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CIVIL & ENVIRONMENTAL ENGINEERING | RESEARCH ARTICLE

Mapping flood prone and Hazards Areas in rural 
landscape using landsat images and random 
forest classification: Case study of Nasia 
watershed in Ghana
Benjamin Ghansah1,2*, Clement Nyamekye3, Seth Owusu4 and Emmanuel Agyapong3

Abstract:  Floods are hazard which poses immense threat to life and property. 
Identifying flood-prone areas, will enhance flood mitigation and proper land use 
planning of affected areas. However, lack of resources, the sizable extent of rural 
settlements, and the evolving complexities of contemporary flood models have 
hindered flood hazard mapping of the rural areas in Ghana. This study used 
supervised Random Forest (RF) classification, Landsat 8 OLI, and Landsat 7 ETM + 
images to produce flood prone, Land Use Land Cover (LULC), and flood hazard 
maps of the Nasia Watershed in Ghana. The results indicated that about 
418.82 km2 area of the watershed is flooded every 2–3 years (normal flooding) 
and about 689.61 km2 is flooded every 7–10 years (extreme flooding). The LULC 
classification produced an overall accuracy of 92.31% and kappa of 0.9. The 
flood hazard map indicated that land areas within hazard zones of the river 
include the Nasia community, Flood Recession Agricultural (FRA), rainfed and 
woodlands. When compared with a Modified Normalized Difference Water Index 
(MNDWI), the RF supervised classification had an edge over the MNDWI in 
estimating the flooded areas. The results from this study can be used by local 
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administrators, national flood disaster management and researchers for flood 
mitigation and land use planning within the watershed.

Subjects: River ManagementMachine Learning - DesignWater Science; Hazards & 
DisastersRemote Sensing  

Keywords: Random Forest; Landsat Images; Flood Prone and Flood Hazard; Nasia River; 
Rural Landscape

1. Introduction
Over the past decades, flooding has caused severe destruction to humans, their health and 
properties, infrastructures, ecological systems, and economic activities over the globe (Ghoneim 
& Foody, 2013; Messner & Meyer, 2006; Nicholls et al., 2015). It is estimated that floods have 
caused about 7 million deaths and more than USD 600 billion losses between 1900 and 2013 
(CRED). Despite the damages already caused, the frequency and intensity of flooding events are 
still expected to increase in the coming years due to climate change, rising sea levels, and increase 
rainfall extremes (IPCC, 2007; Jonathan et al., 2013; Ramin & McMichael, 2009; Stijn et al., 2013).

In the northern and north east regions of Ghana, flooding is mostly caused by excessive 
rainfall which often leads to dam breaks or rivers overflowing its natural banks and engulfing 
the dry lands in the area (Yiran and Stringer, 2016). This is coupled with the non-existence of 
drainage systems, improper disposal of refuse on waterways and building in waterways to 
cause extensive economic and other capital losses to the inhabitants of the area (Armah et al., 
2010). Additionally, flooding destroys farmlands, which is the main source of livelihood for 
most families, creating a threat to food security (Armah et al., 2010). While it is imperative that 
early flood warning systems are developed to safeguard lives and properties, lack of data in 
most rural areas have impeded local authorities, national agencies, and researchers in their 
flood hazard assessment efforts.

In response to the lack of data, many applications have used remote sensing methods to 
provide both primary and supplementary data for mapping (Goldberg et al., 2013). Landsat images 
for example, have been used for flood mapping since the launch of the first satellite in the early 
1970s (Schumann et al., 2018). While there has been a proliferation of satellite sensors since then, 
Landsat images remains one of the most used satellite data for flood hazard assessment due to 
the continuous free availability of the data, the moderate resolution of the images (mostly 30 m), 
the ease with which data from different sensors can be integrated for over time analysis, and most 
importantly, the availability of different spectral bands that allows measuring spectra across from 
different earth features (Roy et al., 2014; Wulder et al., 2019). This permit deriving the different 
components of a flood hazard map such as the exposure, inundation extent and LULC from the 
same sensor over rural areas where hydrodynamics information of rivers systems is usually scare 
and conventional method of gathering such information will not be cost effective.

In addition to satellite data, the selection of an appropriate flood mapping method is equally 
useful for successful application of remote sensing method for flood hazard mapping. To this, 
water indices such as Normalized Difference Water Index (NDWI) and Modified Normalized 
Difference Water Index (MNDWI) have been traditionally used to delineate flood extent from 
images due to their ease of use and the accuracy they provide (Cian et al., 2018; Memon et al., 
2015). However, the emergence of Machine Learning (ML) algorithms and the evolution of com-
puter system with high processing power has enhanced the usage of ML supervised classification 
methods for flood mapping. Among the commonly used ML algorithms is Random Forest (RF). 
Random Forest (RF) is an ensemble ML algorithm that works based on statistical learning theory 
(Breiman, 2001) and has been efficient and effective in many flood hazard mapping applications. 
However, despite the advantages mentioned above, very few applications have combined Landsat 
images and RF to derive flood hazard information within the West African sub region.
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In this study, we bridged the flood data gap in the Northern and North-East regions of Ghana by 
combining Landsat images and RF model to produce flood hazard maps. We focused our study on 
the transboundary Nasia Watershed. We acquired wet Landsat 7 and Landsat 8 images and 
applied supervised RF classification to extract the normal and extreme flood prone extent of the 
watershed. We also acquired dry season Landsat 8 image to produce a LULC map of the 
watershed. The flood prone maps were superimposed on the LULC map to produce a flood hazard 
map of the watershed. The result was a spatial information providing insight about the flooding 
characteristics of the Nasia River and the land areas prone to flooding.

2. Materials and methods

2.1. Study area
The Nasia River is one of the main tributaries of the White Volta Basin in Ghana (Figure 1). This river 
system creates a catchment area of about 5348 km2 within the West Mamprusi, East Mamprusi, 
Saveligu, Nanton, Salaga, and Gushiegu administrative districts of the newly created Northern and 
North East Regions of Ghana (GOG Offical Portal (Government of Ghana), 2019). There are several 
communities within the watershed, with the Nasia community being the most prominent. 
According to the 2010 Ghana population census, the watershed is inhabited by about 359,888 
people (Addai et al., 2016). The main occupation of the people in this area is agriculture, which 
mainly depends on rainfall. The topography of the area reflects that of the whole of northern and 
north-east regions of Ghana, being relatively flat with the rivers flowing downstream into the main 
White Volta River. Average temperature is around 29°C, with one rainy season, and total annual 
rainfall of between 1000 and 1300 mm (Addai et al., 2016). Conventional rainy season starts from 
May to October in a typical year, with peak rainfall occurring in late August and early September. 
However, recent climatic changes have caused the rainfall pattern to be erratic, and as such it is 
common to have the first rains occurring in late June or July (Addai et al., 2016). Land Cover/Land 
Use (LULC) types of the Nasia watershed include settlement, water, woodland, Rainfed agriculture, 
Flood Recession Agriculture (FRA) and Savanna. Savanna resulted from the integration of the open 
cultivated Savanna which takes into consideration agricultural produce of the original LULC of the 
area that will be affected during flooding (Forkuo, 2011). The FRA are discontinuous patches of 
flood-prone lands located along river systems which retains moisture after flooding and exten-
sively used for cultivation. However, farmers also plant on farmlands along rivers through irriga-
tion. These makes them vulnerable to the flooding events of the river system, with significant 
disruption to their livelihoods when farmlands become flooded.

2.2. Data sets

2.2.1. Field survey
Before the field survey, a desktop study using literature and other previous surveys of the region 
were used to gather information about the flooding regimes of the study area. Two main flooding 
regimes were identified; normal flooding and extreme flooding, which occur in the peak of the 
rainy season between August and September. The normal flooding of the river, which was 
identified to have a 2–3 years return period overtops the river but inundates a relatively lesser 
land area. Recent years of this flood included 2016 and 2018. The September 2018 flooding was 
considered in this study. Extreme flood event was identified to have a return period of 7–10 years, 
with 2007 and 2013 being some of the recent years of this flood. Extreme flooding regime also 
overtops the banks of the river but inundates a much wider land area and causes more havoc than 
the normal floods. According to Armah et al. (2010), the September 2007 extreme flood was one of 
the most destructive in recent years, directly claiming the lives of at least 20 people and displacing 
over 400,000 people in northern Ghana. An estimated 3.2 USD billion worth of properties including 
farmlands were also destroyed. The September 2007 flooding was considered in this study.

The survey took place in late September 2018 just when the rains stopped. During this survey, 
a Garmin handheld GPS of accuracy between 0.3 and 3 m was used to track sections of the inundation 
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extent of the receded floods, indicated by the watermarks left on the vegetation and soil. In all, about 
32 km sections of inundation along the main Nasia River and some of the tributaries were tracked by 
recording the GPS coordinates. A total of 4034 watermark areas were collected in total and later used 
to generate a flood polygon for the normal flood. Simultaneously, GPS coordinates of water and other 
LULC were recorded during the tracking of the inundation extent. A total of 2,491 coordinates LULC 
were collected. These coordinates were used in supervised classifications to generate flood prone 
areas from satellite image and also for LULC mapping of the watershed. Additionally, focused group 
discussions were held with some community members to gather more information about the flood-
ing characteristics of the river, especially on the return periods.

2.2.2. Landsat images and pre-processing
Three Landsat images that covered the study area were downloaded from the Earth Explorer 
website (https://earthexplorer.usgs.gov/). The first was a rainy season Landsat 7 ETM+ (L7) image 
that captured the September 2007 floods of the area. The second was another rainy season 
Landsat 8 OLI (L8) image that captured the September 2018 flooding. These images were used 
to delineate the extreme and normal flooding of the river, respectively. Though the 
September 2018 image had significant level of cloud in it, most of the area of interest (the Nasia 
River) had less could and did not have significant effect of the flood extraction process. The third 
image was a cloud free L8 image captured in December 2018 and was used for the LULC 
classification. The characteristics of the images used are shown in Table 1). Atmospheric correction 
of the images was performed with the Semi-Automatic Classification tool in the QGIS software. The 
corrected images were clipped to the boundary of the watershed.

2.3. Method

2.3.1. Flood prone mapping using random forest
The flowchart of the methodology used in the study is showed in Figure 2. Random Forest (RF) 
supervised image classifications were performed on the three images to drive the flood extents 
and LULC of the study area. Random Forest is an ensemble learning method for classification and 
regression that works by creating a number of decision trees during training time and outputting 
the class that is the mode of the classes (classification) or mean prediction (regression) of the 
individual trees (Ho, 1995). Each tree in the forest is independently constructed using a unique 
bootstrap sample of the training data (Breiman, 2001). Random Forest predicts a response from 

Table 2. Flood hazard areas for the different LULC
Land Cover Area (km2) Area (%)
Woodland 669.81 12.52

FRA 18.09 0.34

Savanna 2939.63 54.96

Rainfed 1499.67 28.04

Settlement/Bareland 217.17 4.06

Water 4.17 0.08

Total 5348.54 100

Table 1. Characteristics of Landsat images used in the study
Sensor Date Path Row Resolution (m) Purpose
Landsat 7 ETM+ 26–09-2007 194 53 30 Extreme flood prone areas delineation

Landsat 8 OLI 16–09-2018 194 53 30 Normal flood prone areas delineation

Landsat 8 OLI 05–12-2018 194 53 30 Land Cover Classification
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a set of predictors by creating multiple decision trees and aggregating their results (Forkuor et al., 
2017). They are non-parametric models that do not require variables to be normally distributed 
(Mullainathan & Spiess, 2017).

A binary RF model was used to extract surface water from the two wet season images to map 
the normal and extreme flood prone of the river. The model was built and trained with the train 
function in the caret package. The field samples (2,491 LULC coordinates) were categorized into 
two main types; water and all other LULC, which were then split into training set (70%) and test set 
(30%) using the sample.split function in the caTools package. Tuning of the data was done by 
growing a number of trees (ntrees) in the forest and setting the number of variables randomly 
sampled at each stage (mtry) (Janitza & Hornung, 2018; Probst & Boulesteix, 2018). Cross valida-
tion, which determines how the model will generalize to an independent dataset, was performed 
using K-fold cross-validation. After building the model, classification was executed on the pre-
processed images.

Accuracy assessments were performed to assess the results of the classification. A confusion 
matrix was used to compute the Overall Accuracy (OA), Producer’s Accuracy (PA), User Accuracy 
(UA) and Kappa coefficient (Foody, 2002). Further, F1—score, which indicates the accuracy of binary 
classification were computed from the precision and recall using equations (1) and (2). The outputs 
were binary water maps of the river. These maps were then converted into vector files and edited, 
by trimming off tributaries where the ground survey did not cover. 

P ¼ TP=TPþ FP (1)  

R ¼ TP=TPþ FN (2) 

Where 

P is the precision 

R is the recall 

TP is the true positves 

FP is the false positves 

FN is the false negatives 

2.3.2. Flood prone mapping water indices
Per the objective of this study, Modified Normalized Difference Water Index (MNDWI) was also 
used to delineate the normal and extreme flood extents of the river. MNDWI was developed by Xu 
et al., .2013) and uses the green and shortwave infrared (SWIR) bands to extract open water from 
images. MNDWI was built on the earlier Normalized Difference Water Index—NDWI (McFEETERS, 
1996), but overcomes some limitations of NDWI by enhancing open waterbodies and suppressing 
built up features. MNDWI values ranges between −1 and 1, with negative values signifying the 
presence of built or soil and positive values reflecting clear water (Singh & Kumar, 2013. It has 
been widely used to delineate open waterbodies in many studies. MNDWI was executed on the wet 
season L8 image to extract the normal flood prone and on the wet season L7 image to extract the 
extreme flood extent. MNDWI was created using equation (1) 

Ghansah et al., Cogent Engineering (2021), 8: 1923384                                                                                                                                                  
https://doi.org/10.1080/23311916.2021.1923384                                                                                                                                                       

Page 5 of 16



Figure 1. The Nasia Watershed 
and surrounding communities. 
Insert: White Volta Basin and 
Ghana regional boundaries.

Figure 2. Flowchart summariz-
ing the methodology used in 
producing the flood prone and 
hazard maps.
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MNDWI ¼ Green � SWIR=Greenþ SWIR . . . (3) 

After creating the MNDWI, a threshold value of zero (0) was used to slice the layers into waterbody 
and background after several trials. The decision to use 0 was also informed by some studies that 
used automatic way of selecting thresholds such as OTSU, which found 0 to be an optimal 
threshold value (e.g., Du et al., 2013). The extracted water layers were then converted into vector 
file to obtain flood prone layers for the normal and extreme flooding regimes of the river. Similar 
editing, cutting some tributaries was performed.

2.3.3. Validating flood-prone layers
The watermarks (tracked coordinates) of the flood prone recorded during the field survey were 
used to generate a polygon depicting the normal flood-prone areas of the river. The surface area 
covered by this layer was used to validate the accuracy of the normal flood extents delineated 
from the RF classification and MNDWI-threshold. This was achieved by overlaying the two maps 
and tracing and calculating the common normal flood-prone areas. Additionally, the area covered 
by the extreme flood-prone areas extracted using the RF classification and the MNDWI-threshold 
method were also validated with an existing flood-prone dataset created by HKV Consulting and 
contained in the Water Resources Commission of Ghana’s GIS database. This HKV flood-prone 
dataset was derived from a pre-2010 Landsat data of the White Volta Basin, and calibrated with 
ground truth data observed from the 2003 and 2007 extreme flooding of the White Volta River 
(Nsor et al., 2019). The section of the flood data that covers the Nasia River was extracted and 
used for the comparison. By this method, both normal and extreme flood-prone areas were 
properly estimated based on the matching.

2.3.4. Land cover/land use classification with random forest
A similar RF model built for extracting the flood prone areas was built and trained for the LULC 
classification. However, this model contained the six classes (woodland, savanna, water, FRA, 
rainfed, settlement/bareland) instead of the binary model. Accuracy assessment was performed 
with a confusion matrix. Accuracy assessment was performed using the OA, PA, UA, and Kappa 
coefficient.

2.3.5. Flood hazard assessment
The flood hazard zones of each flooding type (normal and extreme flood-prone areas) were 
assessed by overlaying the satellite-derived flood polygons on the LULC map of the watershed. 
The land areas of the LULC types enclosed in each polygon was computed to indicate the hazard 
created by the floods in each flooding regime.

Table 3. Accuracy assessment of the LULC classification
OA = 92.31% k = 0.9061

Forest FRA Rainfed Savanna Settlement Water Total UA
Forest 37 2 12 1 0 0 52 71.15

FRA 1 63 1 0 0 0 65 96.92

Rainfed 4 0 51 0 0 0 55 92.73

Savanna 0 0 0 50 1 0 51 98.04

Settlement/ 
bareland

0 0 0 0 21 0 21 100.00

Water 0 0 0 0 0 42 42 100.00

Total 42 65 64 51 22 42

PA 88.10 96.92 79.69 98.04 95.45 100
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3. Results

3.1. Land cover/land use mapping
The results of the RF image classification (Figure 3) show the spatial extents (area) of each of 
the six LULC classes considered in the study with total area estimated to be 5348.54 km2. Table 
2 shows the area of each land class and proportions, respectively. The dominant land use/land 
cover in the Nasia watershed is savanna, occupying 54.96% of the land area and widely 
distributed throughout the watershed. The cultivated savanna areas experience periodic farm-
ing which are sometimes left for about 10 years without any cultivation. A greater percentage 
of cultivated areas falls in the low-lying areas which makes them prone to flood. The next 
dominant LULC is rainfed, constituting 28.04 of the total area. Rainfed specifically refers to 
farmlands that operate under annual or biannual cultivation, which include irrigated lands used 
to grow crops. The result indicates that majority of the farmlands are located around the river 
systems of the watershed, with others distributed at low-lying areas considered to be high 
flood zone (Figure 3). These two classes accounted for about 83% of the total land area. 
However, FRA and water constitute 0.4 and 0.08% of the total mass, respectively, with the 
water covering the smallest area in the watershed. Woodland and settlement cover 12.52 and 
4.09% respectively of the total land mass in the watershed. The woodlands are distributed 
through the lowlands of the basin with much clustering along the rivers, usually forming 
riparian vegetation. Most of the settlements/barelands are clustered up the upper parts of 
the watershed, with the exception of the Nasia community, which is located on lowland, close 
to the main river. The settlement areas form about 4.06% of the total land mass, with very few 
falling in very high flood zones and many of them very far from the Nasia River. The villages at 
the Northern part of the watershed are likely to face a lower level of flood risk partly explained 
the physical characteristics of the area, they are found on gentles slopes and relatively at high 
elevation and located at far distance from the main river (Figure 3).

Figure 3. Land use land cover 
map of the Nasia watershed.
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3.2. Accuracy assessment of LULC classification
The confusion matrix results produced from the random forest classification is shown in Table 3. 
The RF classifier produced an OA of 92.32% and a kappa of 0.91. Water recorded the highest PA 
and UA of 100%. This was followed by Rainfed recording both PA and UA of 98.04%. Savanna 
recorded the lowest PA of 79.79%. The high commission and omission errors produced by the 
woodland class stem from the algorithm confusing the woodland with other classes, mainly 
savanna. This is however not surprising as closed trees formed part of the savanna class.

3.3. Flood prone mapping
The results of the binary classification returned F1—scores of 0.76 and 0.71 for the L8 and L7 
images, respectively (Table 4). The binary classification also delineated an area of 418.82 km2 for 
the normal flood prone compared to 423.98 km2 from the water indices. Also, the RF classification 
of the L7 image returned an area of 689.61 km2 compared to 691.22 km2 from the water indices. 
When compared with the validation datasets which covered water area of 412.63 and 686 km2 for 
the normal and extreme flood prone areas, respectively, the RF binary classification were closer to 
the validation values than the water indices. In both classifications, the water indices overesti-
mated the area (Table 5). Thus, from Figure 4a, the L8 flood prone areas precisely delineated the 
normal flood regime of the Nasia River, whiles ETM flood prone areas precisely delineated the 
extreme flood prone areas of the river (Figure 4b). Figure 4 c and d shows the delineated areas 
overlayed on an aerial image.

3.4. Flood hazard assessment
Table 6 shows the statistics of LULC affected by each flooding regime. Figure 5a and c also 
show the flood hazard map of the catchment with the affected LULC and communities. From 
the statistics, the LULC that was greatly affected by the normal flooding was Savanna, span-
ning a land area of 174.99 km2 which represents 41.45% of the total flooded area. This 
increased to 322.66 km2 (84.39% rise) during the extreme flooding. The next major affected 
LULC was rainfed with the flood inundating area of 123.63 km2 (29.45%) which increased to 
178.61 km2 (44.47%). Other LULC such as woodland, settlement, and FRA had 23.08, 4.03, and 
1.06% of their areas affected, respectively, during the normal flood, but increased by 36.83, 
54.77, and 40.89% during the extreme flood. Additionally, from Figure 5b, it can be seen that 
the normal flood affected only the periphery/small section of the Nasia settlement but it 
extends greatly to affect almost all the settlement in the Nasia community in the case of 
the extreme flood (Figure 5d)

Table 5. The extreme flood map inundated an area almost a twice of the normal flood regimes
Category Normal flood from (km2) Extreme flood from (km2)
RF binary classification 418.82 689.61

Water indices 423.98 691.22

Field measured 412.63 686.00

Table 4. Accuracy assessment of the random forest binary classification
OA Kappa PA UA F1-score

Sep-18 87.68 0.871 75.26 95.51 0.76

Sep-07 86.91 0.825 80.56 97.85 0.71
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4. Discussion
The high OA and kappa achieved showed that the model was optimized to produce high 
accuracies. This combined with the 30 m resolution of the L8 image, was appropriate for the 
development of LULC map for the watershed. The results present an improvement over the 
existing 1 km low resolution maps of the area developed as part of national and regional 
LULC mapping. Such low-resolution maps could not delineate pertinent LULC units such as 
FRA though these LULC type plays crucial roles in the livelihoods of the people within the 
watershed. Additionally, the high F1—scores and the precise estimation of the inundated 
areas from the supervised classification compared to the indices underscores other studies 
that indicated that supervised image classification has some edge over indices methods 
(Gautam et al., 2015; Pan et al., 2020; Yang et al., 2011).

The flood layers and hazard maps produced in this study provide a ready data useful to local 
authorities and the national disaster management organization to develop flood early warning 
systems within the watershed. They also serve as ready maps for disaster reliefs and disaster 
mitigation strategies for inhabitants within the Nasia watershed and other riparian areas. The data 
and methodology used in deriving these flood layers and hazard maps can be used to develop 

Figure 4. (a) L8 precise deli-
neation of the normal flood- 
prone area; (b) ETM precise 
delineation of the extreme 
flood-prone areas both vali-
dated with field data sets. (c) 
Extent of the normal flood- 
prone area on an aerial image; 
(b) extent the extreme flood- 
prone areas over an aerial 
image.
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similar layers for the many rural parts of the country faced with similar challenge of flood-related 
disasters due to lack of timely data for early warning and mitigation planning. This will be useful 
for the many rural areas around the world that are in proximity of rivers but lack adequate 
government data to assess the flood dangers posed by rivers.

The flood hazard maps helped to determine the villages that are exposed to flooding in 
both the normal and extreme cases. For example, the normal flood-prone map showed that 
the boundaries of Nasia community is the highest potential hazard area, while, the extreme 
flood-prone map indicated that the entire Nasia community and the peripheries of Gbangdil 
and Gbimsi communities in the south eastern part of the watershed are exposed. This result 
is in line with other studies (Armah et al., 2010) which indicated that, the 2007 extreme 
flooding inundated the Nasia community and cut-off road access to some other communities. 
Additionally, the hazard maps also showed that properties such as rainfed lands, FRA and 
other cultivated area will be inundated by both the normal and extreme flood regimes of the 
river. Again, previous studies have indicated that flood events, especially the extreme 

Figure 4. Continued.
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category have submerged and destroyed thousands of tons of farm products and agricultural 
assets (Armah et al., 2010) which has become a threat to food security since the floods 
destroys most of the crops. Furthermore, the maps showed that other LULC such as Savanna 
and Woodland will be inundated. Though these LULC types are not directly cultivated, they 
offer many ecological importance such as runoff reduction and erosion control, providing 
protective mechanism and reducing vulnerability of the area to flooding and other adverse 
environmental effects (Shabani et al., 2014).

5. Conclusion
Flooding is mostly disastrous for humans, and their negative footprints continue to increase 
in recent times. Many rural areas around the world lacks established flood hazard systems 
and are still in initial stages of mitigating flood hazards. The availability of data will make it 
possible to identify areas susceptible to flooding and predict future occurrences to help 
prevent impending catastrophe. This study presented a procedure for assessing potential 

Figure 5. Flood hazard maps of 
the Nasia watershed showing 
the extent of normal and 
extreme flood and affected 
communities (a) Nasia village 
affected by normal flood, (b) 
Zoom in of Nasia village under 
normal flood extent (c) Nasia 
village under extreme flood (d) 
Zoon in of Nasia village under 
extreme flood extent.
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flood hazards areas in rural communities by applying remote sensing and machine learning, 
and utilizing the Nasia watershed in northern Ghana as a case study area. The study used wet 
season Landsat images and RF binary classification to delineate the normal and extreme 
flood-prone area of the Nasia watershed. The results indicated that an area of 418.82 km2 is 
flood prone in the normal case of flooding, while 689.61 km2 area is flood prone in the 
extreme case of flooding. A dry season Landsat image was also combined with another RF 
model to produce land use/cover information which was used to check the susceptibility of 
inundated areas in the watershed. The LULC classification produced an overall accuracy of 
92.31% and kappa coefficient 0.90. A flood hazard map developed by overlaying the flood 
maps on the LULC maps showed that cultivated savanna and rainfed lands are the most 
affected by flooding of the river, bearing implications for agricultural production in the 
watershed. The flood hazard map further showed that whiles only some periphery of the 
Nasia community is inundated by water under normal flood regime, the extreme flood will 
inundate significant portion of the community and cut off road access to main towns. The 
data produced in this study will be beneficial to local administrative authorities and the 
national disaster management organization for flood control planning and search and rescue 
efforts. This study can also be used by policy makers when making plan toward rural com-
munities. We recommend future studies that incorporate the geology, rainfall intensity, and 

Figure 5. Continued.
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soil type in the model and extend the method to other watershed catchment for sustainable 
flood control.
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