we again find that Wiki-
PubMed leads to much better results than the MIMIC-III corpus.
Moreover, we can again see that the use of the cross-encoder con-
sistently leads to better results than when using the baseline fine-
tuned language model, across all values of 𝑘 and all pre-training
tasks. The best results are again obtained with PubMedBERT. How-
ever, here we see that RQE is the most suitable pre-training task
for most configurations. This can be explained by the observation
that HeadQA primarily consists of factual questions, which clearly

Table 7: Analysis of HeadQA results, where test questions
were split depending on whether or not they are about pa-
tient descriptions. Results are reported in terms of average
precision and accuracy.

Patient descriptions Other questions

AP Acc AP Acc

SciBERT-FT 27.9 27.7 31.3 34.4
SciBERT-CE 29.6 32.4 33.8 38.2

PubMedBERT-FT 29.6 34.7 37.7 40.4
PubMedBERT-CE 32.3 35.6 38.5 41.3

makes RQE the most closely related pre-training task. Overall, the
choice of 𝑘 = 5 generally performs best. The improvements for
HeadQA are remarkable, since many of the questions in this dataset
are not about patient descriptions. To explore this further, we man-
ually split the test set into those questions which are about patient
descriptions (216 in total) and those which are not (2458 in total).
Table 7 shows the results obtained for these two sets of questions,
for the SciBERT-FT and PubMedBERT-FT baselines, as well as our



Table 8: Ablation analysis for all datasets. We report re-
sults for DisKnE in terms of Mean Average Precision (MAP),
MedQA and HeadQA in terms of Average Precision (AP) and
Accuracy (Acc).

MedQA HeadQA DisKnE

AP Acc AP Acc MAP

Pretrained CE 30.6 33.0 32.9 38.0 41.4
TSDAE-Selected 35.0 36.7 33.0 36.9 70.0

Full model 36.0 39.3 38.7 42.3 73.2

proposed model, where we used the RQE pre-training task and
𝑘 = 5. As we can see, our model improves the results on both sets
of questions. This suggests that our proposed strategy could be ben-
eficial for biomedical QA more generally. However, on its own, our
approach is not sufficient to obtain state-of-the-art results, which
rely on methods that are specifically designed to enable the kind of
multi-hop reasoning that is often needed for this dataset [39].

For DisKnE (Table 3), as expected, the best results are obtained
when MIMIC-III is used as the corpus. For this choice, our method
consistently outperforms the baselines for all language models,
provided that 𝑘 ≥ 5. On average, the optimal value of 𝑘 is larger
than what we found for MedQA and HeadQA. This suggests that
identifying the most relevant passages is more challenging for this
dataset. The only published results for DisKnE, to the best of our
knowledge, are those from the original paper, where the focus was
on comparing different language models, i.e. they only reported
results for the standard fine-tuning baselines.

Comparing the baseline results in Table 4, we can clearly see
the limited usefulness of augmenting the inputs with definitions of
medical concepts. For DisKnE, adding these definitions actually has
a detrimental effect. For MedQA and HeadQA, the unsupervised
retrieval baselines are remarkably competitive compared to the
fine-tuned language models. However, in the case of DisKnE these
unsupervised models substantially underperform. We can also see
that TSDAE consistently outperforms BM25. This was expected,
given the fact that comparing patient descriptions intuitively re-
quires more than surface-level matching.

4.8 Analysis
Ablation Results. In Table 8, we show results for the following

simplified versions of our model.
• Pretrained CE: Rather than fine-tuning a cross-encoder us-
ing our distant supervision strategy, we simply use the pre-
trained cross-encoder to re-rank the top-50 passages selected
by TSDAE. Note that this variant of our method does not
rely on the training data at all.

• TSDAE-Selected:When creating the distantly supervised train-
ing set for fine-tuning the cross-encoder, we simply choose
the 𝑘 highest ranked passages according to their TSDAE-
embeddings, thus omitting the stage where we re-rank the
candidate passages using a pre-trained cross-encoder.

In all cases, we used the best configurations from the main ex-
periments (i.e. the optimal value of 𝑘 and pre-training task). For
MedQA and HeadQA we used Wiki-PubMed as the corpus while

Table 9: Example of a correctly answered question from the
MedQA test set in which the retrieved passage is not a patient
description.

Question : A 38-year-old woman comes to the physician because of difficulty falling asleep
for the past 2 months. She wakes up frequently during the night and gets up earlier than
desired. She experiences discomfort in her legs when lying down at night and feels the
urge to move her legs. The discomfort resolves when she gets up and walks around or
moves her legs. She has tried an over-the-counter sleep aid that contains diphenhydramine,
which worsened her symptoms. She exercises regularly and eats a well-balanced diet. She
admits that she has been under a lot of stress lately. Her brother has similar symptoms.
The patient appears anxious. Physical examination shows no abnormalities. A complete
blood count and iron studies are within the reference range. Which of the following is the
most appropriate pharmacotherapy for this patient’s symptoms?

Answer candidate: Pramipexole

Retrieved Passage:Medications used include levodopa or a dopamine agonist such as
pramipexole. RLS affects an estimated 2. 5–15% of the American population. Females
are more commonly affected than males and it becomes more common with age. RLS
sensations range from pain or an aching in the muscles, to "an itch you can’t scratch", a
"buzzing sensation", an unpleasant "tickle that won’t stop", a "crawling" feeling, or limbs
jerking while awake. The sensations typically begin or intensify during quiet wakefulness,
such as when relaxing, reading, studying, or trying to sleep. It is a "spectrum" disease with
some people experiencing only a minor annoyance and others having major disruption
of sleep and impairments in quality of life. The sensations—and the need to move—may
return immediately after ceasing movement or at a later time. RLS may start at any age,
including childhood, and is a progressive disease for some, while the symptoms may remit
in others. In a survey among members of the Restless Legs Syndrome Foundation, it was
found that up to 45% of patients had their first symptoms before the age of 20 years. - "An
urge to move, usually due to uncomfortable sensations that occur primarily in the legs,
but occasionally in the arms or elsewhere".

for DisKnE we used MIMIC-III. As can be seen in Table 8, the Pre-
trained CE model outperforms the unsupervised baseline retrieval
models in Table 4. In fact, For MedQA and HeadQA, the results
of this unsupervised model are almost in line with those of the
fine-tuned PubMedBERT model. This clearly shows the usefulness
of the pre-trained cross-encoder, even when it cannot be fine-tuned
on task-specific data. This usefulness can furthermore be seen in
the performance of TSDAE-Selected. While this variant performs
quite well, it clearly underperforms the full model, showing the
importance of the cross-encoder based re-ranking step.

Qualitative Analysis. We manually analysed the retrieved pas-
sages for MedQA and HeadQA with Wiki-PubMed. Our main find-
ings can be summarized as follows. First, we found that in many
cases, the retrieved passages were indeed patient descriptions. This
is somewhat surprising, given that only a small fragment of Wiki-
PubMed consists of patient descriptions (which appear as abstracts
of published medical case reports). Nonetheless, there are also many
cases where the retrieved text passage was a generic description
(e.g. from Wikipedia). Often, however, such passages can still be
successfully exploited by the cross-encoder. An example illustrating
such a case is presented in Table 9. In this example, the retrieved
passage intuitively acts as a generic description of how patients
experience Restless Leg Syndrome (RLS). While not referring to a
particular case, such descriptions can intuitively act as prototypes
of actual patient descriptions.

5 CONCLUSIONS
We have proposed a nearest neighbour strategy for interpreting
patient descriptions. Crucial to our solution is the use of a distantly
supervised training set for fine-tuning the cross-encoder. Experi-
mental results showed this strategy to perform well across three
challenging benchmarks. Our results suggest that the lack of gold-
annotated patient descriptions can be overcome, at least to some



extent, by using distant supervision strategies. We highlighted, in
particular, that the setting of patient descriptions allows us to avoid
some of the usual pitfalls of distant supervision, as the presence of
a disease or treatment name in two patient descriptions provides
us with reasonably reliable evidence that these descriptions are
similar. In terms of future work, a promising direction would be
to design an unsupervised pre-training task which exploits this
latter observation, e.g. by pre-training a cross-encoder on patient
descriptions in which disease names are masked. Furthermore, as
shown by Meng et al. [43], biomedical knowledge graphs can play
an important role for interpreting patient descriptions, hence the in-
tegration of such resources with the considered nearest neighbour
strategy is also a natural direction to explore.
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